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Abstract
Data augmentation alleviates the problem of001
data scarcity when training language models002
(LMs) by generating new examples based on003
the existing data. A successful approach to004
generate new samples is to fine-tune a pre-005
trained LM on the task-specific data and then006
sample from the label-conditioned LM. How-007
ever, fine-tuning can be difficult when task-008
specific data is scarce. In this work, we ex-009
plore whether large pretrained LMs can be010
used to generate new useful samples without011
fine-tuning. For a given class, we propose con-012
catenating few examples and prompt them to013
GPT-3 to generate new examples. We evaluate014
this method for few-shot intent classification015
on CLINC150 and SNIPS and find that data016
generated by GPT-3 greatly improves the per-017
formance of the intent classifiers. Importantly,018
we find that, without any LM fine-tuning, the019
gains brought by data augmentation with GPT-020
3 are similar to those reported in prior work021
on LM-based data augmentation. Experiments022
with models of different sizes show that larger023
LMs generate higher quality samples that yield024
higher accuracy gains.025

1 Introduction026

A key challenge in creating task-oriented conversa-027

tional agents is gathering and labeling training data.028

The realistic training data resulting from actual hu-029

man interaction with the agent does not exist until030

the system is launched. Prior to the launch, data031

gathering options include manual authoring and032

crowd-sourcing. Both of these options are tedious033

and expensive. Data augmentation methods aim to034

alleviate the data acquisition issue by automatically035

generating more examples based on available ones.036

A particularly promising trend in recent research037

on data augmentation for natural language pro-038

cessing is using large pretrained language models039

(LMs) (Peters et al., 2018; Devlin et al., 2018) for040

this purpose. The general paradigm of these ap-041

proaches is to fine-tune a LM on the task-specific042
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Figure 1: Method. We first generate new samples
by prompting GPT-3 with a few examples from each
class. Then we fine-tune a BERT classifier with the
augmented dataset composed of the initial samples plus
the GPT-3 generated samples.

data and then to generate new examples from a 043

label-conditioned LM (Wu et al., 2018; Kumar 044

et al., 2019, 2021; Anaby-Tavor et al., 2020; Lee 045

et al., 2021). A potential issue with this approach 046

is that when the task-specific data is scarce, fine- 047

tuning a large LM on very few available examples 048

can become the bottleneck. 049

In this work we investigate if large LMs can 050

be used for generating new examples without any 051

task-specific fine-tuning. We are inspired by GPT-3 052

results (Brown et al., 2020), which show that giant 053

LMs can perform text classification when prompted 054

with just a few examples. To use GPT-3 for data 055

generation instead, we apply the example extrap- 056

olation approach by Lee et al. (2021). Namely, to 057

create the prompt we concatenate several example 058

utterances for a class (see Figure 1). Crucially, un- 059

like Lee et al. (2021) we do not fine-tune the LM, 060

and instead investigate if useful additional data can 061

be generated by an off-the-shelf pretrained LM. 062

We focus this study on the task of predict- 063

ing the user’s intent, i.e. what the user of the 064

task-oriented chatbot wants to accomplish. We 065

show that in few-shot intent classification setups 066
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based on CLINC150 (Larson et al., 2019) and067

