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Abstract

Autoregressive language models have demonstrated a remarkable ability to extract latent
structure from text. The embeddings from large language models have been shown to capture
aspects of the syntax and semantics of language. But what should embeddings represent?
We show that the embeddings from autoregressive models correspond to predictive sufficient
statistics. By identifying settings where the predictive sufficient statistics are interpretable
distributions over latent variables, including exchangeable models and latent state models,
we show that embeddings of autoregressive models encode these explainable quantities of
interest. We conduct empirical probing studies to extract information from transformers
about latent generating distributions. Furthermore, we show that these embeddings generalize
to out-of-distribution cases, do not exhibit token memorization, and that the information we
identify is more easily recovered than other related measures. Next, we extend our analysis
of exchangeable models to more realistic scenarios where the predictive sufficient statistic is
difficult to identify by focusing on an interpretable subcomponent of language, topics. We
show that large language models encode topic mixtures inferred by latent Dirichlet allocation
(LDA) in both synthetic datasets and natural corpora.

1 Introduction

Autoregressive language models (LMs) are trained to predict the next token in a sequence (e.g., Bengio et al.,
2000). Many large language models (LLMs) use the autoregressive objective for pretraining (e.g., Radford
et al., 2019), and their document-level embeddings have been shown to capture elements of latent structure
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Figure 1: Three data generation processes where prediction of the next token xn+1 is independent from
previous tokens x1:n given a predictive sufficient statistic. The left corresponds to exchangeable data, the
middle to latent state models, and the right to discrete hypotheses. The relevant predictive sufficient statistics
are the sufficient statistic for θ, zn+1, h (or p(θ|x1:n), p(zn+1|x1:n), and p(h|x1:n) respectively). We show the
embeddings learned by autoregressive transformers represent this information.

that appear in text, such as agent properties (Andreas, 2022) and syntax (Hewitt & Manning, 2019). While it
is intuitive that representing this information assists in next token prediction, we lack a formal understanding
of which aspects of text should be represented and why. Given that these embeddings are often used for
downstream tasks such as sequence classification and sentiment analysis, understanding what they represent
and why is key to interpreting and building on these models.

Analyzing the representations formed by LLMs is challenging partly due to polysemanticity, where a neuron
may activate for several distinct concepts (Cunningham et al., 2023). Previous work has developed methods
for probing LLM internal representations for specific concepts (Li et al., 2023; Meng et al., 2022; Zheng et al.,
2023; Tenney et al., 2019). These efforts can be guided more effectively by developing a general theory of
what aspects of the data embeddings should represent.

In this work, we investigate several cases where the representations of autoregressive LMs can be formally
connected with those of a Bayes-optimal agent. Because of their expressive architecture and their objective,
LM embeddings should encode latent structure such that the next word xn+1 is independent from previous
words x1:n when conditioned on that structure. This corresponds to the notion of a predictive sufficient
statistic. Using this connection, we show that optimal content of embeddings can be identified in two major
cases: 1) independent identically distributed data, where the embedding should capture the sufficient statistics
of the data; 2) latent state models, where the embedding should encode the posterior distribution over the
next latent state given the data. An application of case 1 that we explore is topic models based on latent
Dirichlet allocation (LDA), where the LM embedding encodes the topic mixtures of a given document. We
use probing to confirm that the relevant information can be decoded from LM embeddings, and that content
that is not expected to be captured via predictive sufficient statistics is more challenging to recover.

Next, we extend our analysis of exchangeable models to more realistic scenarios by generating synthetic data
where only a fraction of words are generated from LDA. We confirm that language models represent topic
distributions when a sufficiently large portion of the text serves this semantic component. We finally show
that the encodings of pretrained LLMs (Gpt-2, Llama 2, and Bert) contain information analogous to
that extracted by LDA from two natural corpora, supporting the hypothesis that LLMs implicitly perform
Bayesian inference in the naturalistic setting.

Our analysis provides concrete examples where we can analytically identify what embeddings should represent,
and empirical confirmation that this information is indeed captured in models trained with an autoregressive
objective. By linking LM representations to Bayesian inference, our approach supports recent arguments
that the behavior of LMs can be interpreted through comparison with Bayes-optimal agents (Mikulik et al.,
2020). Bayesian inference encourages the agent to summarize data by constructing a generative process.
Thus, understanding this connection can help LLM researchers hypothesize what features are encoded
in LLM internals as done in mechanistic interpretability (Cunningham et al., 2023); by recovering latent
generating distributions from LM, we show that LMs not only learn concepts, but also learn their uncertainty
representation, complementing recent studies at the behavioral level (Gruver et al., 2024).
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2 Related work

Embedding analysis in language models The embeddings produced by language models have been
investigated in detail (Gupta et al., 2015; Köhn, 2015; Ettinger et al., 2016; Adi et al., 2017; Hupkes et al.,
2018); for reviews, see Rogers et al. (2020) and Belinkov (2022). They have been shown to capture aspects
of the latent structure of text, including part of speech (Shi et al., 2016; Belinkov et al., 2017), sentence
structure (Tenney et al., 2019; Hewitt & Manning, 2019; Liu et al., 2019; Lin et al., 2019), sentiment (Radford
et al., 2017), semantic roles (Ettinger et al., 2016; Tenney et al., 2019), and agent properties (Andreas, 2022).
However, our work is motivated from a fundamentally different perspective. Instead of focusing on what is
captured in the embeddings of these models, we provide a general theory of language models as Bayes-optimal
agents to explain why these kinds of structure might be represented due to statistical properties of the
training data. Characterizing the ideal representations of a Bayes-optimal agent complements recent efforts
in mechanistic interpretability (Nanda et al., 2023; Cunningham et al., 2023; Cammarata et al., 2020) by
identifying optimal representations of data; this can inform the search for interpretable features that are used
in LLMs’ circuit-level computations.

Implicit Bayesian inference Several previous papers have analyzed LLMs by making a connection to
Bayesian inference. Of these, Xie et al. (2021), McCoy et al. (2023), and Wang et al. (2024b) analyze
the in-context learning behavior of LLMs. However, we study what models should encode based on the
autoregressive objective that is typically used to train LLMs. Zheng et al. (2023) focus on topic models
embedded in LSTMs, while we extend the connection to more general cases. Wang et al. (2024a) provides a
novel method to extract from language models concepts that come in the form of a mixed membership model
(including the topic model). Our focus is more general and explanatory as we analyze why concepts that
come in the form of sufficient stats should be embedded by autoregressive language models.

Belief state inference (BSI) on latent state models (Shai et al., 2024) decodes the distributions of the current
latent state from the transformer embeddings on observed sequences. Our more general theory shows that
this ability comes from the embedding encoding predictive sufficient statistics for the sequence, which more
directly relates to the distribution of the next latent state given observations. Concurrently, Ye et al. (2024)
also used de Finetti’s theorem to support probabilistic reasoning in transformers, but focused on in-context
learning in the context of Bayesian linear regression. We analyze transformer internal representations and
identify optimal embeddings in data that violate the exchangeability assumption.

Theory Tishby & Zaslavsky (2015) gave a theoretical analysis of optimal embeddings in deep networks from
an information-theoretic perspective. We take a complementary Bayesian approach, explicitly connecting
optimal embeddings to predictive sufficient statistics and presenting extensive experiments confirming that
the predicted content of embeddings is tracked by transformer-based LMs. Metalearned RNNs have also
been shown to encode information equivalent to a Bayesian posterior distribution (Mikulik et al., 2020).
Furthermore, recent work has also demonstrated that transformers behave like the Bayes-optimal predictor in
linear regression settings (Panwar et al., 2024; Garg et al., 2022; Akyürek et al., 2023) and can approximate
the posterior predictive distributions of probabilistic models such as Gaussian processes and Bayesian neural
networks (Müller et al., 2022). We extend this analysis to general autoregressive language models and consider
more general generative processes and what posterior distributions they should capture in these cases.

3 Optimal embeddings

Assume we have a sequence x1:n and an autoregressive language model that predicts the next item in the
sequence, p(xn+1|x1:n). We denote the LM embedding for sequence x1:n as ϕn = f(x1:n). The distribution
p(xn+1|x1:n) is a function g(ϕn) of this embedding, with that function implemented by the final layer of the
neural network instantiating the LM such that the probability of the next element xn+1 only depends on ϕn.
This establishes our question: what should ϕn represent in order to accurately predict xn+1?

