
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TABLEMASTER: A RECIPE TO ADVANCE TABLE UN-
DERSTANDING WITH LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tables serve as a fundamental format for representing structured relational data.
While current language models (LMs) excel at many text-based tasks, they still
face challenges in table understanding due to the complex characteristics of tab-
ular data, such as their structured nature. In this paper, we aim to enhance LMs
for improved table understanding. We identify four key challenges: 1) difficulty
in locating target data, 2) deficiency in table semantics, 3) numerical inaccura-
cies in textual reasoning, and 4) semantic inflexibility in symbolic reasoning. To
address these issues, we propose TableMaster, a recipe and comprehensive frame-
work that integrates multiple solutions to overcome these obstacles. TableMaster
first extracts relevant table content and verbalizes it with enriched semantic con-
text. Additionally, we introduce adaptive reasoning, a flexible approach that dy-
namically adjusts between textual and symbolic reasoning, tailoring the reasoning
process to each query. Extensive analyses and experiments demonstrate our find-
ings and the effectiveness of TableMaster. On the WikiTQ dataset, TableMaster
achieves an accuracy of 78.13% using GPT-4o-mini, surpassing existing base-
lines. Our code can be found at https://anonymous.4open.science/
r/TableMaster-8646.

1 INTRODUCTION

Tables are widely used in daily life and across various fields, such as healthcare (Ghasemi & Amyot,
2016) and finance (Li et al., 2020; Yi et al., 2025), due to their unique ability to efficiently represent
two-dimensional relational data. It is crucial to process tabular data with both efficiency and ac-
curacy. Recently, large language models (LLMs) (Gunasekar et al., 2023; OpenAI, 2024; Touvron
et al., 2023) have achieved significant progress in the field of natural language processing. They
perform well in a wide range of downstream text-based tasks, including language understanding
(Minaee et al., 2024; Zhu et al., 2024) and reasoning (Plaat et al., 2024). Naturally, language models
(LMs) are increasingly being used to process and understand tabular data (Fang et al., 2024; Zhang
et al., 2024b), enabling reasoning for downstream tasks such as table-based question answering
(Pasupat & Liang, 2015) and table-based fact verification (Chen et al., 2020).

However, the data structure of tables inherently possess a unique two-dimensional structure that
contrasts with the linear text, which dominates the content in language model pretraining corpora.
Most advanced LMs are not specifically optimized for processing tabular data. While techniques
such as chain-of-thought prompting (Wei et al., 2023) and other reasoning-enhanced methods (Yao
et al., 2023) have enabled LMs to perform satisfactorily in reasoning with linear text, significant
room for improvement remains in table-based reasoning (Chen, 2023). A notable gap persists in
LMs’ ability to fully understand tables and effectively reason with tabular data.

Many previous studies have aimed to improve the table understanding capabilities of LMs. One
efficient approach is using prompting to adapt LMs for table understanding without requiring fine-
tuning, making it applicable to any advanced LM. Recent studies primarily adopt two main strategies
to enhance table understanding with LMs. The first strategy involves extracting a sub-table that con-
tains relevant content from the original table to reduce the context size, thereby making it easier for
LMs to comprehend. Examples include Dater (Ye et al., 2023) and Chain-of-Table (Wang et al.,
2024), among others. The second strategy leverages SQL or Python programs to augment numerical
reasoning, locate target data, and enhance table understanding of numerical information, as demon-

1

https://anonymous.4open.science/r/TableMaster-8646
https://anonymous.4open.science/r/TableMaster-8646

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

C2 - Deficiency of Table Semantics

C3 - Numerical Inaccuracy in Textual Reasoning

C4 – Semantic Inflexibility in Symbolic Reasoning

C1 – Difficulty in Locating Target Data S1 - Table of Focus

S2 - Table Verbalization

S4 – Table Normalization & Text-guided Symbolic Reasoning

S3 - Program-aided Reasoning

Intensive

Numerical

Concise

Structured

Tabular Data
Characteristics

Challenges Proposed Solutions

Table

Question

Table w/ Full Information

Hallucination Question
Table w/ Full Information

Construct
Table of Focus

Table w/ numerical data
or Large Table

Question

1, 2, …, 5, 6, 7, -> 9

Table w/ numerical data
or Large Table

Question

Program

667 x 226 + 31 = 150,707
Calculation Error

Count Error

Wild Table
Question

Error Program
Logical Error

Data Error

Wild Table
Question

Program
Text Guidance

Table
Question

Sparse Sematic Context

Hallucination

Long-Context

1. Structure Information
2. Content of Each Cell

Table
Verbalization Question

Verbalized Table Rich Sematic Context

Short-Context

LM

LM

Textual Reasoning

LM

LM

Potential
Causes

Symbolic Reasoning Symbolic Reasoning

Textual Reasoning

Normalized
Table

1. Structure Normalization
2. Column Normalization

Figure 1: Overview of the challenges and proposed solutions in this work. Tabular data is inherently
structured, dense, concise, and numerical. Based on these characteristics, we identify four key
challenges. To address them, we propose four targeted solutions. The gray arrows between the
characteristics and challenges represent the potential causes of these challenges stemming from
specific characteristics. Each proposed solution corresponds to the challenge presented on the left
in the same row. TableMaster is a unified recipe developed based on these findings.

strated by Binder (Cheng et al., 2023) and LEVER (Ni et al., 2023), etc. However, these studies
primarily focus on a single basic aspect to enhance the performance of LMs in table understand-
ing or design complex methods with isolated strategies. There is currently an absence of work that
provides a systematic and fundamental analysis of table understanding with language models and
proposes comprehensive methods for its improvement.

In this paper, we first provide extensive experiments and discussions to identify the challenges in
table understanding with language models. To address these challenges, we then introduce Table-
Master, a recipe and comprehensive framework that integrates multiple solutions to tackle these
issues effectively. In summary, this paper makes the following key contributions:

• Challenges of Table Understanding. We observe that tabular data is inherently structured, dense,
concise, and numerical. Through empirical analysis, we identify four challenges associated with
LMs’ table understanding: difficulty in locating target data, deficiency of table semantics, numeri-
cal inaccuracies in textual reasoning, and semantic inflexibility in symbolic reasoning. (Section 3)

• A Recipe for Table Understanding. To address these challenges, we propose targeted solutions:
table-of-focus, table verbalization, program-aided reasoning, table normalization, and text-guided
symbolic reasoning. Building on these solutions, we introduce a framework as a unified recipe,
TableMaster. It also incorporates Adaptive Reasoning (AR), a flexible approach that dynamically
adjusts between textual and symbolic reasoning, tailoring the reasoning process to each query.
(Section 4)

• Extensive Experiments and Detailed Analyses. We conduct extensive experiments and provide
in-depth analyses to support our findings on table understanding with language models. Fur-
thermore, we evaluate and demonstrate the superior performance of TableMaster across three
widely used table understanding datasets: WikiTQ, TabFact, and FetaQA. Notably, on the Wik-
iTQ dataset, TableMaster achieves an accuracy of 78.13% based on GPT-4o-mini, surpassing
existing baselines. (Section 3, Section 5, and Appendix)

