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Abstract: In Embodied Question Answering (EQA), agents must explore and de-
velop a semantic understanding of an unseen environment to answer a situated
question with confidence. This problem remains challenging in robotics, due to
the difficulties in obtaining useful semantic representations, updating these rep-
resentations online, and leveraging prior world knowledge for efficient planning
and exploration. To address these limitations, we propose GraphEQA, a novel ap-
proach that utilizes real-time 3D metric-semantic scene graphs (3DSGs) and task
relevant images as multi-modal memory for grounding Vision-Language Models
(VLMs) to perform EQA tasks in unseen environments. We employ a hierarchical
planning approach that exploits the hierarchical nature of 3DSGs for structured
planning and semantics-guided exploration. We evaluate GraphEQA in simula-
tion on two benchmark datasets, HM-EQA and OpenEQA, and demonstrate that
it outperforms key baselines by completing EQA tasks with higher success rates
and fewer planning steps. We further demonstrate GraphEQA in multiple real-
world home and office environments. Videos and code: website.

Keywords: Embodied Question Answering, Vision Language Models, Robot
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1 Introduction
Embodied Question Answering (EQA) [1] is a challenging task in robotics, wherein an agent is
required to explore and understand a previously unseen environment sufficiently well, to answer an
embodied question in natural language. Accomplishing this task efficiently requires agents to rely on
both commonsense knowledge of human environments as well as ground its exploration strategy in
the current environment context. For example, to answer the question “How many chairs are there
at the dining table?”, the agent might rely on commonsense knowledge to understand that dining
tables are often associated with dining rooms and dining rooms are usually near the kitchen towards
the back of a home. A reasonable navigation strategy would involve navigating to the back of the
house to locate a kitchen. To ground this search in the current environment, however, requires the
agent to continually maintain an understanding of where it is, memory of where it has been, and
what further exploratory actions will lead it to relevant regions. Finally, the agent needs to observe
the target object(s) and perform visual grounding to reason about the number of chairs around the
dining table, and confidently answer the question correctly.

Maintaining a concise and effective memory and using it to take actions in the environment is critical
for solving EQA tasks. Prior works have demonstrated the impressive commonsense reasoning
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Figure 1: Overview of GraphEQA: A novel approach for utilizing real-time 3D metric-semantic hierarchical
scene graphs and task-relevant images as multimodal memory for grounding vision-language based planners to
solve embodied question answering tasks in unseen environments.
capabilities of Vision Language Models (VLMs) as planning agents, while leveraging a semantic
map for retrieval [2] or semantic exploration [3]. In such approaches, the VLMs are not grounded
in the current environment, and commonsense reasoning and context-based decision-making are
disconnected. Recent works [4, 5, 6, 7, 8] focus on maintaining memory modules that can be queried
by VLM agents for grounded planning. To construct a semantically rich memory, prior works either
maintain a large, extensive set of images [8, 9] or have to perform an expensive offline processing
step to obtain a compact representation [6, 7, 10]. Thus, such semantic memory modules are either
semantically rich [7, 2, 11], compact [4, 5], or online [5], but not all at the same time.

To address these limitations, we propose GraphEQA, an approach for embodied question answer-
ing that builds an online, compact, multimodal semantic memory combining global, semantically-
sparse, and task-agnostic information from real-time 3D scene graphs [12] with local and
semantically-rich information from task-relevant images [10]. GraphEQA uses this multimodal
representation for grounding vision-language planners to solve EQA tasks in unseen environments.
Specifically, we utilize a recent spatial perception system [12] that incrementally creates a real-time
3D metric-semantic hierarchical scene graph (3DSG), given sequential egocentric image frames.
We further augment this scene graph with semantic room labels and semantically-enriched frontiers,
while maintaining a task-relevant visual memory that keeps track of task-relevant images as the robot
explores the environment. Finally, we employ a hierarchical planning approach that utilizes the hi-
erarchical nature of scene graphs and semantically relevant frontiers for structured planning and
exploration in an unseen environment before using the multimodal memory to answer the embodied
question with high confidence.

We demonstrate that given our real-time multimodal memory and hierarchical planning approach,
the agent is able to accomplish long-horizon tasks with significantly fewer VLM planning steps,
explores explainable task-relevant frontiers, and succeeds in EQA tasks with a higher rate than pre-
vious approaches. We demonstrate our results on the HM-EQA [3] and OpenEQA [13] datasets in
the Habitat simulation environment [14] and also in the real world using the Hello Robot Stretch
mobile manipulator in two scenes. While the focus of this work is EQA tasks, our contributions
advance the broader goal of grounding vision-language foundation models in unseen 3D environ-
ments, making GraphEQA applicable to a wider range of robotics tasks. The key contributions of
this work are as follows:

• We present GraphEQA, a novel approach for using real-time 3D metric-semantic hierar-
chical scene graphs and task-relevant images as multimodal memory, for grounding VLMs
to solve EQA tasks in unseen environments.

• We propose an approach to enrich 3DSGs with 1) semantically enriched frontiers and 2)
semantic room labels.

• We propose a hierarchical VLM-based planning approach that exploits the hierarchical
nature of the enriched 3DSG for structured exploration and planning.

• We provide extensive experimental results, both in simulation on the HM-EQA [3] and
OpenEQA [13] datasets, and in the real-world in two indoor environments, using the Hello
Robot Stretch RE2 mobile manipulator.
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2 Related Work
3D Semantic Scene Graph Representations for Planning: 3D semantic scene graphs (3DSGs)
[15, 16, 17, 18, 19] have emerged as compact, semantically-rich representations of indoor environ-
ments, spurring advances in both offline [11, 2, 20, 21] and online [12, 22, 23] prediction. Offline
approaches [11, 2] focus on enriching 3DSG nodes and edges with open-vocabulary semantics via
Vision-Language Models (VLMs) [24, 25], supporting retrieval-based, language-guided tasks. On-
line methods [12, 22] enable real-time deployment of embodied agents but often rely on closed-set
semantics [12] or fixed task sets [22], limiting open-world generalization. Our approach bridges
these paradigms by building a multimodal memory: an online-constructed 3DSG with closed-set se-
mantics guides a VLM agent toward task-relevant areas to capture semantically rich images [10], en-
abling open-world embodied question answering (EQA). Recent work has leveraged textual 3DSG
representations for VLM-based planning [4, 26, 27, 28], primarily targeting object search or re-
arrangement tasks, but without addressing the deeper semantic understanding required for EQA.
Other spatio-temporal representations of environments have also been effective for planning, e.g.,
[29], which constructs a custom 3D data structure to maintain dynamic memory.

VLMs for 3D Scene Understanding and Planning: Several previous works leverage the common-
sense reasoning capabilities of foundation models for long-horizon planning [30, 31, 32]. However,
these methods are not grounded in the context of the current environment and additional tools are
required to translate the LLM plan to executable actions [33, 34, 31, 35]. Previous works have ex-
plored the use of VLMs for building dense queryable open-vocabulary 3D semantic representations
using explicit pixel-level [36, 37, 38, 39, 40] or implicit neural [41, 42, 43] representations. However,
these maps are built offline, before they are used for downstream retrieval-based tasks. Moreover,
such dense representations are not scalable to large environments and cannot be used to ground
VLM-based planners. Recent advancements in grounding VLM-based planners using videos [44, 8]
are promising, but struggle with scalability for long-horizon tasks in large environments. VLMs
have been used as planners while leveraging semantic maps for retrieval [45, 2, 11] or semantic
exploration [3, 46, 47, 48, 49], however such approaches disconnect context-based decision-making
and commonsense reasoning. Offline methods that build topological maps [50], keyframe selections
[10], 3D semantic graphs [2, 11, 51, 20, 21] and experience summaries [6, 7, 52, 53] are unsuit-
able for real-time deployment in novel settings. Online semantic scene graphs, while real-time, are
limited by closed-set semantics. Our approach introduces an online, compact, and semantically rich
multimodal memory to effectively ground VLM planners for EQA tasks.

Embodied Question Answering: Embodied Question Answering [1, 54, 55, 56] has emerged as a
challenging paradigm for testing robotic task planning systems on their ability to incrementally build
a semantic understanding of an environment in order to correctly answer an embodied question with
confidence. Ren et al. [3] build an explicit task-specific 2D semantic map of the environment to
guide exploration, Anwar et al. [6], Xie et al. [7] build offline experience modules that the LLM can
query, and Majumdar et al. [9] uses video memory to answer embodied questions using long-context
VLMs. We focus on building agents that do not disconnect the semantic memory from the planner
by grounding the planner in a compact scene representation for solving EQA tasks online.

3 Method
3.1 Preliminaries
Hierarchical 3D Metric-semantic Scene Graphs. 3D metric-semantic scene graphs (3DSGs) pro-
vide a structured, layered representation of environments and encode spatial, semantic, and rela-
tional information [15, 16, 17]. Recent works like Clio [22], Hydra [12], and Open Scene Graphs
[57] introduce efficient real-time frameworks for incremental construction of hierarchical SG layers
consisting of objects, regions, rooms, buildings, etc. See Appendix A.3 for details.