The key idea behind our approach is that we can identify situations where ϕn contains all of the information
from x1:n required to predict xn+1 by using the notion of a sufficient statistic (Gelman et al., 2004). Given
a distribution p(x) with parameters θ, a statistic s(x) is sufficient for θ if the conditional distribution of x
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given s does not depend on θ. In other words, if we only know s, we can estimate θ just as well as if we know
x. In the autoregressive setting, we care about predictive sufficiency (Bernardo & Smith, 2000). A statistic
s(x1:n) is predictive sufficient for the sequence x1:n if

p(xn+1|x1:n) = p(xn+1|s(x1:n)). (1)

Crucially, if a model performs autoregressive modeling perfectly, it learns a predictive sufficient statistic.

In the remainder of this section we describe two cases where predictive sufficient statistics can be easily
identified and could plausibly be represented by a neural network (Figure 1). These cases correspond to
common applications of machine learning models as well as classic models for text such as hidden Markov
models (Jurafsky & Martin, 2008). First, when x1:n are independently sampled conditioned on an unknown
parameter, ϕn needs only represent the sufficient statistic of this sequence. Second, when x1:n are generated
by a state space model (in the discrete case, a hidden Markov model), ϕn needs only represent the posterior
distribution over the next latent state given x1:n. In each case we explain how p(xn+1|x1:n) factorizes to
make it possible for x1:n to be summarized by some ϕn and identify the form of the corresponding g(ϕn).

3.1 Case 1: Exchangeable models

Predictive sufficiency is straightforward to establish in exchangeable models, where the probability of a
sequence remains the same under permutation of the order of its elements. That is, a sequence is exchangeable
if p(x1:N ) = p(xπ(1:N)) for some permutation π. Any exchangeable model can be re-expressed in terms of
the xi being sampled independently and identically distributed according to a latent distribution p(x|θ)
parameterized by θ, with p(x1:N ) =

∫
θ

∏
i p(xi|θ)p(θ) dθ (Gelman et al., 2004). This idea leads to the following

proposition:

Proposition. Given an exchangeable sequence x1:N where each xi is of dimension dx, and given functions
f : Rndx 7→ Rdm , g : Rdm 7→ Rdx such that, for each 1 ≤ n ≤ N , g ◦ f(x1:n) = p(xn+1|x1:n) ∀xn+1, f(x1:n) is
a sufficient statistic for x1:n.

In other words, if we have a perfect autoregressive predictor that is composable into g ◦ f , the output of f is
a sufficient statistic for its sequence input.

Proof. The result follows from the fact that for exchangeable sequences, general sufficiency is equivalent
to predictive sufficiency (Bernardo & Smith, 2000). Because p(xn+1|x1:n) = g(f(x1:n)) ∀n, f(x1:n) is a
predictive sufficient statistic for the sequence, and it is also a sufficient statistic.

The resulting sufficient statistic also fully specifies the posterior on the parameters of the generating
distribution, p(θ|x1:n). Sufficient statistics are easily identified for a wide range of distributions, including
all exponential family distributions (Bernardo & Smith, 2000), and are easy to represent. Since the LM’s
predictive distribution decomposes into the form above, this result gives us strong predictions about the
contents of embeddings for models trained on exchangeable data.

3.1.1 Case 1.1: Discrete hypothesis spaces

In a more specific version of Case 1, assume each xi is generated independently from some unknown generative
model, and let H denote the discrete set of hypotheses h about the identity of this model. In this case,
x1:n are exchangeable, but any sufficient statistics might be difficult to identify. The posterior predictive
distribution can be written as

p(xn+1|x1:n) =
∑
h∈H

p(xn+1|h)p(h|x1:n).

By an argument similar to Case 2, p(h|x1:n) is a predictive sufficient statistic in this model and an embedding
thus need only capture this posterior distribution.
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3.1.2 Case 1.2: Topic Models

Latent Dirichlet Allocation (LDA; Blei et al. (2001)) is an exchangeable generative model that is widely
used for modelling the topic structure of documents. A document is generated from a mixture of K topics.
Each topic is a distribution over the vocabulary; e.g., a topic corresponding to geology might assign high
probability to words such as mineral or sedimentary. We detail the full generative process in Appendix A.2.

After LDA is trained on a corpus, the inferred quantities can be used to explore the corpus. We denote by
θi as the latent variable that stands for each document’s underlying topic mixture. Because topic mixture
θ and word distribution β form the sufficient statistic, our theory suggests that autoregressive LMs should
implicitly encode the topic structure of a document.

3.2 Case 2: Latent state models

In a latent state model, each xi is generated based on a latent variable zi. These zi are interdependent, with
zi being generated from a distribution conditioned on xi−1. Common latent state models include Kalman
filters (where xi and zi are continuous and the emission and transition functions, p(xi|zi) and p(zi|zi−1), are
linear-Gaussian) (Kalman, 1960) and hidden Markov models (where the zi are discrete) (Baum & Petrie,
1966). In a latent state model, the posterior predictive distribution is

p(xn+1|x1:n) =
∫

p(xn+1|zn+1)p(zn+1|x1:n) dzn+1. (2)

In this case, the posterior over the next latent state p(zn+1|x1:n) captures all of the information in x1:n
relevant to predicting xn+1, rendering xn+1 independent of x1:n when conditioned on this statistic. If we were
to drop conditional independence assumptions in a latent state model, one would need p(xn+1|zn+1, x1:n)
instead of p(xn+1|zn+1) for the equality. Thus, p(zn+1|x1:n) is a predictive sufficient statistic in this model.
However, there is another predictive sufficient statistic. We can write

p(xn+1|x1:n) =
∫

p(xn+1|zn)p(zn|x1:n) dzn, (3)

showing p(zn|x1:n) to also be a predictive sufficient statistic. Which of these will be favored will depend on
how easily the relevant integrals can be approximated.

More formally, we consider an embedding a representation ϕn such that a fixed operator g(ϕn) can produce
p(xn+1|x1:n). The distributions p(zn+1|x1:n) and p(zn|x1:n) satisfy this characterization, with Equations 2
and 3 showing that the relevant operator is the integral of p(xn+1|zn+1) over zn+1 or p(xn+1|zn) over zn and
zn+1. That operator can be easily approximated linearly and hence by a single layer of a neural network.
The embedding ϕn thus needs only represent p(zn+1|x1:n) or p(zn|x1:n), depending on the relative ease of
approximating the relevant integrals in a specific autoregressive predictor.

3.3 Probing embeddings to recover predictive sufficient statistics

These cases specify information that should be encoded in neural network embeddings. This sets up the
second element of our approach, which is building probes to check this hypothesis. We focus on transformers
(Vaswani et al., 2017), since they are widely used as language models. We denote the decoding target for
each sequence x1:n by a vector tn. Given a trained transformer, we decode tn by training a second model (a
probe) to predict the target tn from the embedding ϕn of the corresponding document x1:n. The embedding
is defined to be the last layer embedding, which is what researchers and practitioners typically use as a
document representation. The probe g maps from the sequence embedding to the target. To ensure that
the relevant statistical information is contained in the LM, not in the probe, we keep the probe simple by
defining it as a linear layer with softmax activations: g(ϕn) = Softmax(Linear(ϕn)). In each case, the probe
uses the last-layer, last-token embedding as its input, unless otherwise specified.
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Table 1: Probing results on discrete hypothesis spaces. In general, the probe achieves strong performance in
recovering a 784-length vector, and performance increases as task difficulty decreases. Average and standard
error across 10 random seeds are reported.

Equal Width Unequal Width
Sample Size Accuracy ↑ Squared Loss ↓ Accuracy ↑ Squared Loss ↓

20 87.3 ± 0.4% 0.173 ± 0.005 66 ± 0.5% 0.29 ± 0.004
50 99.5 ± 0.1% 0.008 ± 0.001 88.5 ± 0.3% 0.159 ± 0.003

4 Empirical analysis

We have identified cases where a predictive sufficient statistic is expected to be encoded by an autoregressive
model. In this section, we use probing analyses on transformers to empirically validate this hypothesis.
Ablation studies on memorization, parsimonious properties of embeddings, and decoding alternative quantities
further support this idea. We use the Adam optimizer (Kingma & Ba, 2014) in all experiments. Code is
available at github.com/zhang-liyi/llm-embeddings.

4.1 Simple exchangeable models

4.1.1 Generative model

Bayesian conjugate models We start with three data generating distributions: Gaussian-Gamma,
Beta-Bernoulli, and Gamma-Exponential models.

For M Gaussian-Gamma sequences {x(k)}1≤k≤M with N tokens each, each sequence is i.i.d. generated by a
mean and precision parameter sampled from a prior. For sequence x(k), the generative process is,

τk ∼ Gamma(α0, β0)
µk|τk ∼ N (µ0, (λ0τk)−1)

x(k)
n |µk, τk ∼ N (µk, τ−1

k ) for n ∈ {1, ..., N},

where α0, β0, µ0, λ0 are fixed hyperparameters. The full generative processes for the other two models are
given in Appendix A.2.