2 RELATED WORK

Reasoning with Language Models. It has been observed that language models (LMs) can exhibit
reasoning abilities when they are sufficiently large (Wei et al., 2022; Suzgun et al., 2022). LMs are
now widely used for various reasoning tasks, such as question answering (Kamalloo et al., 2023),
decision making (Yang et al., 2023), and mathematical reasoning (Ahn et al., 2024). At the inference
stage, techniques such as chain-of-thought prompting (Wei et al., 2023) are used to trigger step-by-
step reasoning processes and improve reasoning performance. Few-shot prompting (Brown et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2020), least-to-most prompting (Zhou et al., 2023), and program-of-thought prompting (Chen et al.,
2023) have proven effective in specific scenarios. Methods like self-consistency (Wang et al., 2023b)
and structuring the reasoning process in forms like trees (Yao et al., 2023) or graphs (Besta et al.,
2024; Cao, 2024a) are also useful for more complex reasoning tasks. Recently, many works have
focused on using reinforcement learning (Lightman et al., 2023; Uesato et al., 2022) to improve the
reasoning abilities of LMs during training. Our work focuses on inference-time improvements and
proposes a general framework applicable to all kinds of LMs for table understanding and reasoning.

Fine-Tuning LMs for Table Understanding. Several studies have focused on fine-tuning lan-
guage models to enhance their understanding of tabular data. For example, based on the masked
language modeling approach introduced in BERT (Devlin et al., 2019), models like TaPas (Herzig
et al., 2020), Pasta (Gu et al., 2022), and TUTA (Wang et al., 2021) propose specialized pre-training
methods to improve LMs’ ability to process tables. Similarly, TAPEX (Liu et al., 2022) pre-trains
an encoder-decoder model to function as a SQL executor, enabling better table comprehension. Re-
cent advancements, such as TableLlama (Zhang et al., 2024a), TableGPT (Zha et al., 2023), and
StructLLM (Zhuang et al., 2024), leverage open-sourced decoder-only models like Llama (Touvron
et al., 2023) to pre-train larger models optimized for various downstream table-related tasks.

Adapting LMs for Table Understanding Without Fine-Tuning. Other studies focus on adapting
LMs to table-related tasks without requiring fine-tuning. For instance, Binder (Cheng et al., 2023),
LEVER (Ni et al., 2023), and PoTable (Mao et al., 2024) generate SQL or Python programs, ex-
tending the capabilities of LMs to analyze tabular data. Dater (Ye et al., 2023), TabSQLify (Nahid
& Rafiei, 2024a), ReAcTable (Zhang et al., 2023), TAP4LLM (Sui et al., 2024), and Tree-of-Table
(Ji et al., 2024) introduce different methods to construct sub-tables, modifying the tabular context
for improved understanding. Chain-of-Table (Wang et al., 2024) generalizes various table opera-
tions, dynamically generating reasoning chains to create sub-tables. MIX-SC (Liu et al., 2024b)
employs table normalization and leverages self-consistency, combining results from Python agents
and textual reasoning to enhance performance. SpreadsheetEncoder (Dong et al., 2024) is specif-
ically designed to interpret tabular data within spreadsheet environments. Our work also follows
this direction to focus on adapting LMs without fine-tuning. We identify key challenges in table un-
derstanding and address them through our proposed method, which can be applied to any advanced
LMs.

3 CHALLENGES IN TABLE UNDERSTANDING

As illustrated in Figure 1, we identify and analyze the challenges in table understanding with lan-
guage models (LMs) through the experiments shown in Figure 2 and related discussions. Addition-
ally, we propose targeted solutions to address these challenges. The detailed settings of the challenge
analysis experiment are provided in Appendix E.

Tabular Characteristics. Tabular data differs from regular text, which is typically linear and se-
quential, due to its structured nature. Although tabular data can be represented as sequential text,
it is fundamentally a two-dimensional array of cells. Each cell primarily contains text, but the cells
are interconnected and share relationships with one another. Typically, cells within the same column
represent the same feature or type, while cells in the same row correspond to a single data instance.
Tables are highly efficient for data representation, often containing a large amount of information,
making them inherently data-intensive. Moreover, the text in tables is typically concise, consisting
of simple words and phrases rather than continuous sentences, leading to sparse semantic context.
Lastly, tables frequently include substantial amounts of numerical data, such as dates, times, scores,
and measurements, which often require specialized processing.

3.1 DIFFICULTY IN LOCATING TARGET DATA

When LMs encounter tabular data, they often struggle to locate the target data relevant to a given
query, leading to misunderstandings. This challenge arises because tabular data is inherently data-
intensive, typically containing large volumes of information. Additionally, the structured nature
of tabular data makes it challenging for LMs to interpret individual cell contents within the broader
context of headers and other structural information. This issue can lead to long-context hallucination
(Huang et al., 2024). Moreover, LMs are prone to neglecting information in the middle of the context

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

a

b c d

Figure 2: Experimental analysis of challenges in table understanding with language models. (a)
Impact of table size on task difficulty. (b) Effect of verbalized tables with enriched semantic context.
(c) Performance comparison of different reasoning methods on calculation-required versus non-
calculation questions. (d) Performance differences when processing normalized versus noisy tables.

(Liu et al., 2024a), making it even harder to locate target data and further impairing their overall
comprehension of the table. (Figure 1 - C1)

As shown in Figure 2(a), we present the changes in table understanding accuracy across four dif-
ferent table size metrics: row count, column count, area size, and token count, ranging from small
to extra-large tables. Row count represents the number of data entries, while column count reflects
the number of dimensions or attributes per entry. Area size is the product of row count and column
count, and token count refers to table sizes from the perspective of LMs. All figures indicate that, re-
gardless of the model used, overall performance tends to decline as table size increases. For weaker
LMs, the performance drop is more pronounced.

To address this, we propose let LMs focusing on specific parts of the table by explicitly constructing
a focused sub-table that includes only the relevant information needed for the given context. We
define this as the table-of-focus. By narrowing the scope, table understanding becomes significantly
easier, which aligns with both our previous findings and intuition. (Figure 1 - S1)

3.2 TABLE SEMANTIC DEFICIENCY

Tabular data is typically concise, with most cells containing simple words or phrases. Additionally,
for each data entry in a row, some descriptive information may reside outside the row, such as in the
top header or other structural elements. Understanding a cell in isolation is challenging and often
requires a deeper comprehension of the structural relationships within the table. This leads to the
problem of sparse semantic context, which is fundamentally different from the rich semantic con-
text found in most data used during LMs’ pretraining (Dong et al., 2022). The semantic deficiency
in tables makes it difficult for LMs to effectively understand and process tabular data. (Figure 1 -
C2)

As shown in Figure 2(b), the Table represents the case where the LM is provided only with the
table input, while the Table+Verbal indicates the table along with an additional description, which
we refer to as a verbalized table. This description is generated by the LMs themselves, whereas
verbal plus refers to a description produced by more advanced LMs, which can be considered a
ground-truth. We observe that verbalization helps LMs perform better on certain tables, leading to a
slight overall performance improvement. This effect is more pronounced in weaker LMs, resulting
in a 1.5% increase in accuracy. Additionally, the quality of the description plays a crucial role in
improvement.

