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Abstract

Data augmentation alleviates the problem of
data scarcity when training language models
(LMs) by generating new examples based on
the existing data. A successful approach to
generate new samples is to fine-tune a pre-
trained LM on the task-specific data and then
sample from the label-conditioned LM. How-
ever, fine-tuning can be difficult when task-
specific data is scarce. In this work, we ex-
plore whether large pretrained LMs can be
used to generate new useful samples without
fine-tuning. For a given class, we propose con-
catenating few examples and prompt them to
GPT-3 to generate new examples. We evaluate
this method for few-shot intent classification
on CLINC150 and SNIPS and find that data
generated by GPT-3 greatly improves the per-
formance of the intent classifiers. Importantly,
we find that, without any LM fine-tuning, the
gains brought by data augmentation with GPT-
3 are similar to those reported in prior work
on LM-based data augmentation. Experiments
with models of different sizes show that larger
LMs generate higher quality samples that yield
higher accuracy gains.

1 Introduction

A key challenge in creating task-oriented conversa-
tional agents is gathering and labeling training data.
The realistic training data resulting from actual hu-
man interaction with the agent does not exist until
the system is launched. Prior to the launch, data
gathering options include manual authoring and
crowd-sourcing. Both of these options are tedious
and expensive. Data augmentation methods aim to
alleviate the data acquisition issue by automatically
generating more examples based on available ones.

A particularly promising trend in recent research
on data augmentation for natural language pro-
cessing is using large pretrained language models
(LMs) (Peters et al., 2018; Devlin et al., 2018) for
this purpose. The general paradigm of these ap-
proaches is to fine-tune a LM on the task-specific
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Figure 1: Method. We first generate new samples
by prompting GPT-3 with a few examples from each
class. Then we fine-tune a BERT classifier with the
augmented dataset composed of the initial samples plus
the GPT-3 generated samples.

data and then to generate new examples from a
label-conditioned LM (Wu et al., 2018; Kumar
et al., 2019, 2021; Anaby-Tavor et al., 2020; Lee
etal., 2021). A potential issue with this approach
is that when the task-specific data is scarce, fine-
tuning a large LM on very few available examples
can become the bottleneck.

In this work we investigate if large LMs can
be used for generating new examples without any
task-specific fine-tuning. We are inspired by GPT-3
results (Brown et al., 2020), which show that giant
LMs can perform text classification when prompted
with just a few examples. To use GPT-3 for data
generation instead, we apply the example extrap-
olation approach by Lee et al. (2021). Namely, to
create the prompt we concatenate several example
utterances for a class (see Figure 1). Crucially, un-
like Lee et al. (2021) we do not fine-tune the LM,
and instead investigate if useful additional data can
be generated by an off-the-shelf pretrained LM.

We focus this study on the task of predict-
ing the user’s intent, i.e. what the user of the
task-oriented chatbot wants to accomplish. We
show that in few-shot intent classification setups



based on CLINCI150 (Larson et al., 2019) and
SNIPS (Coucke et al., 2018) datasets, the data gen-
erated by GPT-3 greatly improves performance of
an intent classifier. Importantly, the improvements
that our data generation method brings are compa-
rable to those reported by Lee et al. (2021) who
fine-tune a TS model on held-out classes with many
examples per class. Our intrinsic evaluation (Ku-
mar et al., 2021) with an oracle classifier, shows
that when given enough examples in the prompt,
GPT-3 indeed latches onto the examples’ intent
and reliably generates more examples of the same
intent. Our experiments with models of different
sizes show that the LM’s data generation abilities
get better as the LM gets bigger.

2 Method

We consider the task of training an intent classifier.
An intent is a type of request that the conversational
agent supports; e.g. the user may want to change
the language of the conversation, play a song, trans-
fer money between accounts, etc. Collecting many
example utterances that express the same intent can
be difficult and expensive. In this paper, we experi-
ment with an extremely simple method to augment
the training data available for an intent. Namely,
as shown in Figure 1, we select K examples for
an intent, concatenate them with newlines and feed
the resulting string as a prompt to a large generic
LM, such as e.g. GPT-3 (Brown et al., 2020).

3 Experimental Setup

3.1 Datasets

We use CLINC150 (Larson et al., 2019) and
SNIPS (Coucke et al., 2018) intent classification
datasets in our experiments. CLINC150 has 23,700
example utterances, out of which, 1200 utterances
belong to a special out-of-scope (OOS) class. The
rest of the dataset covers 10 domains each con-
sisting of 15 distinct intents. The dataset is bal-
anced, with 100 training examples per intent, 20
(100 OOS) for validation, and 30 (1000 OOS) for
testing. SNIPS is a dataset collected from the Snips
personal voice assistant. The training set contains
13,084 utterances, whereas, the test and validation
sets contain 700 utterances each. These utterances
cover 7 different intents.