SNIPS (Coucke et al., 2018) datasets, the data gen-068

erated by GPT-3 greatly improves performance of069

an intent classifier. Importantly, the improvements070

that our data generation method brings are compa-071

rable to those reported by Lee et al. (2021) who072

fine-tune a T5 model on held-out classes with many073

examples per class. Our intrinsic evaluation (Ku-074

mar et al., 2021) with an oracle classifier, shows075

that when given enough examples in the prompt,076

GPT-3 indeed latches onto the examples’ intent077

and reliably generates more examples of the same078

intent. Our experiments with models of different079

sizes show that the LM’s data generation abilities080

get better as the LM gets bigger.081

2 Method082

We consider the task of training an intent classifier.083

An intent is a type of request that the conversational084

agent supports; e.g. the user may want to change085

the language of the conversation, play a song, trans-086

fer money between accounts, etc. Collecting many087

example utterances that express the same intent can088

be difficult and expensive. In this paper, we experi-089

ment with an extremely simple method to augment090

the training data available for an intent. Namely,091

as shown in Figure 1, we select K examples for092

an intent, concatenate them with newlines and feed093

the resulting string as a prompt to a large generic094

LM, such as e.g. GPT-3 (Brown et al., 2020).095

3 Experimental Setup096

3.1 Datasets097

We use CLINC150 (Larson et al., 2019) and098

SNIPS (Coucke et al., 2018) intent classification099

datasets in our experiments. CLINC150 has 23,700100

example utterances, out of which, 1200 utterances101

belong to a special out-of-scope (OOS) class. The102

rest of the dataset covers 10 domains each con-103

sisting of 15 distinct intents. The dataset is bal-104

anced, with 100 training examples per intent, 20105

(100 OOS) for validation, and 30 (1000 OOS) for106

testing. SNIPS is a dataset collected from the Snips107

personal voice assistant. The training set contains108

13,084 utterances, whereas, the test and validation109

sets contain 700 utterances each. These utterances110

cover 7 different intents.111

3.2 Setup112

We simulate data sparsity in two ways. First, to pro-113

duce comparable results to the example extrapola-114

tion approach (Ex2, Lee et al. (2021)), we consider 115

the partial few-shot setting. In this setup, for a 116

few-shot subset of intents, we truncate training data 117

to K examples per intent.1 For CLINC150, we use 118

different domains as the few-shot subsets, whereas 119

for SNIPS, we use the different intents. Second, 120

similar to Vulić et al. (2021), we experiment with a 121

more challenging full few-shot setting, in which we 122

only keep K examples per intent for all the intents. 123

When data augmentation is performed, we augment 124

the few-shot intents to have N examples, where N 125

is the median number of examples per intent of the 126

original data. 127

To precisely describe the training and test data 128

in all settings we will use Dpart to refer to dataset 129

parts, i.e. train, validation, and test. We use DF 130

for few-shot data and DM to refer data-rich intents 131

(in the partial few-shot setting). This notation is de- 132

fined for all parts, therefore, Dpart = D{F,part} ∪ 133

D{M,part}, ∀ part ∈ {train, val, test}. When 134

GPT-3 is used to augment the training data we 135

generate N −K examples per intent and refer to 136

the resulting data as D̃F,train. We experiment with 137

four different-sized GPT-3 models2 to obtain D̃: 138

Ada, Babbage, Curie, and Davinci. In order, Ada is 139

the smallest model (nearly 350M parameters) and 140

Davinci is the largest (nearly 175B parameters).3 141

3.3 Training and Evaluation 142

We fine-tune BERT-large (Devlin et al., 2018) on 143

the task of intent classification by adding a linear 144

layer on top of the [CLS] token (Wolf et al., 2019). 145

Partial few-shot. In this setup, we train S in- 146

tent classifiers, choosing a different few-shot sub- 147

set of intents every time to obtain DF . We then 148

average the metrics across these S runs. For 149

CLINC150, S = 10 corresponding to the 10 dif- 150

ferent domains, whereas for SNIPS, S = 7 cor- 151

responding to the 7 different intents. We eval- 152

uate our method on the following three scenar- 153

ios introduced by Lee et al. (2021): (i) Base- 154

line: models are trained without data augmenta- 155

tion on D{F,train} ∪D{M,train}. (ii) Upsampled: 156

D{F,train} is upsampled to have N examples per 157

intent. Then models are trained on upsampled 158

1We use the truncation heuristic provided by Lee et al.
(2021): https://github.com/google/example_
extrapolation/blob/master/preprocess_
clinc150.py

