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Abstract

In this paper, we propose test-time Collaborative Lifelong Adaptation (CoLA),
which is a general paradigm that can be incorporated with existing advanced TTA
methods to boost the adaptation performance and efficiency in a multi-device
collaborative manner. Specifically, we maintain and store a set of device-shared
domain knowledge vectors, which accumulates the knowledge learned from all
devices during their lifelong adaptation process. Based on this, CoLA conducts
two collaboration strategies for devices with different computational resources and
latency demands. 1) Knowledge reprogramming learning strategy jointly learns new
domain-specific model parameters and a reweighting term to reprogram existing
shared domain knowledge vectors, termed adaptation on principal agents. 2)
Similarity-based knowledge aggregation strategy solely aggregates the knowledge
stored in shared domain vectors according to domain similarities in an optimization-
free manner, termed adaptation on follower agents. Experiments verify that CoLA
is simple but effective, which boosts the efficiency of TTA and demonstrates
remarkable superiority in collaborative, lifelong, and single-domain TTA scenarios,
e.g., on follower agents, we enhance accuracy by over 30% on ImageNet-C while
maintaining nearly the same efficiency as standard inference. The source code is
available at https://github.com/Cascol-Chen/COLA.

1 Introduction

The conventional pipeline of deep learning typically trains a model and deploys it across numerous
devices with frozen parameters. This pipeline has demonstrated great success in various applications,
such as autonomous driving cars [35, 14], embodied robots [18], and many other smart devices [28,
29]. However, during deployment, the model on each device may encounter test samples drawn
from a domain different from the training one. In some cases, the testing environment even changes
continuously and periodically, such as changes in weather. Unfortunately, the deep model often
struggles to generalize to unseen testing domains and its performance may degrade significantly.

To resolve domain shifts, test-time adaptation (TTA) [51, 21, 54, 64, 2, 7, 59, 26, 39, 25, 52, 37]
has emerged as a promising research field. TTA updates a given model w.r.t. a testing sample using
self-/unsupervised objectives, such as rotation prediction [13], contrastive learning [2, 30, 50], entropy
minimization [54, 64, 25, 37], etc. Compared to conventional domain adaptation [31, 45, 24] or
fine-tuning [61, 33] methods that require performing offline model learning on the whole pre-collected
target dataset, TTA distinguishes itself with minimal overhead by utilizing each test sample only once
for immediate post-inference adaptation. This renders TTA more adaptable in real-world applications.

However, prior TTA methods mainly validate their effectiveness on a single device, i.e., re-adapting
the model from scratch on each. In practice, models are often deployed across multiple devices.

∗Equal contribution. Email: secasper@mail.scut.edu.cn, shuaicheng.niu@ntu.edu.sg
†Corresponding author. Email: mingkuitan@scut.edu.cn, lcs@bit.edu.cn

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Cascol-Chen/COLA


…

…

Shared
Knowledge

(a) Prior single-device TTA (b) Our collaborative TTA

…

Degrade

Principal Agent Follower Agent TTA Different Domain Knowledge…/ /Knowledge

…

…

…

Figure 1: Comparison w.r.t. (a) prior single-device TTA vs. (b) our collaborative TTA. Prior TTA
operates on each device independently and may be infeasible in resource-limited devices. In contrast,
our collaborative TTA allows devices to share knowledge. Based on this, on different devices, one
can choose to solely aggregate the shared knowledge for TTA (Follower Agents), or further conduct
backpropagation for knowledge aggregation and new domain knowledge learning (Principal Agents).

As shown in Figure 1, in the multi-device adaptation scenario, single-device adaptation methods
suffer from the following limitations. First, single-device TTA neglects useful knowledge learned
from other devices and adapts independently. Since different devices may frequently encounter
similar or even identical testing domains, ignoring this shared knowledge often leads to suboptimal
adaptation performance, as demonstrated in Table 2. Second, due to limited resources or latency
demands, some devices may not support the backpropagation operation required by learning-based
TTA methods [54, 38], rendering single-device TTA infeasible. Third, even on a single device,
models may also encounter dynamically and periodically changing domain shifts. Although recent
works have proposed continual TTA to mitigate the catastrophic forgetting issue, such as anti-
forgetting regularizer [38] or restoration schemes [56], these methods still struggle to accumulate
previously learned knowledge over a long-term adaptation process, as shown in Table 1.

In this paper, we propose a test-time Collaborative Lifelong Adaptation (CoLA) method to enable
knowledge accumulation, sharing, and exploitation across devices. Our approach exploits both
the previously learned knowledge from other devices and the device itself to achieve efficient and
collaborative TTA. Specifically, we represent the knowledge learned on each domain of each device
by a domain vector, and automatically detect domain changes on each device during its continual
adaptation process. These domain vectors are stored and shared across devices upon domain changes
for collaborative TTA and catastrophic forgetting mitigation. Based on the shared domain vectors, we
first introduce a knowledge reprogramming learning method for Principal Agents, e.g., the resource-
abundant devices, where we enhance TTA performance and efficiency by leveraging available shared
knowledge while learning new domain-specific parameters in case existing knowledge is insufficient.
The newly learned parameters/knowledge are subsequently stored for shared domain vector set
updating. Furthermore, we devise an optimization-free collaborative TTA method, to reduce the
computation consumption of TTA and thus enable TTA in latency-sensitive scenarios or resource-
limited devices, which we term as Follower Agents in CoLA. We achieve this by directly aggregating
the domain knowledge shared by principal agents according to domain similarities.

Main novelty and contributions. 1) We introduce a novel and practical collaborative lifelong
adaptation paradigm to TTA. This paradigm addresses a practical demand in real-world applications
to perform effective adaptation on numerous devices with varying resources and latency requirements
simultaneously, meanwhile keeping privacy preserved and communication efficient. 2) We devise
domain vectors to explicitly store the domain knowledge and share them across devices for collabo-
rative TTA. Based on this, we devise two collaborative strategies, i.e., knowledge reprogramming
learning for resource-abundant principal agents and similarity-based knowledge aggregation for
resource-limited or latency-sensitive follower agents. 3) Extensive experiments demonstrate the
superiority of our CoLA regarding the scenarios of collaborative, lifelong, and single-domain TTA in
a plug-and-play manner. By leveraging available shared knowledge, on principal agents, we achieve
an up to 78.0× speed up on ETA compared with the baseline without collaborative learning on
ImageNet-C. On follower agents, we enhance the accuracy by over 30% while maintaining nearly the
same computation and memory efficiency as standard inference on ImageNet-C.
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Figure 2: An illustration of our proposed CoLA. We maintain a shared domain vector set T to
explicitly store the knowledge learned by each principal agent during adaptation. Based on T , for
Principal Agents, we jointly learn the domain-specific parameters ∆θ and the reweighting term α
via backward propagation, where the learned knowledge is then stored in T . For Follower Agents,
we adaptively aggregate the shared knowledge in T in a forward-only manner, based on the domain
similarities, which prioritizes knowledge derived from domains that are similar to the testing domain.

2 Problem statement and motivation

Let fθ(·) be the model trained on a labeled dataset Dtrain = {(xi, yi)} and xi ∼ P (x). After
training, fθ(·) is often deployed on various devices, on each device fθ(·) may encounter test samples
drawn from a shifted and dynamically changing domain distribution Q(x), where Q(x) ̸= P (x).
Under such domain shifts, deep models are often very sensitive and suffer from severe performance
degradation. To address this, on each device, one can adapt fθ(·) to x by optimizing some self-
/unsupervised learning objective at test time:

min
θl

L(x;θf ,θl), x ∼ Q(x), (1)

where θf and θl denote frozen and learnable model parameters, respectively.

Motivation. Eqn. (1) is known as a single-device test-time adaptation (TTA) method, which naively
re-adapts fθ(·) from scratch on each device. In our multi-device adaptation scenario, this independent
adaptation manner neglects the valuable knowledge learned from other devices and often obtains
limited performance, as in Figure 3(a). Therefore, there is an urgent demand to devise multi-device
collaborative TTA methods, to enhance the adaptation performance and efficiency. To this end, the
key technical challenge lies in devising a collaboration scheme that effectively exploits the knowledge
from other devices while ensuring privacy preservation and communication efficiency.

Domain knowledge vectors. In real-world scenarios, a model is often deployed in environments that
may change continuously and cyclically, e.g., day → night → day. Moreover, the model deployed on
different devices may encounter similar environments, experiencing similar domain shifts. In such
cases, when a device encounters test samples drawn from a domain previously seen by itself or by
other devices, it is unnecessary to conduct adaptation from scratch. Instead, leveraging the previously
acquired knowledge can achieve enhanced adaptation. Inspired by this, we seek to explicitly store the
knowledge learned on each domain of each device, and then exploit this knowledge for collaborative
TTA. We term this knowledge as domain vectors and introduce its definition below.

Formally, given m devices with each having n domains, we use a domain vector ∆θi,j=θi,j
l − θo

l to
denote the knowledge learned on the i-th domain of the j-th device. Here, θi,j

l denotes the learned
parameters on the i-th domain of the j-th device, and θo

l denotes the corresponding original learnable
parameters. For privacy and efficiency considerations, we select the affine parameters of the norm
layers as learnable parameters θl and transmit domain vectors between devices for knowledge sharing,
which consumes negligible extra cost as in Table 5. We store each knowledge vector ∆θi,j in a set
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Algorithm 1 The overall pipeline of CoLA.

Input: Test samples {Dm}Mm=1, where Dm={xm
t }Tt=1 denotes the batches of test samples on the

m-th device, the model fθ(·) and its stem (first) layer fθs(·), threshold z.
1: Initialize: shared domain vectors T ={0}, ϕd=0 for each device.
2: for t = 1, 2, . . . , T do
3: for each device (in parallel) do
4: Calculate batch statistics ϕ̂t over fθs

(xm
t );

5: Update distribution statistics ϕd by Eqn. (6);
6: For Principal Agent: // knowledge reprogramming learning, Sect. 3.1
7: if D(ϕd, ϕ̂t) > z then ▷ domain change detection, Eqn. (7)
8: Update domain vectors T by storing the newly learned ∆θ and reset ϕd = 0.
9: end if

10: Predict ŷmt by fθ(x
m
t ) based on Eqn. (2);

11: Update α and ∆θ via Eqn. (2) with backpropagation;
12: For Follower Agent: // similarity-based aggregation, Sect. 3.2
13: Update ρi for different domain knowledge via Eqn. (5);
14: Predict ŷmt by fθ(x

m
t ) based on Eqn. (3);

15: end for
16: end for
Output: Predictions {ŷmt | t = 1, ..., T and m = 1, ...,M}.

T ={∆θi,j}n,mi=1,j=1. During the continual adaptation process, we dynamically expand T by storing
a new ∆θi,j in T once ∆θi,j is learned. For simplicity of presentation, we omit T as {∆θi}Ni=1
where N=mn and exploit T to devise collaborative TTA strategies in the following sections.

3 Cross-device collaborative test-time adaptation

In this paper, we propose a test-time Collaborative Lifelong Adaptation (CoLA) method. In CoLA,
we seek to conduct collaborative TTA across multiple devices by exploiting a set of shared domain
vectors, termed T . We automatically detect the domain changes on each device during a continual
adaptation process and explicitly store the current domain knowledge in T once the testing domain
is changed (c.f. Sect. 3.3). Then, based on T , we develop two distinct collaboration strategies. In
practice, users can determine which strategy to use according to the computational resource of their
device or their latency requirements. First, the collaborative knowledge reprogramming learning
strategy (c.f. Sect. 3.1) is designed for “principal agents", i.e., the devices that will dominate
the learning of new knowledge and have sufficient resources for backpropagation-based model
updates. This strategy jointly learns new domain-specific model parameters and a reweighting term
to reprogram the knowledge learned from previously encountered distributions from both the device
itself and other devices, through backpropagation-based optimization. Second, the optimization-free
collaborative TTA (c.f. Sect. 3.2) is designed for “follower agents", i.e., the devices that are resource-
limited or latency-sensitive. This strategy mainly exploits the knowledge shared from principal agents,
by aggregating the valuable shared knowledge according to distribution similarities. We summarize
the pseudo-code in Algorithm 1 and illustrate the overall pipeline of CoLA in Figure 2.

3.1 Collaborative test-time adaptation via knowledge reprograming learning

We conduct collaborative adaptation with both the knowledge learned from other devices and the
device itself. This latter one is particularly advantageous for lifelong adaptation since, in practice,
a deployed model may encounter diverse and evolving domains. By storing and reprogramming
all knowledge learned from previously encountered domains, we naturally mitigate the issue of
catastrophic forgetting during lifelong TTA (see results and analysis in Table 1). To this end, on each
device, we detect domain changes and store the learned model parameters for each specific domain
once the test domain changes. We then reprogram the knowledge stored in these model parameters
by reweighting as below, facilitating seamless adaptation to changing environments.
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As aforementioned, we assume there exist N sets of parameters, i.e., domain vectors, learned from
previously encountered domains across all devices, denoted as T ={∆θi}Ni=1, where ∆θi=θi −
θo
l . For flexibility, we denote null knowledge as ∆θ0=0 and include it in T . We use T to

illustrate our collaborative learning scheme here and put details for detecting and storing each ∆θi in
Sect. 3.3. Based on T , we learn a reweighting term that adaptively aggregates shared knowledge via
backpropagation, while learning new knowledge simultaneously if existing knowledge is insufficient.
The overall optimization problem is given by:

min
α,∆θ

L(x; θf ,θl), where θl = θo
l +

N∑
i=0

αi∆θi +∆θ and ∆θi ∈ T = {∆θi}Ni=0. (2)

Here, ∆θ denotes learnable parameters for current round of adaptation, and α denotes the normalized
weights for different domain knowledge, i.e.,

∑
i αi = 1. Thus, knowledge reprogramming and

new knowledge learning are decoupled into the optimization of α and ∆θ. Note that we introduce
∆θ0 to ensure more flexibility in reprogramming, e.g., by setting α0 = 1, one can entirely disregard
previously learned knowledge when it is not beneficial for adapting to currently encountered domain.
Moreover, when no knowledge has been accumulated, i.e., T = {0}, Eqn. (2) simplifies to the
conventional TTA. We put details of the initialization for α and T in Appendix B due to page limits.