3.2 Setup

We simulate data sparsity in two ways. First, to pro-
duce comparable results to the example extrapola-

tion approach (Ex2, Lee et al. (2021)), we consider
the partial few-shot setting. In this setup, for a
few-shot subset of intents, we truncate training data
to K examples per intent.! For CLINC150, we use
different domains as the few-shot subsets, whereas
for SNIPS, we use the different intents. Second,
similar to Vuli¢ et al. (2021), we experiment with a
more challenging full few-shot setting, in which we
only keep K examples per intent for all the intents.
When data augmentation is performed, we augment
the few-shot intents to have N examples, where N
is the median number of examples per intent of the
original data.

To precisely describe the training and test data
in all settings we will use D)+ to refer to dataset
parts, i.e. train, validation, and test. We use Dg
for few-shot data and D), to refer data-rich intents
(in the partial few-shot setting). This notation is de-
fined for all parts, therefore, Dpart = Dy parsy U
Diarparty> Vpart € {train,val,test}. When
GPT-3 is used to augment the training data we
generate N — K examples per intent and refer to
the resulting data as D Ftrain- We experiment with
four different-sized GPT-3 models? to obtain D:
Ada, Babbage, Curie, and Davinci. In order, Ada is
the smallest model (nearly 350M parameters) and
Davinci is the largest (nearly 175B parameters).?

3.3 Training and Evaluation

We fine-tune BERT-large (Devlin et al., 2018) on
the task of intent classification by adding a linear
layer on top of the [CLS] token (Wolf et al., 2019).

Partial few-shot. In this setup, we train S in-
tent classifiers, choosing a different few-shot sub-
set of intents every time to obtain Dr. We then
average the metrics across these S runs. For
CLINC150, § = 10 corresponding to the 10 dif-
ferent domains, whereas for SNIPS, S = 7 cor-
responding to the 7 different intents. We eval-
uate our method on the following three scenar-
ios introduced by Lee et al. (2021): (i) Base-
line: models are trained without data augmenta-
tion on Dy 7 train)y Y Dias,train}- (ii) Upsampled:
D(F trainy 1s upsampled to have N examples per
intent. Then models are trained on upsampled

"We use the truncation heuristic provided by Lee et al.
(2021): https://github.com/google/example_
extrapolation/blob/master/preprocess_
clincl50.py

https://beta.openai.com/docs/engines

‘https://blog.eleuther.ai/
gpt3-model-sizes/
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D¢ Ftrainy YD trainy- (1) Augmented: models
are trained on D{F,train} U D{F,train} UD{M,tr‘ain} .

For each scenario, we report the 1) overall in-
scope accuracy on the complete test set Dyeg, 1.€
intent classification accuracy excluding OOS sam-
ples in the test set, 2) out-of-scope recall (OOS
recall) on D4 that we compute as percentage of
OOS examples that the model correctly labeled as
such, and 3) few-shot classification accuracy of
the models on Dy csy. We also train an oracle
O on Dyygin U Dyest and use it to measure the fi-
delity of samples generated by GPT-3. We define
fidelity as the accuracy of the oracle classifier on
the generated samples. A higher value denotes that
the generated samples are more faithful to original
data distribution.

Full few-shot. In this setup, we treat all the
intents as few-shot and evaluate our method
on the following three scenarios: (i) Baseline:
all the intents are truncated to X = 10 sam-
ples per intent. (ii) Augmented: models are
trained on D{rirainy U DiFirainy. (ii1) Aug-
mented+Relabeled: we use the oracle O to re-
label the generated samples from GPT-3 and then
train the intent classifier on relabeled f){ Ftrain} Y
D trainy- The purpose of this experiment is to
estimate what further gains can be achieved if the
data generated by GPT-3 were labeled by the hu-
man.

For each scenario in this setup, we report (i)
the overall in-scope classification accuracy, and (ii)
out-of-scope recall. For both partial few-shot and
full few-shot settings we report means and standard
deviations over 10 repetitions of each experiment.