2https://beta.openai.com/docs/engines
3https://blog.eleuther.ai/

gpt3-model-sizes/
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D{F,train}∪D{M,train}. (iii) Augmented: models159

are trained on D{F,train}∪D̃{F,train}∪D{M,train}.160

For each scenario, we report the 1) overall in-161

scope accuracy on the complete test set Dtest, i.e162

intent classification accuracy excluding OOS sam-163

ples in the test set, 2) out-of-scope recall (OOS164

recall) on Dtest that we compute as percentage of165

OOS examples that the model correctly labeled as166

such, and 3) few-shot classification accuracy of167

the models on D{F,test}. We also train an oracle168

O on Dtrain ∪ Dtest and use it to measure the fi-169

delity of samples generated by GPT-3. We define170

fidelity as the accuracy of the oracle classifier on171

the generated samples. A higher value denotes that172

the generated samples are more faithful to original173

data distribution.174

Full few-shot. In this setup, we treat all the175

intents as few-shot and evaluate our method176

on the following three scenarios: (i) Baseline:177

all the intents are truncated to K = 10 sam-178

ples per intent. (ii) Augmented: models are179

trained on D{F,train} ∪ D̃{F,train}. (iii) Aug-180

mented+Relabeled: we use the oracle O to re-181

label the generated samples from GPT-3 and then182

train the intent classifier on relabeled D̃{F,train} ∪183

D{F,train}. The purpose of this experiment is to184

estimate what further gains can be achieved if the185

data generated by GPT-3 were labeled by the hu-186

man.187

For each scenario in this setup, we report (i)188

the overall in-scope classification accuracy, and (ii)189

out-of-scope recall. For both partial few-shot and190

full few-shot settings we report means and standard191

deviations over 10 repetitions of each experiment.192

4 Experimental Results193

Table 1 shows the results of our experiments on194

the CLINC150 and SNIPS datasets. By augment-195

ing the dataset with GPT-3 generated samples, the196

few-shot accuracy improves by up to 2.7% on197

CLINC150 and 18.12% on SNIPS when compared198

to the baseline setting. We observe that using larger199

GPT-3 models improves the classifier performance200

across all metrics. Specifically, we show that the201

examples generated by davinci, the largest GPT-202

3 model, bring the largest boost to both few-shot203

and overall accuracies (this conclusion is signifi-204

cant at p < 0.01 level according to the standard205

T-test). Finally, our method achieves competitive206

results compared to Ex2 (Lee et al., 2021), both in207

terms of absolute accuracies and the relative gains208
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Figure 2: Partial few-shot validation performance
for different GPT-3 temperatures. (a) few-shot accu-
racy, (b) OOS recall, (c) oracle accuracy, for classifiers
trained on augmented sets generated by GPT-3 models
of different sizes and with different temperatures.

brought by data augmentation. Note that Ex2 uses 209

T5-XL (Roberts et al., 2020) with nearly 3 billion 210

parameters as its base intent classifier, while our 211

method uses BERT-large with only 340 million 212

parameters. 213

Table 2 shows results of our full few-shot experi- 214

ments. Data augmentation by GPT-3 is also helpful 215

in this scenario, especially when larger engines are 216

used. The Ex2 method is not applicable because 217

there is no data-rich intents to train the example ex- 218

trapolator on. We compare instead to (Vulić et al., 219

2021) who consider a similar full few-shot setting 220

with K = 10 examples and report similar results. 221

Notably, augmenting the training data with Davinci 222

brings an improvement of the same magnitude as 223

that achieved by Vulić et al. (2021), who change 224

the classification approach. Lastly, relabeling the 225
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CLINC150 SNIPS

Overall Few-shot Overall Few-shot

Model Classifier Inscope Acc. OOS Recall Acc. Inscope Acc. Acc.