Adaptive temperature scaling for fast adaptation. Promptly re-weighting the appropriate knowl-
edge for aggregation is key to fast adaptation when the testing distribution suddenly changes. However,
this process is hindered when the logits of α are sharpened, making re-weighting difficult to favor
another knowledge. To mitigate this, we further introduce an adaptive scaling temperature during
the optimization phase, which helps adjust the sharpness of α adaptively while maintaining the
smoothness of the original logits. The calculation of α can be thus expressed as α = softmax(β ·Tl),
where β is the logit vector and Tl is a learnable temperature.

3.2 Collaborative test-time adaptation via similarity-based knowledge aggregation

The computational constraints of devices, combined with the real-time demands of various applica-
tions, often necessitate TTA to be as efficient as possible. To this end, we propose a forward-only
collaborative TTA strategy for devices operating in the follower agent mode. Here, the follower agent
adapts a given model by aggregating the previously learned knowledge and the knowledge shared
from principal agents without learning new domain-specific parameters, aiming to maintain almost
the same efficiency as pure inference. Formally, given domain vectors T ={∆θi}Ni=0 shared from m
principal resource-abundant devices with each having n encountered domains and ∆θ0 = 0, the goal
of adaptation is to find appropriate normalized weights γ∗∈RN+1 such that:

γ∗ = argmin
γ

L(x; θf ,θl), where θl = θo
l +

N∑
i=0

γi∆θi and ∆θi ∈ T = {∆θi}Ni=0. (3)

Here, since backpropagation-based learning is not supported, we directly assign the specific value
of each γi approximately according to distribution similarities. We estimate the distribution by
calculating the feature statistics, i.e., the mean and standard deviation of the features from the first
stem layer. Formally, let ϕd denote the statistics of the current distribution that is online estimated
via Eqn. (6), and ϕi be the distribution statistics on which ∆θi is adapted (i.e., the corresponding ϕd

while learning ∆θi), we re-weight the knowledge from different distributions by:

γ = softmax(ρ), where ρi = 1 /
(
D(ϕd, ϕi) + ϵ

)
. (4)

Here, ρ is a logit vector, D(·, ·) is a distance for which we adopt KL divergence as in Eqn. (7), and ϵ
is a small constant for numerical stability. In this way, we can adaptively prioritize shared knowledge
learned from distributions that are similar to the current distribution. Note that a principal agent with
abundant resources may also leverage Eqn. (3) for efficient TTA in real-time scenarios.

Exploiting diverse knowledge for aggregation. Aggregating the advantages of different knowledge
is the key to achieving satisfying robustness under various distribution shifts, as shown in Figure 3 (b).
However, when distributions are highly similar, the re-weighting logit ρi shall become sufficiently
large (e.g., ρi > 10) and the softmax function tends to simplify to the max function, which hinders
the potential of Eqn. (3) from aggregating a diverse set of knowledge. To alleviate this, we further in-
troduce a pre-defined temperature scaling factor Tf to soften ρi, thereby encouraging the aggregation
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of more existing knowledge. Then, ρi is re-defined as:

ρi = 1 /
(
Tf ·D(ϕd, ϕi) + ϵ

)
. (5)

Remark. It is worth noting that our CoLA can be incorporated with existing TTA techniques as a
plug-and-play module for a more effective solution (as in Table 1 and Table 3). Furthermore, unlike
prior methods [4] that impose intensive transmission of both data and model weights, CoLA offers
several merits for real-world implementation: 1) CoLA involves only the transmission of learned
parameters ∆θi, which preserves user privacy and imposes much less communication burden (e.g.,
the affine parameters of the norm layers in ViT-Base [8], which are typically updated in TTA [54, 38],
occupy only 0.15 MB). 2) the domain vectors are preserved and shared intermittently with a shift
detector, which further reduces the communication burden by a considerable margin. 3) CoLA is
decentralized and flexible, which allows all agents to join or leave the collaboration at any time.

3.3 Automatic domain shift detection for constructing domain knowledge vectors T

In this section, we introduce the construction of the domain knowledge vectors T shared across
multiple devices. As aforementioned, explicitly accumulating/storing the learned knowledge from
each domain of each device in T is a key step in our CoLA for collaborative learning. However, in
practice, during the lifelong adaptation process of each device, we do not have any prior information
on the domain labels regarding a given test sample stream. To conquer this, we devise an efficient
distribution shift detector to identify whether the test distribution changes, and then automatically
store the currently learned model weights to the domain vector set T once the domain change is
detected. We achieve this by measuring the discrepancy between the distribution’s statistics ϕd and
the statistics of the current test batch ϕ̂t. Formally, let fθs

(·) be the stem layer of fθ(·), i.e., the
first layer. ϕ̂t comprises the mean µ̂t and standard deviation σ̂t calculated over fθs(xt). Then, we
estimate the statistics ϕd from the observed test samples {xt}Tt=1 via exponential moving average:

ϕd = λϕ̂t + (1− λ)ϕd, (6)

where λ is a moving average factor belongs to [0, 1]. Inspired by existing distance-based detection
methods [19], we capture the magnitude of distribution shifts by a distance function D(·, ·) as follows.

D(ϕd, ϕ̂t) =
1

H

H∑
i=1

KL(ϕd,i||ϕ̂t,i)+KL(ϕ̂t,i||ϕd,i), KL(ϕ1||ϕ2) =
1

2σ2
2

(σ2
1+(µ1−µ2)

2), (7)

where H denotes the dimension of statistics, and KL(·||·) is the KL-divergence simplified from [19].
Here, a distribution shift is detected when D(ϕd, ϕ̂t) > z, where z is a pre-defined threshold. This
simple design offers several merits: 1) It imposes minimal computational and memory costs without
necessitating data preservation. 2) By leveraging the features from the stem layer, we can promptly
detect and respond to distribution shifts, rendering it well-suited for the online nature of TTA.

4 Experiments

Datasets and models. We conduct experiments on the ImageNet-1k [6], as well as five benchmarks
for OOD generalization, i.e., ImageNet-C [16] (contains corrupted images in 15 types of 4 main
categories and each type has 5 severity levels), ImageNet-R (various artistic renditions of 200
ImageNet classes) [15], ImageNet-Sketch [55], ImageNet-A [17], and ImageNet-V2 [44]. We use
ViT-Base [8] as the source model unless stated otherwise. The model is trained on the source
ImageNet-1K [6] training set and the model weights are obtained from the timm repository [60].

Compared methods and implementation details. We compared our proposed CoLA with 1)
Backpropagation-based methods: CoTTA [56], ETA [38], EATA [38], SAR [39], and DeYO [25].
2) Backpropagation-free methods: LAME [3] and T3A [21]. For Eqn. (2), We directly leverage
the learnable test-time objectives from the integrated TTA methods. ∆θ is optimized by following
the update rules of the integrated baseline as listed in Appendix C. α is updated via the AdamW
optimizer with a learning rate of 0.1. The shift detection threshold z is set to 0.1. For follower agents,
we consistently set Tf in Eqn. (3) to 5 for all experiments. More details are put in Appendix A and C.
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Table 1: Comparison on ImageNet-C (level 5) regarding Accuracy (%) under lifelong adaptation for
10 rounds, in total of 150 corruptions, on a single principal resource-abundant device. We report
the average accuracy of 15 corruptions in each round here and put more results in Appendix D.

Time: −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 2 3 4 5 6 7 8 9 10 Average

NoAdapt 29.9 29.9 29.9 29.9 29.9 29.9 29.9 29.9 29.9 29.9 29.9
CoTTA [56] 44.9 40.6 35.8 32.7 30.4 28.9 27.7 27.1 27.2 26.5 32.2
EATA [38] 60.4 60.0 59.6 59.4 59.3 59.1 59.0 58.8 58.7 58.6 59.3

SAR [39] 59.1 60.6 60.9 61.2 61.3 61.4 58.3 60.4 60.8 61.1 60.5
+ CoLA (Ours) 59.1 62.4 63.6 64.3 64.7 64.9 65.2 65.1 65.3 65.4 64.0(+3.5)

ETA [38] 61.4 58.7 54.5 50.2 46.2 44.1 38.8 38.0 36.7 35.1 46.4
+ CoLA (Ours) 62.0 63.9 64.8 65.1 65.3 65.3 65.3 65.3 65.4 65.4 64.8(+18.4)

DeYO [25] 59.8 48.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 10.9
+ CoLA (Ours) 61.7 62.5 63.6 64.5 65.0 65.1 65.3 65.5 65.5 65.5 64.4(+53.5)

Table 2: Effectiveness under collaborative adaptation across principal resource-abundant devices
w.r.t. Accuracy (%). Results are evaluated on ImageNet-C (level 5, containing 15 corruption types
of 4 groups). We share learned weights across devices post-adaptation to each group of corruptions.

Device 1 (Adapt →) Device 2 (Adapt →) Device 3 (Adapt →)
Method Noise Blur Weat. Digit. Blur Noise Digit. Weat. Weat. Digit. Blur Noise Avg.

NoAdapt 8.2 28.4 36.1 41.7 28.4 8.2 41.7 36.1 36.1 41.7 28.4 8.2 28.6
CoTTA [56] 28.9 41.3 50.2 47.6 36.3 37.1 50.4 52.7 50.4 55.0 42.5 38.7 44.2
EATA [38] 53.5 57.0 68.1 67.2 58.1 52.2 67.0 68.5 69.4 67.7 57.9 51.5 61.5

SAR [39] 50.4 54.4 66.3 64.5 55.1 48.3 64.0 66.4 66.5 64.3 55.4 47.7 58.6
+ CoLA (Ours) 50.4 58.0 69.4 68.7 55.0 55.0 67.1 70.5 66.3 65.3 58.8 55.5 61.7

ETA [38] 55.2 56.9 67.5 66.0 59.8 51.7 65.0 67.4 70.3 67.8 58.0 49.4 61.2
+ CoLA (Ours) 55.2 60.0 70.9 69.3 59.5 56.3 68.8 70.9 70.2 68.1 59.7 55.3 63.7
DeYO [25] 56.3 49.9 68.1 67.8 55.6 46.7 67.2 69.0 71.1 68.8 51.1 4.3 56.3
+ CoLA (Ours) 56.2 55.1 71.2 70.2 54.8 54.5 70.0 71.5 71.0 69.0 53.7 54.3 62.6

4.1 Comparison with state-of-the-art methods

Results under lifelong test-time adaptation. We evaluate the long-term effectiveness of our CoLA
on ImageNet-C [44] within a challenging lifelong TTA scenario where the model is online adapted to
15 corruptions over 10 rounds (total 150 corruptions), and the parameters will never be reset. We put
more details of the experimental protocol in Appendix C due to page limits. From Table 1, we derive
the following observations. 1) Our CoLA achieves new state-of-the-art results on the first round,
last round, and the average of adaptation, suggesting our superiority. 2) Most methods, including
CoTTA [56] and EATA [38] with an anti-forgetting strategy, experience performance degradation
as the number of adaptation rounds increases (e.g., ETA’s performance degrades from 61.4% to
35.1% on the average accuracy), indicating the difficulty of the evaluated scenario. 3) By integrating
our CoLA with existing methods, we enhance the performance steadily with more adaptations,
demonstrating our effectiveness in accumulating and exploiting learned knowledge for long-term
adaptation. 4) Although EATA mitigates performance degradation by introducing an anti-forgetting
regularization, it suffers from the stability-plasticity trade-off, i.e., the average accuracy drops from
61.4% (ETA) to 60.4% (EATA) in the first round. In contrast, our CoLA enhances ETA’s performance
even at the first round of adaptation, i.e., 61.4% (ETA) vs. 62.0% (ETA+CoLA), indicating that CoLA
does not limit the learning ability. The sensitivity analyses on threshold z are provided in Appendix E.

Results under collaborative test-time adaptation. To evaluate our CoLA under the collaborative
TTA scenario, we first assess its performance across multiple principal resource-abundant devices.
From Table 2, our CoLA outperforms the integrated baseline from the adaptation to the second group
of corruptions, e.g., the accuracy of 58.0% (SAR+CoLA) vs. 54.4% (SAR) on ‘Blur’ in Devices 1.
Moreover, this improvement becomes increasingly more pronounced as more knowledge is shared
across devices, e.g., improving the accuracy from 47.7% (SAR) to 55.5% (SAR+CoLA) on ‘Noise’
in Device 3. This demonstrates our effectiveness in facilitating knowledge sharing and exploitation
across principal devices via our knowledge reprogramming learning scheme, i.e., with Eqn. (2).
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Table 3: Comparison on ImageNet-C (level 5) regarding Accuracy (%) under lifelong adaptation
on resource-limited follower devices. T3A* resets the model after adaptation on each corruption.
CoLA exploits the learned weights from Table 2 (e.g., ETA + CoLA at the 7-th row) for Eqn. (3).

Noise Blur Weather Digital
Method Gaus. Shot Imp. Def. Glass Mot. Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG Avg.