The Gaussian-Gamma model generates from a Gaussian distribution with two unknown parameters, mean µ
and precision τ . The predictive distribution for the next token xn+1 is

p(xn+1|x1:n) =
∫

p(xn+1|µ, τ)p(µ, τ |x1:n)d(µ, τ).

The optimal Bayesian agent uses the same prior distributions as the Gaussian and Gamma that generate µ
and τ . It will analytically infer the ground truth posterior p(µ, τ |x1:n) for any stream of data it sees, and use
this posterior for predicting next tokens. A Bayesian agent can also use other suitable priors and converge to
the optimal posterior. To be consistent with other exchangeable conjugate models, we denote θ = (µ, τ) to
indicate latent variables whose posterior distribution is predictive sufficient.

Discrete hypothesis spaces Each sequence in this dataset consists of two-dimensional points uniformly
sampled from a rectangular region in 2D space (cf. Tenenbaum, 1998). The hypothesis space H is the set of
all rectangles whose corner points are pairs of integers in {0, 1, 2, ..., 7}. The generative process uniformly
samples a rectangle hrect from the set of all rectangles H. Then, each token in a sequence is sampled uniformly
from the region defined by hrect.

4.1.2 Probing experiments

Implementation details For each dataset, the out-of-distribution (OOD) hyperparameters are chosen
such that OOD data are centered on a different mean and has a different spread. The exact choices are
detailed in Appendix A.3, along with hyperparameter sweep in Appendix A.5.
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Figure 2: Probe recovery of transformer-learned sufficient statistic (blue) and ground truth sufficient statistic
(red) on the y-axis, across 1000 test datapoints on the x-axis. In the plot above, the datapoints are sorted
based on their ground truth sufficient statistic. The first row shows parameters probed in the non-OOD case
(from left to right: Gaussian mean µ, Gaussian precision τ , Bernoulli mean, and Exponential mean). The
second row shows the corresponding information in the OOD case.
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Figure 3: (a): Two discrete hypothesis spaces H used in experiments. Any continuous rectangle contained
within the axes (e.g., the red or the orange rectangle) is a valid hypothesis h ∈ H. The data consist of a
sequence of points sampled uniformly from the target rectangle. (b) and (c): Two-dimensional representation
of embeddings of all validation datapoints (the setup is unequal width and sample size = 50). The two
subfigures show the same embeddings, colored by properties of the true generating rectangles.

In discrete hypothesis spaces, we use rectangles with seven unit blocks on each side, resulting in a size-784
hypothesis space, i.e., 784 possible rectangles from which sequences are drawn. The unit lengths are either 1,
or 0.4 and 0.16 alternating (Figure 3a).

Experimental results We hypothesize that a transformer trained on these datasets should come to
represent the sufficient statistics of the corresponding distribution.

Sufficient statistic. Results for the three Bayesian conjugate models are shown in Figure 2, where the probe
successfully decodes the sufficient statistics θ. For hypothesis spaces, we probe the distribution p(h|x1:n),
which is a length-784 simplex vector. Results are shown in Table 1. In general, the true hypothesis can be
found with high accuracy, even though the number of classes is high.

Figure 3 visualizes how embeddings represent each hypothesis h through Principal Components Analysis
(PCA) that reduces the 128-dim embeddings to 2D, and the points are colored by properties of each rectangle.
Embeddings are clustered into different regions based on the geometry of the true generating rectangle (Figure
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Figure 4: Probing over the first 10 tokens themselves using the 10th token embedding of the transformer.
Aside from perfectly encoding the 10th token, this embedding does not show memorization over the other 9
tokens as suggested by the noise in probe recovery.

3b and 3c), where, in 3b for instance, the top yellow clusters correspond to the upper-most rectangles, and
dark blue clusters correspond to the lower-most rectangles. Additionally, the embeddings encode the distance
between corners of the generating rectangle (Figure 3c). We also find the same color pattern (but rotated 90
degrees) when the horizontal instead of vertical axis is used to color the embeddings.

Moments of the posterior distribution. A consequence of knowing the sufficient statistic is finding the true
posterior p(θ|x1:N ), and we show that the moments of this posterior can be decoded from the transformer
embedding (see Figure 8 and 9 in the Appendix). The moments are functions of the mean and variance of
the stream of observed data. In these conjugate models, it might be unsurprising for a transformer to encode
the mean of the sequence it processes, because the optimal strategy for its loss function is to always predict
the mean of the sequence that it sees so far. However, encoding the variance would not be directly related to
this strategy and would support the argument that it infers sufficient statistics.

Out-of-distribution simulations. The analytical nature of the Bayesian predictor means that it is robust to
datasets generated far from the prior – it would simply update its posterior based on the data. Thus, we
probe the transformer on out-of-distribution (OOD) datasets that are generated from a distribution of the
same form but with distinct hyperparameters. Figure 2, as well as 8a in the Appendix, suggest that the
recovery of sufficient statistic and moments of the posterior distribution is generalizable to OOD cases, just
as a Bayes-optimal agent would generalize.

Memorizing the context or storing sufficient statistics of the context? A possible confound behind
the probe is that, instead of having a probe that uses the transformer-embedded sufficient statistics, the
transformer may memorize a set of tokens, and the probe infers quantities of interest from these memorized
inputs. We begin by making sure that the sufficient statistics over the first ten tokens can be decoded from
the probe on the tenth token in the Gaussian-Gamma case (Figure 11 in Appendix A.5). Then, we probed
the token values themselves to look for memorization. Figure 4 suggests that memorization is generally
absent. The 10th token embedding recovers the 10th token perfectly, but cannot recover the other 9 tokens.
For the other 9 tokens, a correlation exists between probe results and true token values, but some correlation
is expected because even a single token can reveal information about the generating distribution. However,
the noise suggests that the model is finding sufficient statistics rather than memorizing.

Embeddings are parsimonious Our analysis so far has focused on whether embeddings contain infor-
mation that allows decoding sufficient statistics. However, our hypothesis is stronger than this: since the
sufficient statistics are enough to encode the relevant information from the data, a model need only represent
that information. To explore whether transformers construct such parsimonious representations, we fixed the
models trained on different distributions above and used a multi-layer perceptron (MLP) to directly predict
their last-layer, last-token embeddings using the sufficient statistics of the training sequences as input.

Results show that in most cases the sufficient statistics capture well over 50% of variance in the embeddings
(Table 6 in Appendix A.5). The results show that sufficient statistics capture a substantial amount of variance
in transformer embeddings, establishing that the relationship between embeddings and sufficient statistics
runs in both directions: we can decode sufficient statistics from embeddings, and we can predict embeddings
from sufficient statistics.
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Table 2: Probing target quantities in HMM dataset using different transformer token embeddings. The target
p(zn+1|x1:n) is a simplex vector found by running the forward-backward algorithm, and the target ẑn+1 is a
scalar standing for the most likely latent class found by Viterbi algorithm. Average and standard error across
10 random seeds are reported.

δ = 0.5 δ = 1
Target Quantity Embedding Accuracy ↑ Squared Loss ↓ Accuracy ↑ Squared Loss ↓

p(zn+1|x1:n) x1:n 90.8 ± 1.7% 0.011 ± 0.004 90.4 ± 1.9% 0.011 ± 0.003
p(zn+1|x1:n+1) x1:n+1 86.5 ± 1.3% 0.066 ± 0.011 82.2 ± 1.8% 0.067 ± 0.011
p(zn+1|x1:n) x1:n+1 66.6 ± 6.6% 0.072 ± 0.013 65.9 ± 6.8% 0.058 ± 0.011

p(zn+1|x1:n+1) x1:n 53.2 ± 3.5% 0.356 ± 0.014 50.8 ± 3.6% 0.278 ± 0.012
ẑn+1 x1:n 59.8 ± 3.8% / 61.4 ± 4.7% /
ẑn+1 x1:n+1 80.8 ± 2.2% / 77.5 ± 2.8% /

4.2 Hidden Markov model

4.2.1 Generative model

For an HMM generating data with M sequences with N tokens each, we formulate the generative process as

Ac ∼ DirichletC(γ) for c ∈ {1, ..., C}
Bc ∼ DirichletV (δ) for c ∈ {1, ..., C}
z0 ∼ Categorical(π)
xi ∼ Categorical(Bzi

)
zi+1 ∼ Categorical(Azi

),

where C, V, π are initialized and denote, respectively, the number of classes, vocabulary size, and a list of
probabilities on the number of classes to initialize the first latent state. γ, δ are scalar hyperparameters that are
also initialized and fixed, and they represent the evenness of the samples from the Dirichlet distributions. A,
B, and z, as a result, represent the transition matrix, the emission matrix, and the latent states, respectively.