Baseline (Lee et al., 2021) - T5 97.4 - 93.7 95.2 74.0
Upsampled (Lee et al., 2021) - T5 97.4 - 94.4 95.9 80.0
Augmented (Lee et al., 2021) Ex2 T5 97.4 - 95.6 97.8 94.0

Baseline (ours) - BERT 96.28 (0.06) 39.14 (0.82) 91.36 (0.47) 95.47 (0.45) 78.38 (3.34)
Upsample (ours) - BERT 96.20 (0.05) 40.21 (0.59) 90.93 (0.19) 95.29 (0.37) 79.28 (2.05)

Augmented (ours) Ada BERT 96.09 (0.06) 33.30 (1.07) 92.20 (0.37) 97.39 (0.23) 95.16 (0.44)
Augmented (ours) Babbage BERT 96.15 (0.04) 33.17 (0.83) 92.41 (0.35) 97.34 (0.11) 94.30 (0.78)
Augmented (ours) Curie BERT 96.36 (0.07) 34.90 (0.86) 93.43 (0.39) 97.37 (0.24) 94.90 (0.74)
Augmented (ours) Davinci BERT 96.45 (0.07) 35.55 (0.80) 94.06 (0.26) 97.67 (0.18) 96.50 (0.54)

Table 1: Partial few-shot results on CLINC150 and SNIPS datasets. Refer to Section 3.3 for more details.

Model Aug. Relabel Inscope Acc. OOS Recall

BERT+MLP♠ 89.88 -
BERT+Sim♠ 91.80 -

Baseline 90.28(0.49) 50.18(1.14)

Ada X 90.32 (0.28) 19.90 (2.65)
Babbage X 91.10 (0.24) 19.05 (1.23)
Curie X 92.32 (0.35) 19.05 (1.23)
Davinci X 93.52 (0.30) 24.00 (3.25)

Ada X X 95.64 (0.06) 82.77 (0.39))
Babbage X X 96.32 (0.02) 80.15 (0.75)
Curie X X 96.66 (0.08) 72.28 (0.84)
Davinci X X 96.18 (0.01) 77.65 (0.75)

Table 2: Full few-shot results on CLINC150. The
third section shows results with data augmentation, and
section four shows results for augmentation and relabel-
ing of samples by an oracle. ♠ denotes the numbers are
taken from Vulić et al. (2021)

generated data by the oracle gives a big boost to ac-226

curacies for all engines, confirming our hypothesis227

that human inspection of the generated data could228

be fruitful. Relabeling also has a large impact on229

OOS recall, which is due the fact that much of the230

generated data was labeled as OOS by the oracle.231

4.1 Analysis232

Figure 2 shows how validation few-shot accuracies233

and OOS recall vary when different generation tem-234

peratures are used for GPT-3. We observe that for235

all engines the generated data is most helpful with236

temperature around 1.0, although lower tempera-237

tures result in higher OOS recall. We also observe238

that the fidelity of the generated samples decreases239

as we increase the temperature (i.e. higher diversity,240

see Figure 2c). This suggests better fidelity does241

not always imply better quality samples as the lan-242

guage model may produce less diverse utterances243

Domain Input examples Generated examples

send 2000 dollars between chase and
rabobank accounts

transfer between two accounts

Banking move money from one account to an-
other

need to send half a million dollars from
a bank to a broker firm

money transfer request to send some money from dtrusts to b
of a

take carrots off my list for shopping
i’m out of kleenex will you add that to
the shopping list

Home i’m out of bananas; add to shopping list take batteries off my shopping list

add sprite to my shopping list
my shopping list has no item on it that
begins with "c" please

what is life’s meaning can you tell me life’s meaning

Small talk what’s the point of this dumpster fire
known as life

should we try to figure out why we exist
or we can just dance around in the rain
and live for the moment and not worry
about life and what it is

whats your take on the meaning of life how do you ask ....