2D Occupancy Mapping and Frontier Detection. 3D voxel-based occupancy maps are an effec-
tive way for storing explored, occupied, and unexplored regions of an environment for planning and
navigation. As the robot explores, using depth data and camera intrinsics, occupancy of the voxels
is updated using Volumetric Truncated Signed Distance Function (TSDF) fusion. TSDF integrates
depth observations to update voxels as occupied or free, while areas beyond a certain threshold
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Figure 2: Overall GraphEQA architecture. As the agent explores the environment, it used its sensor data
(RGBD images, semantic map, camera poses and intrinsics) to construct a 3D metric-semantic hierarchical
scene graph (3DSG) as well as a 2D occupancy map for frontier selection in real time. The constructed 3DSG
is enriched as discussed in Section 3.3. From the set of images collected during each trajectory execution, a
task-relevant subset is selected, called the task-relevant visual memory ( Section 3.4). A VLM-based planner
( Section 3.5) takes as input the enriched scene graph, task-relevant visual memory, a history of past states and
actions, and the embodied question and outputs the answer, its confidence in the selected answer, and the next
step it needs to take in the environment. If the VLM agent is confident in its answer, the episode is terminated,
else the proposed action is executed in the environment and the process repeats.

are marked unexplored. Typically, the 3D occupancy map is projected into 2D, where frontiers—
boundaries between explored and unexplored regions—are identified to guide further exploration.
We employ this approach in our method for identifying frontiers, clustering them and adding them
to the scene graph.

3.2 Problem Formulation
An overview of our proposed method is shown in Figure 2. Given a multiple choice question
q, we wish to find the correct answer a→ → A where A is the set of multiple-choice answers to
question q available to the agent. To find a→, the agent is equipped with a VLM-based planner
V(q,Se

t , {Ik}
K
k=1,Ht, Xt) = (at, ct, ut), where S

e
t is the enriched scene graph constructed online

at planning time t, and includes frontier nodes from 2D the occupancy map (Section 3.1). {Ik}Kk=1
is a small set of task-relevant images maintained in memory (Section 3.4), at is the current best
answer to the multiple choice question q and ut is the next action the agent should take in the
environment. Ht represents the accrued history up to time t and Xt represents the current state of
the agent. We query the VLM planner V (Section 3.5) at time t with the inputs described above,
with the scene graph S

e
t continually being constructed and a set of images {Ik}

K
k=1 chosen based

on task and semantic relevance. The planner then outputs a high-level action ut which is executed
in the environment while the scene graph, visual memory, and frontiers are all updated in real time.
In the following sections we provide details for each of these components.

3.3 Scene Graph Construction and Enrichment
We use Hydra [12] to construct a layered metric-semantic scene graph (see Appendix A.3), while
also maintaining a 2D occupancy map of the environment depicting the explored, occupied, and
unexplored navigable regions of the environment as mentioned in Section 3.1. We perform room
and frontier enrichment steps to enable semantic-guided exploration and hierarchical planning.
Room enrichment: Room nodes in Hydra’s 3DSG are assigned generic labels such as R0, R1, etc.
To enrich them with semantic information, we prompt an LLM to assign semantic labels to each of
the room nodes. We use a simple prompt “Which room are these objects <object list> most likely
located in?” where <object list> is the list of all objects located in a certain room in the scene graph.
The output of the LLM is then used to update the room labels.
Frontier enrichment: To enrich our 3DSG with semantic information that can enable task-relevant
exploration, we extract frontier nodes from the 2D occupancy map, cluster them, and add them as
independent nodes to the scene graph. Next, we find top-j object nodes nearest to each clustered
frontier node, within a maximum distance d. We add edges to the scene graph connecting each
frontier node to its top-j object neighbors. This semantic information can now be utilized by a
VLM-based planner to select the most semantically-relevant frontier to explore next. For general
exploration, for example, it could be useful to choose frontier nodes near doors. We use j = 3 and
d = 2 meters in our experiments, but can be varied based on the environment.
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3.4 Task-relevant Visual Memory
During action-execution, images are stored in a buffer at a specified sampling frequency to avoid
multiple similar repeated images. Images from this buffer, along with keywords from the question/-
task, are then processed using SigLIP [58] to obtain the text-image relevancy score for each image.
Using this score, only the top-K most relevant images are maintained in the buffer and the rest are
discarded. We use K = 2; we append these K images together, along with the agent’s current view,
and use it as the visual input to the VLM planner at the next planning step, as shown in Figure 2.
3.5 Hierarchical Vision-Language Planner
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Figure 3: VLM Planner Architecture. The Hierar-
chical Vision-Language planner takes as input the ques-
tion, enriched scene graph, task-relevant visual mem-
ory, current state of the robot (position and room)
and a history of past states, actions, answers and
confidence values. The planner chooses the next
<Goto Object node> action hierarchically by first se-
lecting the room node and then the object node. The
<Goto Frontier node> action is chosen based on the
object nodes connected to the frontier via edges in the
scene graph. The planner is asked to output a brief rea-
soning behind choosing each action, an answer, confi-
dence in its answer, reasoning behind the answer and
confidence, the next action, a brief description of the
scene graph, and the visual memory.

Inputs: At every planning step t, the VLM
planner takes as input a multiple-choice ques-
tion q, the set of multiple-choice answers
A, the enriched scene graph S

e
t , and the

task-relevant visual memory {Ik}
K
k=1; K is the

number of images in memory. Additionally, we
provide the planner with a structured history
Ht and the agent’s current state Xt; Xt is
defined in the following format: "The agent

is currently at node <agent node id>

at position <agent position> in room

<room id> <room name>", where information
in ‘<·>’ is populated from S

e
t (see Fig. 3).

Outputs: Given the above inputs, the planner
must output an answer at → A for q, a boolean
value ct → {True, False} representing whether
it is confident in answering the question, its
current numeric confidence level pct → [0, 1],
and the next action ut that the agent should
take. We require the planner to also output
the reasoning behind the choice of action and
its confidence in the rationale. Finally, the
planner is required to plan the next few steps,
selecting from two high-level action types:
<Goto_Object_node>(object_id) and <Goto_Frontier_node>(frontier_id), where object_id

and frontier_id are selected from S
e
t . Selecting an object node enables further visual examination

of relevant visited areas. Selecting a frontier node enables visitation of unexplored areas. Finally,
the planner is required to output a brief description of the scene graph as well as a brief description
of the input images. We update the history Ht such that Ht+1 = Xt + at + ct + pct + ut +Ht.
Hierarchical planner and frontier exploration: For <Goto Object node>(object id) action
types, we enforce a hierarchical planning behavior by requiring the planner to first reason about
which room to go to by selecting a room node, then a region node (within the selected room), and
finally the object node to go to. This planning behavior reflects the hierarchical structure of the
3DSG and forces the planner to reason about the hierarchical semantics of the scene to explore
and answer the questions. For <Goto Frontier node>(frontier id) action types, we require
the planner to provide rationale for its choice of frontier node by referring to the object nodes
connected to the selected frontier by edges in the scene graph, enforcing semantic reasoning in the
frontier-selection process so that chosen frontiers are task-relevant and for information-gathering.
Termination condition: A planning episode is terminated when the planner outputs ct = True or
pct > 0.9, i.e., when it is confident in answering the question. The episode is also terminated if
t > Tmax, when the maximum allowed planning steps have been reached.
Prompt description: We provide the planner with a system prompt detailing how to understand
the scene graph structure, and explain the criteria behind choosing the actions—hierarchically for
object nodes and task-relevant or information-gathering for frontier nodes. We explain that the
3DSG can be imperfect/incomplete and that the planner should always seek visual confirmation
before answering the question with confidence while employing the scene graph as a semantic map
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for examining and exploring the scene. Finally, we prompt the VLM to provide a brief description
of the scene graph and the input images, focusing on elements in the scene that are relevant to the
current task. The complete prompt is available in Appendix B.

4 Experimental Setup
We identify the key research questions that this work aims to evaluate: Q1) Do hierarchical 3D scene
graphs provide an effective metric-semantic memory for solving embodied question answering
tasks? Q2) How does the real-time nature of GraphEQA compare to offline approaches that provide
the planner with full-state scene graphs? Specifically, we aim to evaluate if GraphEQA can utilize
incrementally constructed state information to solve EQA tasks and terminate based on confidence,
without needing to acquire full state information. Q3) Can GraphEQA effectively combine and
reason about the high-level, semantically-sparse and task-agnostic information offered by scene
graphs and the local, semantically-rich and task-relevant information from visual memory to
actively take information gathering actions until it can confidently answer an embodied question?

4.1 Baselines and Ablations
To evaluate our method and answer the above research questions, we compare against several base-
lines and focus on methods that employ VLM-based planners for solving EQA or object goal navi-
gation tasks. We compare against a strong baseline, Explore-EQA [3], which calibrates Prismatic-
VLM [59] to answer embodied questions confidently while maintaining a 2D semantic memory and
using prompted images to guide exploration. Note that ExploreEQA is always executed for a pre-
specified maximum number of steps, with the highest confidence step chosen to answer the question,
while GraphEQA terminates based on a confidence threshold. We implement additional variants of
ExploreEQA with newer foundation models—e.g., GPT4o, Llama 4 Maverick, and Gemini 2.5
Pro—for fair comparison with respective VLM variants of GraphEQA.