We use the forward-backward algorithm (Rabiner, 1989) to compute the posterior p(zn+1|x1:n), and explore
whether this distribution can be decoded from the transformer embedding on x1:n.

4.2.2 Probing experiments

Implementation details We choose C = 4, V = 64, γ = 0.5, and set π to be uniform in our experiments.
We also vary δ to control the level of difficulty: how distinct is one class from another.

Results Our theoretical treatment suggests that the transformer should encode the predictive sufficient
statistic p(zn+1|x1:n) or p(zn|x1:n) . The latter is the target used in belief state inference with transformers
(Shai et al., 2024). However, there are other natural decoding targets that could be used. A simple target
is the one-hot vector corresponding to the most likely hidden state ẑn+1. This is not a predictive sufficient
statistic and does not encode the full information about the sequence relevant to future prediction. Our
analysis thus suggests that it will thus provide a poorer match to the information contained in the embedding.

Table 2 suggests that the transformer encodes the predictive sufficient statistics. Furthermore, performance
is better for our hypothesized measure (first and second row) than for related quantities (all other rows).
Additionally, it is more difficult to recover the measure used in belief state inference (second row), although it
is intuitively easier to learn: the target probability is over the same latent variable, but the emission of this
latent variable is observed, unlike in our hypothesized measure where it is unobserved. This may be because
if the embedding were to directly encode p(zn|x1:n), the transformer output layer after the embedding would
additionally need to encode the transition matrix and additional integration computations, potentially making
the task more challenging than encoding p(zn+1|x1:n).
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Table 3: Topic prediction by the autoregressive transformer (AT), Bert, LDA, and word-embedder (WE) on
LDA-generated synthetic datasets, along with standard deviations across 3 random seeds. Hyperparameter α
defines the dataset generation process, where a higher α means a more difficult task with underlying topics
being more evenly distributed. AT and Bert have similar performance in the easiest setting, but AT performs
well in harder settings where Bert performances worsen. End-to-end WE achieves stronger performance
than language models, and LDA matches expectations by providing an upper bound in performance.

α Method Accuracy ↑ L2 loss ↓ Tot. var. loss ↓
AT 82.8% ± 0.5% 0.041 ± 0.001 0.141 ± 0.001

0.5 Bert 83.6% ± 1% 0.036 ± 0.003 0.131 ± 0.005
LDA 87% ± 0.6% 0.029 ± 0 0.117 ± 0.001
WE 85.8% ± 1.3% 0.03 ± 0.001 0.119 ± 0.002
AT 75.5% ± 0.8% 0.044 ± 0.001 0.144 ± 0.001

0.8 Bert 51.5% ± 1.7% 0.111 ± 0.005 0.233 ± 0.011
LDA 82.6% ± 0.5% 0.036 ± 0.001 0.133 ± 0.004
WE 80.9% ± 0.5% 0.029 ± 0 0.116 ± 0.001
AT 70.5% ± 1.6% 0.045 ± 0.001 0.146 ± 0.003

1 Bert 46.6% ± 3.3% 0.1 ± 0.004 0.222 ± 0.006
LDA 79.6% ± 1.4% 0.045 ± 0.004 0.147 ± 0.006
WE 79.4% ± 1% 0.027 ± 0 0.113 ± 0.001
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Figure 5: Figure 5a and 5b: control experiments showing AT (left) and Bert’s (middle) probe validation
performance on synthetic data. For each AT and Bert, five models are trained and validated on five datasets,
with each dataset generated by a distinct topic model. Colors show probe accuracy. A cell on row i and
column j corresponds to model i on dataset j, so the diagonal corresponds to a model on its own dataset.
For AT, performance is only strong on the dataset with the same generating topic model, suggesting that the
underlying statistical model, not the probe taking different word embeddings, is responsible for performance
– a relationship that is also present for Bert but to a lesser degree. Figure 5c: 20NG probe classification
performance (accuracy) vs. negative perplexity measured at 100 different tokens. The dots are colored by the
position percentile. Probe performance increases with lower perplexity.

4.3 Topic Models

We aim at recovering from language models the topic mixture θi that draws words in document i.

4.3.1 Probing experiments

Experiment setup The dataset is bags-of-words generated by LDA. We set the vocabulary size V = 103,
number of topics K = 5, and generated N = 104 documents that are each 100 words long.

Models We trained four models: an autoregressive transformer decoder (AT), Bert, LDA, and an end-to-
end word embedder (WE). Bert uses a masked objective instead of the autoregressive one, and is implemented
by a small version called Bert-tiny (Turc et al., 2019). LDA is used to establish an upper-bound for model
performance. We also include a model intended to provide an upper bound for embedding performance:
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Figure 6: Distribution of synthetic data topics predicted by LDA (row 1) and AT classifier (row 2) for different
validation datapoints. Predictions are stick plots, and ground truth is bar chart in the background. They
both exhibit learning of topic mixtures by trying to match the distribution, in addition to top-1 agreement.

a word embedder which is a matrix that maps from the vocabulary space to the AT / Bert embedding
dimension and is end-to-end trained with the probe that predicts topics.

For each model, the hidden sizes and final-layer embedding sizes are 128. AT has 4 decoder layers to match
the size of Bert-tiny. More hyperparameters are detailed in Appendix A.3.

Metrics We use accuracy, L2 loss, and total variation loss to measure both classification performance and
recovery of the topic mixture distribution. Accuracy is defined as how often the top topic predicted by the
classifier’s mixture agrees with the top topic from ground truth. The remaining loss measures apply to the
whole topic mixture.

Results Figure 6 shows five examples of ground truth, transformer-predicted, and LDA-predicted topic
mixtures. Table 3 shows that all models demonstrate success at recovering latent topics on at least the easiest
setting (i.e., α = 0.5), being able to return both top-topic accuracy and the topic distribution spread. Between
AT and Bert, the probe on AT is able to infer latent topic structures in more difficult tasks (i.e., α = 0.8, 1)
whereas the probe on Bert shows deteriorating performance. LDA outperforms both AT and Bert as
expected because it is specified exactly to learn a dataset generated by the other manually initialized LDA.
However, the strong WE performance suggests that the probe can predict topics mainly from stand-alone
words. This raises the question whether AT and Bert are learning an underlying statistical model, or are
simply uniquely embedding each word and making the probe mainly responsible for topic recovery.

4.3.2 Controlling for probe performance

In this section, we conduct control experiments that suggest that language models learn an underlying
statistical model, making them—rather than the topic probes taking word embeddings —mainly responsible
for successful topic recovery. If AT or Bert performs well just because it gives each word a unique embedding
from which a trained probe suffices to recover the topic mixture, then a probe on top of the language model
should additionally predict topic mixtures from a different underlying topic model than the one that generated
the language model’s training data.

To assess this, we generate five datasets using five distinct topic models under the setting of α = 0.5.
By definition, these topic models initialized five different sets of topics, or distributions over words
{β1, ..., βK}j , j ∈ {1, 2, 3, 4, 5}. The transformer trained on set j should encode the mixture of topics θ
that corresponds to topics {β1, ..., βK}j .
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Figure 7: Left: Illustration of two sequences (upper: p ≈ 0.5; lower: p ≈ 0.25). Each box is a word, coming
from either the LDA-generated semantic component (blue), or one of the three categorical distributions that
indicate three syntactic classes (grey). Right: Probing accuracy across semantic proportion p on HMM-LDA
generated datasets. Lower γ corresponds to more sparse transition matrices. The language model successfully
encodes semantics if it occupies a considerable enough proportion.

Table 4: 20NG topic prediction performance based on different LLMs. Trained LLMs substantially outperform
the null GPT-2 model, supporting the hypothesis that the training process encourages LLMs to implicitly
develop topic models. Autoregressive models (the first five models) statistically significantly outperform
non-autoregressive models (the next two).