NoAdapt 9.5 6.7 8.2 29.0 23.4 33.9 27.1 15.9 26.5 47.2 54.7 44.1 30.5 44.5 47.8 29.9
T3A [21] 9.5 7.0 8.7 23.3 23.3 31.2 25.9 11.9 24.2 44.0 52.2 41.0 30.1 43.0 47.0 28.2
T3A* [21] 9.5 6.5 8.1 29.8 24.1 34.3 28.2 16.0 26.9 49.0 55.5 44.5 33.1 44.5 48.2 30.5
LAME [3] 9.3 6.5 8.0 28.6 23.0 33.3 26.6 15.2 26.0 45.9 54.1 43.6 29.3 44.0 47.4 29.4

CoLA (SAR) 55.2 56.0 56.8 57.3 49.1 59.9 58.5 65.8 65.8 72.2 77.1 66.2 65.9 72.2 69.4 63.2
CoLA (ETA) 55.7 57.3 56.9 58.5 46.2 59.4 63.4 69.1 66.5 73.1 77.6 66.3 69.2 73.1 69.9 64.1
CoLA (DeYO) 56.6 57.7 57.5 58.2 47.7 55.5 39.0 69.6 67.2 73.5 78.0 67.0 70.4 73.5 70.3 62.8

Table 4: Comparison under single-domain TTA
(on one principal device) w.r.t. Acc (%). Results
are averaged over 15 corruptions on ImageNet-C
(level 5). L.S denotes label distribution shifts,
M.S denotes mixed domain shifts per SAR [39].

Method Mild L.S. M.S Avg.

NoAdapt 29.9 29.9 29.9 29.9
SAR [39] 54.5 56.7 57.1 56.1
+ CoLA (Ours) 57.7 58.5 58.0 58.1

ETA [38] 63.3 47.6 57.4 56.1
+ CoLA (Ours) 64.4 55.2 58.3 59.3

DeYO [25] 64.1 61.3 59.1 61.5
+ CoLA (Ours) 64.7 63.5 59.3 62.5

Table 5: Comparison w.r.t. wall-clock time
and memory on ImageNet-C (Gaussian, level
5) on an A100 GPU. C/R refers to accuracy on
ImageNet-C/R. BP is short for back-propagation.
CoLA utilizes weights of ETA+CoLA in Table 2.

Method BP C R T. (s) Mem. (MB)

NoAdapt ✗ 9.5 43.1 50 816.6
T3A [21] ✗ 9.5 42.1 158 909.9
CoLA (Eqn. 3) ✗ 55.7 51.5 51 821.9

EATA [38] ✔ 49.5 56.8 113 7439.3
SAR [39] ✔ 44.0 51.8 202 7429.9

ETA [38] ✔ 51.9 57.5 109 7429.6
+ CoLA (Eqn. 2) ✔ 54.3 59.0 112 7435.3

Given learned knowledge from resource-abundant principal devices (totaling 34 weights occupying
5.0 MB), we further evaluate the effectiveness of CoLA on resource-limited follower devices. From
Table 3, we observe that existing TTA methods struggle to improve the performance of the source
model without model updates, highlighting the urgent need for a more effective solution. In contrast,
by exploiting shared knowledge adaptively in a forward-only manner with Eqn. (3), CoLA achieves a
substantial performance gain, e.g., enhancing the average accuracy from 29.9% to 64.1% in CoLA
(ETA). Note that we also verify CoLA’s sample efficiency as well as its computation and memory
efficiency in Figure 3 (a) and Table 5. These results collectively underscore the importance of
cross-device collaboration and our effectiveness regarding the scenario of collaborative TTA.

Results under single-domain test-time adaptation. Following DeYo [25], we validate our CoLA in
both the wild scenario (i.e., imbalanced label distribution shifts and mixture of distribution shifts) and
the mild scenario of single-domain TTA, where the model is reset post-adaptation to each corruption.
Here, CoLA saves learned weights for every adaptation to 10 batches of samples while maintaining a
maximum of 32 weights (totaling 4.7 MB) by discarding the unused ones according to αi.

From Table 4, within all evaluated scenarios, incorporating CoLA consistently improves the perfor-
mance by a considerable margin (e.g., +2.0% on SAR w.r.t. overall average accuracy). Interestingly,
the enhancement from CoLA may even help surpass a stronger baseline, e.g., the average accuracy
of 64.4% (ETA+CoLA) vs. 64.1% (DeYO) on the mild scenario, demonstrating our effectiveness.
This improvement mainly stems from our ability to alleviate error accumulation. Given multiple
saved weights, instead of naively selecting the newest weight that may have adapted to noise, CoLA
dynamically favors the more optimal one via loss optimization. This renders CoLA more robust to
scenarios where perturbations may occur. We also visualize αi in Appendix E to offer more insights.

4.2 Ablation studies and more discussions

Effectiveness of Tl on sample efficiency in Eqn. (2). Sample efficiency is particularly important in
scenarios where the availability of target data is limited or early adaptation performance is paramount.
As shown in Figure 3 (a), by leveraging the learned knowledge from other devices, ETA+CoLA
achieves an up to 78.0× speed up compared with ETA, i.e., 51.7% accuracy with 640 samples
(ETA+CoLA) vs. 51.37% accuracy with 49,920 samples (ETA), demonstrating the importance
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Figure 3: Ablation study of CoLA. In left, we compare the sample efficiency on Device2 in Table 2,
Gaussian. Model’s accuracy is recorded on the entire test set after adapting to N test samples. In right,
we evaluate the effectiveness of Tf on seen (i.e., ImageNet-C, Gaussian) and unseen distributions
(i.e., ImageNet-R/Sketch), where CoLA exploits weights of ETA+CoLA in Table 2 for Eqn. (3).

Table 6: Effectiveness of CoLA (Eqn. 2)
on unseen distributions with weights
learned on ImageNet-C from Table 2.

Method R S Avg.

SAR [39] 51.9 33.8 42.8
+ CoLA (Ours) 55.1 39.3 47.2

ETA [38] 57.7 43.1 50.4
+ CoLA (Ours) 59.0 43.2 51.1

Table 7: Effectiveness of CoLA on prompt tuning. Re-
sults are reported on ImageNet and its variants with CLIP-
RN50 [43]. CoLA exploits 78 hard prompts for Eqn. (2).

Method I A V2 R S Avg.

NoAdapt 58.2 21.8 51.4 56.2 33.4 44.2
Ensemble 59.8 23.2 52.9 60.7 35.5 46.4

TPT [47] 60.7 26.7 54.7 59.1 35.1 47.3
+ CoLA (Ours) 62.2 28.0 55.4 60.4 34.7 48.1

of cross-device collaboration and our effectiveness to facilitate knowledge sharing and utilization.
Moreover, upon integrating Tl in Eqn. (2), CoLA demonstrates superiority without necessitating too
many test samples, i.e., 53.2% accuracy (ETA+CoLA) vs. 22.2% accuracy (ETA+CoLA w.o. Tl) with
960 samples, suggesting the effectiveness of Tl to promote swift adaptation under distribution shifts.
We also provide more comparison in Appendix E regarding sample efficiency on unseen distributions.

Effectiveness of Tf on robustness in Eqn. (5). We evaluate the robustness of Eqn. (3) on seen/unseen
distributions (i.e., whether resource-abundant devices have encountered the evaluated distribution).
From Figure 3 (b), our CoLA consistently outperforms NoAdapt regardless of Tf , demonstrating our
effectiveness. On seen distribution, our improvement is particularly significant while the performance
is insensitive to Tf in a reasonable range. However, when Tf is set to infinity (i.e., averaging different
weights), performance experiences degradation as appropriate knowledge plays a less significant role.
On unseen distribution (e.g., ImageNet-R), aggregating a minority of knowledge may be insufficient
to address distribution shifts. In this case, Tf plays an important role in enhancing robustness by
aggregating the strengths of diverse knowledge. We fix Tf to 5 in experiments without careful tuning.

Memory and computation consumption of CoLA. Besides achieving strong performance across
various scenarios, we demonstrate that CoLA incurs negligible computation and memory costs. From
Table 5, on resource-limited follower devices, CoLA (Eqn. 3) substantially outperforms T3A in
terms of accuracy and runtime memory (i.e., 55.7% vs. 9.5%, and 821.9 MB vs. 909.9 MB) while
maintaining nearly the same efficiency as NoAdapt. On resource-abundant principal devices, CoLA
enhances the performance of ETA by a considerable margin (i.e., +2.4% on ImageNet-C) while
incurring only 5.7 MB of additional runtime memory and 3s of latency, indicating that CoLA is even
lighter than the regularizer introduced in EATA. Note that CoLA (Eqn. 3) determines appropriate
re-weighting for different knowledge with a batch of test samples, outperforming ETA+CoLA w.r.t
average accuracy on ImageNet-C. This underscores the potential of collaborative TTA in real world,
where a device may adapt effectively using only negligible costs given adequate shared knowledge.
We also show that CoLA can efficiently scale to over 10,000 domain vectors in Appendix E.

Generalization of Eqn. (2) on unseen distributions. Following Figure 3 (b), we further validate the
effectiveness of CoLA (Eqn. 2) on unseen distributions. From Table 6, CoLA consistently enhances
performance on unseen distributions, yielding a notable 4.4% improvement on SAR in terms of
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average accuracy. Such improvement can be attributed to the transferability of knowledge learned
from similar domains [63]. These findings collectively indicate that the effectiveness of CoLA is not
limited to previously encountered distributions on both principal agents and follower agents.

Prompt tuning with CoLA using multiple hard prompts. Besides aggregating learned knowledge
from other devices, we demonstrate that CoLA can also benefit from aggregating diverse knowledge
from humans (i.e., manual-designed hard prompts). As shown in Table 7, compared with TPT which
is limited to leveraging a single hard prompt, CoLA enhances the adaptation performance on 4 out of
5 datasets (e.g., +1.5% on ImageNet w.r.t. accuracy). These results collectively indicate that CoLA
effectively exploits both the knowledge of humans and the knowledge from optimization, which may
bring new perspectives to the design of learning algorithms when introducing diverse human prior
knowledge is beneficial, e.g., chain-of-thoughts [58]. All used prompts are listed in Appendix C.

Differences and advantages over federated TTA [1, 23]. The main difference is that our CoLA
conducts collaborative learning at the testing phase, whereas federated TTA conducts collaborative
learning during federated source training. For instance, FedTHE+ [23] federatedly trains a global
and a local personalized model for each client, then adaptively ensemble their outputs at test time.
ATP [1] federatedly learns module-specific adaptation rates across clients during training for test-time
adaptation. However, these methods still conduct TTA independently on each devices during testing,
and thus inherits the limitation of the single-device TTA methods. Moreover, in federated TTA [1, 23],
the training phase and test-time adaptation phase are highly correlated, which means they can only use
their own federated-trained models during TTA. This makes these methods restricted for real-world
applications. In contrast, our CoLA enhances test-time model adaptation performance and efficiency
by leveraging knowledge from multiple devices in the application environment, which essentially
establishes a new unsupervised on-time TTA paradigm. Moreover, our CoLA paradigm can be
applied to any pre-trained models, and thus offers much better flexibility in deployment. Additional
comparisons with FedAvg [32] for collaborative adaptation are also provided in Appendix E.

5 Conclusion

In this paper, we propose a multi-device Collaborative Lifelong Adaptation (CoLA) paradigm for
test-time adaptation (TTA), which addresses a practical scenario where multiple devices with different
computational resources and latency requirements need to perform TTA simultaneously. In particular,
we first accumulate a set of shared domain knowledge vectors with an efficient domain shift detector.
Based on this, we develop a knowledge reprogramming learning strategy on principal agents, which
leverages backpropagation-based optimization to aggregate existing knowledge while learning new
domain-specific parameters simultaneously. To further improve adaptation efficiency, we introduce an
optimization-free TTA strategy on follower agents, which solely aggregates the shared domain vectors
based on domain similarity. In CoLA, all devices/agents work collaboratively while keeping privacy
preserved and communication efficient. Experiments verify that CoLA boosts the performance and
efficiency of existing TTA solutions in collaborative, lifelong, and single-domain TTA scenarios.

Acknowledgments

This work was partially supported by National Natural Science Foundation of China (NSFC)
62072190 and TCL Science and Technology Innovation Fund. The authors thank Jinwu Hu and
Yu Hu for discussions on domain knowledge reprogramming, and Yaofo Chen for consultations on
cloud-edge test-time adaptation.

References

[1] W. Bao, T. Wei, H. Wang, and J. He. Memo: Test time robustness via adaptation and augmenta-
tion. In Advances in Neural Information Processing Systems, volume 36, 2024.

[2] A. Bartler, A. Bühler, F. Wiewel, M. Döbler, and B. Yang. Mt3: Meta test-time training for
self-supervised test-time adaption. In International Conference on Artificial Intelligence and
Statistics, pages 3080–3090. PMLR, 2022.

10



[3] M. Boudiaf, R. Mueller, I. Ben Ayed, and L. Bertinetto. Parameter-free online test-time
adaptation. In IEEE Conference on Computer Vision and Pattern Recognition, pages 8344–
8353, 2022.

[4] Y. Chen, S. Niu, S. Xu, H. Song, Y. Wang, and M. Tan. Towards robust and efficient cloud-edge
elastic model adaptation via selective entropy distillation. In International Conference on
Learning Representations, 2024.

[5] Z. Chen, J. Chen, Z. Xie, E. Xu, Y. Feng, and S. Liu. Multi-expert attention network with
unsupervised aggregation for long-tailed fault diagnosis under speed variation. Knowledge-
Based Systems, 252:109393, 2022.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In IEEE Conference on Computer Vision and Pattern Recognition, pages 248–
255, 2009.