To address this issue, we propose a solution where tables are first verbalized into sequential, natural
text as a description and then provided to LMs alongside the original table before they directly tackle
table-related tasks. It is similar to table2text (Parikh et al., 2020). This transformation enriches the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

semantic context, making the data more aligned with the LMs’ pretraining, thereby enhancing their
ability to effectively understand and process tabular data. (Figure 1 - S2)

3.3 NUMERICAL INACCURACY IN TEXTUAL REASONING

Tabular data often contains numerical values, such as dates, times, scores, and other recorded num-
bers, and is typically intensive. However, when LMs are used to process numerical data in textual
reasoning, they often face significant limitations. LMs are prone to arithmetic calculation errors, es-
pecially when dealing with large numbers. LMs are also inefficient at handling iterative processes,
particularly when the number of iteration steps is large (Chen et al., 2023). (Figure 1 - C3)

As shown in Figure 2(c), questions that do not require calculations are relatively easier, allowing tex-
tual reasoning to achieve a strong performance of 72.4%. However, when calculations are required,
performance drops significantly, falling below that of the enhanced symbolic reasoning introduced
later. Specifically, textual reasoning suffers a 20.1% decline, whereas enhanced symbolic reasoning
experiences a more moderate drop of 7.6%.

Symbolic methods offer a promising solution to these challenges and have been explored extensively
in prior research (Cheng et al., 2023; Ni et al., 2023; Mao et al., 2024). Using symbolic tools, such
as SQL or Python programs in combination with LMs, provides an effective approach to handling
numerical data in tabular formats. (Figure 1 - S3)

3.4 SEMANTIC INFLEXIBILITY IN SYMBOLIC REASONING

Symbolic methods excel at arithmetic calculations. However, when prompting LMs to generate
code for program of thought reasoning, the performance is suboptimal. Instead of truly understand-
ing the context and generating problem-solving code, LMs often rely on memorized code from the
pretraining stage (Yang et al., 2024). We refer to this limitation as semantic inflexibility. In ta-
ble understanding, this challenge is exacerbated by the table’s complex structure and concise text
content. In real-world scenarios, noisy tables further hinder LMs’ symbolic reasoning capabilities.
Consequently, while symbolic reasoning with numerical data is highly accurate, the generated code
may be incorrect due to issues in program logic or data handling, leading to errors or unintended
results. (Figure 1 - C4)

As shown in Figure 2(c), basic symbolic reasoning performs worse overall, regardless of whether
calculations are required. It indicates that basic symbolic reasoning with current LMs is ineffective.
Furthermore, as illustrated in Figure 2(d), when processing the same content in a noisy format,
symbolic reasoning suffers a larger performance drop of 31.8%, compared to a 20.5% decline for
textual reasoning. This highlights the semantic inflexibility of symbolic reasoning when handling
noisy tables.

To address this, we first normalize the table structure and content, ensuring that each column follows
a consistent format. We then propose a solution where LMs first engage in textual reasoning before
generating symbolic reasoning programs. This preliminary textual reasoning step serves as a guide
for subsequent symbolic reasoning, improving alignment with the task context. Our approach can be
seen as encouraging LMs to think more thoroughly before reasoning, aligning with techniques like
plan-and-solve (Wang et al., 2023a). By incorporating textual reasoning as a foundation, we enhance
the accuracy and contextual relevance of symbolic reasoning. As demonstrated in Figure 2(c), this
method achieves a higher accuracy of 59.1% for calculation-required questions. (Figure 1 - S4)

4 TableMaster: A RECIPE FOR TABLE UNDERSTANDING

Based on findings in Section 3, we introduce a recipe and comprehensive framework, TableMas-
ter, as shown in Figure 3. It integrates the propose solution proposed in Section 3 into a unified
recipe for table understanding. The framework encompasses three key processes: Table Structure
Understanding, Table Content Understanding, and Table Reasoning for QA. All notations are list at
Appendix R.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1. Table Structure Understanding 2. Table Content Understanding 3. Table Reasoning for QA

Row
Lookup

Structure Extraction
Column Lookup

Table
Verbalization

TopHeaders KeyColumn

Re-Construct Table of Focus

Information
Estimation

Adaptive
Reasoning

Textual Reasoning

Text-guided Symbolic Reasoning

Reasoning Strategy
AssessmentTable 1st Row

2ndColumn

Table of Focus

Question

Construct
Table of Focus

Table of Focus

Verbalized Table

Textual
Guidance

Question

Answer

Structure Information
Program

Normalized
Table

Table
Normalization

Figure 3: The framework of TableMaster. It comprises three stages: (1) table structure understand-
ing, where the table’s structure is analyzed, and a table-of-focus is constructed through row and
column lookup; (2) table content understanding, where the table-of-focus is reconstructed based on
the question, and its information is verbalized to enhance the semantic context; and (3) table reason-
ing for question answering, where an adaptive reasoning strategy determines whether to use textual
reasoning or text-guided symbolic reasoning to derive the final answer. The dashed arrows indicate
optional workflows, such as the table-of-focus re-construction and incorporating text-guided sym-
bolic reasoning.

4.1 TASK FORMULATION

In table understanding, the objective is to determine an answer A given a table T and a question or
statement Q related to it. The table T is represented as a two-dimensional array of cells,

Tm×n =

C1,1 C1,2 . . .
C2,1 Ci,j . . .

...
...

. . .


, where Ci,j denotes the cell in the i-th row and j-th column, with the table consisting of m rows and
n columns. In table-based question answering tasks, Q represents a question, and A is the expected
answer in natural language. In table-based fact verification tasks, Q is a statement about the table’s
contents, and A ∈ {True, False} is a Boolean value indicating whether the statement is correct.
Therefore, the goal is to develop a system F that can predict the answer accurately based on the
table and the given question or statement, formalized as F(T, Q) = A.

4.2 TABLE STRUCTURE UNDERSTANDING

The goal of table structure understanding is to analyze the table’s structure and construct a Table-of-
Focus that contains relevant content for the given question. This process reduces context length and
simplifies the table as much as possible.

To enhance the efficiency of the framework, we introduce the table peek technique. For structure
extraction and certain operations, it is often unnecessary to process the entire table; instead, inspect-
ing only the top rows is sufficient. Given a peek size k, the original table Tm×n is transformed into
a peek table Tk×n, where all columns are retained, but the table is truncated to the first k rows.

Given a wild table TW , we first normalize it. We begin by determining whether the table is
in row-major or column-major format. If it is in column-major format, we transpose it using
T = Transpose(T′). Next, we normalize and clean all columns containing numerical informa-
tion, ensuring consistency in formats such as dates and numerical values, making them directly
processable in bulk by a program. After this normalization process, we obtain the normalized table
TN .