4 Experimental Results

Table 1 shows the results of our experiments on
the CLINC150 and SNIPS datasets. By augment-
ing the dataset with GPT-3 generated samples, the
few-shot accuracy improves by up to 2.7% on
CLINCI150 and 18.12% on SNIPS when compared
to the baseline setting. We observe that using larger
GPT-3 models improves the classifier performance
across all metrics. Specifically, we show that the
examples generated by davinci, the largest GPT-
3 model, bring the largest boost to both few-shot
and overall accuracies (this conclusion is signifi-
cant at p < 0.01 level according to the standard
T-test). Finally, our method achieves competitive
results compared to Ex2 (Lee et al., 2021), both in
terms of absolute accuracies and the relative gains
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Figure 2: Partial few-shot validation performance
for different GPT-3 temperatures. (a) few-shot accu-
racy, (b) OOS recall, (c) oracle accuracy, for classifiers
trained on augmented sets generated by GPT-3 models
of different sizes and with different temperatures.

brought by data augmentation. Note that Ex2 uses
T5-XL (Roberts et al., 2020) with nearly 3 billion
parameters as its base intent classifier, while our
method uses BERT-large with only 340 million
parameters.

Table 2 shows results of our full few-shot experi-
ments. Data augmentation by GPT-3 is also helpful
in this scenario, especially when larger engines are
used. The Ex2 method is not applicable because
there is no data-rich intents to train the example ex-
trapolator on. We compare instead to (Vuli¢ et al.,
2021) who consider a similar full few-shot setting
with K = 10 examples and report similar results.
Notably, augmenting the training data with Davinci
brings an improvement of the same magnitude as
that achieved by Vuli¢ et al. (2021), who change
the classification approach. Lastly, relabeling the



CLINC150 SNIPS
Overall Few-shot Overall Few-shot

Model  Classifier Inscope Acc. OOS Recall Acc. Inscope Acc. Acc.
Baseline (Lee et al., 2021) - T5 97.4 - 93.7 95.2 74.0
Upsampled (Lee et al., 2021) - T5 97.4 - 94.4 95.9 80.0
Augmented (Lee et al., 2021) Ex2 TS5 97.4 - 95.6 97.8 94.0
Baseline (ours) - BERT 96.28 (0.06) 39.14 (0.82) 91.36(0.47) 95.47(0.45) 78.38 (3.34)
Upsample (ours) - BERT 96.20 (0.05)  40.21 (0.59) 90.93 (0.19) 95.29(0.37)  79.28 (2.05)
Augmented (ours) Ada BERT 96.09 (0.06) 33.30(1.07) 92.20(0.37) 97.39(0.23) 95.16 (0.44)
Augmented (ours) Babbage  BERT 96.15(0.04) 33.17(0.83) 92.41(0.35) 97.34(0.11) 94.30 (0.78)
Augmented (ours) Curie BERT 96.36 (0.07)  34.90 (0.86) 93.43(0.39) 97.37(0.24) 94.90 (0.74)
Augmented (ours) Davinci BERT 96.45 (0.07)  35.55(0.80) 94.06 (0.26) 97.67 (0.18) 96.50 (0.54)

Table 1: Partial few-shot results on CLINC150 and SNIPS datasets. Refer to Section 3.3 for more details.

Model Aug. Relabel Inscope Acc. OOS Recall
BERT+MLP* 89.88 -

BERT+Sim* 91.80 -

Baseline 90.28(0.49) 50.18(1.14)
Ada v 90.32 (0.28) 19.90 (2.65)
Babbage v 91.10 (0.24) 19.05 (1.23)
Curie v 92.32 (0.35) 19.05 (1.23)
Davinci v 93.52 (0.30) 24.00 (3.25)
Ada v v 95.64 (0.06) 82.77 (0.39))
Babbage v v 96.32 (0.02) 80.15 (0.75)
Curie v v 96.66 (0.08) 72.28 (0.84)
Davinci v v 96.18 (0.01) 77.65 (0.75)

Table 2: Full few-shot results on CLINC150. The
third section shows results with data augmentation, and
section four shows results for augmentation and relabel-
ing of samples by an oracle. ® denotes the numbers are
taken from Vuli¢ et al. (2021)

generated data by the oracle gives a big boost to ac-
curacies for all engines, confirming our hypothesis
that human inspection of the generated data could
be fruitful. Relabeling also has a large impact on
OOS recall, which is due the fact that much of the
generated data was labeled as OOS by the oracle.