We also compare GraphEQA against a modified version of SayPlan [4] which we call SayPlanVi-
sion. Similar to SayPlan, SayPlanVision first constructs a scene graph of the whole scene offline
and then uses this scene graph for planning. For fair comparison, we further augment SayPlanVision
with some abilities of GraphEQA in order to evaluate the effectiveness of our real-time approach and
to answer Q2; we provide it with a task-relevant visual memory and confidence-based termination.

We further evaluate our method for Q3, using two ablations: GraphEQA-SG, where the planner
only has access to the real-time 3DSG and does not have access to images; and GraphEQA-Vis,
where the planner only takes the visual memory as input and exploration is done via random frontier-
based exploration. These ablations will help us evaluate the benefits of multimodality in GraphEQA.

Experimental Settings: Since we focus on multi-room environments, we evaluate GraphEQA and
the baselines mentioned in Section 4.1 in simulation in Habitat-Sim [60] on scenes from HM3D-
Semantics [14] on the HM-EQA and OpenEQA datasets and in the real-world in two unique home
environments. GraphEQA supports open-vocabulary answers and evaluating them using an LLM,
as in OpenEQA. However, to ensure consistent evaluation across both benchmarks, we augment the
OpenEQA dataset with multiple choice answers using an LLM (see A.2). We perform numerous
experiments with different foundation models as the VLM planner, including GPT4o, Gemini 2.5
Pro, and Llama 4 Maverick. For the real-world setup, we deploy and evaluate our approach on
the Hello Robot Stretch RE-2 mobile manipulation platform with the Stretch AI codebase [61]. All
experiments are conducted on a desktop machine with two (2) NVIDIA TITAN RTX GPUs, 64GB
of RAM, and an Intel i9-10900K CPU.

Resource Allocation: The average token count is broken down as 475 per image (3 images), 1133
for the prompt, and on average 5,425 scene graph tokens, for a total 7983 tokens per VLM step.

Metrics: We use the following three metrics to compare against the baselines and ablations in Sec-
tion 4.1: 1) Success Rate (%): an episode is considered a success if the agent answers the embodied
question correctly with high confidence; 2) Average # Planning Steps: For successful episodes, we
calculate the average number of VLM planning steps. Note that while Explore-EQA runs for a preset
maximum number of steps and post-calculates the maximum confidence step, we report the number
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of steps taken until the max confidence step; 3) Average Trajectory Length (meters): for successful
episodes, we calculate the average length of the path traveled by the robot. For SayPlanVision, this
includes the path traveled to generate the full scene graph.

4.2 Experimental Results
Table 1: Comparison to simulation baselines for HM-EQA and OpenEQA datasets: Success rate (%), average
# of planning steps over successful trials, and Lω average trajectory length over successful trials. Methods with
a † indicate our implementations of that particular baseline.

Method HM-EQA OpenEQA
Success Rate (%) ↑ #Planning Steps ↓ Lω (m) ↓ Success Rate (%) ↑ #Planning Steps ↓ Lω (m) ↓

Explore-EQA [3] 51.7 18.7 38.1 55.3 20.8 39.7
Explore-EQA-GPT4o† 46.4 3.4 6.3 46.4 4.88 8.30
Explore-EQA-Llama4-Mav † 43.8 5.58 10.4 48.1 4.25 7.60
Explore-EQA-Gemini-2.5Pro † 54.3 6.40 12.3 53.0 6.45 10.9
SayPlanVision† 54.8 2.6 5.3 - - -
GraphEQA-GPT4o 63.5 5.1 12.6 69.1 3.97 8.29
GraphEQA-Llama4-Mav 57.7 2.36 3.59 53.3 2.37 3.45
GraphEQA-Gemini-2.5Pro 67.0 2.94 7.41 62.0 2.16 4.03

Comparison to Baselines. Table 1 shows simulation results comparing GraphEQA to the base-
lines discussed in Section 4.1 on the HM-EQA and OpenEQA datasets. Overall, GraphEQA outper-
forms all other baselines. Compared to Explore-EQA, our method completes tasks in significantly
fewer planning steps and with lower trajectory length, indicating more efficient navigation. We also
observe that the GPT and Llama variants of Explore-EQA have lower success rates than Explore-
EQA, with qualitative results indicating overconfidence in VLMs’ predictions (see Appendix C.4),
leading to terminating episodes before exploring sufficiently. We note that Explore-EQA’s Gemini
variant performs better than Explore-EQA, likely due to the inherent spatial reasoning capabilities
of Gemini 2.5 Pro. GraphEQA outperforms SayPlanVision even though SayPlanVision has access
to the complete scene graph. For additional OpenEQA results please refer to Appendix C.5. We
discuss these results in more detail below.

Baseline And Ablation Study. Regarding Q1, we observe from Table 1 that GraphEQA has
higher success rate, compared to all Explore-EQA variants, across both HM-EQA and OpenEQA
datasets, without the need to build an explicit 2D semantic task-specific memory. This demonstrates
the capability of 3DSGs to provide an effective metric-semantic memory for EQA tasks. We also
observe that GraphEQA requires a significantly lower number of planning steps as compared to
Explore-EQA. This is because, unlike Explore-EQA, GraphEQA does not entirely rely on images
as input to the VLM planner for building the semantic memory as well as planning, as this would
constrain the planner to choose from only regions that are visible in the current image. GraphEQA,
on the other hand, can use the hierarchical structure of the scene graph as well as semantically-
enriched frontier nodes to plan across the entire explored space.

Additional error analysis in Appendix C.4 reveals that the GPT variant of Explore-EQA has a signif-
icantly high percentage of false positives, i.e., questions that are answered successfully using com-
monsense reasoning/guessing, but without grounding the answer in the current scene. This provides
additional evidence of the effectiveness of 3DSGs in enabling semantic exploration by grounding
the planner in the current environment. Qualitatively, we observe that actions chosen by the planner,
<Goto Object node>(object id) and <Goto Frontier node>(frontier id), are task-specific and
explainable. For more qualitative results please refer to Appendix C.6.

For Q2, we observe from Table 1 that GraphEQA performs better than SayPlanVision which has
access to the complete scene graph. This is a surprising result since it is expected that, given full
scene graph information, SayPlanVision would outperform GraphEQA across all metrics. However,
from a qualitative analysis of the results for SayPlanVision, we observe that given access to the
complete scene graph, the context is too large, providing for a much harder inference problem for
the VLM. As a result, the agent is overconfident about its choice of object node actions, leading to
shorter trajectory lengths in successful cases, but also to increased failure cases. This points to an
interesting advantage of our real-time approach—that incrementally building memory by exploring
task-relevant regions and maintaining a more concise representation benefits EQA tasks.
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(b)

Q: How many white cushions are there on the grey couch? A) 1. B) 2. C) 3. D) 4.

Planning step 1I will choose a frontier to explore unexplored areas.
Confident: False, Answer: 1<Goto_Frontier_node>

Planning step 1 Planning step 3 Planning step 5

I need to see the couch to count the cushions.
Confident: False, Answer: 1<Goto_Frontier_node>

Planning step 1The image clearly shows two white cushions on the 
grey couch. Confident: True, Answer: 2

Q: What is the color of the dehumidifier machine? A) Blue. B) 2. White and gray.

Planning step 1 Planning step 7 Planning step 9

Planning step 1The dehumidifier machine is not currently in the 
scene graph or visible. Exploring a frontier.

Confident: False, Answer: Blue<Goto_Frontier_node>

Planning step 1There are two white, boxy machines on the floor, 
likely dehumidifiers or air purifiers. One is gray.

Confident: True  Answer: White and gray

Planning step 1I need to find the dehumidifier to determine its 
color. I will explore a frontier.

Confident: False, Answer: Blue<Goto_Frontier_node>

Figure 4: Images from real-world experiments, deploying GraphEQA on the Hello Robot Stretch RE2
platform in two unique home environments (a, b). Each set of images is from the head camera on the Stretch
robot, representing the top-K task-relevant images at each planning step as it constructs the scene graph and
attempts to answer the question with high confidence. Provided under the images are planning step, answers,
confidence, and explanations output from the VLM planner.

For Q3, the ablation results in Table 2 for GraphEQA-SG show lower success rate, higher aver-
age planning steps, and higher average trajectory length, compared to GraphEQA, as it only uses
the 3DSG as textual input to the VLM planner, demonstrating that a semantic scene graph con-
structed using closed-set semantics and without any task-specific semantic enrichment will provide
an incomplete and insufficient environment understanding; GraphEQA’s task-relevant visual mem-
ory and task-specific enrichment are crucial for solving EQA tasks. Furthermore, we note that the
performance of the vision-only ablation GraphEQA-Vis also suffers: this is because the agent
takes random exploratory actions in the environment, with no semantic understanding of the scene
structure to guide exploration. However, qualitatively we observe that without access to a scene
graph to ground the agent in the current environment, GraphEQA-Vis exhibits overconfidence (tak-
ing very few planning steps) and tries to answer the question solely based on the current image.

Table 2: Ablations (Simulation): Success rate (%),
number of planning steps and Lω the trajectory length.
Ablation Succ. Rate (%) #Planning steps Lω (m)

GraphEQA-SG 13.6 8.8 33.0
GraphEQA-Vis 45.7 1.0 3.9
GraphEQA 63.5 5.1 12.6

GraphEQA outperforms all ablations, provid-
ing clear evidence on the utility of a multimodal
approach that combines global spatial and se-
mantic information from 3D scene graphs with
local but rich semantic information from im-
ages, for solving challenging EQA tasks. We
also observe from Table 1 that GraphEQA ex-
hibits lower average planning steps and lower average trajectory length, while retaining a higher
success rate, highlighting the capability of GraphEQA to reason about multimodal data in the form
of semantically sparse and task-agnostic scene graphs and more semantically rich information in the
form of task-relevant visual memory. Additional ablations are available in Appendix C.2.