K = 20 K = 100
Model Parameters Accuracy ↑ L2 loss ↓ Tot. var. loss ↓ Accuracy ↑ L2 loss ↓ Tot. var. loss ↓
Gpt-2 124M 61.4% ± 1.5% 0.106 ± 0.002 0.211 ± 0.001 42.3% ± 2.4% 0.097 ± 0 0.192 ± 0.001

Gpt-2-medium 355M 62.6% ± 1.7% 0.104 ± 0.002 0.209 ± 0.002 42.9% ± 2.4% 0.096 ± 0 0.19 ± 0.001
Gpt-2-large 774M 62.4% ± 1.8% 0.102 ± 0.002 0.208 ± 0.002 43.1% ± 2.3% 0.095 ± 0.001 0.189 ± 0

Llama 2 7B 62.6% ± 1.7% 0.101 ± 0.002 0.206 ± 0.002 43.3% ± 2.4% 0.095 ± 0.001 0.189 ± 0.001
Llama 2-chat 7B 62.9% ± 1.7% 0.102 ± 0.002 0.207 ± 0.002 43.2% ± 2.5% 0.095 ± 0.001 0.189 ± 0

Bert 110M 56.3% ± 1.5% 0.113 ± 0.003 0.222 ± 0.003 38.6% ± 2.5% 0.1 ± 0.001 0.191 ± 0.001
Bert-large 336M 55.2% ± 1.2% 0.116 ± 0.002 0.226 ± 0.003 38.9% ± 2.9% 0.1 ± 0.001 0.191 ± 0.001
Null Gpt-2 124M 27.3% ± 1% 0.209 ± 0.003 0.322 ± 0.005 13.8% ± 1.7% 0.145 ± 0.001 0.248 ± 0.003

One AT and one Bert is trained on each dataset. On each model, five probes are used to predict topics from
each of the five datasets. Results are shown in Figure 5. AT shows a strong distinction between predicting
its own dataset versus datasets from other topic models, whereas this distinction is present but weaker for
Bert. These results are evidence that AT and Bert indeed encode topic information because, if the topic
information were instead constructed by the probe, the probe would work equally well on mismatched datasets
as on matched ones.

4.4 From HMM-LDA to Natural Corpora

In this section, we start with a synthetic dataset with a more realistic assumption than topic models — that
topics are an exchangeable component in a partially exchangeable sequence. We generate a dataset based
on both LDA and a hidden Markov model (HMM). Then, we move to evaluate the extent to which LLMs
recover topic mixture two natural corpora, 20Newsgroups (20NG) and WikiText-103.

4.4.1 Topic distribution can be recovered when LDA is a sequence sub-component

Most natural texts are not exchangeable. For example, consider this sentence: “The sediment found in the
quartz includes silicon.” This sentence is neither fully exchangeable nor generated purely by a latent state
model. However, if we only consider the words that contribute to the sentence’s topic (geology), we are left
with sediment, quartz, silicon. These words can be plausibly generated by an exchangeable topic model as
a sub-component: the sentence “The silicon found in the sediment includes quartz” also has the topic of
geology even though word order changes. While we do not exhaustively list possible factors behind language
that can be embedded by LLMs, we study to what extent can topics be encoded by model embeddings under
settings where topical words occupy a varied proportion with respect to the whole sequence.
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Model Similar to the LDA experiments, we generate synthetic documents with an HMM-LDA model
(Griffiths et al., 2004) (Figure 7). HMM-LDA combines semantics and syntax, and posits that each word
comes from a latent class and that class transitions are governed by an HMM. Using the HMM-LDA model
allows one to manipulate the degree to which topic exists as a sub-component of the sequence.

When p is 1, all the words are generated from the LDA model. As p decreases, more words are generated from
the syntactic classes. We can then examine how well topic distributions are recovered from the embeddings
of models that are trained on data generated from HMM-LDA models that vary p.

Results Results in Figure 7 suggest that without exchangeability, the autoregressive transformer still learns
the same semantic latent variables provided there is a large enough proportion of LDA-generated component
(i.e., p ≥ 0.4). This suggests that the theory of finding explainable quantities in autoregressive models can
potentially be extended to real texts where interpretable probabilistic models, such as the topic model, exist
as a sub-component of language.

4.4.2 Recovering latent topic distributions in natural corpora

This section turns to analyzing LLMs pretrained on natural language. Although an exhaustive list of predictive
sufficient statistic is difficult to identify, topical words do form a proportion of factors underlying the text.
This allows us to hypothesize that topic mixtures can be decoded from the transformer residual streams.

Datasets We use 20Newsgroups (20NG) and WikiText-103 (Merity et al., 2016). 20NG is a collection of
18,000 posts written in a style similar to informal emails, divided into 20 subjects. Contrasting with the
informal language style in 20NG, WikiText-103 consists of over 100 million tokens sourced from the set of
verified articles on Wikipedia that are classified as Good and Featured.

Setup We train LDA models across three random seeds on each dataset, and use pretrained large language
models as our LLM. Specifically, the LLMs are Gpt-2, Gpt-2-medium, and Gpt-2-large (Radford et al.,
2019); Llama 2 and Llama 2-chat (Touvron et al., 2023); and Bert, and Bert-large (Devlin et al., 2019).
The probes target LDA-learned topic mixtures with K ∈ {20, 100}. For the models, we additionally include a
randomly initialized Gpt-2, called Null Gpt-2, as a control that can differentiate the contribution of the
LLM from the contribution of the probe. Considering that the first token may lead to a useful embedding
that stands for the ⟨CLS⟩ token in Bert series, we searched across the first, last, and average embeddings.

Topic prediction results Performance is shown in Table 4 for 20NG and in Table 7 in the Appendix for
Wikitext-103. To predict mixtures of twenty topics, random guessing would yield a 5% accuracy for K = 20
or 1% accuracy for K = 100. The best-performing LLM on each dataset demonstrates success at encoding
topic distributions by achieving 88.5%/74.2% accuracy on WikiText-103, and 62.9%/43.2% on 20NG. The
probes here take averaged token embeddings on the last layer in each LLM. While having direct information
over whole sequences is advantageous compared to over an arbitrary token, we show that using only the
last token preserves strong performance, with 73.7%/58.9% accuracy on WikiText-103, and 52.2%/34.7%
on 20NG (Table 14 and 13 in Appendix). These results suggest that topic mixtures are directly encoded in
embeddings, rather than resulting from high-quality word representations.

Topics encoded by inner layers We also explored the possibility of decoding topic mixtures from other
LLM layers, as opposed to only the last layer (Table 8 in Appendix A.5). In the Llama-2 series, the
decodability of topic mixtures progressively increases as we move from the word embedder to the intermediate
layers. Although a word embedder can potentially achieve high accuracy as demonstrated by the synthetic
dataset, we observe that Llama-2 relies on its inner layers to encode topic mixtures. This phenomenon can
be caused by Llama-2’s stronger ability to model the next word, which is correlated with the ability to
capture latent structures, which we discuss in more detail in the next paragraph.

Probe performance and LLM perplexity To show that the the posterior predictive on topics corresponds
to autoregressive prediction, we analyze 100 probes trained on 100 different token positions, along with their
corresponding LLM perplexity (Figure 5c). Each position is defined based on the corresponding percentile
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of the total document (each document has a different length). We expect that as perplexity on a token
increases, probe performance based on the embedding taken from that token would decrease. This hypothesis
is supported by the linear trend in Figure 5c. A possible confound in this result is that perplexity tends
to decrease as the position in a document increases, so the results could be driven by position rather than
perplexity; however, we ran a linear mixed-effects model and found that perplexity continued to have a
statistically significant effect controlling for position (see Appendix A.4).

5 Discussion

In this paper, we have shown that autoregressive modeling is connected to Bayes optimal agents, where the
sufficient statistic is encoded by the model in two major cases: 1) exchangeable distributions that emcompass
a wide range of generative models including the topic model; and 2) latent state models that include the
HMM. We have also seen that when these latent variables form a significant subcomponent of the data, they
can still be encoded, leading to an explanatory approach on why topic mixtures are embedded in transformer
residual streams.

There are several potential implications and future directions of our findings.

Interpretability. Understanding the inner workings of LLMs is important for AI safety and trustworthiness.
However, the sheer size of LLMs makes it challenging to analyze. Our results suggest that interpretable models
of document structure - such as topic models - provide useful guidance about what mechanistic interpretability
should look for. This in turn means that one goal for interpretability work should be enhancing models like
LDA because such advances will in turn sharpen our ability to interpret LLM representations.

Reverse direction - training LLMs to capture inductive biases. We have shown how autoregressive
models capture latent structures when predicting the next token. Another direction to explore is whether it
is possible to explicitly incorporate inductive biases during training to more reliably and efficiently capture
these latent structures, as have been done in modeling language (McCoy & Griffiths, 2025) and vision
(Carballo-Castro et al., 2024).

Extensions to masked language models. It has been shown that the autoregressive objective can be
broken down into the Bayesian predictive distribution in several cases. It is possible to extend this breakdown
to masked language models as well (Appendix A.1). Whereas the autoregressive model learns a different
posterior distribution p(θ|x1:n) for each n as it progresses through tokens in a sequence, the masked model
learns that same p(θ|xU ), where U denotes the set of unmasked indices, resulting in a less expressive objective.
On synthetic topic model bags-of-words, the masked model underperforms, but it is worth exploring whether
its performance is consistently worse than that of the autoregressive model in a wider range of cases.