We begin by extracting the top headers H and the key column. The top headers are used for column
lookup, while the key column serves as the subject or unique identifier for each row. Next, we
prompt LMs to perform column lookup and row lookup to identify the relevant rows and columns
required for the task. Specifically, for column lookup, we first define the set of candidate columns
as C = Rank(H). LMs will also rank all candidates based on their relevance to the question. We
then prompt the LMs to select b relevant columns based on a given question Q:

C0 = Column Lookup(TN | Q),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where C0 = {ci | ci ∈ H} and |C0| = b. For row lookup, we instruct the LMs to generate an SQL
query to efficiently filter and select a relevant rows R:

R = Row Lookup(TN | Q).

Using the identified rows and columns, we construct the initial table-of-focus:

TF
a×b = Table Construction(TN , C0, R),

which contains only the filtered information necessary for the task.

4.3 TABLE CONTENT UNDERSTANDING

The goal of table content understanding is to enrich the semantic context of the table.

Studies have shown that LMs can assess whether sufficient information is available to answer a
question (Cao, 2024b; Yin et al., 2023). We first prompt the LMs to estimate whether the constructed
Table-of-Focus TF

a×b, containing C0, provides enough information to answer the given question Q.
If not, additional column attributes from the candidate column set C are incrementally added from
the ranked candidate headers until sufficient information is available or all relevant top headers have
been utilized. Subsequently, a total of a′ columns from C are selected for further reasoning. We
use re-construction to mitigate information loss during the table-of-focus construction process. The
detailed re-construction algorithm can be found in Appendix K.

Once the information sufficiency check is passed, we verbalize the table into natural language,
adding descriptions to enrich the semantic context and producing a verbalized table:

TT = Verbalization(TF
a×b).

This verbalized table is represented as sequential natural language text T essentially rather than a
structured table, preserving rich semantic context while maintaining a concise size. This transfor-
mation enhances information density, further facilitating the LMs’ reasoning for the given question.

4.4 TABLE REASONING FOR QUESTION ANSWERING

The goal of this stage is to answer table-related questions by understanding the table precisely and
calculating accurately.

We employ an adaptive reasoning approach. First, we prompt the LMs to determine the most
appropriate reasoning strategy S for the given task. In the instruction, for small tables or those
without numerical data, the LMs are allowed to perform textual reasoning directly to derive the final
result. For larger tables or those containing numerical data, symbolic reasoning with programmatic
execution is selected.

S = Strategy Assessment(TF , TT, Q),

where S ∈ {T ,S} represents the chosen reasoning strategy, with T denoting textual reasoning and
S denoting symbolic reasoning.

In symbolic reasoning, we first prompt the LMs to perform textual reasoning to generate guidance G
without providing the final result. This intermediate reasoning step is then used as input for symbolic
reasoning, transitioning to a text-guided symbolic reasoning approach using programmatic methods.
This adaptive method dynamically adjusts based on the table’s size, complexity, and the nature of
the question, ensuring accurate and reliable results.

A =

{
Chain-of-Thought(TF , TT, Q), if S = T
P(Program-of-Thought(TF , TT, Q | G)), if S = S

where chain-of-thought and program-of-thought are two prompting techniques, P represents a
Python or SQL program executor, A is the final answer for the current table understanding task.

5 EXPERIMENTS

5.1 SETTINGS

We conduct extensive experiments to evaluate the performance of TableMaster. Specifically, we as-
sess its effectiveness across three different table understanding datasets: WikiTQ (Pasupat & Liang,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison between TableMaster and previous work on WikiTQ and TabFact.
The values in the table represent accuracy (%). The best result is bold, the second-best result is
underlined, and the improvement over the previous best result is highlighted in green. ‘-’ indicates
that the result values were not reported in the related papers. For all models in the table, results are
obtained from a single inference run without any voting. Our method outperforms all other methods
across both datasets and different language models.

Method WikiTQ TabFact
gpt-3.5-turbo∼175B gpt-4o-mini∼8B Llama-3.170B gpt-3.5-turbo∼175B gpt-4o-mini∼8B Llama-3.170B

Text-to-SQL Rajkumar et al. (2022) 52.90 - - 64.71 - -
End-to-End QA Wang et al. (2024) 51.84 - - 70.45 - -
Few-Shot QA Wang et al. (2024) 52.56 - - 71.54 - -
Chain-of-Thought Wang et al. (2024) 53.48 - - 65.37 - -
ReAcTable Zhang et al. (2023) 52.50 - - 74.40 - -
Binder Cheng et al. (2023) 56.74 58.86 50.51 79.17 84.63 78.16
Dater Ye et al. (2023) 52.81 58.33 43.53 78.01 80.98 81.57
TabSQLify Nahid & Rafiei (2024a) 64.70 57.02 55.78 79.50 78.75 70.70
Chain-of-Table Wang et al. (2024) 59.94 55.60 62.22 80.20 84.24 85.62
Tree-of-Table Ji et al. (2024) 61.11 - - 81.92 - -
PoTable Mao et al. (2024) - 64.73 65.56 - 88.93 87.06

Ours (TableMaster) 68.21 (+3.51) 78.13 (+13.40) 77.95 (+12.39) 83.65 (+1.73) 90.12 (+1.19) 91.16 (+4.10)

2015) (table-based question answering), TabFact (Chen et al., 2020) (table-based fact verification),
and FetaQA (Nan et al., 2022) (table-based free-form question answering). For WikiTQ and Tab-
Fact, following previous work (Wang et al., 2024; Liu et al., 2024b), we use exact match accuracy as
the evaluation metric. For FetaQA, we evaluate performance using BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) scores. We also conduct experiments on HiTab (Cheng et al., 2022) and FinQA
(Chen et al., 2021b). Tables are encoded in Markdown format before being input into language
models, with or without addresses, depending on the specific case O.2.

Our experiments utilize OpenAI models hosted on Microsoft Azure. Unless otherwise stated, we
set the temperature to 0 to ensure stable output while keeping all other hyperparameters at their
default values. The models used in our evaluation include gpt-4o (gpt-4o-0806), gpt-4o-mini (gpt-
4o-mini-0718), gpt-3.5-turbo (gpt-3.5-turbo-0125), o1 (o1-preview-0912), and o1-mini (o1-mini-
0912). Additionally, we evaluate our methods on open-sourced Llama-3.1-70B (Llama-3.1-70B-
Instruct). For comparison, we select several strong baselines, including both classic and state-of-
the-art methods such as Binder (Cheng et al., 2023), Dater (Ye et al., 2023), and Chain-of-Table
(Wang et al., 2024). Performance results for other methods not in this work are cited directly from
their original or related papers, with sources indicated alongside the method names in the results
table.

Further analysis and additional experiments on TableMaster can be found in the Appendix. The
prompts used in TableMaster can be found in Appendix P, while other prompts used in this work
are provided in Appendix Q.

5.2 MAIN RESULTS

As shown in Table 1, our TableMaster approach consistently achieves the highest performance
across both WikiTQ and TabFact under different backbone models (gpt-3.5-turbo, gpt-4o-mini, and
Llama-3.1-70B). On WikiTQ, TableMaster outperforms the strongest baselines by +3.51, +13.40,
and +12.39 points, respectively. A similar trend is observed on TabFact, with improvements of
+1.73, +1.19, and +4.10 points, demonstrating the robustness of our method across diverse large
language models. Results on the FetaQA, HiTab, FinQA dataset are provided in Appendix F.1, F.2,
F.3. These results confirm that TableMaster not only generalizes well across different base language
models but also significantly enhances table understanding and reasoning in complex QA tasks.