[7] Z. Deng, Z. Chen, S. Niu, T. Li, B. Zhuang, and M. Tan. Efficient test-time adaptation for
super-resolution with second-order degradation and reconstruction. In Advances in Neural
Information Processing Systems, 2023.

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021.

[9] Y. Du, S. Luo, Y. Xin, M. Chen, S. Feng, M. Zhang, and C. Wang. Multi-source fully test-time
adaptation. Neural Networks, page 106661, 2024.

[10] F. Fleuret et al. Test time adaptation through perturbation robustness. In Advances in Neural
Information Processing Systems Workshop, 2021.

[11] Y. Gandelsman, Y. Sun, X. Chen, and A. Efros. Test-time training with masked autoencoders.
In Advances in Neural Information Processing Systems, volume 35, pages 29374–29385, 2022.

[12] J. Gao, J. Zhang, X. Liu, E. Shelhamer, T. Darrell, and D. Wang. Back to the source: Diffusion-
driven test-time adaptation. In IEEE Conference on Computer Vision and Pattern Recognition,
2023.

[13] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by predicting
image rotations. In International Conference on Learning Representations, 2018.

[14] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu. A survey of deep learning techniques
for autonomous driving. Journal of field robotics, 37(3):362–386, 2020.

[15] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo, R. Desai, T. Zhu, S. Parajuli,
M. Guo, et al. The many faces of robustness: A critical analysis of out-of-distribution general-
ization. In IEEE Conference on Computer Vision and Pattern Recognition, pages 8340–8349,
2021.

[16] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. In International Conference on Learning Representations, 2019.

[17] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song. Natural adversarial examples. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 15262–15271, 2021.

[18] Y. J. Heo, D. Kim, W. Lee, H. Kim, J. Park, and W. K. Chung. Collision detection for
industrial collaborative robots: A deep learning approach. IEEE Robotics and Automation
Letters, 4(2):740–746, 2019.

[19] J. Hong, L. Lyu, J. Zhou, and M. Spranger. MECTA: Memory-economic continual test-time
model adaptation. In International Conference on Learning Representations, 2023.

[20] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:
Low-rank adaptation of large language models. In International Conference on Learning
Representations, 2022.

[21] Y. Iwasawa and Y. Matsuo. Test-time classifier adjustment module for model-agnostic domain
generalization. In Advances in Neural Information Processing Systems, volume 34, 2021.

[22] L. Jiang and T. Lin. Test-time robust personalization for federated learning. In International
Conference on Learning Representations, 2022.

11



[23] L. Jiang and T. Lin. Test-time robust personalization for federated learning. In International
Conference on Learning Representations, 2023.

[24] J. N. Kundu, N. Venkat, R. V. Babu, et al. Universal source-free domain adaptation. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 4544–4553, 2020.

[25] J. Lee, D. Jung, S. Lee, J. Park, J. Shin, U. Hwang, and S. Yoon. Entropy is not enough for
test-time adaptation: From the perspective of disentangled factors. In International Conference
on Learning Representations, 2024.

[26] J. Liang, R. He, and T. Tan. A comprehensive survey on test-time adaptation under distribution
shifts. International Journal of Computer Vision, pages 1–34, 2024.

[27] J. Liang, D. Hu, and J. Feng. Do we really need to access the source data? source hypothesis
transfer for unsupervised domain adaptation. In International Conference on Machine Learning,
pages 6028–6039, 2020.

[28] Y. Liang, Z. Cai, J. Yu, Q. Han, and Y. Li. Deep learning based inference of private information
using embedded sensors in smart devices. IEEE Network, 32(4):8–14, 2018.

[29] J. Lin, W.-M. Chen, Y. Lin, C. Gan, S. Han, et al. Mcunet: Tiny deep learning on iot devices. In
Advances in Neural Information Processing Systems, volume 33, pages 11711–11722, 2020.

[30] Y. Liu, P. Kothari, B. van Delft, B. Bellot-Gurlet, T. Mordan, and A. Alahi. Ttt++: When does
self-supervised test-time training fail or thrive? In Advances in Neural Information Processing
Systems, volume 34, 2021.

[31] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Unsupervised domain adaptation with residual
transfer networks. In Advances in Neural Information Processing Systems, volume 29, 2016.

[32] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages
1273–1282. PMLR, 2017.

[33] Y. Ming and Y. Li. How does fine-tuning impact out-of-distribution detection for vision-language
models? International Journal of Computer Vision, 132(2):596–609, 2024.

[34] M. J. Mirza, P. J. Soneira, W. Lin, M. Kozinski, H. Possegger, and H. Bischof. Actmad:
Activation matching to align distributions for test-time-training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 24152–24161, 2023.

[35] K. Muhammad, A. Ullah, J. Lloret, J. Del Ser, and V. H. C. de Albuquerque. Deep learning
for safe autonomous driving: Current challenges and future directions. IEEE Transactions on
Intelligent Transportation Systems, 22(7):4316–4336, 2020.

[36] Z. Nado, S. Padhy, D. Sculley, A. D’Amour, B. Lakshminarayanan, and J. Snoek. Evaluat-
ing prediction-time batch normalization for robustness under covariate shift. arXiv preprint
arXiv:2006.10963, 2020.

[37] S. Niu, C. Miao, G. Chen, P. Wu, and P. Zhao. Test-time model adaptation with only forward
passes. In International Conference on Machine Learning, 2024.

[38] S. Niu, J. Wu, Y. Zhang, Y. Chen, S. Zheng, P. Zhao, and M. Tan. Efficient test-time model
adaptation without forgetting. In International Conference on Machine Learning, pages 16888–
16905, 2022.

[39] S. Niu, J. Wu, Y. Zhang, Z. Wen, Y. Chen, P. Zhao, and M. Tan. Towards stable test-time
adaptation in dynamic wild world. In International Conference on Learning Representations,
2023.

[40] Y. Oh, J. Lee, J. Choi, D. Jung, U. Hwang, and S. Yoon. Efficient diffusion-driven corruption
editor for test-time adaptation. arXiv preprint arXiv:2403.10911, 2024.

[41] Z. Pei, Z. Cao, M. Long, and J. Wang. Multi-adversarial domain adaptation. In AAAI Conference
on Artificial Intelligence, 2018.

[42] Z. Qiu, Y. Zhang, H. Lin, S. Niu, Y. Liu, Q. Du, and M. Tan. Source-free domain adaptation
via avatar prototype generation and adaptation. In International Joint Conference on Artificial
Intelligence, 2021.

[43] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International conference on machine learning, pages 8748–8763. PMLR, 2021.

12



[44] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do imagenet classifiers generalize to
imagenet? In International Conference on Machine Learning, pages 5389–5400, 2019.

[45] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada. Maximum classifier discrepancy for unsuper-
vised domain adaptation. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 3723–3732, 2018.

[46] S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel, and M. Bethge. Improving
robustness against common corruptions by covariate shift adaptation. In Advances in Neural
Information Processing Systems, volume 33, pages 11539–11551, 2020.

[47] M. Shu, W. Nie, D.-A. Huang, Z. Yu, T. Goldstein, A. Anandkumar, and C. Xiao. Test-time
prompt tuning for zero-shot generalization in vision-language models. In Advances in Neural
Information Processing Systems, volume 35, pages 14274–14289, 2022.

[48] J. Song, J. Lee, I. S. Kweon, and S. Choi. Ecotta: Memory-efficient continual test-time
adaptation via self-distilled regularization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11920–11929, 2023.

[49] J. Song, K. Park, I. Shin, S. Woo, C. Zhang, and I. S. Kweon. Test-time adaptation in the dynamic
world with compound domain knowledge management. IEEE Robotics and Automation Letters,
2023.

[50] Y. Su, X. Xu, T. Li, and K. Jia. Revisiting realistic test-time training: Sequential inference
and adaptation by anchored clustering regularized self-training. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024.

[51] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In International Conference on Machine
Learning, pages 9229–9248, 2020.

[52] M. Tan, G. Chen, J. Wu, Y. Zhang, Y. Chen, P. Zhao, and S. Niu. Uncertainty-calibrated
test-time model adaptation without forgetting. arXiv preprint arXiv:2403.11491, 2024.

[53] A. Tang, L. Shen, Y. Luo, N. Yin, L. Zhang, and D. Tao. Merging multi-task models via
weight-ensembling mixture of experts. In International Conference on Machine Learning,
2024.

[54] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell. Tent: Fully test-time adaptation
by entropy minimization. In International Conference on Learning Representations, 2021.

[55] H. Wang, S. Ge, Z. Lipton, and E. P. Xing. Learning robust global representations by penalizing
local predictive power. In Advances in Neural Information Processing Systems, pages 10506–
10518, 2019.

[56] Q. Wang, O. Fink, L. Van Gool, and D. Dai. Continual test-time domain adaptation. In IEEE
Conference on Computer Vision and Pattern Recognition, 2022.

[57] X. Wang, Y. Tsvetkov, S. Ruder, and G. Neubig. Efficient test time adapter ensembling for
low-resource language varieties. arXiv preprint arXiv:2109.04877, 2021.

[58] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-
of-thought prompting elicits reasoning in large language models. In Advances in Neural
Information Processing Systems, volume 35, pages 24824–24837, 2022.

[59] Z. Wen, S. Niu, G. Li, Q. Wu, M. Tan, and Q. Wu. Test-time model adaptation for visual
question answering with debiased self-supervisions. IEEE Transactions on Multimedia, 2023.

[60] R. Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

[61] Y. Xin, S. Luo, H. Zhou, J. Du, X. Liu, Y. Fan, Q. Li, and Y. Du. Parameter-efficient fine-tuning
for pre-trained vision models: A survey. arXiv preprint arXiv:2402.02242, 2024.

[62] E. Yang, Z. Wang, L. Shen, S. Liu, G. Guo, X. Wang, and D. Tao. Adamerging: Adaptive model
merging for multi-task learning. In International Conference on Learning Representations,
2024.

[63] L. Zhang and X. Gao. Transfer adaptation learning: A decade survey. IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[64] M. M. Zhang, S. Levine, and C. Finn. Memo: Test time robustness via adaptation and
augmentation. In Advances in Neural Information Processing Systems, 2022.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


[65] Y. Zhang, B. Hooi, L. Hong, and J. Feng. Self-supervised aggregation of diverse experts for
test-agnostic long-tailed recognition. In Advances in Neural Information Processing Systems,
volume 35, pages 34077–34090, 2022.

[66] Y. Zhang, S. Niu, Z. Qiu, Y. Wei, P. Zhao, J. Yao, J. Huang, Q. Wu, and M. Tan. Covid-da:
deep domain adaptation from typical pneumonia to covid-19. arXiv preprint arXiv:2005.01577,
2020.

[67] Y. Zhang, Y. Wei, Q. Wu, P. Zhao, S. Niu, J. Huang, and M. Tan. Collaborative unsupervised
domain adaptation for medical image diagnosis. IEEE Transactions on Image Processing,
29:7834–7844, 2020.

[68] H. Zhuang, Z. Weng, H. Wei, R. Xie, K.-A. Toh, and Z. Lin. Acil: Analytic class-incremental
learning with absolute memorization and privacy protection. In Advances in Neural Information
Processing Systems, volume 35, pages 11602–11614, 2022.

14



Supplementary Materials for
“ Cross-Device Collaborative Test-time Adaptation ”

Contents

A Related work 16

B More design details of CoLA 18

C More implementation details 20

C.1 More details on datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C.2 More experimental protocols on evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C.3 More experimental protocols on methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D More experimental results 23

E Additional discussions 25

F Limitations and future works 29

G Broader impact 29

15



Table A: Characteristics of problem settings that adapt a trained model to a potentially shifted domain.
‘Online’ adaptation predicts a single or batch of incoming test samples immediately. ‘#Devices’ is the
number of devices involved in TTA. ‘Learned Knowledge’ is the knowledge from model adaptation.

Setting Target Testing Online #Devices Learned Resource-Limited Privacy Data
Data Loss Knowledge Devices Transmission

Fine-tuning xt, yt – % 1 Not Considered Not Considered – –
Continual learning xt, yt – % 1 Accumulated Not Considered – –
Unsupervised DA xt – % 1 Accumulated Not Considered – –
Test-time training xt L(xt) ! 1 Not Considered Not Considered – –
Fully TTA xt L(xt) ! 1 Not Considered Partly Applicable – –
Federated TTA [1, 23] xt L(xt) ! 1 Not Considered Not Considered Preserved Intensive
Cloud-Edge TTA [4] xt L(xt) ! 2 Not Considered Applicable Violated Intensive

CoLA (Ours) xt L(xt) ! M Accumulated Applicable Preserved Intermittent

A Related work

We summarize our main differences in Table A and discuss the related works in the following.

Test-time adaptation (TTA) seeks to enhance the model performance on unseen, potentially shifted
test data, by directly learning from the test data itself. We categorize the related TTA works into the
following four groups for discussion, according to 1) the number of devices involved in adaptation; 2)
their dependence on backward propagation; and 3) the availability of multiple models.

• Single-device backpropagation-based TTA. Test-Time Training (TTT) [51] first proposes this
pipeline. During the training phase, TTT methods train a source model with both a supervised and a
self-supervised branch. Given a test sample during testing, they typically update the shared encoder
with the self-supervised objectives, such as rotation prediction [51], contrastive learning [30, 2],
reconstruction learning [11]. To avoid altering the model training phase and access to source
data, Fully TTA methods directly update an on-the-fly model via unsupervised learning objectives,
including, but not limited to, entropy minimization [54, 39], prediction consistency maximization [64,
10] and feature distribution alignment [34].