Applications. Our results help inform construction and use of embeddings in practice, and can be applied
to generative models that satisfy the conditions discussed by the paper. The analyses can be naturally
extended to other latent variables that do not depend heavily on word order, such as the author type of the
document (Andreas, 2022) or the author’s sentiment (Radford et al., 2017).

As another example, our results can also inform time series modelling. A practitioner might have a time
series dataset with underlying factors that are informed by human experts. If the practitioner wants to use
deep autoregressive models to construct an embedding that contains a certain kind of information from the
input, they may need to ensure that this information is a predictive sufficient statistic for the task.

6 Conclusion

We have developed a general framework for analyzing what the embeddings of an autoregressive language
model should represent. Our analyses suggest that such embeddings should represent latent structures such
that the next token xn+1 is independent from previous tokens x1:n when conditioned on that structure, a
property possessed by predictive sufficient statistics. We confirmed this hypothesis with probing experiments
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on cases where predictive sufficient statistics can be identified. We hope that our findings contribute to
bridging the gap between Bayesian probabilistic models and deep neural networks.
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A Appendix

A.1 Masked language models

Masked language models (MLMs) are another class of LLMs that have been successful at modeling text,
and we explore whether the objective of MLMs is also equivalent to implicit Bayesian inference under the
exchangeability assumption. We find that it is, but it differs from autoregressive language models in a way
that results in less expressivity.

MLMs, notably including the Bert series (Devlin et al., 2019), randomly mask certain tokens in the input
sequence, and the model’s goal is to predict the original words at the masked indices only by considering their
surrounding context. Unlike autoregressive models, the MLM does not model a coherent joint distribution of
the data (Yamakoshi et al., 2022; Young & You, 2022). However, the log objective can be extended as follows,

LMLM (x1:N ) =
∑

n∈M

log p(xn|xi,i∈U )

=
∑

n∈M

log
∫

p(xn|θ)p(θ|xi,i∈U )dθ. (4)

where M denotes the set of masked indices, and U denotes the set of unmasked indices. The proof is given
below, and is a simple extension of the derivation for the autoregressive version. The difference between
the MLM objective and the autoregressive objective is that in the summation, the prediction of each token
xn uses the same posterior over the latent variable p(θ|xi,i∈U ). In other words, each token xn is predicted
independently from the latent variable θ. As a result, MLM forms a less expressive Bayesian inference
objective than autoregressive models. Therefore, we aim to empirically evaluate both the ability of MLM to
recover latent variables, and whether its performance differs from that of autoregressive models.

We now prove the equivalence between the MLM objective and Bayesian inference in Equation 4. The
statement is that, given an exchangeable process x1, x2, ..., xn,

LMLM (x1:N ) :=
∑

n∈M

log p(xn|xi,i∈U ) (5)

=
∑

n∈M

log
∫

p(xn|θ)p(θ|xi,i∈U )dθ, (6)

where M is the set of masked indices and U is the set of unmasked indices, and by construction M ∩ U = ∅.

Proof. We first prove the autoregressive version of the equivalence, which Korshunova et al. (2018) proposes
for each individual term in the summation but briefly mentions why it is equivalent,

log p(x1:N ) = log p(x1) +
N−1∑
n=1

log p(xn+1|x1:n)

= log p(x1) +
N−1∑
n=1

log
∫

θ

p(xn+1|θ)p(θ|x1:n)dθ. (7)

To do so, we shall prove the equivalence in each term in the summation, that is, the statement that

p(xn+1|x1:n) =
∫

θ

p(xn+1|θ)p(θ|x1:n)dθ (8)

for each n > 1. First, de Finetti’s theorem states that, under the same exchangeability condition,

p(x1:n+1) =
∫

θ

p(θ)
n+1∏
i=1

p(xi|θ)dθ, (9)
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and also that each xi is conditionally independent given θ for all i. To show the equivalence, we first divide
each side of Equation 9 by p(x1:n), assuming that p(x1:n) > 0. The left hand side becomes,

p(x1:n+1)
p(x1:n) = p(xn+1|x1:n). (10)

The right hand side becomes,∫
θ

p(θ)
∏n+1

i=1 p(xi|θ)
p(x1:n) dθ =

∫
θ

p(θ)p(xn+1|θ)p(x1:n|θ)
p(x1:n) dθ (11)

=
∫

θ

p(xn+1|θ)p(θ)p(x1:n|θ)
p(x1:n) dθ (12)

=
∫

θ

p(xn+1|θ)p(θ|x1:n)dθ. (13)

Line 11 uses conditional independence to combine the product on i = 1 through n, and line 13 uses Bayes
rule. Therefore, because of Equation 9, we prove the statement of Equation 8.

The proof for MLM in Equation 6 can be shown by a simple extension. We shall use xU as short hand for
xi,i∈U . Using de Finetti’s theorem,

p(x{n}∪U ) =
∫

θ

p(θ)
∏

i∈{n}∪U

p(xi|θ)dθ, (14)

Dividing each side of the above equation by p(xU ), the left hand side becomes,
p(x{n}∪U )

p(xU ) = p(xn|xU ). (15)

The right hand side becomes,∫
θ

p(θ)
∏

i∈{n}∪U p(xi|θ)
p(xU ) dθ =

∫
θ

p(θ)p(xn|θ)p(xU |θ)
p(xU ) dθ (16)

=
∫

θ

p(xn|θ)p(θ)p(xU |θ)
p(xU ) dθ (17)

=
∫

θ

p(xn|θ)p(θ|xU )dθ. (18)

Same as in the proof for the autoregressive version, line 16 uses conditional independence to combine the
product on U , and line 18 uses Bayes rule. Therefore, we have that p(xn|xi,i∈U ) =

∫
p(xn|θ)p(θ|xi,i∈U )dθ.

Thus, we have shown the equivalence for each term in the summation of the original statement Equation 6.

A.2 Definition of additional exchangeable conjugate models

We consider the generative process for sequence xi, where xij are i.i.d. across j.

A.2.1 Topic model

The generative model for LDA is

For each topic k in (1, ..., K),

1. Draw topic βk ∼ DirichletV (η).

For each document i,

1. Draw topic mixture θi ∼ Dirichlet(α).

2. For each word j in document i,

(a) Draw topic assignment tij ∼ Categorical(θi),
(b) Draw word xij ∼ Categorical(βtij ),

where V is the vocabulary size, and α and η are pre-initialized hyperparameters.
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A.2.2 Beta-Bernoulli model

θi ∼ Beta(α, β)
xij ∼ Bernoulli(θi),

where α, β are fixed hyperparameters.

A.2.3 Gamma-Exponential model

θi ∼ Gamma(α, β)
xij ∼ Exponential(θi),

where α, β are fixed hyperparameters.

A.2.4 HMM-LDA

There are C classes {c1, ..., cC} which follow an HMM transition matrix. One class is the semantic class c1, and
a word coming from c1 is generated by an LDA model. Words of other classes are ‘syntactic’ and are directly
generated by a distribution over words with a Dirichlet prior, one distribution for each {c2, ..., cC}. The
probability of generating from c1, the LDA class, is determined by a parameter p which specifies the transition
probability into that class from all other classes. The remaining transition probabilities are generated from a
Dirichlet(γ) prior; lower γ corresponds to more sparse transition matrices.

A.3 Implementational details

All computations for synthetic datasets are run on single Tesla T4 GPUs, and those for natural corpora are
run on single A100 GPUs.

Experimental process Each dataset is split into three sets: set 1, set 2, and set 3. Set 1 is used for training
the transformer. Set 2 is used for validating the transformer and getting embeddings from transformer that
are used to train the probe. Set 3 is used for validating the probe.

Except discrete hypothesis space datasets and natural corpora, the sizes for the three sets are: 10000, 3000,
1000, and each sequence is 500-tokens long. In the discrete hypothesis space datasets, we experimented with
different sequence lengths (detailed in our results), and the sizes for the three sets are: 20000, 19000, 1000.

In HMM-LDA, sequence lengths are 400, and the sizes for the three sets are 10000, 1000, 1000.

On 20NG, probe training and validation are run on 11,314 and 7,532 documents, respectively. On WikiText-
103, probe training and validation are run on 28,475 and 60 documents, respectively. Both splits are derived
directly from train-validation split provided by the dataset sources. Note that set 1 is not used for natural
corpora because we use pretrained LLMs.

Transformer Except for topic models, we use a three-layer transformer decoder with hidden-size = 128
and number of attention heads = 8. If the input is categorical (similar to tokens in natural corpus), we
employ the standard word embedder layer before the decoder layers. If the input is continuous, we use a
Linear layer to map inputs to dimension 128 in place of the word embedder layer.