Notably, methods such as Binder, Dater, TabSQLify, and Chain-of-Table exhibit subpar performance
with gpt-4o-mini, in some cases performing worse than with gpt-3.5-turbo. Our empirical analysis
suggests that these methods primarily rely on symbolic approaches to construct subtables, which
often fail to leverage the strengths of chain-of-thought reasoning in textual contexts. This limita-
tion underscores the necessity of integrating advanced textual reasoning strategies, as effectively
demonstrated by our TableMaster approach.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 ABLATION STUDY

To analyze the contribution of each component in TableMaster, we conduct an ablation study on
WikiTQ and TabFact. Table 2 presents the results, and the performance drop from the full model
is highlighted in red. The results demonstrate that removing any component leads to a decrease in
accuracy, confirming the importance of each module in the overall framework.

Table 2: Ablation results on WikiTQ and TabFact. The val-
ues in the table represent accuracy (%), with ▽ indicating
the performance drop. The red text highlights the drop mag-
nitude. Removing any component from TableMaster results
in a decrease in performance.

Method WikiTQ ▽ TabFact ▽

TableMaster (gpt-4o-mini) 78.13 – 90.12 –

Structure
w/o Structure Extraction 74.75 (-3.38) 88.98 (-1.14)
w/o Column Lookup 77.00 (-1.13) 90.51 (-0.40)
w/o Row Lookup 76.59 (-1.54) 89.23 (-0.89)
w/o Table of Focus 76.40 (-1.73) 89.33 (-0.79)

Content
w/o Re-Construction 75.55 (-2.58) 89.72 (-0.40)
w/o Verbalization 75.78 (-2.35) 89.23 (-0.89)

Reasoning
w/o Textual Reasoning 73.85 (-4.28) 88.39 (-1.73)
w/o Symbolic Reasoning 76.10 (-2.03) 89.18 (-0.94)
w/o Textual Guidance 75.21 (-2.92) 89.67 (-0.44)

Structure. The structure understand-
ing components play a crucial role
in table comprehension. Removing
structure extraction results in a no-
table accuracy drop of 3.38% on Wik-
iTQ and 1.14% on TabFact, indicat-
ing that explicitly extracting the ta-
ble’s structure is essential for effec-
tive reasoning, as failing to do so
can lead to errors in subsequent steps.
Among lookup strategies, removing
row lookup leads to a 1.54% de-
crease in WikiTQ accuracy, whereas
removing column lookup results in a
smaller drop of 1.13%. This suggests
that row-based information retrieval
is more critical than column-based
lookup, as large tables typically con-
tain a greater number of rows. Addi-
tionally, removing the table-of-focus
reduces performance by 1.73% on
WikiTQ and 0.79% on TabFact, fur-
ther emphasizing its important role in structuring relevant table content to extract key information
for reasoning.

Content. Table content understanding also significantly influences performance. Eliminating re-
construction, which iteratively refines the Table-of-Focus based on the question, results in a 2.58%
accuracy drop on WikiTQ and 0.40% on TabFact, highlighting the importance of this process. Sim-
ilarly, removing table verbalization, which enriches the semantic context of the table by adding de-
scriptive elements, leads to a 2.35% decrease in WikiTQ accuracy. However, its impact on TabFact
is minimal (0.23% drop), suggesting that verbalization becomes even more beneficial for complex
table understanding tasks.

Reasoning. The reasoning stage exhibits the most significant performance drop when removed.
Removing textual reasoning leads to the largest accuracy decline, with a 4.28% drop on WikiTQ
and 1.73% on TabFact, underscoring its necessity for complex reasoning tasks. Similarly, remov-
ing symbolic reasoning results in a 2.03% and 0.79% drop on WikiTQ and TabFact, respectively,
demonstrating that symbolic reasoning enhances numerical and structured table interpretations. Fi-
nally, removing textual guidance, which improves the semantic flexibility of symbolic reasoning,
reduces accuracy by 2.92% on WikiTQ and 0.44% on TabFact. This highlights that textual guid-
ance is particularly beneficial and important in symbolic reasoning by ensuring alignment with the
problem context. More analysis of adaptive reasoning can be found at Appendix M.

6 CONCLUSION

In this paper, we explore table understanding with language models. Given the characteristics of
tabular data, we identify key challenges in table understanding. To overcome these challenges,
we propose TableMaster, a recipe and comprehensive framework that integrates multiple solutions.
Extensive analyses and experiments demonstrate our findings and the effectiveness of TableMaster.
In the future, we plan to extend and refine the framework to improve its performance across diverse
practical applications, where discussed in Appendix C.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Asma Ben Abacha, Wen wai Yim, Yujuan Fu, Zhaoyi Sun, Meliha Yetisgen, Fei Xia, and Thomas
Lin. Medec: A benchmark for medical error detection and correction in clinical notes, 2025. URL
https://arxiv.org/abs/2412.19260.

Nikhil Abhyankar, Vivek Gupta, Dan Roth, and Chandan K. Reddy. H-star: Llm-driven hybrid sql-
text adaptive reasoning on tables, 2025. URL https://arxiv.org/abs/2407.05952.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. In Neele Falk, Sara Papi, and Mike
Zhang (eds.), Proceedings of the 18th Conference of the European Chapter of the Association
for Computational Linguistics: Student Research Workshop, pp. 225–237, St. Julian’s, Malta,
March 2024. Association for Computational Linguistics. URL https://aclanthology.
org/2024.eacl-srw.17.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark,
Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark
Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang,
Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Brad-
bury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry, Christo-
pher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa De-
hghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxi-
aoyu Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez,
Guy Gur-Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui,
Jeremy Hurwitz, Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Ke-
nealy, Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li,
Music Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Freder-
ick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Mous-
salem, Zachary Nado, John Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Mar-
tin Polacek, Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley,
Alex Castro Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone,
Daniel Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan,
Kiran Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting, Yuhuai
Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng,
Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, and Yonghui Wu. Palm 2 technical report,
2023. URL https://arxiv.org/abs/2305.10403.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gi-
aninazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten
Hoefler. Graph of thoughts: Solving elaborate problems with large language models. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 38(16):17682–17690, March 2024.
ISSN 2159-5399. doi: 10.1609/aaai.v38i16.29720. URL http://dx.doi.org/10.1609/
aaai.v38i16.29720.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Lang Cao. GraphReason: Enhancing reasoning capabilities of large language models through a
graph-based verification approach. In Bhavana Dalvi Mishra, Greg Durrett, Peter Jansen, Ben
Lipkin, Danilo Neves Ribeiro, Lionel Wong, Xi Ye, and Wenting Zhao (eds.), Proceedings of
the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024),
pp. 1–12, Bangkok, Thailand, August 2024a. Association for Computational Linguistics. URL
https://aclanthology.org/2024.nlrse-1.1.