Real-world Experiments. We deploy GraphEQA on the Hello Robot Stretch RE2 platform across
two home environments. We conduct ten trials in Home (a) and five trials in Home (b). Figure 4
illustrates representative runs from each setting. For each environment, we design a custom set of
Embodied Question Answering (EQA) tasks (see Appendix D and website), aligned with the task
categories described in Appendix A.2. To construct the underlying 3D metric-semantic scene graph,
GraphEQA employs Detic [62] for semantic segmentation and integrates RGB-D images along with
camera intrinsics and extrinsics as input to the Hydra scene graph generator [12].
5 Conclusion
We present GraphEQA, an approach for solving embodied question answering tasks in unseen en-
vironments by grounding a vision-language based planner in the context of the current environment
by providing as input textual representations of real-time 3D metric-semantic scene graphs and a
task-relevant visual memory. We show that GraphEQA achieves improved performance over ex-
isting approaches on EQA tasks in both the HM-EQA and OpenEQA benchmarks, and validate
performance across both closed and open multimodal foundation models. Furthermore, we validate
its practical applicability through real-world deployments in two indoor environments.
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6 Limitations
A limitation of this approach is reliance on off-the-shelf segmentation and detection models for cre-
ating semantic maps required for 3DSG construction. The performance of our approach, hence,
is directly impacted by the performance of the detection method used and the semantic categories
in the scene graph are limited to the categories detected by the segmentation model. An excit-
ing direction for future work includes enriching the scene graph online with task-relevant node
and edge features using open-set models. Another limitation of our approach is that VLM-based
planners can be overconfident or underconfident when answering embodied questions. Ground-
ing calibrated models in real-time multi-modal memory is another important direction for future
work. Additionally, GraphEQA is currently limited to single-floor scenes, and is unable to tra-
verse multiple floors or buildings. Accommodating multi-floor scenes is within the scope of future
work.
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A Experiment setup
A.1 Habitat environment setup

The Habitat-Sim setup for our experiments is identical to the setup used in [3]. The camera
sensor settings are as follows: image width = 640, image height = 480, camera height = 1.5m,
camera tilt = ↔30 degrees, field of view = 120 degrees. For generating trajectories for the
<Goto_Object_node>(object_id) and <Goto_Frontier_node>(frontier_id) actions, we find the
shortest path between the current agent position and the desired object/frontier node location,
on the obstacle-free voxel space of of the 2D occupancy map. We orient the agent such that
camera always points towards the desired node location all along the trajectory. In case of the
<Goto_Object_node>(object_id) action, this maximizes the number of views that capture the tar-
get object. In case of the <Goto_Frontier_node>(frontier_id) action, this makes the agent look
outwards into the unexplored areas.

A.2 HM-EQA and OpenEQA Benchmarks

HM-EQA: The Habitat-Matterport Embodied Question Answering (HM-EQA) dataset intro-
duced by Ren et al. [3] is based in the Habitat-Matterport 3D Research Dataset (HM3D)
of photo-realistic, diverse indoor 3D scans [63]. The dataset is composed of 500 multi-
ple choice questions from 267 different scenes which fall in the following categories: iden-
tification, counting, existence, state, and location. A sample from the identification category
is as follows: Q: Which rug did I put next to the kitchen sink? A. There is no

rug. B. White one. C. Gray one. D. Green one.

OpenEQA: The OpenEQA benchmark [13] is composed of data for two different settings, EM-

EQA (episodic memory) and A-EQA (active exploration), with questions spanning seven categories,
spatial understanding, object state recognition, functional reasoning, attribute recognition, world
knowledge, object localization, and object recognition, in two different environments, HM3D and
ScanNet. The active exploration dataset (A-EQA) consists of 557 questions and corresponding
open vocabulary answers, for example, Q: Do I have Cayenne pepper left at home? A:

I found a bottle of Cayenne pepper in the pantry. In this setting, the agent is sup-
posed to explore the environment autonomously to answer the question. The episodic memory
dataset (EM-EQA) consists of a sequence of historical sensory (RGB) observations in addition to
each question-answer pair. In this setting, the agent is supposed to analyze the episodic memory
to answer the question. To evaluate for success, an LLM is used to score the agent’s answer based
on similarity to the ground truth answer in the dataset. Evidently, the A-EQA dataset is relevant to
our GraphEQA setting, where the agent needs to explore an unseen environment to solve an EQA
task. We consider A-EQA questions only in the HM3D environment, resulting in a total of 113
questions. We exclude ScanNet questions, as ScanNet is predominantly composed of single-room
environments and therefore does not present a substantial exploration challenge for GraphEQA. Fur-
thermore, although GraphEQA supports querying natural language answers from the VLM planner
(instead of multiple choice answers) and evaluating them using an LLM, as in OpenEQA; to ensure
consistent evaluation to HM-EQA, we augmented the A-EQA dataset with multiple choice answers
using an LLM. The correct answer is provided as one of the four choices.

A.3 3D Scene Graph Construction

We use Hydra [12] to construct a layered metric-semantic scene graph. Hydra 3DSGs are comprised
of the following layers: Layer 1 (bottom): a metric-semantic 3D mesh, Layer 2: objects with cor-
responding semantic labels and the agent, Layer 3: regions or places, Layer 4: rooms, and Layer

5 (top): building. Intra-layer edges between nodes denote ‘traversability’, while inter-layer edges
denote ‘belonging’. For example, an edge between regions in Layer 3 denotes traversability between
these regions and an edge between an object and a room denotes that the object is located in that
room. 3DSGs are constructed using RGB and depth images, semantic segmentation masks, camera
extrinsics, and intrinsics. The HM3D-Semantics dataset provides ground-truth semantic segmen-
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tation masks for simulation experiments. In real-world experiments, we use Detic [62] to obtain
segmentation masks.

B Prompting
B.1 GPT Prompt

The full prompt provided to GPT4o for GraphEQA is given below. In it we provide the scene
graph description, description of the agent’s current state, agent prompt, and just generally more
descriptive text for more context.

B.2 Exploiting Hierarchical Nature of 3DSGs for Planning

The portion of the prompt used to describe the scene graph in GraphEQA clarifies to the VLM
how layers and nodes are organized in a 3DSG. We take advantage of this structure by requiring
<Goto_object_node_step> to be organized such that the VLM first chooses a room (level 4) to
navigate to, then choosing an object (level 2) in that room. This inherent structure and explanation
of it in the prompt guides the VLM to choose actions that investigate objects that are semantically
relevant to the question.
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Full VLM Prompt

Agent prompt: You are an excellent hierarchical graph planning agent. Your goal is to
navigate an unseen environment to confidently answer a multiple-choice question about
the environment. As you explore the environment, your sensors are building a scene
graph representation (in json format) and you have access to that scene graph.
Scene graph description: A scene graph represents an indoor environment in a
hierarchical tree structure consisting of nodes and edges/links. There are six
types of nodes: building, rooms, visited areas, frontiers, objects, and agent in the
environment. The tree structure is as follows: At the highest level 5 is a ’building’
node. At level 4 are room nodes. There are links connecting the building node to
each room node. At the lower level 3, are region and frontier nodes. ’region’ node
represent region of room that is already explored. Frontier nodes represent areas that
are at the boundary of visited and unexplored areas. There are links from room nodes
to corresponding region and frontier nodes depicted which room they are located in. At
the lowest level 2 are object nodes and agent nodes. There is an edge from region node
to each object node depicting which visited area of which room the object is located in.
There are also links between frontier nodes and objects nodes, depicting the objects in
the vicinity of a frontier node. Finally the agent node is where you are located in the
environment. There is an edge between a region node and the agent node, depicting which
visited area of which room the agent is located in.
Current state description: CURRENT STATE will give you the exact location of the agent
in the scene graph by giving you the agent node id, location, room id and room name.
General Description: Given the current state information, try to answer the question.
Explain the reasoning for selecting the answer. Finally, report whether you are
confident in answering the question. Explain the reasoning behind the confidence level
of your answer. Rate your level of confidence. Provide a value between 0 and 1; 0
for not confident at all and 1 for absolutely certain. Do not use just commonsense
knowledge to decide confidence. Choose TRUE, if you have explored enough and are
certain about answering the question correctly and no further exploration will help
you answer the question better. Choose ’FALSE’, if you are uncertain of the answer and
should explore more to ground your answer in the current environment. Clarification:
This is not your confidence in choosing the next action, but your confidence in
answering the question correctly. If you are unable to answer the question with high
confidence, and need more information to answer the question, then you can take two
kinds of steps in the environment: Goto object node step or Goto frontier node step You
also have to choose the next action, one which will enable you to answer the question
better. Goto object node step: Navigates near a certain object in the scene graph.
Choose this action to get a good view of the region around this object, if you think
going near this object will help you answer the question better. Important to note,
the scene contains incomplete information about the environment (objects maybe missing,
relationships might be unclear), so it is useful to go near relevant objects to get a
better view to answer the question. Use a scene graph as an imperfect guide to lead
you to relevant regions to inspect. Choose the object in a hierarchical manner by
first reasoning about which room you should goto to best answer the question, and then
choose the specific object. Goto frontier node step: If you think that using action
‘‘Goto object node step’’ is not useful, in other words, if you think that going near
any of the object nodes in the current scene graph will not provide you with any useful
information to answer the question better, then choose this action. This action will
navigate you to a frontier (unexplored) region of the environment and will provide you
information about new objects/rooms not yet in the scene graph. It will expand the
scene graph. Choose this frontier based on the objects connected this frontier, in
other words, Goto the frontier near which you see objects that are useful for answering
the question or seem useful as a good exploration direction. Explain reasoning for
choosing this frontier, by listing the list of objects (<id> and <name>) connected to
this frontier node via a link (refer to scene graph).
While choosing either of the above actions, play close attention to ’HISTORY’ especially
the previous ’Action’s to see if you have taken the same action at previous time steps.
Avoid taking the same actions you have taken before. Describe the CURRENT IMAGE.
Pay special attention to features that can help answer the question or select future
actions. Describe the SCENE GRAPH. Pay special attention to features that can help
answer the question or select future actions.’’