In pursuit of efficient backpropagation-based TTA, the attempts of existing methods can be generally
categorized into: 1) Sample Efficiency. As test data are not equally important for adaptation, some
recent works [38, 39, 47, 25] have devised various sample selection strategies to identify reliable
and non-redundant samples for test-time learning. It reduces the noise in the gradient and the
number of samples for TTA, thereby enhancing adaptation performance and efficiency. 2) Memory
Efficiency: EcoTTA [48] reduces run-time memory by optimizing only the parameter-efficient
adapters. MECTA [19] reduces the batch size at testing, while it further proposes a domain-aware
batch normalization layer to stabilize TTA using only a small batch size.

Nevertheless, these methods focus on single-device adaptation, where all devices adapt from scratch.
In this sense, valuable knowledge learned from other devices is neglected, damaging the adapta-
tion performance and efficiency. Moreover, these methods still rely on computationally intensive
backpropagation for model updates, which hinders their applicability in resource-limited devices
or latency-sensitive scenarios. To address this, we propose a gradient-based and forward-only
collaboration paradigm, facilitating knowledge accumulation, sharing, and utilization across devices.

Recently, TTA-CDKM [49] proposes to learn and reuse multiple groups of model parameters for better
adaptation, with each group representing the knowledge of a domain. However, TTA-CDKM exploits
only a parameter group during inference, and thus fails to aggregate the strength of diverse domain
knowledge. On the other hand, TTA-CDKM updates the stored parameters when adapting to each
batch of test samples, which introduces intensive communication costs for weight synchronization that
are impractical for multi-device collaboration. In contrast, our CoLA effectively learns to aggregate
diverse strengths of domain vectors at testing while ensuring communication efficiency.

• Single-device forward-only TTA. In the development of BP-free TTA, early research mostly
focused on calibrating the statistics of batch normalization layers by leveraging the test data to
estimate test statistics [36, 46]. Nevertheless, these strategies only conduct adaptation on batch
normalization layers, limiting their applicability to various architectures. In pursuit of a more general
forward-only TTA solution, existing methods can be generally divided into: 1) Input-Level Adaptation,
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where the corrupted test images are reconstructed before making predictions based on a diffusion
model [12, 40]. 2) Output-Level Adaptation, where T3A [21] proposed a prototype-based classifier
for adaptive predictions, and LAME [3] directly corrects the predicted logits. However, since BP-free
TTA does not leverage model feedback, i.e., un/self-supervised learning objectives, for knowledge
acquisition, it often results in suboptimal performance when dealing with out-of-distribution testing
data. In our paper, we address this by facilitating knowledge sharing and utilization across devices,
where we adaptively aggregate the learned knowledge of other devices in a forward-only manner.

• Single-device test-time aggregation. Given multiple pretrained models, one can leverage unsuper-
vised objectives at test time to adaptively aggregate their diverse strengths. Based on the level on
which aggregation is performed, existing solutions can be generally divided into:

1) Output-wise test-time aggregation: Early research mainly focuses on output-wise test-time aggrega-
tion, where the aggregation is conducted on the output logit of each model. EMEA [57] first proposed
this pipeline. Given multiple models trained on different datasets or different label distributions,
this paradigm introduced a reweighting vector to aggregate the outputs logit of various models
during testing, where the reweighting vector is optimized based on entropy minimization [57, 65],
consistency loss [5], etc. More Recently, Mute [9] jointly updates the reweighting vector and all
pretrained models at test time. Nevertheless, these strategies necessitate forward passes for each
candidate model, i.e., O(N) forward passes with N the number of candidate models. Thus, they
typically consume substantially more computation power, impeding their feasibility at edge devices.

2) Parameter-wise test-time aggregation. In contrast, parameter-wise test-time aggregation methods
directly merge several candidate parameters into a single model without necessitating additional
forward passes, i.e., O(1) forward passes neglect of N , rendering it more efficient in computation.
To this end, Adamerging [62] first introduces the learnable parameter-wise weighting vectors, which
aggregate various models before performing forward passes. Building upon this, WEMOE [53]
further introduces the mixture of experts (MoE) into this paradigm, where the parameters from
different models are considered as different experts, while the parameter-wise weighting vector is
generated by a router that is trained during testing, with the entropy minimization objective.

Nevertheless, existing test-time aggregation solutions assume the availability of pretrained models
from the target domain, which struggles to fulfill the conventional TTA settings. Unlike these methods,
we perform both new knowledge learning and existing knowledge aggregation simultaneously at test
time, where knowledge is accumulated across all devices from previous learning.

• Multi-device test-time adaptation. Existing TTA methods typically conduct adaptation on a
single device, where multi-device test-time adaptation is heavily overlooked. In recent academics,
FedTHE+ [22] proposes a global-local scheme for federated test-time adaptation. Specifically,
during each round of federated training, each device trains the global model on the local data,
where the trained model is then sent back to the server. During testing, it adaptively merges the
output logit of the global and local model based on entropy minimization and feature alignment loss.
Nevertheless, it necessitates alteration to model training, limiting their applicability to scenarios where
training data is unavailable. ATP [1] obtains module-specific adaptation rates via federated learning
across clients and applies the adaptation rates in TTA. However, these methods still conduct TTA
independently on each devices, and thus inherits the limitation of the single-device TTA method. More
recently, CEMA [4] proposes a cloud-edge collaboration paradigm for TTA. In CEMA, edge devices
perform pure inference to filter reliable and informational samples to reduce communication burden,
where the computationally intensive model updates are offloaded to the cloud server. Nevertheless,
CEMA necessitates intensive transmission of both data and model weights, which introduces a
heavy communication burden and may violate user privacy. Unlike these methods, we conducts
collaborative adaptation at test time and necessitate only the intermittent transmission of updated
model parameters, which is more practical in real-world implementation.

Unsupervised domain adaptation (UDA). Conventional UDA tackles distribution shifts by jointly
optimizing a source model on both labeled source data and unlabeled target data to learn domain-
invariant features [31, 41, 45, 67, 66]. To avoid access to source data, recently CPGA [42] generates
feature prototypes for each category with pseudo-labeling. SHOT [27] learns a target-specific feature
extractor by information maximization for representation alignment. Nevertheless, these methods
necessitate pre-collected target datasets for offline adaptation, which limits their applicability in the
real world. In contrast, our method adapts in an online manner and does not access the model training
phase or access to source data, which facilitates a more practical adaptation paradigm.
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B More design details of CoLA

In the section, we further elaborate more details of our methods regarding the design of saving domain
knowledge upon distribution shifts

Initialization of α and ∆θ in Eqn. (2) for stable adaptation warm-up. Since ground-truth labels
are absent in our online TTA scenario to provide stable learning signals for Eqn. (2), a careful
initialization of α and ∆θ is crucial upon distribution changes. In this sense, to ensure the stability of
model performance pre and post encountering a new domain while enabling flexible aggregation of
existing knowledge, we devise the initialization strategy by considering the following requirements:
1) the overall model weights θn+1

l initialized after encountering the domain n+1 should remain the
same as θn

l that learned on the n-th domain; 2) ∆θ should be as small as possible to enable flexible
adaptation, e.g., when the new samples are all from in-distribution, one can obtain the solution of
θl=θo

l by setting α0=1 if ∆θ is negligible; 3) for α=softmax(β), the initial β should not be very
sharp, e.g., β=[0, inf, 0, ..., 0], as it will hinder the model learning from selecting diverse knowledge.

Formally, let {∆θ(i)}Li=1 be the learned parameter on the i-th layer in ∆θ. We define ∆θ’s magnitude
as the maximum scale of parameters across different layers ξ = max{ 1

J

∑J
j=1 |∆θ(i,j)|}Li=1, where

J is the number of parameters in each layer. To this end, we satisfy the above constraint by defining
the reweighting logit ∆θn+1 as:

βn+1 =
1

Tl
ln

(
(s− 1)

n∑
i=0

eβiTl

)
, s = max{1, ξ

wm
} (8)

Here, βn+1 is designed so that the magnitude ξ′ of the recalculated ∆θ satisfies ξ′ ≤ wm, where wm

is a constrained value set to 0.01. Moreover, to improve numerical stability in case Tl is 0, we clip the
value of βn+1 between [−10, 10]. The preserved knowledge ∆θn+1 is then shared across devices.

We next provide a proposition to validate the reasonableness of the design for βn+1:

Proposition 1. Given βn+1 in Eqn. (8), the constraints that θn+2
l = θn+1

l and ξ′ ≤ wm holds.

Proof. Assume that the model has learned from n previously domains. According to Eqn. (2), when
the model adapts on the (n+1)-th domain, we have

θn+1
l = θo

l + α0∆θ0 + α1∆θ1 + · · ·+ αn∆θn +∆θ, where α = softmax(β · Tl).

When encountering the (n+2)-th domain, we should save learned knowledge ∆θ from the (n+1)-th
domain. To adaptively aggregates prior knowledge and saved knowledge, we initialize αn+1 for
∆θn+1. Besides, we initialize ∆θ′ in order to learn new knowledge from the (n+2)-th domain. So
we have

θn+2
l = θo

l + α′
0∆θ0 + α′

1∆θ1 + · · ·+ α′
n∆θn + αn+1∆θn+1 +∆θ′

After adding αn+1, to maintain the vector α as normalized weights, αi will change to

α′
i =

eβiTl

(
∑n

j=0 e
βjTl) + eβn+1Tl

=
eβiTl∑n
j=0 e

βjTl
·

∑n
j=0 e

βjTl

(
∑n

j=0 e
βjTl) + eβn+1Tl

= αi ·
∑n

j=0 e
βjTl

(
∑n

j=0 e
βjTl) + eβn+1Tl

.

As we want to ensure the stability of model performance, the overall model weights θn+2
l should be

the same as θn+1
l that learned on the (n+1)-th domain, so ∆θn+1 = θn+2

l − θo
l = θn+1

l − θo
l .

18



Thus, we expand θn+2
l as:

θn+2
l = θo

l + α′
0∆θ0 + α′

1∆θ1 + · · ·+ α′
n∆θn + αn+1∆θn+1 +∆θ′

= θo
l +

∑n
i=0 e

βiTl

(
∑n

i=0 e
βiTl) + eβn+1Tl

(α0∆θ0 + α1∆θ1 + · · ·+ αn∆θn)

+
eβn+1Tl

(
∑n

i=0 e
βiTl) + eβn+1Tl

·∆θn+1 +∆θ′

= θo
l +

∑n
i=0 e

βiTl

(
∑n

i=0 e
βiTl) + eβn+1Tl

(θn+1
l − θo

l −∆θ)

+
eβn+1Tl

(
∑n

i=0 e
βiTl) + eβn+1Tl

· (θn+1
l − θo

l ) + ∆θ′

= θn+1
l −

∑n
i=0 e

βiTl

(
∑n

i=0 e
βiTl) + eβn+1Tl

·∆θ +∆θ′.

Considering θn+2
l = θn+1

l , we have

θn+1
l −

∑n
i=0 e

βiTl

(
∑n

i=0 e
βiTl) + eβn+1Tl

·∆θ +∆θ′ = θn+1
l

⇒ ∆θ′ =

∑n
i=0 e

βiTl

(
∑n

i=0 e
βiTl) + eβn+1Tl

·∆θ.

As ∆θ′ should be as small as possible to enable flexible adaptation, the magnitude of ∆θ′ should
be no larger than wm, i.e. ξ′ ≤ wm. So we scale ∆θ by a factor of s, i.e. ∆θ′ = 1

s ·∆θ. If the
magnitude of ξ′ already satisfies ξ′ ≤ wm, we set s = 1. Otherwise, we set s = ξ

wm
.

Thus, we have s = max{1, ξ
wm

} and ∑n
i=0 e

βiTl

(
∑n

i=0 e
βiTl) + eβn+1Tl

=
1

s

⇒ βn+1 =
1

Tl
ln

(
(s− 1)

n∑
i=0

eβiTl

)
.
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C More implementation details

C.1 More details on datasets

In this paper, we conduct experiments on ImageNet-1K [6] and its five variants to evaluate the
out-of-distribution generalization ability, i.e., ImageNet-C [16], ImageNet-R [15], ImageNet-A [17],
ImageNet-V2 [44], and ImageNet-Sketch [55].

ImageNet-C

Noise Blur

Weather Digital

ImageNet-R

Rendition

Rendition

ImageNet-S

Sketch

Sketch

ImageNet-V2

V2

V2

ImageNet

Original

Original

ImageNet-A

Adversarial

Adversarial

Figure A: Visualizations of images in ImageNet and ImageNet-C/V2/A/R/Sketch.

ImageNet-C consists of various versions of corruption applied to 50,000 validation images from
ImageNet. The dataset encompasses 15 distinct corruption types of 4 main groups, including Gaussian
noise, shot noise, impulse noise, defocus blur, glass blur, motion blur, zoom blur, snow, frost, fog,
brightness, contrast, elastic transformation, pixelation, and JPEG compression. Each corruption type
is characterized by 5 different levels of severity, with higher severity levels indicating a more severe
distribution shift. In our experiments, we specifically utilize severity level 5 for evaluation.

ImageNet-R contains 30,000 images featuring diverse artistic renditions of 200 ImageNet classes.
These images are predominantly sourced from Flickr and filtered by Amazon MTurk annotators.

ImageNet-A comprises 7,500 images covering 200 ImageNet classes. These images are derived from
real-world, naturally occurring examples that lead to a notable degradation in classifier performance.

ImageNet-V2 is a newly collected test dataset extracted from the same test distribution as ImageNet.
It comprises three test sets, each containing 10,000 new images and covering 1000 ImageNet classes.
Following previous TTA methods [36], we utilize the Matched Frequency subset of ImageNet-V2 for
evaluation, in which the images are sampled to match the class frequency distributions of the original
ImageNet validation dataset.