10

https://arxiv.org/abs/2412.19260
https://arxiv.org/abs/2407.05952
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://arxiv.org/abs/2305.10403
http://dx.doi.org/10.1609/aaai.v38i16.29720
http://dx.doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2024.nlrse-1.1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lang Cao. Learn to refuse: Making large language models more controllable and reliable through
knowledge scope limitation and refusal mechanism. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 3628–3646, Miami, Florida, USA, November 2024b. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.212. URL https:
//aclanthology.org/2024.emnlp-main.212.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021a. URL https://arxiv.org/abs/2107.03374.

Wenhu Chen. Large language models are few(1)-shot table reasoners. In Andreas Vlachos and
Isabelle Augenstein (eds.), Findings of the Association for Computational Linguistics: EACL
2023, pp. 1120–1130, Dubrovnik, Croatia, May 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-eacl.83. URL https://aclanthology.org/2023.
findings-eacl.83.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification, 2020.
URL https://arxiv.org/abs/1909.02164.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks, 2023. URL https:
//arxiv.org/abs/2211.12588.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema
Moussa, Matt Beane, Ting-Hao Huang, Bryan Routledge, and William Yang Wang. Finqa: A
dataset of numerical reasoning over financial data. Proceedings of EMNLP 2021, 2021b.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia, Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang
Lou, and Dongmei Zhang. HiTab: A hierarchical table dataset for question answering and natural
language generation. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 1094–1110, Dublin, Ireland, May 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.acl-long.78. URL https://aclanthology.org/2022.
acl-long.78/.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Binding
language models in symbolic languages, 2023. URL https://arxiv.org/abs/2210.
02875.

CYQIQ. MultiCoT: Chain-of-table reasoning with multiple tables. https://github.com/
CYQIQ/MultiCoT, 2025. GitHub repository.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Haoyu Dong, Zhoujun Cheng, Xinyi He, Mengyu Zhou, Anda Zhou, Fan Zhou, Ao Liu, Shi Han,
and Dongmei Zhang. Table pre-training: A survey on model architectures, pre-training objectives,
and downstream tasks, 2022. URL https://arxiv.org/abs/2201.09745.

11

https://aclanthology.org/2024.emnlp-main.212
https://aclanthology.org/2024.emnlp-main.212
https://arxiv.org/abs/2107.03374
https://aclanthology.org/2023.findings-eacl.83
https://aclanthology.org/2023.findings-eacl.83
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://aclanthology.org/2022.acl-long.78/
https://aclanthology.org/2022.acl-long.78/
https://arxiv.org/abs/2210.02875
https://arxiv.org/abs/2210.02875
https://github.com/CYQIQ/MultiCoT
https://github.com/CYQIQ/MultiCoT
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2201.09745

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haoyu Dong, Jianbo Zhao, Yuzhang Tian, Junyu Xiong, Mengyu Zhou, Yun Lin, José Cambronero,
Yeye He, Shi Han, and Dongmei Zhang. Encoding spreadsheets for large language models. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, pp. 20728–20748, Miami, Florida, USA,
November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
1154. URL https://aclanthology.org/2024.emnlp-main.1154.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott Nickleach,
Diego Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large language models(llms)
on tabular data: Prediction, generation, and understanding – a survey, 2024. URL https:
//arxiv.org/abs/2402.17944.

Mahdi Ghasemi and Daniel Amyot. Process mining in healthcare: a systematised literature review.
International Journal of Electronic Healthcare, 9(1):60–88, 2016.

Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xiaoman Zhao, and Xiaoyong Du. Pasta: Table-
operations aware fact verification via sentence-table cloze pre-training, 2022. URL https:
//arxiv.org/abs/2211.02816.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023. URL https://arxiv.org/
abs/2306.11644.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, rancesco Piccinno, and Julian Martin
Eisenschlos. TAPAS: weakly supervised table parsing via pre-training. CoRR, abs/2004.02349,
2020. URL https://arxiv.org/abs/2004.02349.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in
large language models: Principles, taxonomy, challenges, and open questions. ACM Transactions
on Information Systems, nov 2024. ISSN 1558-2868. doi: 10.1145/3703155. URL http:
//dx.doi.org/10.1145/3703155.

Deyi Ji, Lanyun Zhu, Siqi Gao, Peng Xu, Hongtao Lu, Jieping Ye, and Feng Zhao. Tree-of-table:
Unleashing the power of llms for enhanced large-scale table understanding, 2024. URL https:
//arxiv.org/abs/2411.08516.

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and Davood Rafiei. Evaluating open-domain ques-
tion answering in the era of large language models. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 5591–5606, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.307. URL
https://aclanthology.org/2023.acl-long.307.

Yiren Li, Zheng Huang, Junchi Yan, Yi Zhou, Fan Ye, and Xianhui Liu. Gfte: Graph-based financial
table extraction, 2020. URL https://arxiv.org/abs/2003.07560.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013/.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024a. doi: 10.1162/tacl_a_00638. URL
https://aclanthology.org/2024.tacl-1.9.

12

https://aclanthology.org/2024.emnlp-main.1154
https://arxiv.org/abs/2402.17944
https://arxiv.org/abs/2402.17944
https://arxiv.org/abs/2211.02816
https://arxiv.org/abs/2211.02816
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2004.02349
http://dx.doi.org/10.1145/3703155
http://dx.doi.org/10.1145/3703155
https://arxiv.org/abs/2411.08516
https://arxiv.org/abs/2411.08516
https://aclanthology.org/2023.acl-long.307
https://arxiv.org/abs/2003.07560
https://arxiv.org/abs/2305.20050
https://aclanthology.org/W04-1013/
https://aclanthology.org/2024.tacl-1.9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang Lou.
Tapex: Table pre-training via learning a neural sql executor, 2022. URL https://arxiv.
org/abs/2107.07653.

Tianyang Liu, Fei Wang, and Muhao Chen. Rethinking tabular data understanding with large lan-
guage models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Papers), pp. 450–482, Mexico City, Mexico, June
2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.26. URL
https://aclanthology.org/2024.naacl-long.26.

Qingyang Mao, Qi Liu, Zhi Li, Mingyue Cheng, Zheng Zhang, and Rui Li. Potable: Programming
standardly on table-based reasoning like a human analyst, 2024. URL https://arxiv.org/
abs/2412.04272.

Joshua Maynez, Priyanka Agrawal, and Sebastian Gehrmann. Benchmarking large language model
capabilities for conditional generation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 9194–9213, Toronto, Canada, July 2023. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2023.acl-long.511. URL https://aclanthology.
org/2023.acl-long.511/.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. Large language models: A survey, 2024. URL https://arxiv.
org/abs/2402.06196.

Md Nahid and Davood Rafiei. TabSQLify: Enhancing reasoning capabilities of LLMs through table
decomposition. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 5725–5737, Mexico City, Mexico,
June 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.320.
URL https://aclanthology.org/2024.naacl-long.320.