Dropout = 0.1 is applied, and learning rate = 0.001, batch-size = 64.

Transformers on topic models Autoregressive transformer (AT) and Bert hyperparameters for training
are given in Table 9. Configurations of Bert are identical to those of Bert-tiny from Turc et al. (2019).
AT hidden sizes and final layer embedding sizes are 128, same as Bert-tiny, and it uses four layers, resulting
in 655,336 parameters. Bert has 608,747 parameters.
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Probe The probe is a linear layer with softmax activations. Learning rate is tuned in [0.001, 0.01], and
batch-size = 64.

Hyperparameters for exchangeable conjugate models The Gaussian-Gamma hyperparameters
α0, β0, µ0, λ0 are {5, 1, 1, 1}. The OOD hyperparameters are {2, 1, 5, 1}.

On the Beta-Bernoulli model, we use α = 2, β = 8. In the OOD case, α = 8, β = 2.

On the Gamma-Exponential model, we use α = 2, β = 4. In the OOD case, α = 2, β = 1.

A.4 Linear mixed-effects model

We want to validate our hypothesis that the LLM’s latent topic representation helps it predict individual
tokens. While Fig. 5c is suggestive of this relationship, here we use statistical testing to confirm it.

Concretely, we use a linear mixed-effects model to predict the per-token perplexity. We analyze 701,243
individual tokens from 20NG test corpus using Gpt-2. Perplexity naturally decreases as the LLM processes
the document, so we include a fixed effect of token position and a random effect for the document itself;
finally, we include the topic decoding accuracy (a binary 0 / 1 outcome based on the topic probe) as the
variable of interest. We extract 100 tokens per document, stratified so they are evenly spaced, and represent
the token position as the percent into the document,

perplexity ∼ token_position + topic_accuracy + (1|document_id). (19)

We find significant effects for both token position and topic accuracy,

Effect Group Term Estimate Std. Error Statistic DF p-value
fixed (Intercept) 4.65 0.01 413.28 21078.63 <2e-16
fixed topic_accuracy -0.15 0.01 -16.51 355354.64 <2e-16
fixed token_position -0.78 0.01 -58.47 696289.69 <2e-16
ran_pars document_id sd__(Intercept) 0.63
ran_pars Residual sd__Observation 3.22

Finally, we obtain a Variance Inflation Factor of 1.014742 between accuracy and token position, suggesting
an acceptable degree of colinearity between the two variables.

A.5 Additional results

Hyperparameter sweep Table 5c shows hyperparameter sweep in the Bayesian conjugate models setting,
across transformer embedding size in {8, 32, 128}, number of layers in {2, 3, 4}, and number of attention
heads in {4, 8}. In general, we observe that embedding size affects performance most significantly. In
the Gaussian-Gamma and Bernoulli datasets, performance improves with higher embedding size. In the
Gamma-Exponential dataset, performance is best with embedding size = 32.

Hyperparameters for probes on AT and Bert on LDA are given in Table 10.

Hyperparameters for probes on the LLMs in natural corpora are given in Table 11 and Table 12.

Moments Figure 8a shows that the probe decodes the moments of the posterior distribution of the
Gaussian-Gamma model. Because the higher distribution moments are more volatile in value and less directly
related to estimating the parameters θ, we examine whether existing discrepancies are caused by an overly
simple probe. We perform a second set of experiments where the probe has a hidden layer with ReLU
activations (Figure 8b), showing stronger alignment.

Figure 9 shows results on posterior distribution moments on Beta-Bernoulli and Gamma-Exponential models.
On the Gamma-Exponential model, we divide the target second, third, and fourth moments by factors of 10,
100, 1000, respectively so that each moment is given roughly equal importance.
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Table 5: Scaled MSE across hyperparameter settings where the probe targets sufficient statistics, along
with standard error across three random seeds. In the Gaussian-Gamma case, we report only on the second
sufficient statistic, i.e., the standard deviation of the seen sequence (which is more challenging than the
mean), to avoid clutter.

(a) Gaussian-Gamma.

num heads = 4 num heads = 8
d = 8 d = 32 d = 128 d = 8 d = 32 d = 128

2 layers 0.168 ± 0.022 0.076 ± 0.023 0.069 ± 0.013 0.303 ± 0.039 0.045 ± 0.010 0.050 ± 0.005
3 layers 0.566 ± 0.017 0.066 ± 0.018 0.048 ± 0.005 0.321 ± 0.014 0.034 ± 0.005 0.046 ± 0.010
4 layers 0.451 ± 0.059 0.056 ± 0.008 0.047 ± 0.009 0.490 ± 0.046 0.081 ± 0.006 0.033 ± 0.004

(b) Beta-Bernoulli.

num heads = 4 num heads = 8
d = 8 d = 32 d = 128 d = 8 d = 32 d = 128

2 layers 0.010 ± 0.002 0.002 ± 0.000 0.001 ± 0.000 0.007 ± 0.002 0.002 ± 0.001 0.001 ± 0.000
3 layers 0.008 ± 0.002 0.001 ± 0.000 0.000 ± 0.000 0.010 ± 0.001 0.001 ± 0.000 0.001 ± 0.000
4 layers 0.007 ± 0.001 0.001 ± 0.000 0.000 ± 0.000 0.010 ± 0.002 0.001 ± 0.000 0.000 ± 0.000

(c) Gamma-Exponential.

num heads = 4 num heads = 8
d = 8 d = 32 d = 128 d = 8 d = 32 d = 128

2 layers 0.004 ± 0.001 0.001 ± 0.000 0.009 ± 0.006 0.002 ± 0.001 0.001 ± 0.001 0.067 ± 0.006
3 layers 0.003 ± 0.001 0.001 ± 0.000 0.006 ± 0.004 0.002 ± 0.000 0.001 ± 0.000 0.058 ± 0.006
4 layers 0.002 ± 0.000 0.000 ± 0.000 0.021 ± 0.008 0.002 ± 0.000 0.001 ± 0.000 0.033 ± 0.005
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(a) Gaussian-Gamma (linear probe).
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(b) Gaussian-Gamma (two-layer probe).

Figure 8: Probe recovery of transformer-learned posterior distribution moments (blue) and ground truth
moments (red) across 1000 test datapoints. The first row shows parameters probed in the general non-OOD
case. The second row shows corresponding information in the OOD case.

Memorization Figure 10 conducts the same memorization experiments for the Gamma-Exponential case
as in the Gaussian-Gamma case in the main text (Figure 4).

Parsimonious embeddings Table 6 shows results from training an MLP on sufficient statistics to target
transformer embeddings. To compute these results, we get mean-squared error, which is then divided by the
variance of the transformer embeddings along each dimension separately. The error is averaged across the
embedding dimension and subtracted from 1 to yield the mean proportion of variance accounted for in the
embedding. These results establish that the relationship runs in both directions: we can decode sufficient
statistics from embeddings, and we can predict embeddings from sufficient statistics.

Table 6: Validation variance of transformer embeddings accounted for by training an MLP only on sufficient
statistics of training sequences.

Transformer size Gaussian-Gamma Beta-Bernoulli Gamma-Exponential
128 71.1% 28.4% 72.2%
8 84.6% 48.6% 79.6%

Figure 11 shows Gaussian-Gamma probing results on sufficient statistics on the 10th token, complementing
our exploration of token memorization in transformer (Figure 4).

Probing results on Wikitext-103 Table 7 shows probing results on Wikitext-103.

Table 7: Wikitext-103 topic prediction performance based on different LLMs. On accuracy, the Llama2-chat
performance is not statistically significantly different from that of the MLMs; otherwise, the autoregressive
models statistically significantly outperform the non-autoregressive models.

K = 20 K = 100
Model Parameters Accuracy ↑ L2 loss ↓ Tot. var. loss ↓ Accuracy ↑ L2 loss ↓ Tot. var. loss ↓
Gpt-2 124M 86.7% ± 0.5% 0.025 ± 0 0.098 ± 0 73.9% ± 2.3% 0.026 ± 0.001 0.089 ± 0.002

Gpt-2-medium 355M 88.2% ± 0.6% 0.024 ± 0 0.097 ± 0.001 74.2% ± 1.3% 0.025 ± 0 0.097 ± 0.002
Gpt-2-large 774M 88.5% ± 0.8% 0.023 ± 0 0.094 ± 0.001 74.2% ± 1.4% 0.025 ± 0 0.088 ± 0.001

Llama 2 7B 87.3% ± 1.7% 0.023 ± 0 0.091 ± 0.001 70.4% ± 1.1% 0.026 ± 0 0.09 ± 0.001
Llama 2-chat 7B 85.3% ± 0.7% 0.024 ± 0 0.094 ± 0 69.9% ± 1% 0.026 ± 0 0.09 ± 0

Bert 110M 84.9% ± 1.1% 0.027 ± 0 0.103 ± 0.001 72.4% ± 1.4% 0.029 ± 0 0.097 ± 0.002
Bert-large 336M 85.4% ± 1.7% 0.03 ± 0 0.111 ± 0 72.1% ± 0.9% 0.031 ± 0 0.104 ± 0
Null Gpt-2 124M 58.1% ± 1.8% 0.121 ± 0.003 0.247 ± 0.006 32.9% ± 3.2% 0.099 ± 0.003 0.195 ± 0.007
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(a) Beta-Bernoulli.
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(b) Gamma-Exponential.