The prompt used in the implementation of GraphEQA.
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B.3 Structured Output

We employ the structured output capabilities of OpenAI’s Python API to force a desired structure
on what is output by GPT4o. Below is the create planner response function used in the imple-
mentation of GraphEQA.

1 def create_planner_response(frontier_node_list , room_node_list ,
region_node_list , object_node_list , Answer_options):

2

3 class Goto_frontier_node_step(BaseModel):
4 explanation_frontier: str
5 frontier_id: frontier_node_list
6

7 class Goto_object_node_step(BaseModel):
8 explanation_room: str
9 explanation_obj: str

10 room_id: room_node_list
11 object_id: object_node_list
12

13 class Answer(BaseModel):
14 explanation_ans: str
15 answer: Answer_options
16 explanation_conf: str
17 confidence_level: float
18 is_confident: bool
19

20 class PlannerResponse(BaseModel):
21 steps: List[Union[Goto_object_node_step ,

Goto_frontier_node_step ]]
22 answer: Answer
23 image_description: str
24 scene_graph_description: str
25

26 return PlannerResponse

Code Listing 1: The create planner response function used to structure output from GPT4o.

The create planner response function takes as input enums for frontier nodes, room nodes,
region nodes, object nodes, and the answer options for the particular question being answered by the
VLM. These enums are used to populate the member variables of the Goto frontier node step,
Goto object node step, and Answer classes, enforcing both type as well as the options available
when calling the OpenAI API.

C Additional Simulation Experiments
C.1 Performance across Task Categories

Table 3: Success Rate (%) in simulation for task categories in the HM-EQA dataset, for Identification, Count-
ing, Existence, State, and Location categories. Reported in terms of category successes / total number of
category EQA tasks. † indicates our implementation of that baseline.

Method Ident. Counting Existence State Location

Explore-EQA 59.2 46.2 56.5 46.5 47.7
Explore-EQA-GPT4o† 32.5 44.2 56.4 42.3 40.8
SayPlanVision† 75 44.4 63.3 43.4 56
GraphEQA 77.8 57.9 69 65.2 64

Table 3 shows the performance of baselines and GraphEQA across the different task categories
(identification, counting, existence, state, location) in the HM-EQA dataset. GraphEQA outperforms
all other methods across all task categories, but is particularly more performant in comparison when
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considering Counting and State tasks. It is worth noting that the Counting and State categories are
among the most challenging.

C.2 Additional Ablations

We perform some additional ablations to evaluate the utility of different components of our method:
GraphEQA-NoEnrich, which does not use frontier enrichment (Section 3.3), and GraphEQA-
CurrView, which uses only the current view as input to the VLM and does not choose additional
task-relevant keyframes (Section 3.4). All ablations of GraphEQA use GPT-4o. Here we analyze
these two additional ablations, GraphEQA-NoEnrich and GraphEQA-CurrView. We observe
that GraphEQA-NoEnrich performs slightly worse than GraphEQA which demonstrates that en-
riching the scene graph with additional semantic information in the form of edges between frontiers
and nearest objects, as discussed in Section 3.3, lends itself to semantically informed exploration.
We observe that the performance drop is worse in the case of GraphEQA-CurrView, where we do
not use task-relevant visual memory, but only the current view of the agent. This demonstrates that
task-relevant visual memory is very useful in long-horizon tasks where the current view of the robot
might not be the best view for answering an embodied question.

Table 4: Ablations (Simulation): Success rate (%), number of planning steps and Lω the trajectory length.

Ablation Succ. Rate (%) #Planning steps Lω (m)

GraphEQA-NoEnrich 59.5 5.1 11.1
GraphEQA-CurrView 53.1 5.7 12.2
GraphEQA 63.5 5.1 12.6

C.3 Additional Quantitative Analysis: Zero-shot reasoning for commonsense questions

We perform this evaluation to answer the following question: how many questions in the HM-EQA
dataset can be answered correctly purely based on commonsense reasoning or guessing, without
exploring the environment? We aim to perform this analysis to roughly estimate the percentage of
false positives that can occur in the HM-EQA dataset using different VLMs. To answer this question
we define the following three additional baselines: EQAZeroShotGPT4o, EQAZeroShotPris-
matic and EQAZeroShotGPT4oQuestionOnly. EQAZeroShotGPT4o evaluates the zero-shot
performance of GPT-4o when answering an EQA question using the initial image and the question.
EQAZeroShotPrismatic evaluates the zero-shot performance of the calibrated Prismatic model
from Explore-EQA [3] when answering an EQA question using the initial image and the question.
EQAZeroShotQuestionOnly evaluates the zero-shot performance of GPT-4o when answering an
EQA question using only the question. In all the above baselines, no exploration steps are taken.
Prompts for the above baselines are identical to ones used by Explore-EQA [3]. An episode is
considered a success if the question is answered correctly and with high confidence (> 0.5).

Table 5 shows the simulation results for the baselines mentioned above compared to the baselines
discussed in Section 4.1. We observe that, given only the question, EQAZeroShotQuestionOnly
answers 6.6% of the questions correctly with high confidence. This can be attributed to the VLM
answering questions based on commonsense reasoning or even just random guessing, and getting
them correct. EQAZeroShotPrismatic answers only 1.8% of the questions correctly with a con-
fidence > 0.5. This can be attributed to the fact that the Prismatic VLM is calibrated to avoid
overconfident behavior in the absence of evidence, hence the zero-shot confidence values are low.
EQAZeroShotGPT4o answers 17.2% of the questions correctly with high confidence. To evalu-
ate whether these questions were answered based on actual evidence in the initial image or purely
based on commonsense reasoning/guessing, we further qualitatively evaluated the successful cases.
Among the 17.2% that EQAZeroShotGPT4o answers successfully, 8.8% were answered based on
actual evidence in the initial image. These questions could be answered using the initial image. The
remaining 8.4% were answered based on commonsense reasoning/guessing without any evidence
from the environment. Thus, 8.4% is the rough estimate of the false positives that can occur in the
HM-EQA dataset using GPT-4o based methods.
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Table 5: Additional baselines (Simulation): Success rate (%)

Method Succ. Rate (%)

Explore-EQA [3] 51.7
Explore-EQA-GPT4o 46.4
SayPlanVision 54.8
GraphEQA 63.5
EQAZeroShotGPT4o 17.2
EQAZeroShotPrismatic 1.8
EQAZeroShotGPT4oQuestionOnly 6.6

C.4 Error Analysis of Competing Baselines

Given the nature of the EQA tasks, it is possible that some of the questions are answered success-
fully using only commonsense reasoning/guessing, without grounding the answer in the current
environment. We consider these cases as false positives. An example of a false positive is shown
in Section 6 Figure 5. Furthermore, we also notice false negatives, where the answer was marked
incorrect given the answer in the data set, although given the current image and scene graph, the
answer seemed appropriate. Such cases exist due to ambiguities in the dataset. An example of a
false negative is shown in Figure 6. To get an estimate of the number of false positives and false
negatives in our baselines, we consider a set of 114 questions from the HM-EQA dataset and manu-
ally label the results across the four categories: True Positives, True Negatives, False Positives, and
False Negatives. The results are shown in Table 6 where each number is a percentage of the total
number of questions considered (114). We limit this error analysis to only the GPT variant, as it is
performed manually by a human.

Table 6: Error analysis (Simulation): Percentage %

GraphEQA Explore-EQA Explore-EQA-GPT4o

True positive 58.18 31.58 22.81
True negative 31.82 44.74 46.49
False positive 6.36 16.67 24.56
False negative 3.64 7.02 6.14

From Table 6, we observe that GraphEQA has the least number of false positives and false negatives,
yielding more reliable success rates. We note that Explore-EQA-GPT4o has a considerable percent-
age of false positives, i.e., questions are answered correctly based on guessing without grounding the
answer in the current environment. This sheds light on why Explore-EQA-GPT4o has comparable
success rates to Explore-EQA-GPT4o, even with considerably fewer planning steps (Table 1).This
provides further evidence that GraphEQA effectively grounds GPT-4o in the current environment,
is not overconfident based on commonsense reasoning and explores the environment until it can
answer the question based on evidence. See additional results in Appendix C.1, categorized by
question type.