4.1 Analysis

Figure 2 shows how validation few-shot accuracies
and OOS recall vary when different generation tem-
peratures are used for GPT-3. We observe that for
all engines the generated data is most helpful with
temperature around 1.0, although lower tempera-
tures result in higher OOS recall. We also observe
that the fidelity of the generated samples decreases
as we increase the temperature (i.e. higher diversity,
see Figure 2c). This suggests better fidelity does
not always imply better quality samples as the lan-
guage model may produce less diverse utterances

Domain ‘ Input examples ‘ Generated examples

send 2000 dollars between chase and .
transfer between two accounts

rabobank accounts

. need to send half a million dollars from
Banking | move money from one account to an-

a bank to a broker firm
other N

to send some money from dtrusts to b
of a
i’m out of kleenex will you add that to

money transfer request

take carrots off my list for shopping

the shopping list

Home ‘ i’m out of bananas; add to shopping list ‘ take batteries off my shopping list

my shopping list has no item on it that
begins with "c¢" please

add sprite to my shopping list

‘ what is life’s meaning

can you tell me life’s meaning

should we try to figure out why we exist
what’s the point of this dumpster fire
known as life

or we can just dance around in the rain
Small talk J

and live for the moment and not worry

about life and what it is

‘ whats your take on the meaning of life ‘ how do you ask ....

Table 3: Qualitative results. For each class we show
some input samples and we cherry picked some gener-
ated samples. Green samples are considered good ones
and red ones are considered bad ones.

at lower temperatures. In Appendix A, we perform
a human evaluation, reaching similar conclusions
as when using an oracle to approximate fidelity.

We refer the reader to Table 3 for examples of
generated utterances.

5 Conclusion

We propose to prompt large pretrained language
models to perform data augmentation in the few-
shot intent classification regime. Experiments on
CLINC150 and SNIPS show that GPT-3-generated
examples significantly improve the performance of
few-shot intent classifiers without finetuning and
that larger models produce more useful additional
data. Our oracle experiments suggest that further
gains can be achieved if the generated data were
labeled by a human. In future work we will ex-
periment with data generation by other language
models, as well as with approaches to identify the
generated examples that require human relabeling.
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Appendix
A Human Evaluation

In Figure 2 we evaluate the fidelity of the samples
generated by GPT-3 with respect to the original
set of sentences used to prompt it. Fidelity is ap-
proximated by the classification performance of
an "oracle" intent classifier trained on the whole
dataset (D¢pqin U Dyest) and evaluated over the gen-
erated samples. In order assess whether the oracle
predictions are comparable to those of a human, we
perform a human evaluation study.
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Figure 3: Human evaluation. Error rate of human
evaluators at the task of finding whether any sentence
in a group of 5 was generated by GPT-3 or not. Each
color represents a different GPT-3 engine. Higher error
rate indicates that humans could not correctly identify
generated samples and thus it also indicates higher fi-
delity. The standard error is displayed as a vertical line
on top of each bar.

Help us decide which sentences are generated by a human or a model. Note, that there could be either
one or zero sentences generated by a model. Thanks for your time!

m— i will be asking to cancel until i find a venue that will allow me to do
that

Figure 4: Human evaluation tool. Example of a ques-
tion for the human evaluators. Human evaluators are
asked to flag which example is GPT-3 generated if any
among the 5 presented ones.

We consider that a model produces sentences
with high fidelity if a human is unable to distinguish
them from a set of human-generated sentences be-

longing to the same intent. Therefore, for each
intent in the CLINC150 dataset, we sample five ran-
dom examples and we randomly choose whether to
replace one of them by a GPT-3 generated sentence
from the same intent. We generate sentences with
each of the four GPT-3 models considered in the
main text with two different temperatures (0.8 and
1.0). The sentence to replace is randomly selected.
Finally, the five sentences are displayed to a hu-
man who has to choose which of the sentences is
generated by GPT-3, if any.

The task is presented to human evaluators in
the form of a web application (see Figure 4). We
placed a button next to each sentence in order to
force human evaluators to individually consider
each of the examples. Once annotated, the evalua-
tor can either submit, discard, or leave the task to
label later. We used a set of 15 voluntary evalua-
tors from multiple backgrounds, nationalities, and
genders. Each evaluator annotated an average of 35
examples, reaching a total of 500 evaluated tasks.

For each model and temperature, we report the
error rate of humans evaluating whether a task con-
tains a GPT-generated sample. We consider that
evaluators succeeds at a given task when they cor-
rectly find the sentence that was generated by GPT
or when they identify that none of them was gener-
ated. Thus, the error rate for a given model and tem-
perature is calculated as #failed / total_evaluated.

Results are displayed in Figure 3. We find that
human evaluators tend to make less mistakes when
the temperature used to sample sentences from
GPT-3 is smaller. This result is expected since low-
ering the temperature results in sentences closer to
those prompted to GPT-3, which are human-made.
We also observe that models with higher capacity
such as Davinci tend to generate more indistin-
guishable sentences than lower-capacity models
such as Ada, even for higher temperatures. These
results are in agreement with the "oracle" fidelity
results introduced in Figure 2.