Md Mahadi Hasan Nahid and Davood Rafiei. NormTab: Improving symbolic reasoning in LLMs
through tabular data normalization. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 3569–
3585, Miami, Florida, USA, November 2024b. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.203. URL https://aclanthology.org/2024.
findings-emnlp.203/.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui Zhang, Wojciech
Kryściński, Hailey Schoelkopf, Riley Kong, Xiangru Tang, Mutethia Mutuma, Ben Rosand, Is-
abel Trindade, Renusree Bandaru, Jacob Cunningham, Caiming Xiong, Dragomir Radev, and
Dragomir Radev. FeTaQA: Free-form table question answering. Transactions of the Asso-
ciation for Computational Linguistics, 10:35–49, 2022. doi: 10.1162/tacl_a_00446. URL
https://aclanthology.org/2022.tacl-1.3/.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen tau Yih, Sida I. Wang, and Xi Victoria
Lin. Lever: Learning to verify language-to-code generation with execution, 2023. URL https:
//arxiv.org/abs/2302.08468.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp.
311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguis-
tics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040/.

Ankur P. Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi Yang,
and Dipanjan Das. Totto: A controlled table-to-text generation dataset, 2020. URL https:
//arxiv.org/abs/2004.14373.

13

https://arxiv.org/abs/2107.07653
https://arxiv.org/abs/2107.07653
https://aclanthology.org/2024.naacl-long.26
https://arxiv.org/abs/2412.04272
https://arxiv.org/abs/2412.04272
https://aclanthology.org/2023.acl-long.511/
https://aclanthology.org/2023.acl-long.511/
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://aclanthology.org/2024.naacl-long.320
https://aclanthology.org/2024.findings-emnlp.203/
https://aclanthology.org/2024.findings-emnlp.203/
https://aclanthology.org/2022.tacl-1.3/
https://arxiv.org/abs/2302.08468
https://arxiv.org/abs/2302.08468
https://arxiv.org/abs/2303.08774
https://aclanthology.org/P02-1040/
https://arxiv.org/abs/2004.14373
https://arxiv.org/abs/2004.14373

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables.
In Chengqing Zong and Michael Strube (eds.), Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 1470–1480, Beijing, China, July
2015. Association for Computational Linguistics. doi: 10.3115/v1/P15-1142. URL https:
//aclanthology.org/P15-1142.

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back. Rea-
soning with large language models, a survey, 2024. URL https://arxiv.org/abs/2407.
11511.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-sql capabilities of
large language models, 2022. URL https://arxiv.org/abs/2204.00498.

Yuan Sui, Jiaru Zou, Mengyu Zhou, Xinyi He, Lun Du, Shi Han, and Dongmei Zhang. TAP4LLM:
Table provider on sampling, augmenting, and packing semi-structured data for large language
model reasoning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2024, pp. 10306–10323, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.603. URL https://aclanthology.org/2024.findings-emnlp.
603.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them, 2022. URL https://arxiv.org/
abs/2210.09261.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng
Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large lan-
guage models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2609–2634, Toronto, Canada, July 2023a. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.147. URL https://aclanthology.org/2023.
acl-long.147.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023b. URL https://arxiv.org/abs/2203.11171.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei Zhang. Tuta: Tree-
based transformers for generally structured table pre-training. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1780–1790, 2021.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang,
Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, and Tomas Pfister. Chain-of-table:
Evolving tables in the reasoning chain for table understanding, 2024. URL https://arxiv.
org/abs/2401.04398.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022. URL https://arxiv.org/abs/2206.07682.

14

https://aclanthology.org/P15-1142
https://aclanthology.org/P15-1142
https://arxiv.org/abs/2407.11511
https://arxiv.org/abs/2407.11511
https://arxiv.org/abs/2204.00498
https://aclanthology.org/2024.findings-emnlp.603
https://aclanthology.org/2024.findings-emnlp.603
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2211.14275
https://aclanthology.org/2023.acl-long.147
https://aclanthology.org/2023.acl-long.147
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2206.07682

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foundation
models for decision making: Problems, methods, and opportunities, 2023. URL https://
arxiv.org/abs/2303.04129.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, and Faramarz Fekri. Can LLMs reason in the
wild with programs? In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2024, pp. 9806–9829, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.573. URL https://aclanthology.org/2024.findings-emnlp.
573/.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language models
are versatile decomposers: Decompose evidence and questions for table-based reasoning, 2023.
URL https://arxiv.org/abs/2301.13808.

Deyin Yi, Yihao Liu, Lang Cao, Mengyu Zhou, Haoyu Dong, Shi Han, and Dongmei Zhang.
Tablepilot: Recommending human-preferred tabular data analysis with large language models.
arXiv preprint arXiv: 2503.13262, 2025.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu, Xipeng Qiu, and Xuanjing Huang. Do large
language models know what they don’t know? In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp. 8653–
8665, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.findings-acl.551. URL https://aclanthology.org/2023.findings-acl.
551.

Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang, Qingyi Huang, Saisai Yang, Jing Yuan, Changbao
Su, Xiang Li, Aofeng Su, Tao Zhang, Chen Zhou, Kaizhe Shou, Miao Wang, Wufang Zhu, Gu-
oshan Lu, Chao Ye, Yali Ye, Wentao Ye, Yiming Zhang, Xinglong Deng, Jie Xu, Haobo Wang,
Gang Chen, and Junbo Zhao. Tablegpt: Towards unifying tables, nature language and commands
into one gpt, 2023. URL https://arxiv.org/abs/2307.08674.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. Tablellama: Towards open large generalist
models for tables, 2024a. URL https://arxiv.org/abs/2311.09206.

Xuanliang Zhang, Dingzirui Wang, Longxu Dou, Qingfu Zhu, and Wanxiang Che. A survey of ta-
ble reasoning with large language models, 2024b. URL https://arxiv.org/abs/2402.
08259.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep, and Jignesh M. Patel.
Reactable: Enhancing react for table question answering, 2023. URL https://arxiv.org/
abs/2310.00815.

Zhehao Zhang, Yan Gao, and Jian-Guang Lou. e5: Zero-shot hierarchical table analysis us-
ing augmented LLMs via explain, extract, execute, exhibit and extrapolate. In Kevin Duh,
Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pp. 1244–1258, Mexico City, Mexico, June 2024c. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.68. URL https:
//aclanthology.org/2024.naacl-long.68/.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables com-
plex reasoning in large language models, 2023. URL https://arxiv.org/abs/2205.
10625.

15

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2303.04129
https://arxiv.org/abs/2303.04129
https://aclanthology.org/2024.findings-emnlp.573/
https://aclanthology.org/2024.findings-emnlp.573/
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2301.13808
https://aclanthology.org/2023.findings-acl.551
https://aclanthology.org/2023.findings-acl.551
https://arxiv.org/abs/2307.08674
https://arxiv.org/abs/2311.09206
https://arxiv.org/abs/2402.08259
https://arxiv.org/abs/2402.08259
https://arxiv.org/abs/2310.00815
https://arxiv.org/abs/2310.00815
https://aclanthology.org/2024.naacl-long.68/
https://aclanthology.org/2024.naacl-long.68/
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Yilun Zhu, Joel Ruben Antony Moniz, Shruti Bhargava, Jiarui Lu, Dhivya Piraviperumal, Site Li,
Yuan Zhang, Hong Yu, and Bo-Hsiang Tseng. Can large language models understand context? In
Yvette Graham and Matthew Purver (eds.), Findings of the Association for Computational Lin-
guistics: EACL 2024, pp. 2004–2018, St. Julian’s, Malta, March 2024. Association for Computa-
tional Linguistics. URL https://aclanthology.org/2024.findings-eacl.135.