ImageNet-Sketch consists of 50,899 images represented as black and white sketches, encompassing
1000 ImageNet classes. Each class contains approximately 50 images.

C.2 More experimental protocols on evaluation

We use ViT-Base [8] as the source model for all experiments except Table 7. The model is trained
on the source ImageNet-1K training set and we directly obtain the model weights3 from timm4

repository [60]. In Table 7, we adopts CLIP-RN50 [43] as the source model by following TPT [47].
The model weights5 are directly obtained from the original CLIP6 repository [43]. All experiments
are conducted on a single NVIDIA A100 GPUS, using PyTorch framework with version 1.8.0.

Evaluation on lifelong TTA. In Table 1, the model is online adapted to 15 corruptions over 10
rounds (total 150 corruptions), where the parameters will never be reset. Specifically, the corruptions

3https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-
do_0.0-sd_0.0–imagenet2012-steps_20k-lr_0.01-res_224.npz

4https://github.com/pprp/timm
5https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a

7b63bc04b6762/RN50.pt
6https://github.com/openai/CLIP
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comes in the following order for each round: Gaussian Noise → Defocus Blur → Snow → Contrast
→ Shot Noise → Glass Blur → Frost → Elastic Transform → Impulse Noise → Motion Blur → Fog
→ Pixelate → Brightness → Zoom Blur → JPEG Compression. Here, subsequent corruptions differ
in type, which poses a more significant challenge for TTA methods to leverage previously learned
knowledge for adaptation.

Evaluation on collaborative TTA. In Table 2, we evaluate our effectiveness in collaborating on
multiple resource-abundant principal devices, where the learned knowledge on each device is shared
with others post-adaptation to each type of corruption. Specifically, the corruption order in each type
of corruption is as follows. 1) Noise: Gaussian Noise → Shot Noise → Impulse Noise. 2) Blur:
Defocus Blur → Glass Blur → Motion Blur → Zoom Blur. 3) Weather: Snow → Frost → Fog →
Brightness. 4) Digital: Contrast → Elastic Transformation → Pixelate → JPEG Compression.

Then, given learned knowledge from Table 2, we further verify our effectiveness on resource-limited
follower devices in Table 3, e.g., CoLA (SAR) utilizes the learned weights of SAR+CoLA from
Table 2, and CoLA (ETA) utilizes the learned weights of ETA+CoLA from Table 2. Here, the
resource-limited follower devices adapt in a lifelong manner per EATA [38], where the corruptions
come in the following order: Gaussian Noise → Shot Noise → Impulse Noise → Defocus Blur →
Glass Blur → Motion Blur → Zoom Blur → Snow → Frost → Fog → Brightness → Contrast →
Elastic Transformation → Pixelate → JPEG Compression.

Evaluation on single-domain TTA. In Table 4, we validate our CoLA in both the wild scenario (i.e.,
imbalanced label distribution shifts and mixed domain shifts) and the mild scenario of single-domain
TTA, where the model is reset post-adaptation to each corruption. Here, imbalanced label distribution
shifts denotes scenarios where test data come in a class order, mixed domain shifts denotes scenarios
where test data are drawn from multiple randomly mixed domains with different distribution shifts.

Evaluation on prompt tuning. In Table 7, CoLA aggregates 78 diverse hard prompts with the class
token at the end for Eqn. (2), where different prompts are padded to the same length by inserting
empty spaces at the beginning. Note that adaptation is conducted in an episodic manner by following
TPT [47], where we reset ∆θ = 0 post-adaptation to each test sample in Eqn. (2), while α is
continually optimized without reset due to its stability benefit from normalization. Results in Table 7
further demonstrate our effectiveness across various TTA scenarios. The utilized hard prompts for
Eqn. (2) are originally developed by [43], as listed below:

List of Hard Prompts:

a drawing of the {class}, art of a {class}, itap of the {class}, a drawing of a {class}, a origami
{class}, a photo of a nice {class}, a blurry photo of a {class}, a close-up photo of the {class},
a photo of a clean {class}, a photo of a weird {class}, a photo of a small {class}, a photo of
the large {class}, a pixelated photo of the {class}, a embroidered {class}, a photo of the clean
{class}, the origami {class}, the plushie {class}, a photo of a cool {class}, a sculpture of the
{class}, a low resolution photo of the {class}, a bad photo of the {class}, a jpeg corrupted
photo of a {class}, a rendition of the {class}, a photo of the cool {class}, a low resolution
photo of a {class}, a cropped photo of the {class}, the plastic {class}, a sculpture of a {class},
a pixelated photo of a {class}, itap of a {class}, a doodle of a {class}, a sketch of a {class}, a
plastic {class}, itap of my {class}, a close-up photo of a {class}, a bright photo of a {class},
art of the {class}, graffiti of the {class}, a tattoo of a {class}, a sketch of the {class}, a dark
photo of a {class}, a tattoo of the {class}, a photo of the dirty {class}, a black and white photo
of the {class}, a photo of a {class}, a painting of the {class}, a cropped photo of a {class}, a
photo of a large {class}, a photo of the weird {class}, graffiti of a {class}, a painting of a
{class}, a cartoon {class}, the cartoon {class}, a good photo of the {class}, a jpeg corrupted
photo of the {class}, a bad photo of a {class}, a photo of the small {class}, a rendering of
the {class}, a photo of a dirty {class}, a rendition of a {class}, a blurry photo of the {class},
the toy {class}, the embroidered {class}, a rendering of a {class}, a photo of a hard to see
{class}, a dark photo of the {class}, a doodle of the {class}, a good photo of a {class}, a
photo of the {class}, a photo of many {class}, a plushie {class}, a photo of the nice {class}, a
bright photo of the {class}, a toy {class}, a photo of the hard to see {class}, a photo of one
{class}, a photo of my {class}, a black and white photo of a {class}, a sketch of a {class}
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C.3 More experimental protocols on methods

CoLA (Ours). For principal agents, We directly leverage the learnable test-time objectives from the
integrated TTA methods, as listed below. In Eqn. (2), ∆θ is optimized by following the update rules
and the hyper-parameters of the integrated baseline, α and Tl is updated via the AdamW optimizer
with a learning rate of 0.1, and we introduce a weight decay of 0.1 on α. We set the shift detection
threshold z to 0.1 for all experiments. Moreover, we introduce a weight decay on ∆θ for Table 1
and Table K, i.e., 0.1/0.4/0.4 for SAR/ETA/DeYO in Table 1 and 0/0.4/10 for EATA/ETA/SAR in
Table K, respectively. This weight decay, which can be viewed as a simple implementation of the
regularizer in EATA [38], helps learn compact and non-redundant knowledge in the domain vectors,
thereby benefiting knowledge accumulation. For follower agents, we consistently set Tf in Eqn. (3)
to 5 for all experiments. Moving average factor λ is set to 0.2.

SAR7 [39]. We follow all hyper-parameters that are set in SAR unless it does not provide. Specifically,
we use SGD as the update rule, with a momentum of 0.9, batch size of 64, and a learning rate of 0.001.
The entropy threshold E0 is set to 0.4× lnC, where C is the number of task classes. The trainable
parameters are the affine parameters of the layer normalization layers from blocks 1 to blocks 8.

ETA & EATA8 [38]. We follow all hyper-parameters that are set in ETA/EATA unless it does not
provide. Specifically, we use SGD as the update rule, with a momentum of 0.9, batch size of 64,
and a learning rate of 0.001. The entropy threshold E0 is set to 0.4× lnC, where C is the number
of task classes. For EATA, i.e., ETA with an anti-forgetting regularizer, we use 2,000 samples to
estimate the importance of each parameter. The trainable parameters are all affine parameters of layer
normalization layers.

DeYO9 [25]. We follow all hyper-parameters that are set in SAR unless it does not provide. Specifi-
cally, we use SGD as the update rule, with a momentum of 0.9, batch size of 64, and a learning rate
of 0.001. The entropy threshold E0 is set to 0.4× lnC and the entropy factor τEnt is set to 0.5× lnC,
where C is the number of task classes. The Pseudo-Label Probability Difference (PLPD) threshold
τPLPD is set to 0.3 in Table 4, and 0.2 for other experiments by following the original paper. Trainable
parameters are the affine parameters of the layer normalization layers from blocks 1 to blocks 8.

CoTTA10 [56]. We follow all hyperparameters that are set in CoTTA unless it does not provide.
Specifically, we use SGD as the update rule, with a momentum of 0.9, and a batch size of 64.
The learning rate is chosen from {0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001} and the augmentation
threshold pth is chosen from {0.1, 0.2}. In all experiments, we consistently set the learning rate to
0.001 and pth to 0.1 given the optimal accuracy observed in Table 1. For images below the threshold,
we conduct 32 augmentations including color jitter, random affine, Gaussian blur, random horizontal
flip, and Gaussian noise. The restoration probability of is set to 0.01 and the EMA factor α for teacher
update is set to 0.999. The trainable parameters are all the parameters in ViT-Base.

LAME11 [3]. For fair comparison, we maintain a consistent batch size of 64 for LAME, aligning it
with the same batch size used by other methods in our evaluation. We use the kNN affinity matrix
with the value of k chosen from {1, 5, 10, 20}, and for all experiments, we consistently set it to 5
based on the optimal accuracy observed in Table 3.

T3A12 [21]. We follow all hyper-parameters that are set in T3A unless it does not provide. Specifically,
the batch size is set to 64. The number of supports to restore M is chosen from {1, 5, 20, 50, 100},
and for all experiments, we set it to 20 based on the optimal accuracy observed in Table 3.

TPT13 [47]. We follow all hyper-parameters that are set in TPT unless it does not provide. Specifically,
we use AdamW as the update rule, with batch size of 1 and a learning rate of 0.005. Learnable tokens
are initialized from the hard prompt of ‘a photo of a’. The confidence threshold ρ is set to 0.1 and the
number of TPT steps is set to 1.

7https://github.com/mr-eggplant/SAR
8https://github.com/mr-eggplant/EATA
9https://github.com/Jhyun17/DeYO

10https://github.com/qinenergy/cotta
11https://github.com/fiveai/LAME
12https://github.com/matsuolab/T3A
13https://github.com/azshue/TPT
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D More experimental results

In the main paper, we only report the results averaged over 15 corruptions in ImageNet-C (i.e., in
Table 1 and Table 4) or over each group of corruptions (i.e., in Table 2) due to page limit. In this
section, we offer additional results to enable a more comprehensive comparison.

Results under lifelong test-time adaptation. The knowledge sharing scheme in CoLA can also be
used to mitigate catastrophic forgetting in lifelong TTA, similar to the aim of conventional supervised
continual learning [68]. To further verify this, we provide more detailed results of Table 1, regarding
the Accuracys on the first and last rounds of adaptation. From Table C, our CoLA outperforms the
integrated baseline in the first round of adaptation, e.g., the accuracy of 62.0% (ETA+CoLA) vs.
61.4% (ETA). This mainly stems from the latter corruptions encountered in the first round, where
CoLA demonstrates superiority by leveraging the learned knowledge from previous adaptation with
Eqn. (2). More importantly, our enhancement becomes particularly significant at the last round
of adaptation, e.g., the accuracy of 65.4% (ETA+CoLA) vs. 35.1% (ETA), further indicating our
effectiveness in accumulating and utilizing learned knowledge for long-range adaptation. Note that
CoLA applies weight decay on ∆θ as claimed in Section C, thus achieving a lower performance
on the first corruption. Here, the relatively limited performance of CoTTA [56] is attributed to its
sensitivity to corruption order, as shown in Table D.

Results under collaborative test-time adaptation. We provide more detailed results of Table 2,
regarding the Accuracys on each device. From Table D, our CoLA outperforms the integrated baseline
from the adaptation to the second group of corruption, e.g., the accuracy of 53.6% (SAR+CoLA)
vs. 38.9% (SAR) on ‘Gaussian’ in Device 2. Moreover, this improvement becomes increasingly
more pronounced as more knowledge is shared across devices, e.g., improving the accuracy from
37.5% (SAR) to 53.9% (SAR+CoLA) on ‘Gaussian’ in Device 3. This phenomenon underscores the
importance of cross-device collaboration and our effectiveness regarding collaborative TTA.

Results under single-domain test-time adaptation. We provide more detailed results of Table 4,
regarding the Accuracys under mild scenarios and online imbalanced label distribution shifts. From
Table B, incorporating CoLA with existing TTA solutions enhances the adaptation performance
on most corruptions under both scenarios, demonstrating our effectiveness. Specifically, CoLA
showcases a more pronounced improvement in SAR and ETA. This can be attributed to the inadequacy
of prediction entropy to identify reliable samples for model updates, thereby suffering more from error
accumulation. CoLA alleviates this by dynamically favoring a more optimal checkpoint based on
loss minimization instead of the newest saved one that may have learned from erroneous predictions,
rendering CoLA more robust to noise. We also visualize αi in Appendix E to offer more insights.

Table B: Comparisons on ImageNet-C (level 5) regarding Accuracy (%) under single-domain TTA.
In mild scenarios, the test samples come in random order by following Tent [54]. Label Shifts is short
for online imbalanced label distribution shifts, where test samples come in class order per SAR [39].
Mild Scenarios Gaus. Shot Imp. Def. Glass Mot. Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG Avg.