C.5 Comparison to OpenEQA baselines on the A-EQA dataset

As discussed in A.2, to ensure consistent evaluation across both simulation benchmarks, we aug-
mented the A-EQA dataset with multiple-choice answers using an LLM. In the original A-EQA
setting (with open-vocabulary responses and LLM-based evaluation), GraphEQA-GPT4o achieves
a success rate of 53.6%, which, as expected, is lower than the multiple choice setting given the in-
creased difficulty of the open-vocabulary task.
Comparison to Multi-Frame VLM - We compare our result above, to OpenEQA’s best perform-
ing method in the A-EQA setting – Multi-Frame VLM. Since code for A-EQA experiments is not
released (only for EM-EQA), and some implementation details such as the random exploration strat-
egy and termination condition are not specified, we refer to the results reported in the paper, where
Multi-Frame VLM achieves a success rate of 41.8%. We attribute the performance gap between
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Question: Did I leave any pot on the stove?  
A. Two B. None C. Three D. One 
Answer: B 

True Positive False Positive

Figure 5: An example of a false positive case. The image on the left is the image that can be used to answer
the question correctly. The image on the right is the image used by an agent to ’guess’ the answer correctly
with high confidence without grounding the answer in the current environment.

Question: Which pillows are there on the bed right now?  
A. Green ones B. Black ones C. Red ones D. Purple ones 
Answer: D 

True Positive False Negative

Figure 6: An example of a false negative case. The question inquires about the color of the pillow on the bed.
The question is ambiguous. On the left is the image that corresponds to the answer in the dataset i.e. purple
pillows. On the right is an image that the agent encounters during exploration and answers that the pillows are
’green’ with high confidence. Given the image, the answer is correct but is deemed incorrect in the dataset.

GraphEQA and Multi-Frame VLM to: (1) Multi-Frame VLM uses random exploration, whereas
GraphEQA explores via semantic guidance; (2) Multi-Frame VLM’s visual memory consists of 50
uniformly sampled frames, which risks missing critical task-relevant images in large HM3D scenes
(hundreds of images); and (3) as evidenced by comparisons to SayPlanVision, compact task-relevant
memory, as used in GraphEQA, outperforms large-context inputs (large number of images in Multi-
Frame VLM), since overly large contexts can degrade VLM performance.
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C.6 Qualitative Analysis

C.6.1 Exploration Efficiency and Trajectory Generation

We illustrate the differences in exploration between GraphEQA and Explore-EQA through the fol-
lowing example. Figure 7(a) shows the trajectory taken by an agent employing Explore-EQA in a
scene in the HM3D dataset taking 30 VLM steps, while Figure 7(b) shows the trajectory taken by
an agent employing GraphEQA in the same scene taking a total of 5 VLM steps. We highlight here
how Explore-EQA not only takes more steps, but that steps are often guided only by the semantic
map constructed by images, leading to more exploration, while GraphEQA takes more structured
steps in its environment, guided by the scene graph, to answer the question.
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(b)

Figure 7: (a) A top down view of the map constructed by Explore-EQA illustrating explored areas
for a scene in the HM3D dataset. The agent’s initial position is depicted in green and its final position
in red. The trajectory of the agent is shown in black. (b) A top down view of scene reconstruction
output by as GraphEQA explores the same HM3D scene used in the Explore-EQA map to the left.
The agent’s initial position is again in green and its final position in red. The agent’s trajectory is
shown in blue in this image. In this figure, we want to bring attention to the contrast between a
typical trajectory taken by an agent employing GraphEQA vs. a typical trajectory taken by an agent
employing Explore-EQA.

C.6.2 Choosing object-nodes and frontiers semantically

In C.6.3 we provide qualitative examples of GraphEQA planner choosing to go near a ’couch’ to
better answer a question about living room lights. This shows that the planner chooses task-relevant
objects to guide exploration. In C.6.4 we provide a qualitative examples of GraphEQA planner
choosing task-relevant frontier nodes and object nodes to guide exploration.
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C.6.3 Qualitative results - Choosing task-relevant object nodes

Question:: Is the living room light on?
A. (Do not choose this option)
B. (Do not choose this option)
C. No
D. Yes.
Answer: D
At t=0::
Agent state: The agent is currently at node agent1 at position
[-2.928846836090088, -1.5354466438293457, 4.291640281677246] at room node:
room0 with name living room
Action: explanation room=I need to further investigate the living room to
possibly find indicators like light switches or bulbs. explanation obj=Going

near the blue couch might provide a better view of the surroundings, including
light fixtures. room id=room 0: ’living room’ object id=object 13: ’couch’
Answer: explanation ans= I need to explore more areas related to lighting in
the living room before answering confidently. answer=Answer options A: ’(Do
not choose this option)’ explanation conf=’The scene graph and current image do
not provide enough information on lighting. Going near specific objects like
the couch could help.’ confidence level=0.2 is confident=False
At t=1::
Agent state: The agent is currently at node agent7 at position
[-2.2595670223236084, -2.6618852615356445, 4.291640281677246] at room node:
room 0 with name living room
Answer: explanation ans=’The image clearly shows a light fixture on the

ceiling that appears to be on. This indicates that the living room light is
indeed on.’ answer=D ’Yes’ explanation conf=’The light fixture being on is
visible in the image, providing clear evidence that the living room light is
on.’ confidence level=0.9 is confident=True

Qualitative example of GraphEQA planner choosing task-relevant object nodes for exploration.
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C.6.4 Qualitative results - Choosing task-relevant frontier nodes

Question:: Is the kitchen sink currently free of dishes?
A. (Do not choose this option)
B. (Do not choose this option)
C. Yes, it’s empty
D. No, there are dishes.
Answer: C
At t=0::
Agent state: The agent is currently at node agent 1 at position [0.9115259647369385,
-0.7087370157241821, -1.5000251531600952] at room node: room 0 with name bedroom
Action: explanation frontier="The kitchen typically contains objects like chairs,
tables, etc. Frontier 4 is near objects that could indicate a transition to a dining
or kitchen area, as it is near the couch and chair, which might lead to a kitchen. It’s
worth exploring this frontier to find the kitchen." frontier id= frontier 4
Answer: explanation ans="Currently, the kitchen is not visible in the scene. The
scene graph and current image provide information about a bedroom, but not a kitchen.
Therefore, I can’t answer whether the kitchen sink is free of dishes." answer= A: ’(Do
not choose this option)’ explanation conf="I haven’t yet gathered any information on the
kitchen or the sink from my current location in the bedroom, and no other regions of the
building have been explored yet." confidence level=0.0 is confident=False
At t=1::
Agent state: The agent is currently at node agent 6 at position [2.5569498538970947,
2.228832721710205, -1.5000251531600952] at room node: room 0 with name living room
Action: explanation frontier="The frontier 2 is connected to objects like the table,
cabinet, fridge, and plates, which might lead to a kitchen area or provide a clue to the
sink’s status." frontier id=frontier 2
Answer: explanation ans=’Currently, there is no visual confirmation of a sink in the
image or scene graph, and insufficient detail to determine if the kitchen sink is free
of dishes.’ answer=A: ’(Do not choose this option)’ explanation conf="The scene graph
and current image give no direct view of a kitchen sink or its status, so it’s uncertain
whether it’s free of dishes." confidence level=0.2 is confident=False
At t=2::
Agent state: The agent is currently at node agent 11 at position [2.6420648097991943,
-0.10468387603759766, -1.5000251531600952] at room node: room 0 with name living room
Action: explanation room=’To determine if the kitchen sink is free of dishes, I need to
transition from the living room to the kitchen area, where the sink is likely located.
Frontiers associated with kitchen-related objects can guide me there.’ explanation
obj="To check the sink, moving towards the ’plates’ near object 41 might lead to the
kitchen area." room id=room 0: ’living room’ object id=object 41: ’plates’
Answer: explanation ans="Currently, I don’t have enough information to directly answer
if the kitchen sink is free of dishes, based on the image or scene graph. Further
exploration is needed to confirm the state of the sink." answer=A: ’(Do not choose
this option)’ explanation conf="Given my current location and the items visible, I
can’t see the sink or its contents. I need to navigate closer to where I suspect the
sink might be, based on kitchen-related objects like plates." confidence level=0.3 is
confident=False
At t=3::
Agent state:The agent is currently at node agent 21 at position [1.7573769092559814,
-0.35986196994781494, -1.5000251531600952] at room node: room 0 with name living room
Answer: explanation ans=’The image shows the kitchen, and the sink area is visible.
There are no dishes in the sink, indicating it is empty.’ answer=C: "Yes, it’s empty"
explanation conf=’The image clearly shows the sink, and there are no dishes visible,
providing clear evidence to confidently answer the question.’ confidence level=1.0 is
confident=True

Qualitative example of GraphEQA planner choosing task-relevant frontier and object nodes for exploration.

C.7 Additional Discussion

Novelty of GraphEQA without a learning component: Even without a learned component, sev-
eral aspects of GraphEQA are novel - a real-time, compact, actionable, multimodal memory for
grounding VLMs in unseen 3D environments and a semantically-informed efficient exploration
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strategy. Moreover, we argue that modular and easily customizable methodologies like GraphEQA
are effective for zero-shot deployment in novel real-world environments without requiring expensive
end-to-end training, as reflected in our real-world experiments. The performance of certain modules
can be improved with task-specific fine-tuning, however, that can come at the cost of open-world
generalizability.