0 200 400 600 800 1000

2

4

6

8

10

12
E[ ]

0 200 400 600 800 1000
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 E[ 2]

0 200 400 600 800 1000
0

5

10

15

20
E[ 3]

0 200 400 600 800 1000
0

5

10

15

20

25

30 E[ 4]

0 200 400 600 800 1000
0

2

4

6

8

10

12 E[ ]

0 200 400 600 800 1000
0

2

4

6

8

10 E[ 2]

0 200 400 600 800 1000

0

2

4

6

8

10 E[ 3]

0 200 400 600 800 1000

0

2

4

6

8

10 E[ 4]

(c) Gamma-Exponential (non-linear probe with factors).

Figure 9: Probe recovery of transformer-learned posterior distribution moments (blue) plotted with ground
truth moments (red). The first row shows parameters probed on 1000 test datapoints in the general, i.e.,
non-OOD, case. The second row shows corresponding information in the OOD case.
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Figure 10: Probing over the first 10 tokens themselves using the 10th token embedding of the transformer.
Aside from perfectly encoding the 10th token, this embedding does not show memorization over the other 9
tokens as suggested by the noise in probe recovery. Visually, the noise is less than in the Gaussian-Gamma
case (Figure 4). This is partly due to spuriously large magnitude datapoints in this distribution, and the
noise here is still significantly higher than in capturing sufficient statistics (Figure 2).
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Figure 11: Probing over mean (left) and standard deviation (right) of the first 10 tokens using the 10th
token embedding of the transformer in the Gaussian-Gamma dataset. The first row corresponds to the same
generation process, and the second row corresponds to the OOD case.
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Inner layer performance on natural corpora Table 8 shows topic distribution recovery from LLM
inner layers.

Table 8: Across-layer performance in the format of (accuracy, L2-loss), where we move from the word
embedder to the final layer (prior to word emission) from left to right.

Model Parameters Layer 0 Layer 1 Layer 50% Layer 75% Layer 90% Layer -2 Layer -1
Gpt-2 124M 87.4%, 0.027 87.1%, 0.025 86.1%, 0.025 86.7%, 0.026 86.3%, 0.026 85.9%, 0.026 86.7%, 0.025

Gpt-2-medium 355M 88.2%, 0.026 86.9%, 0.024 85.5%, 0.027 85.1%, 0.028 83.9%, 0.03 81.8%, 0.04 88.2%, 0.024
Gpt-2-large 774M 88.1%, 0.026 87.6%, 0.024 86.5%, 0.025 85.4%, 0.026 84.5%, 0.028 82.9%, 0.03 88.5%, 0.023

Llama 2 7B 59.2%, 0.192 74.4%, 0.104 87.3%, 0.025 86.6%, 0.023 86.9%, 0.024 86.7%, 0.024 87.3%, 0.023
Llama 2-chat 7B 58.8%, 0.193 74.9%, 0.098 87.2%, 0.025 87.5%, 0.023 86.5%, 0.024 85.8%, 0.025 85.3%, 0.024

Bert 110M 88.4%, 0.028 88.6%, 0.024 86.2%, 0.028 85.9%, 0.03 86.4%, 0.028 86.4%, 0.028 84.9%, 0.027
Bert-large 336M 88.2%, 0.029 87.8%, 0.026 86.4%, 0.027 85%, 0.03 85.9%, 0.029 85.3%, 0.03 85.4%, 0.03

Using only last token embedding on natural corpora Using averaged tokens as document embeddings
performs better across models in both natural corpora. Here, we also report on results from using only last
tokens as document embeddings (Table 13 and Table 14).

Table 9: Autoregressive transformer (AT) and Bert hyperparameters for training on the synthetic datasets.

Parameter Tuning range Chosen value
Batch-size [8, 128] 16

Learning rate [3 · 10−5, 10−3] 10−4

27



Published in Transactions on Machine Learning Research (07/2025)

Table 10: Probe hyperparameters for training on top of synthetic dataset language models.

Parameter Tuning range Chosen value
Batch-size [8, 64] 16

Learning rate [10−4, 0.03] 10−3

Weight-decay [0, 3.4 · 10−4] 0
Embedding choice {First, Last, Average} Last for AT / Average for Bert

Table 11: Probe hyperparameters for training on top of Gpt-2, Gpt-2-medium, Gpt-2-large, Bert, and
Bert-large.

Parameter Tuning range Chosen value
Batch-size {128} 128

Learning rate [10−5, 10−3] 3 · 10−4

Weight-decay [0, 3.4] 3.4 · 10−3

Embedding choice {First, Last, Average} Average

Table 12: Probe hyperparameters for training on top of Llama 2 and Llama 2-chat.

Parameter Tuning range Chosen value
Batch-size {128} 128

Learning rate [10−5, 10−3] 10−4

Weight-decay [0, 3.4] 0.34
Embedding choice {First, Last, Average} Average

Table 13: 20NG topic prediction performance based on different LLMs using the last token as document
embedding.

K = 20 K = 100
Model Parameters Accuracy ↑ L2 loss ↓ Tot. var. loss ↓ Accuracy ↑ L2 loss ↓ Tot. var. loss ↓
Gpt-2 124M 47.8% ± 1.8% 0.143 ± 0.001 0.26 ± 0.002 31% ± 3% 0.115 ± 00.001 0.217 ± 0.002

Gpt-2-medium 355M 47.6% ± 1.2% 0.144 ± 0.001 0.26 ± 0.001 30.8% ± 3% 0.116 ± 0.001 0.217 ± 0.002
Gpt-2-large 774M 47.8% ± 1.8% 0.144 ± 0 0.261 ± 0.002 31.1% ± 2.9% 0.116 ± 0 0.217 ± 0.002

Llama 2 7B 45.4% ± 2% 0.152 ± 0 0.267 ± 0.001 27.9% ± 2.9% 0.122 ± 0.001 0.223 ± 0.003
Llama 2-chat 7B 46.1% ± 1.8% 0.15 ± 0.001 0.265 ± 0.001 28.5% ± 2.5% 0.122 ± 0.001 0.222 ± 0.003

Bert 110M 51.7% ± 1.4% 0.126 ± 0.002 0.236 ± 0.002 34.9% ± 2.8% 0.108 ± 0 0.204 ± 0.001
Bert-large 336M 52.2% ± 2.1% 0.125 ± 0.001 0.235 ± 0.002 34.7% ± 2.7% 0.107 ± 0.001 0.201 ± 0.001

Table 14: WikiText-103 topic prediction performance based on different LLMs using the last token as
document embedding.

K = 20 K = 100
Model Parameters Accuracy ↑ L2 loss ↓ Tot. var. loss ↓ Accuracy ↑ L2 loss ↓ Tot. var. loss ↓
Gpt-2 124M 69.2% ± 1.4% 0.079 ± 0.003 0.191 ± 0.005 50.9% ± 1.3% 0.055 ± 0.001 0.146 ± 0.003

Gpt-2-medium 355M 70.7% ± 0.6% 0.077 ± 0.002 0.188 ± 0.004 51.6% ± 1.9% 0.056 ± 0.001 0.146 ± 0.003
Gpt-2-large 774M 72% ± 0.6% 0.074 ± 0.001 0.184 ± 0.003 52.8% ± 2% 0.053 ± 0.001 0.143 ± 0.002

Llama 2 7B 69.7% ± 2.3% 0.075 ± 0.002 0.187 ± 0.003 51.9% ± 1.4% 0.054 ± 0.001 0.144 ± 0.003
Llama 2-chat 7B 71% ± 1.8% 0.073 ± 0.001 0.181 ± 0.002 54.2% ± 0.8% 0.052 ± 0.002 0.141 ± 0.005

Bert 110M 73.7% ± 1.8% 0.067 ± 0 0.177 ± 0.002 58.9% ± 0.9% 0.05 ± 0.002 0.14 ± 0.001
Bert-large 336M 63.9% ± 3% 0.1 ± 0.001 0.219 ± 0.001 50% ± 1% 0.065 ± 0.002 0.164 ± 0.003
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