Table 3: Qualitative results. For each class we show
some input samples and we cherry picked some gener-
ated samples. Green samples are considered good ones
and red ones are considered bad ones.

at lower temperatures. In Appendix A, we perform 244

a human evaluation, reaching similar conclusions 245

as when using an oracle to approximate fidelity. 246

We refer the reader to Table 3 for examples of 247

generated utterances. 248

5 Conclusion 249

We propose to prompt large pretrained language 250

models to perform data augmentation in the few- 251

shot intent classification regime. Experiments on 252

CLINC150 and SNIPS show that GPT-3-generated 253

examples significantly improve the performance of 254

few-shot intent classifiers without finetuning and 255

that larger models produce more useful additional 256

data. Our oracle experiments suggest that further 257

gains can be achieved if the generated data were 258

labeled by a human. In future work we will ex- 259

periment with data generation by other language 260

models, as well as with approaches to identify the 261

generated examples that require human relabeling. 262
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Appendix355

A Human Evaluation356

In Figure 2 we evaluate the fidelity of the samples357

generated by GPT-3 with respect to the original358

set of sentences used to prompt it. Fidelity is ap-359

proximated by the classification performance of360

an "oracle" intent classifier trained on the whole361

dataset (Dtrain∪Dtest) and evaluated over the gen-362

erated samples. In order assess whether the oracle363

predictions are comparable to those of a human, we364

perform a human evaluation study.365
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Figure 3: Human evaluation. Error rate of human
evaluators at the task of finding whether any sentence
in a group of 5 was generated by GPT-3 or not. Each
color represents a different GPT-3 engine. Higher error
rate indicates that humans could not correctly identify
generated samples and thus it also indicates higher fi-
delity. The standard error is displayed as a vertical line
on top of each bar.

Figure 4: Human evaluation tool. Example of a ques-
tion for the human evaluators. Human evaluators are
asked to flag which example is GPT-3 generated if any
among the 5 presented ones.

We consider that a model produces sentences366

with high fidelity if a human is unable to distinguish367

them from a set of human-generated sentences be-368

longing to the same intent. Therefore, for each 369

intent in the CLINC150 dataset, we sample five ran- 370

dom examples and we randomly choose whether to 371

replace one of them by a GPT-3 generated sentence 372

from the same intent. We generate sentences with 373

each of the four GPT-3 models considered in the 374

main text with two different temperatures (0.8 and 375

1.0). The sentence to replace is randomly selected. 376

Finally, the five sentences are displayed to a hu- 377

man who has to choose which of the sentences is 378

generated by GPT-3, if any. 379

The task is presented to human evaluators in 380

the form of a web application (see Figure 4). We 381

placed a button next to each sentence in order to 382

force human evaluators to individually consider 383

each of the examples. Once annotated, the evalua- 384

tor can either submit, discard, or leave the task to 385

label later. We used a set of 15 voluntary evalua- 386

tors from multiple backgrounds, nationalities, and 387

genders. Each evaluator annotated an average of 35 388

examples, reaching a total of 500 evaluated tasks. 389

For each model and temperature, we report the 390

error rate of humans evaluating whether a task con- 391

tains a GPT-generated sample. We consider that 392

evaluators succeeds at a given task when they cor- 393

rectly find the sentence that was generated by GPT 394

or when they identify that none of them was gener- 395

ated. Thus, the error rate for a given model and tem- 396

perature is calculated as #failed / total_evaluated. 397

Results are displayed in Figure 3. We find that 398

human evaluators tend to make less mistakes when 399

the temperature used to sample sentences from 400

GPT-3 is smaller. This result is expected since low- 401

ering the temperature results in sentences closer to 402

those prompted to GPT-3, which are human-made. 403

We also observe that models with higher capacity 404

such as Davinci tend to generate more indistin- 405

guishable sentences than lower-capacity models 406

such as Ada, even for higher temperatures. These 407

results are in agreement with the "oracle" fidelity 408

results introduced in Figure 2. 409
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