How can GraphEQA handle multiple questions in the same episode? To handle multiple ques-
tions, our method can be extended by maintaining a separate visual memory per question and dis-
carding as each question is answered. However, handling temporally extended questions that require
an unknown number of images remains an important direction for future work.

Utility of using both binary and numeric confidence: Using both binary and numeric confidence
for episode termination is empirically motivated. In practice, this redundancy improved the reliabil-
ity of numerical scores and provided a more robust indicator of the VLM’s confidence.

Broader applicability of GraphEQA beyond EQA tasks: Although we mainly focus on EQA
tasks, GraphEQA is broadly applicable to other navigation tasks such as object-goal navigation,
leveraging its ability to perform grounded exploration in unseen 3D environments. In particular,
EQA presents a greater challenge than object-goal navigation, as it requires more complex semantic
and spatial reasoning, including identification, counting, existence, state, and functional understand-
ing (see OpenEQA [9], Fig. 5). Compared to GraphEQA, methods like ConceptGraphs [2], which
rely on enriched scene graphs without visual context, face key limitations on EQA tasks: 1) Enrich-
ing scene graphs with relational information via LLMs may suffice for object-goal navigation but
falls short for EQA, which often demands nuanced, fine-grained semantic understanding that may
not be captured in the graph. While task-specific enrichment is possible, it is not scalable across
diverse EQA tasks. GraphEQA addresses this challenge by maintaining semantically-rich task-
relevant images in its multi-modal memory and using a VLM for in-context reasoning. 2) Open-
vocabulary 3D instance segmentation, used in ConceptGraphs, is computationally expensive – even
when applied incrementally – and limits the real-time applicability of these methods. GraphEQA
maintains a light-weight yet semantically rich multi-modal memory which can be constructed in
real-time.

D Real-world Experiments in Home Environments
Experiments for Home Environments (a, b) and the questions asked of GraphEQA are given below.
We provide a sequence of ten images from the head camera on the robot to illustrate exploration and
validation of GraphEQA’s answer to the question. Each experiment was executed twice successfully.
We show a single trial from this set for each experiment. For videos of real-world experiments,
please refer to the website.
D.1 Home Environment (a)

Question 1: Is there a blue pan on the stove?

A. Yes
B. No
Answer: A

Q: Is the front door next to the staircase open? A) Yes. B) No.

Q: Is there a blue pan on the stove? A) Yes. B) No.
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(Q1)

Figure 8: Home Environment (a) Question 1: Is there a blue pan on the stove? For this question, the agent
takes four VLM steps in the environment, beginning by reasoning about the current information it has access
to; “I can’t answer confidently as the current view and scene graph don’t reveal a kitchen or stove.”. The agent
then takes two GotoFrontierNodeStep steps to explore, and as shown in Frame 5 (from the left) gains access
to the stove via the scene graph: “The stove is connected to region and frontier nodes, suggesting proximity.”.
The agent then takes a GotoObjectNodeStep(stove) step, navigates to the stove, and upon reaching it answers
“The image shows a blue pan on the stove.”, answering with high confidence.
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Question 2: How many white cushions are there on the grey couch?

A. 1
B. 2
C. 3
D. 4
Answer: B

Q: Is the front door next to the staircase open? A) Yes. B) No.

Q: Is there a blue pan on the stove? A) Yes. B) No.

<latexit sha1_base64="Gj37RmfW1vIRk5p+VfaGGrXRPHI=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHqpeyKVI9FLx5bsB+wXUo2zbah2WRJZsWy9Gd48aCIV3+NN/+NabsHbX0w8Hhvhpl5YSK4Adf9dtbWNza3tgs7xd29/YPD0tFx26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHdzO/88i04Uo+wCRhQUyGkkecErCSX+kBe4Ks6U0v+qWyW3XnwKvEy0kZ5Wj0S1+9gaJpzCRQQYzxPTeBICMaOBVsWuylhiWEjsmQ+ZZKEjMTZPOTp/jcKgMcKW1LAp6rvycyEhsziUPbGRMYmWVvJv7n+SlEN0HGZZICk3SxKEoFBoVn/+MB14yCmFhCqOb2VkxHRBMKNqWiDcFbfnmVtC+rXq1aa16V67d5HAV0is5QBXnoGtXRPWqgFqJIoWf0it4ccF6cd+dj0brm5DMn6A+czx+rR5Df</latexit>

(Q1)

Q: How many white cushions are there on the grey couch? A) 1. B) 2. C) 3. D) 4.

Figure 9: Home Environment (a) Question 2: How many white cushions are there on the grey couch?
For this question, the agent takes a total of six VLM steps, initiating its exploration by reasoning about the
frontiers and objects it has access to in the scene graph; “No frontiers or objects are directly related to locating
the grey couch. I’ll choose a frontier to explore unexplored areas.”. The agent then has access to a couch (see
Frame 4 from the left) and chooses GotoObjectNodeStep(couch) for two VLM steps to search around the only
couch it can see. After executing these object node steps, the agent then has access to a secondary couch it has
not explored, and so chooses GotoObjectNodeStep(couch) once more to explore the grey couch, stating “The
current view doesn’t clearly show the number of white cushions on the grey couch, so I need a closer look.” In
the final VLM step the agent answers the question; “The image shows a grey couch with two white cushions.
There is also a table with various items in front of the couch.”

Question 3: Where is my handbag?

A. On the coat rack
B. On the floor
C. On the couch
Answer: A

Q: Is the front door next to the staircase open? A) Yes. B) No.

Q: Is there a blue pan on the stove? A) Yes. B) No.
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Q: How many white cushions are there on the grey couch? A) 1. B) 2. C) 3. D) 4.

Q: Where is my handbag? A) On the coat rack. B) On the floor. C) On the couch.

Figure 10: Home Environment (a) Question 3: Where is my handbag? The agent takes a total of three
VLM steps to determine the location of the handbag, beginning with exploration guided by the scene graph;
“The scene graph shows several frontiers connected to objects or areas, but none seem directly related to a
potential couch or coat rack. Exploration of frontiers is necessary”. After the first GotoFrontierNodeStep to
explore, the agent identifies a handbag in the environment; “Although the scene graph indicates the handbag
is in the living room, further exploration is needed to confirm its position.”, but cannot yet confirm its position
among the options available to it. Finally, the agent takes a GotoObjectNodeStep to gain a better view of the
handbag and its position; “I have visual confirmation from the current image showing the handbag on the
coat rack.”. To see the full experiment in video, please see website.
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Question 4: Where is the trashcan?

A. Next to the sink
B. Next to the refrigerator
Answer: A

Q: Is there a blue pan on the stove? A) Yes. B) No.
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Q: Where is the trashcan? A) Next to the sink B) Next to the refrigerator

Figure 11: Home Environment (a) Question 4: Where is the trashcan? The agent takes a total of six
VLM steps to determine the location of the trashcan, beginning with exploration guided by the scene graph;
“The image and scene graph don’t provide information about a kitchen or a trashcan location. Choosing a
frontier that might lead to a kitchen.” The following four steps are GotoFrontierNodeStep actions, as the agent
prioritizes exploring over investigating specific objects in the environment; “The current scene graph shows
objects like a cushion, stove, chair, table, blanket, and other kitchen-related items like a dishwasher, hand towel,
cabinet, and sink in the vicinity.” Finally, the agent visually confirms the location of the trashcan; “Given the
clear visibility of the trashcan next to the sink in Image 1, I am confident in answering with certainty.”
Note that Image 1 for this experiment is the 9th image in the sequence of ten above.

Question 5: Is the front door next to the staircase open?

A. Yes
B. No
Answer: B

Q: Is the front door next to the staircase open? A) Yes. B) No.

Q: Is there a blue pan on the stove? A) Yes. B) No.
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Q: How many white cushions are there on the grey couch? A) 1. B) 2. C) 3. D) 4.

Q: Where is my handbag? A) On the coat rack. B) On the floor. C) On the couch.

Figure 12: Home Environment (a) Question 5: Is the front door next to the staircase open? The agent
takes a total of four VLM steps to determine the state of the door, beginning its exploration by identifying where
it is located and choosing an action appropriately; “The scene graph shows the agent’s location in the kitchen.
There aren’t any nodes indicating a door or staircase. I will explore a frontier as it could lead to a new area
where the front door or staircase might be visible”. The agent’s next two actions are GotoFrontierNodeStep
actions, explaining the second of these choices as follows; “To locate the staircase, I will explore the frontier
connected to a couch, which could be in the living room area.”. The agent then chooses another frontier since
“...the current view does not show much that relates directly to the front door or staircase.” Along its trajectory
to that frontier node, the agent identifies relevant images to the question and answers; “The current image
shows a blue couch in the center. To the left, a staircase is visible. Beyond the couch is a door that is
closed.”.
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D.2 Home Environment (b)

Question 1: What is the color of the dehumidifier?