NoAdapt 9.5 6.7 8.2 29.0 23.4 33.9 27.1 15.9 26.5 47.2 54.7 44.1 30.5 44.5 47.8 29.9
EATA [38] 49.5 48.9 50.2 54.8 54.8 58.9 56.2 61.6 60.7 70.6 75.2 66.9 63.7 69.7 66.8 60.6

SAR [39] 44.0 24.2 45.3 53.0 49.9 55.7 51.0 57.4 45.1 66.6 74.7 64.5 55.3 66.7 64.0 54.5
+ CoLA (Ours) 48.4 27.1 49.0 54.9 53.7 58.7 55.1 60.9 50.5 69.2 76.0 66.2 60.5 69.2 66.4 57.7

ETA [38] 51.9 51.9 52.8 57.6 57.6 62.2 60.0 66.1 65.1 72.5 77.4 67.6 66.1 72.0 69.2 63.3
+ CoLA (Ours) 53.4 53.7 54.3 58.2 58.6 63.2 61.5 67.2 66.0 73.0 77.7 68.2 68.1 73.0 70.0 64.4

DeYO [25] 53.2 53.4 54.1 58.3 58.3 63.2 56.6 67.2 66.0 73.4 78.1 68.0 67.9 73.2 70.1 64.1
+ CoLA (Ours) 54.3 50.6 55.0 58.4 59.4 64.2 60.1 68.1 66.5 73.9 78.1 68.3 68.8 73.9 70.4 64.7

Label Shifts Gaus. Shot Imp. Def. Glass Mot. Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG Avg.

NoAdapt 9.5 6.7 8.2 29.0 23.4 33.9 27.1 15.9 26.5 47.2 54.7 44.1 30.5 44.5 47.8 29.9
EATA [38] 36.1 35.7 35.4 45.0 42.8 52.0 45.1 55.0 48.7 62.1 73.0 42.9 55.8 63.9 62.7 50.4

SAR [39] 47.9 30.7 48.4 55.4 54.2 58.8 54.6 43.5 48.3 69.4 76.3 66.2 60.8 69.4 66.6 56.7
+ CoLA (Ours) 49.6 50.4 50.7 56.4 56.4 60.3 57.3 40.9 36.6 71.5 77.2 67.0 64.2 71.3 68.5 58.5

ETA [38] 31.0 34.4 32.0 30.5 44.8 49.6 46.4 54.9 53.0 56.3 74.1 25.1 57.8 64.2 59.4 47.6
+ CoLA (Ours) 40.2 37.6 42.4 47.1 49.6 52.5 53.0 59.7 58.4 65.0 74.6 50.9 61.3 68.9 66.3 55.2

DeYO [25] 53.0 53.9 54.5 57.8 59.0 63.9 12.7 68.0 66.1 73.2 77.9 66.6 68.9 73.7 70.6 61.3
+ CoLA (Ours) 52.9 54.5 54.9 58.0 59.2 63.6 43.1 68.3 66.0 73.3 78.0 66.8 69.1 73.8 70.7 63.5
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Table C: Comparison on ImageNet-C (severity level 5) regarding Accuracy (%) under lifelong
adaptation for 10 rounds. Here, we provide additional results on the first and last rounds of adaptation.
Round 1 Gaus. Def. Snow Contr. Shot Glass Frost Elas. Imp. Mot. Fog Pix. Brit. Zoom JPEG Avg.

NoAdapt 9.5 29.0 15.9 44.1 6.7 23.4 26.5 30.5 8.2 33.9 47.2 44.5 54.7 27.1 47.8 29.9
CoTTA [56] 24.4 35.2 34.6 48.3 41.9 40.0 52.6 49.8 47.0 44.5 48.8 54.6 63.7 35.7 53.1 44.9
EATA [38] 49.4 53.6 61.3 65.8 49.6 54.5 60.5 64.9 50.5 57.9 69.2 69.5 75.2 56.6 67.3 60.4

SAR [39] 44.0 51.9 58.5 63.3 48.8 53.0 61.0 63.5 51.2 57.2 66.9 69.0 76.5 54.0 67.2 59.1
+ CoLA (Ours) 41.9 51.4 57.8 63.9 48.8 52.7 61.0 62.6 52.6 57.3 68.2 69.3 76.5 54.2 67.7 59.1

ETA [38] 51.9 55.6 64.5 64.6 53.2 55.5 62.4 66.4 52.1 57.9 67.5 69.8 75.3 57.7 66.2 61.4
+ CoLA (Ours) 48.0 55.2 63.5 66.2 51.8 55.6 63.7 65.8 54.3 59.8 71.0 71.1 76.7 58.3 68.5 62.0
DeYO [25] 52.8 56.4 65.9 65.5 54.3 57.0 63.8 68.2 54.1 60.3 69.5 71.8 76.7 20.2 60.0 59.8
+ CoLA (Ours) 49.7 55.9 65.0 66.4 53.2 56.9 65.0 67.4 55.2 61.4 72.0 72.3 77.7 37.8 69.7 61.7

Round 10 Gaus. Def. Snow Contr. Shot Glass Frost Elas. Imp. Mot. Fog Pix. Brit. Zoom JPEG Avg.

NoAdapt 9.5 29.0 15.9 44.1 6.7 23.4 26.5 30.5 8.2 33.9 47.2 44.5 54.7 27.1 47.8 29.9
CoTTA [56] 22.1 20.7 27.2 22.4 25.2 22.0 29.6 29.4 25.8 24.4 28.3 31.3 38.2 20.2 31.5 26.5
EATA [38] 47.6 51.5 58.7 63.9 46.8 52.4 59.3 62.6 48.3 56.2 67.0 68.3 74.2 55.8 66.1 58.6

SAR [39] 51.3 55.4 62.5 63.3 52.7 55.9 62.0 64.3 53.2 59.1 67.8 70.4 75.9 55.9 67.1 61.1
+ CoLA (Ours) 56.0 58.4 67.8 67.8 57.2 59.2 66.2 69.4 57.4 63.7 72.7 73.3 77.8 63.1 70.4 65.4

ETA [38] 32.6 28.8 33.4 17.5 31.4 31.9 36.8 42.3 32.1 29.2 30.6 46.0 57.7 34.9 41.7 35.1
+ CoLA (Ours) 55.8 58.3 68.4 67.9 57.1 59.2 66.3 69.7 56.9 64.2 73.1 73.2 77.5 64.2 69.8 65.4

DeYO [25] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
+ CoLA (Ours) 56.9 58.9 69.7 68.2 58.1 59.8 66.9 70.8 58.2 64.7 73.7 73.9 78.0 53.9 70.9 65.5

Table D: Effectiveness under collaborative adaptation across resource-abundant principal devices
w.r.t. Acc. (%). Results are evaluated on ImageNet-C (severity level 5, containing 15 corruption types
of 4 groups). We share learned weights across devices post-adaptation to each group of corruptions.
Device 1 Gaus. Shot Imp. Def. Glass Mot. Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG Avg.

NoAdapt 9.5 6.7 8.2 29.0 23.4 33.9 27.1 15.9 26.5 47.2 54.7 44.1 30.5 44.5 47.8 29.9
CoTTA [56] 17.7 28.4 40.5 37.0 43.4 46.5 38.1 39.1 49.1 48.6 63.8 41.5 42.5 54.0 52.2 42.8
EATA [38] 50.4 54.3 55.7 53.8 56.1 59.6 58.6 62.3 63.8 70.5 75.9 66.2 64.1 70.1 68.3 62.0

SAR [39] 44.5 51.8 54.8 51.3 53.6 57.7 55.0 59.7 62.0 67.2 76.3 63.1 59.4 68.5 67.2 59.5
+ CoLA (Ours) 44.5 51.8 54.8 56.4 56.5 61.2 57.9 64.7 64.4 71.7 76.8 66.4 66.7 72.2 69.6 62.4

ETA [38] 51.9 56.3 57.2 53.1 56.7 58.8 58.9 62.2 63.3 68.9 75.5 62.7 64.3 69.9 67.1 61.8
+ CoLA (Ours) 52.1 56.3 57.1 57.2 58.0 62.1 62.6 67.7 66.3 72.7 77.1 66.0 69.0 72.5 69.7 64.4
DeYO [25] 52.9 57.7 58.3 54.9 58.0 61.4 25.5 61.5 63.9 70.1 77.0 63.5 67.0 71.6 69.2 60.8
+ CoLA (Ours) 52.9 57.6 58.2 57.9 58.3 62.5 41.6 67.8 66.4 73.0 77.5 66.4 70.5 73.3 70.5 63.6

Device 2 Def. Glass Mot. Zoom Gaus. Shot Imp. Contr. Elas. Pix. JPEG Snow Frost Fog Brit. Avg.

NoAdapt 29.0 23.4 33.9 27.1 9.5 6.7 8.2 44.1 30.5 44.5 47.8 15.9 26.5 47.2 54.7 29.9
CoTTA [56] 31.4 31.7 43.9 38.1 27.0 37.7 46.7 45.2 46.3 56.2 54.0 47.0 50.9 49.3 63.5 44.6
EATA [38] 55.4 57.2 60.5 59.5 48.5 53.1 55.0 65.0 64.0 70.5 68.4 62.9 64.0 71.0 76.1 62.1

SAR [39] 53.0 53.4 58.7 55.3 38.9 51.5 54.7 62.2 57.6 68.2 68.0 59.9 61.9 67.6 76.3 59.1
+ CoLA (Ours) 52.9 53.4 58.6 55.1 53.6 55.4 56.1 66.4 61.9 71.1 69.2 66.2 65.6 72.9 77.3 62.4

ETA [38] 57.6 58.8 61.7 61.1 47.4 53.2 54.4 57.3 64.6 70.5 67.7 62.1 62.7 69.0 75.6 61.6
+ CoLA (Ours) 57.5 58.3 61.2 61.0 54.8 57.0 57.1 64.6 68.4 72.2 70.1 67.5 66.0 72.8 77.3 64.4
DeYO [25] 58.1 59.5 63.0 41.8 39.3 50.5 50.4 61.4 66.8 71.6 68.9 64.6 63.9 70.5 76.9 60.5
+ CoLA (Ours) 58.3 59.1 62.6 39.3 47.9 57.5 58.2 66.6 69.9 73.0 70.5 68.3 66.9 73.0 77.7 63.3

Device 3 Snow Frost Fog Brit. Contr Elas. Pix. JPEG Def. Glass Mot. Zoom Gaus. Shot Imp. Avg.

NoAdapt 15.9 26.5 47.2 54.7 44.1 30.5 44.5 47.8 29.0 23.4 33.9 27.1 9.5 6.7 8.2 29.9
CoTTA [56] 26.1 48.0 56.5 71.2 53.1 45.3 60.9 60.6 42.3 42.8 46.8 38.2 30.2 39.8 46.2 47.2
EATA [38] 63.8 65.3 71.8 76.6 66.9 64.7 70.5 68.8 55.7 56.7 60.2 59.1 47.5 52.7 54.3 62.3

SAR [39] 57.9 63.1 68.6 76.3 64.6 58.0 67.2 67.7 54.5 54.3 58.3 54.6 37.5 51.0 54.6 59.2
+ CoLA (Ours) 57.9 63.0 68.0 76.2 64.6 59.7 69.1 67.8 56.5 57.9 61.6 59.2 53.9 56.3 56.5 61.9

ETA [38] 66.0 66.3 71.9 77.0 66.0 65.6 70.7 68.8 55.3 56.8 60.1 59.9 44.3 50.9 52.9 62.2
+ CoLA (Ours) 66.0 66.0 71.9 76.9 65.4 66.4 71.6 69.1 56.7 58.0 61.8 62.1 54.0 56.0 55.9 63.9
DeYO [25] 67.2 66.9 72.7 77.7 66.3 67.4 71.9 69.6 56.6 58.1 61.6 28.2 11.7 1.0 0.1 51.8
+ CoLA (Ours) 67.0 66.6 72.7 77.6 66.1 67.6 72.5 69.7 56.5 57.5 61.4 39.6 49.1 56.9 56.8 62.5
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E Additional discussions

Robustness of CoLA against potential harmful knowledge. Note that CoLA conducts test-time
learning to adaptively aggregate prior knowledge. If the prior knowledge shared from some devices is
harmful, using such knowledge shall not decrease the test-time objective. Thus, such prior knowledge
will not be used for model adaptation. In this sense, CoLA remains stable even with harmful prior
knowledge (e.g., the domain knowledge in some devices is not helpful for principal agents to do
TTA). This stability also benefits from our initialization strategy as shown in Table E, which carefully
initializes α and ∆θ to prevent the aggregation of potentially harmful knowledge for stable warm-up.

Table E: Robustness of our CoLA using only pre-trained parameters and N harmful prior knowledge,
i.e., the randomly initialized domain vectors. Results are obtained on ImageNet-C (Gaussian, level 5).

Method N = 0 N = 2 N = 4 N = 100 N = 1, 000

ETA+CoLA (Equal α) 51.97 0.10 0.10 0.10 0.10
ETA+CoLA (Random α) 51.97 10.46 0.15 0.10 0.10

ETA+CoLA (Ours) 51.97 52.02 52.04 52.04 52.04

Scalability of CoLA with more collaborative devices. CoLA scales well with an increasing number
of devices, i.e., with more shared domain vectors. From Table F, ETA/ETA+CoLA consistently
benefits from additional participating devices, e.g., ETA+CoLA achieves an accuracy of 65.2% with
11 devices compared to 61.8% with one device. This highlights the importance of cross-device
collaboration and CoLA ’s effectiveness under more large-scale multi-device collaborative TTA.

Table F: Effectiveness of CoLA with an increasing number of principal devices (with back-propagation
capability). Here, each device continuously encounters 15 domains from ImageNet-C (level 5) in
different domain orders. Results are averaged over all principal devices.