A. Blue
B. White and Gray
Answer: B

Q: Is there a blue pan on the stove? A) Yes. B) No.
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Q: Where is the trashcan? A) Next to the sink B) Next to the refrigerator

Q: What is the color of the dehumidifier? A) Blue, B)White, C) Black

Figure 13: Home Environment (b) Question 1: What is the color of the dehumidifier? The agent takes
a total of nine VLM steps to answer this question, and starts by exploring a frontier node; “I need to find
the dehumidifier machine to determine its color. It is not currently in the scene graph or visible.” The next
eight steps are chosen as frontier steps, with explanations like “The dehumidifier is not in the scene graph. I
need to explore to find it. The current image shows a potential candidate object (white appliance) near the
chair (object3) and backpack (object17).” The final frontier step taken reveals the dehumidifier; “The object
potentially representing the dehumidifier (object26, labeled ’box’) is in room0. There are two white, boxy
machines on the floor, likely dehumidifiers or air purifiers. One has a gray top panel.”

Question 2: Is there any object on the black plastic drawer?

A. Yes
B. No
Answer: B

Q: Is there a blue pan on the stove? A) Yes. B) No.

<latexit sha1_base64="Gj37RmfW1vIRk5p+VfaGGrXRPHI=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHqpeyKVI9FLx5bsB+wXUo2zbah2WRJZsWy9Gd48aCIV3+NN/+NabsHbX0w8Hhvhpl5YSK4Adf9dtbWNza3tgs7xd29/YPD0tFx26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHdzO/88i04Uo+wCRhQUyGkkecErCSX+kBe4Ks6U0v+qWyW3XnwKvEy0kZ5Wj0S1+9gaJpzCRQQYzxPTeBICMaOBVsWuylhiWEjsmQ+ZZKEjMTZPOTp/jcKgMcKW1LAp6rvycyEhsziUPbGRMYmWVvJv7n+SlEN0HGZZICk3SxKEoFBoVn/+MB14yCmFhCqOb2VkxHRBMKNqWiDcFbfnmVtC+rXq1aa16V67d5HAV0is5QBXnoGtXRPWqgFqJIoWf0it4ccF6cd+dj0brm5DMn6A+czx+rR5Df</latexit>

(Q1)

Q: Where is the trashcan? A) Next to the sink B) Next to the refrigerator

Q: What is the color of the dehumidifier? A) Blue, B)White, C) Black

Q: Is there anything on top of the black plastic drawer? A) Yes, B) No

Figure 14: Home Environment (b) Question 2: Is there any object on the black plastic drawer? The
agent takes a total of nine VLM steps. The first step taken is a frontier node step chosen due to its connection
to a candidate object; “I need to explore the environment to find the ’black plastic drawer’ mentioned in the
question, as it is not currently in the scene graph. The image shows a potential candidate object near the
’chair’ (object1). Frontier3 is linked to the ’chair’ (object1) and appears to be in the direction of the area
needing investigation based on the current view.” The following six steps are GotoFrontierNodeStep actions
with explanations similar to “This object is not currently in the scene graph or visible. Exploring a frontier
might reveal new areas and objects, potentially including the drawer.” Finally, the agent is able to visually
confirm the presence of the black plastic drawer with high confidence.

Question 3: What is next to the white shopping bag?

A. Stool
B. Broom
C. Dehumidifier
Answer: A

Q: Is there a blue pan on the stove? A) Yes. B) No.

<latexit sha1_base64="Gj37RmfW1vIRk5p+VfaGGrXRPHI=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHqpeyKVI9FLx5bsB+wXUo2zbah2WRJZsWy9Gd48aCIV3+NN/+NabsHbX0w8Hhvhpl5YSK4Adf9dtbWNza3tgs7xd29/YPD0tFx26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHdzO/88i04Uo+wCRhQUyGkkecErCSX+kBe4Ks6U0v+qWyW3XnwKvEy0kZ5Wj0S1+9gaJpzCRQQYzxPTeBICMaOBVsWuylhiWEjsmQ+ZZKEjMTZPOTp/jcKgMcKW1LAp6rvycyEhsziUPbGRMYmWVvJv7n+SlEN0HGZZICk3SxKEoFBoVn/+MB14yCmFhCqOb2VkxHRBMKNqWiDcFbfnmVtC+rXq1aa16V67d5HAV0is5QBXnoGtXRPWqgFqJIoWf0it4ccF6cd+dj0brm5DMn6A+czx+rR5Df</latexit>

(Q1)

Q: What is next to the white shopping bag? A) Stool, B) Broom, C) Dehumidifier

Figure 15: Home Environment (b) Question 3: What is next to the white shopping bag? The
agent takes a total of four VLM steps in this experiment, all of which are exploratory GotoFron-
tierNodeStep actions until the stool is identified as being next to the shopping bag.
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E Additional Real-world Experiments in Office and Workshop
Environments

Additional experiments in the workshop and office environment are shown in Figure 16 and Fig-
ure 17 respectively. They include both success and failure cases.

E.1 Workshop environment

Question 1: Where is the backpack?

A. On the chair
B. On the table
Answer: A

The relevant images for the task are shown in Figure 16. The agent first takes a
<Goto_Object_node>(chair) step in the environment after an initial rotate-in-place mapping op-
eration to populate the scene graph, choosing to investigate a chair found in the environment. An
explanation for this choice is provided by the VLM: “Objects like the chair or table might have the
backpack, so checking close to these areas is essential.” The robot then begins navigating to the
chair to determine if the backpack is located there. During execution of the trajectory toward the
chair, GraphEQA leverages its task-relevant visual memory to score three images encountered on
its way to the chair. After finishing the execution of this trajectory, GraphEQA answers the question
with ‘On the chair’ and provides the following explanation of its answer: “The backpack is visually
confirmed to be on the chair in the current image. The presence of the backpack on the chair makes
it clear that the correct answer to the question is ‘On the chair’.”

Question 2: Where is blue water bottle? 
A. On the table 
B. On the cabinet 
Answer: A

I can see the blue color of the bottle on the 
table clearly, solidifying my answer.

Confident: True  Answer: On the table

The current image shows that the door to the 
lobby is open.

Confident: True  Answer: Yes

Question 3: Is the door to lobby open? 
A. Yes 
B. No 
Answer: A

Question 1: Where is the backpack? 
A. On the chair 
B. On the table 
Answer: A

he backpack is visually confirmed to be on the 
chair in the current image.

Confident: True  Answer: On the chair

Question 5: Where is red traffic cone? 
A. On the table 
B. On the cabinet 
C. On the floor 
Answer: A

Question 4: Where is the trashcan? 
A. Next to the TV 
B. Next to the door  
Answer: A

The image shows the trash can clearly positioned 
near the furniture.

Confident: True  Answer: Next to the door

The red traffic cone was visible and its 
placement is confirmed as being on the floor.

Confident: True  Answer: On the floor

Figure 16: Workshop environment: Each set of images is from the head camera on the Stretch robot,
and represents the task-relevant images at the last planning step. Provided under the images are the answers,
confidence levels, and explanations output from the VLM planner.

Question 2: Where is the blue water bottle?

A. On the table
B. On the cabinet
C. On the floor
Answer: B

As shown in Figure 16, after exploring the environment with one <Goto_Object_node>(table) step,
the agent successfully finds the water bottle and confirms its location, providing the following justi-
fication for its answer: “The image shows a table with some objects on top, including a blue water
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bottle. There is also a computer monitor and various tools visible on a countertop”. Qualitative
results for additional questions are provided in Figure 16.

E.2 Office environment

Question 1: Is my sweater on the blue couch?

A. Yes
B. No
Answer: A

The agent starts by taking a <Goto_Object_node>(couch) step, to explore the blue couch. The
following VLM explanation of the object step clarifies GraphEQA is referring to the blue couch:
explanation obj=‘I need to locate the blue couch before I can determine if

the sweater is on it or not.’ object id=<object node list.object 1: couch>

The low-level planner implementation on Hello Robot’s stretch does not plan the entire path to the
blue couch, however, resulting in several more <Goto_Object_node>(couch) steps before answering
the question confidently after 11 steps. Qualitative results for additional questions are provided in
Figure 17.

Exploration around the blue couch 
will help find the blue sweater.

Confident: False  Answer: No

Action: <Goto_Object_node> (couch)

Planning step 1

I cannot determine if the sweater 
is on the blue couch at the moment.

Confident: False  Answer: No

Action: <Goto_Object_node> (couch)

Planning step 3
The image shows a blue couch with 
some clothing draped over it.

Confident: False  Answer: No

Action: <Goto_Object_node> (couch)

Planning step 8

The image shows a sweater on the 
blue couch.

Confident: True  Answer: Yes

Planning step 11

Question 1: Is my sweater on the blue couch? A) Yes. B) No.    Answer: A

Image shows multiple surfaces but does not 
include a bottle, there is no bottle. 

Confident: True  Answer: No

Question 2: Is there a bottle on one of 
the desks? 
A. Yes 
B. No 
Answer: A

Question 3: Where is my backpack? 
A. On the yellow chair 
B. On the blue couch 
Answer: A

The image provides a clear view of the backpack's 
location on the chair. 

Confident: True  Answer: On the yellow chair

Figure 17: Office environment: Each set of images for Question 1 is from the head camera on the Stretch
robot, and represents the top-k task-relevant images at each planning step. For questions 2 and 3, the images
correspond to the relevant images at the last planning step. Provided under the images are the answers, confi-
dence levels, and explanations output from the VLM planner.
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