#Devices 1 3 5 7 9 11

SAR+CoLA 59.7 62.1 62.8 63.6 63.8 63.9(+4.2)

ETA+CoLA 61.8 63.9 64.3 64.9 65.0 65.2(+3.4)

Efficiency of CoLA with increasing domain vectors. Our CoLA is both computation and memory
efficient at exploiting domain vectors. From Table H, CoLA efficiently scales to over 10,000 domain
vectors, incurring only an additional 11s of runtime and 1,502MB of extra memory, yet remains
substantially more efficient than CoTTA. We believe that 10,000 domain vectors should be adequate
for handling most real-world applications with proper management.

Table G: Efficiency comparison on ImageNet-C (Gaussian, level 5) using a single A100. N is the
number of domain vectors, which we initialize as random parameters in this table.

Method ETA +CoLA (N = 1) +CoLA (N = 100) +CoLA (N = 10, 000) CoTTA

Time (s) 109 110 112 120 937
Memory (MB) 7,433.2 7,433.7 7,448.2 8,935.5 21,628.6

Sensitivity of threshold z for shift detection. CoLA remains effective among a wide range of
threshold z, as shown in Table A. From the results, while a stricter threshold saves more domain
vectors, CoLA achieves a stable performance of around 64.7%. When threshold z increases, CoLA
saves significantly fewer domain vectors and still enhances the performance significantly, i.e., the
average accuracy of 62.2% in ETA+CoLA (z=10) vs. 46.4% in ETA.

Table H: Sensitivity of threshold z. Experiments follow the settings of Table 1, i.e., single-device
lifelong adaptation, and CoLA is incorporated with ETA. We report average accuracy over 10 rounds,
each comprising 15 corruptions of ImageNet-C. The average accuracy of the ETA baseline is 46.4%.

CoLA (z=0.01) CoLA (z=0.05) CoLA (z=0.1) CoLA (z=1) CoLA (z=10)

Avg. Acc. 64.7 64.6 64.8 63.8 62.2
#Saved Vectors 20740 369 169 110 48
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Advantages of CoLA over FedAvg [32] in collaborative TTA. We further compare our CoLA
with FedAvg [32] in cross-device collaborative/federated learning. From Table I, CoLA consistently
outperforms FedAvg when incorporated with the baseline for collaborative TTA. More importantly,
FedAvg, which simply averages the model parameters on different devices, may deteriorate model
performance (i.e., the average accuracy of 61.2% in ETA vs. 58.0% in ETA+FedAvg). This is because
different devices may encounter different distribution shifts, and thus the knowledge from other
devices may not be beneficial for adapting to the current domain. In contrast, our CoLA addresses
this by learning at test time to optimize the aggregation of knowledge from different devices.

Table I: Effectiveness of CoLA and FedAvg [32] for cross-device collaborative TTA w.r.t. Acc. (%).
The experiments follow the settings of Table 2 in the main paper.

Device 1 (Adapt →) Device 2 (Adapt →) Device 3 (Adapt →)
Method Noise Blur Weat. Digit. Blur Noise Digit. Weat. Weat. Digit. Blur Noise Avg.

NoAdapt 8.2 28.4 36.1 41.7 28.4 8.2 41.7 36.1 36.1 41.7 28.4 8.2 28.6
EATA [38] 53.5 57.0 68.1 67.2 58.1 52.2 67.0 68.5 69.4 67.7 57.9 51.5 61.5

SAR [39] 50.4 54.4 66.3 64.5 55.1 48.3 64.0 66.4 66.5 64.3 55.4 47.7 58.6
+ FedAvg [32] 50.4 56.6 67.6 66.1 55.1 52.2 65.6 68.1 66.3 64.9 57.2 51.8 60.2
+ CoLA (Ours) 50.4 58.0 69.4 68.7 55.0 55.0 67.1 70.5 66.3 65.3 58.8 55.5 61.7

ETA [38] 55.2 56.9 67.5 66.0 59.8 51.7 65.0 67.4 70.3 67.8 58.0 49.4 61.2
+ FedAvg [32] 55.2 58.9 65.1 62.5 59.6 51.0 63.4 63.7 70.3 46.2 54.0 46.4 58.0
+ CoLA (Ours) 55.2 60.0 70.9 69.3 59.5 56.3 68.8 70.9 70.2 68.1 59.7 55.3 63.7

Robustness of CoLA under small batch sizes. The stability of CoLA under small batch sizes is
primarily determined by the base algorithms, such as ETA and SAR, rather than CoLA itself. This is
because CoLA is a plug-and-play module designed to be incorporated with existing methods. We
provide further empirical results to verify this robustness. From Table J, CoLA achieves a consistent
result when incorporated with SAR, demonstrating no performance degradation as the batch size
reduces from 16 to 2. Meanwhile, CoLA can also help improve stability under small batch sizes.
For instance, as the batch size reduces from 4 to 2, ETA+CoLA achieves nearly no performance
degradation while the baseline ETA’s performance degrades by 1.4%.

Table J: Robustness of our CoLA under various batch sizes. We follow the same settings of Table 2
in the main paper and report average accuracy over all devices and corruptions here.

Method BS = 64 BS = 16 BS = 4 BS = 2

SAR [39] 58.6 58.8 58.9 58.7
+ CoLA (Ours) 61.7 61.6 61.7 61.7

ETA 61.2 60.5 58.5 57.1
+CoLA (Ours) 63.7 62.8 61.7 61.5

Effectiveness of CoLA on ResNet models. Table K demonstrates the effectiveness of our CoLA on
ResNet-50, where CoLA updates and stores the affine parameters of batch normalization layers in
ResNet. From Table K, CoLA consistently enhances the performance of ETA/EATA/SAR throughout
10 rounds of adaptation and addresses the issue of performance degradation in long-term adaptation.
These results are consistent with Table 1 in the main paper using ViT-Base, further indicating CoLA’s
effectiveness in accumulating and exploiting learned knowledge with diverse model architectures.

Table K: Effectiveness of CoLA on ResNet-50 in the lifelong TTA scenarios following Table 1.
Time: −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Round 1 2 3 4 5 6 7 8 9 10 Average

NoAdapt 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0
CoTTA [56] 33.4 23.6 9.6 2.2 1.2 1.2 1.2 1.2 1.2 1.2 7.6

SAR [39] 35.9 17.5 21 36.2 18 13.6 35.8 16.5 13.5 36.1 24.4
+ CoLA (Ours) 39.4 42 43 43.5 43.9 44.4 44.7 45 45.2 45.3 43.6(+19.2)

ETA [38] 42.4 40.4 38.9 37.6 37 36 35.9 35.2 35.1 34.7 37.3
+ CoLA (Ours) 46.5 46.5 49.5 49.5 49.7 49.8 49.9 49.9 49.9 49.8 49.3(+12.0)

EATA [38] 47.5 47.3 47.1 46.7 46.8 46.6 46.4 46.3 46.2 46.2 46.7
+ CoLA (Ours) 48.2 49.5 50.0 50.1 50.2 50.2 50.3 50.3 50.3 50.2 49.9(+3.2)
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Effectiveness of CoLA in sample efficiency on unseen distributions. We validate the effectiveness
of Eqn. (2) to facilitate sample-efficient TTA on unseen distributions. From Figure B, CoLA
consistently enhances the sample efficiency and the overall performance, i.e., with an up to 30.0×
speed up on both ImageNet-R and ImageNet-Sketch, indicating that the effectiveness of CoLA is
not limited to previously encountered distributions. More interestingly, compared with SAR, CoLA
helps mitigate overfitting on ImageNet-Sketch. This can be attributed to that, in the unsupervised
adaptation, SAR learns on more erroneous predictions since its performance is particularly limited
at the beginning of adaptation. This phenomenon further demonstrates the importance of sample
efficiency and our effectiveness in leveraging shared knowledge for efficient TTA.
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Figure B: Additional comparisons w.r.t sample efficiency on unseen distributions. Here, CoLA
leverages learned weights on ImageNet-C (i.e., from SAR+CoLA in Table 2, the fifth row) while the
effectiveness in sample efficiency is evaluated on ImageNet-R and ImageNet-Sketch.

Effectiveness of CoLA in mitigating error accumulation. We provide visualization of the learned
βi in Figure C. Here, all domain vectors are learned on the same domain, i.e., Gaussian Noise, where
we save learned weights post-adaptation to 10 batches of samples. Generally, a later saved domain
vector should be prioritized as it learns on more samples. Nevertheless, in the context of unsupervised
TTA, a model may learn from erroneous pseudo-labels, where the performance would significantly
deteriorate, known as error accumulation. From Figure C, CoLA adaptively assigns lower βi on
domain vectors that may have accumulated error, e.g., from the 80-th to the 90-th domain vectors,
according to loss optimization. Thus, CoLA demonstrates potential effectiveness in mitigating error
accumulation, enhancing ETA’s performance by +7.6% on ImageNet-C under label distribution shifts.
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Figure C: Visualization of βi for ETA+CoLA on ImageNet-C(severity level 5, Gaussian) under online
imbalanced label distribution shifts. CoLA saves learned weights for every adaptation to 10 batches
of samples while no weights are discarded for visualization. Learned temperature Tl is 0.49.

Effectiveness of our domain shift detector. We provide additional results to demonstrate the
effectiveness of our domain distance function, i.e., Eqn. (7), for shift detection. In our experiments,
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we consistently set ϕd to 0.1 for shift detection. From Figure D, our domain shift detector demonstrates
sensitivity between corruptions from different groups, e.g., with a distance of 99 between ‘impulse
noise’ and ‘contrast’, and a distance of 32 between ‘gaussian noise’ and ‘defocus blur’.
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Figure D: Effectiveness of our domain distance function, i.e., D(·, ·) defined in Eqn. (7), to capture
the magnitude of domain shift. Here, we estimate the domain distance between each corruption in
ImageNet-C (level 5, with 15 corruptions). The statistic of each domain is estimated via Eqn. (6).

Statistical comparison. We re-run Table 2 in the main paper with 5 different seeds and report the
mean and std of each method in Table L. The results show that CoLA performs stably with small stds
and it lowers the std of ETA&DeYo, suggesting CoLA’s stability.

Table L: Statistical comparison. Experiments follow the settings of Table 2.
Device 1 (Adapt →) Device 2 (Adapt →) Device 3 (Adapt →)

Method Noise Blur Weat. Digit. Blur Noise Digit. Weat. Weat. Digit. Blur Noise Avg.

ETA [38] 55.1 56.8 67.3 58.5 59.7 51.6 52.2 66.0 70.4 67.8 57.9 49.5 60.2±1.8

+ CoLA (Ours) 55.1 59.7 70.3 68.7 59.5 56.3 65.2 70.3 70.3 68.0 59.2 54.6 63.1±0.7

SAR [39] 50.3 54.4 66.3 64.7 55.1 48.0 63.9 66.5 66.5 64.4 55.6 47.0 58.6±0.1

+ CoLA (Ours) 50.3 57.9 69.1 68.1 55.0 54.8 67.2 70.1 66.4 65.1 58.7 54.5 61.4±0.3

DeYO [25] 56.3 50.5 67.6 67.9 55.4 44.9 53.5 55.4 71.1 68.9 52.0 26.6 55.8±3.9

+ CoLA (Ours) 56.2 54.7 70.4 69.2 54.1 55.9 68.8 70.6 71.1 68.7 52.4 54.2 62.2±0.3
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F Limitations and future works

Finetuning LLM. We mainly verify our CoLA with vision models in the context of test-time
adaptation. Since our formulation in Eqn. (2) does not necessitate being optimized during testing,
it’s an interesting future work to verify CoLA on more scenarios. For instance, finetuning the large
language models, where multiple finetuned weights, e.g., using LoRA [20], are publicly available.

Shrinking the shared vectors. Our CoLA continuously expands the size of the shared domain
vectors across devices. Intuitively, on the same domain, one can reduce memory consumption by
preserving only the best-performing domain vector. Although we have demonstrated a feasible
strategy for shared vectors shrinking on the single-domain adaptation, where we discard the unused
ones according to αi in Table 4. Nevertheless, it’s still challenging to perform share vectors shrinking
across multiple devices and we leave it for future works.

G Broader impact

This paper aims to advance the field of test-time adaptation for out-of-distribution generalization.
The societal impact of our work lies primarily in its potential to expand the usability of machine
learning models in real-world settings, particularly on self-driving cars, embodied agents/robots,
etc. By enhancing the performance of machine learning models on various real-world devices, our
method helps make AI technology more broadly accessible. Ethically, our approach eliminates the
need for data transfer between devices, thereby improving data privacy and security.
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paper’s contributions and scope?
Answer: [Yes]
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knowledge across devices during test-time adaptation, significantly enhancing performance
in varying domain scenarios without sacrificing efficiency.
Guidelines:
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made in the paper.
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NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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• The authors are encouraged to create a separate "Limitations" section in their paper.
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only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We have provided a proposition and its complete proof in Section B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have fully disclosed all information needed to reproduce the main experi-
mental results of the paper in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
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Answer: [Yes]
Justification: We have provided all source code in the introduction.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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Answer: [Yes]
Justification: The paper meets the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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societal impacts of the work performed?
Answer: [Yes]
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
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• For existing datasets that are re-packaged, both the original license and the license of
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• If this information is not available online, the authors are encouraged to reach out to
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35


	Introduction
	Problem statement and motivation
	Cross-device collaborative test-time adaptation
	Collaborative test-time adaptation via knowledge reprograming learning
	Collaborative test-time adaptation via similarity-based knowledge aggregation
	Automatic domain shift detection for constructing domain knowledge vectors T

	Experiments
	Comparison with state-of-the-art methods
	Ablation studies and more discussions

	Conclusion
	Related work
	More design details of CoLA
	More implementation details
	More details on datasets
	More experimental protocols on evaluation
	More experimental protocols on methods

	More experimental results
	Additional discussions
	Limitations and future works
	Broader impact