Alex Zhuang, Ge Zhang, Tianyu Zheng, Xinrun Du, Junjie Wang, Weiming Ren, Stephen W. Huang,
Jie Fu, Xiang Yue, and Wenhu Chen. Structlm: Towards building generalist models for structured
knowledge grounding, 2024. URL https://arxiv.org/abs/2402.16671.

16

https://aclanthology.org/2024.findings-eacl.135
https://arxiv.org/abs/2402.16671

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Contents of Appendix

A Ethics Statement 18

B Scope, Key Contributions, and Comparison with Prior Work 18

C Limitations, Extendability, and Future Works 19

C.1 Technical Refinement . 19

C.2 Downstream Applications . 20

D Datasets Used for Evaluation 20

E Detailed Settings of Challenge Analysis Experiments 20

F Extended Experiments on Additional Table Understanding Benchmarks 21

F.1 Evaluation on Free-form QA with the FetaQA Dataset . 21

F.2 Evaluation on Hierarchical Tables with the HiTab Dataset 22

F.3 Evaluation on Numerical Reasoning with the FinQA Dataset 23

G Table Understanding Baselines 23

H Performance Analysis Under Different Table Sizes 24

I Performance Analysis Under Different Table Peek Sizes 26

J Efficiency Analysis of TableMaster 27

J.1 Theoretical Analysis . 27

J.2 Empirical Analysis . 27

K Detailed Algorithm of Table-of-Focus Re-Construction 28

L Analysis of Table-of-Focus Re-Construction 29

M Analysis of Adaptive Reasoning 29

N Information Missing and Table Reasoning with Full Table 31

O Case Study 32

O.1 Case Study of Table Verbalization . 32

O.2 Case Study of TableMaster . 32

P Prompt Design in TableMaster 34

Q Prompts Used in Analysis Experiments 40

R Notation Table 45

S The Use of Large Language Models (LLMs) 46

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A ETHICS STATEMENT

TableMaster introduces a general-purpose, modular framework that improves the ability of language
models (LMs) to understand and reason over tabular data. Its applications span domains such as
business intelligence, scientific reporting, education, and healthcare, where structured data plays a
critical role. By enabling adaptive reasoning across textual and symbolic paradigms, TableMaster
improves both accuracy and transparency in question answering, verification, and analysis over
tables. These advances may lead to better decision-support systems and streamlined human–AI
collaboration in spreadsheet-heavy workflows.

Despite these benefits, there are potential risks. As TableMaster automates reasoning over tabular
content, it could be misused to generate misleading analyses or automate decisions without adequate
human oversight. Furthermore, inaccurate reasoning, especially when symbolic operations are ap-
plied incorrectly, could result in flawed conclusions or financial misjudgments. Biases in training
data might also manifest in generated answers or program logic. In addition, as the framework relies
on LLMs’ capabilities, disparities across languages, domains, or spreadsheet conventions may lead
to uneven performance, potentially disadvantaging users in low-resource settings.

To mitigate these concerns, we propose several safeguards. First, outputs involving symbolic rea-
soning should be verified via deterministic execution (e.g., code validation or unit tests) before
downstream use. Second, we encourage model evaluation on a diverse range of real-world tables,
including messy, hierarchical, or multilingual formats. Third, human oversight is recommended in
high-stakes applications, especially when deployed in financial, legal, or healthcare settings. Fourth,
interpretability tools—such as reasoning traces or program annotations—should be integrated to fa-
cilitate debugging and auditing. Finally, we advocate for transparent reporting of model limitations
and publishing benchmark results across different domains and table types to promote responsible
deployment.

B SCOPE, KEY CONTRIBUTIONS, AND COMPARISON WITH PRIOR WORK

Below we outline how TableMaster advances table understanding and how it fundamentally departs
from earlier work.

A recipe and a unifying framework, not a single algorithm. TableMaster is proposed as a recipe
for general table understanding with language models. Whereas most prior studies focus on a single
aspect—often relying on specialized and heavyweight components—TableMaster introduces four
lightweight yet complementary modules that together span the entire processing pipeline. This
design makes TableMaster readily adaptable across diverse downstream tasks. Importantly, our
contribution is neither trivial nor incremental. Instead, it offers a comprehensive recipe rather than a
loose aggregation of experimental techniques.

Challenge–solution mapping. Section 3 and much of the appendix distill four intrinsic properties
of tabular data—Structured, Intensive, Concise, Numerical—into four corresponding challenges:

1. Target-data localization
2. Semantic deficiency
3. Numerical inaccuracy in textual reasoning
4. Semantic rigidity in symbolic reasoning

For each challenge we propose a dedicated, minimal solution, whereas earlier efforts typically ad-
dress only one point and overlook the others.

Efficient subtable extraction and symbolic reasoning. Prior systems rely on elaborate heuristics
for subtable extraction, which often lose information. TableMaster instead couples LLM-based
column selection with SQL-style row filtering, then reconstructs a compact Table-of-Focus that
preserves context—a simpler yet more general strategy.

Table verbalization for semantic enrichment. To mitigate semantic deficiency, TableMaster
inserts a Table-to-Text verbalization step that enriches input when header cues are sparse. This

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

re-purposes a classic task to bolster table comprehension and, to our knowledge, has not been ex-
plored in prior work.

Adaptive textual–symbolic reasoning. Although chain-of-thought reasoning has improved sub-
stantially, most earlier approaches still rely mainly on symbolic logic. We analyze the strengths and
weaknesses of both paradigms (Appendix M) and introduce an adaptive scheme that dynamically
chooses between—or blends—textual and symbolic reasoning without costly sampling or majority
voting. This adaptive reasoning mechanism represents a key novelty of our work.

Impact. TableMaster achieves consistent gains across five benchmarks, offers an extensible base-
line for real-world deployment, and paves the way for next-generation language models equipped
for robust, general-purpose table understanding.

C LIMITATIONS, EXTENDABILITY, AND FUTURE WORKS

Although we conduct extensive experiments and in-depth analysis, this work still has certain lim-
itations. However, we believe that TableMaster possesses extensibility, allowing for future refine-
ments. These improvements may include technical refinement as well as optimizing its application
in downstream applications.

C.1 TECHNICAL REFINEMENT

Wild Table. In our experiments, the tables in the three datasets we use are already cleaned; therefore,
we do not explicitly implement table normalization in our evaluation experiments. However, we
conduct analysis experiments to highlight the importance of table normalization for handling wild
tables. In practical scenarios, various tools are available for table normalization. Regular expression
matching can be employed for formatting, and small language models can also be leveraged to
efficiently process and normalize tables (Nahid & Rafiei, 2024b).

Hierarchy Table. In our work, we assume all tables are flat, allowing for straightforward utilization
and extraction of structural information. However, many real-world tables are hierarchical, where
data is organized in a tree structure, making table structure understanding more challenging. We
envision two possible solutions: converting hierarchical tables into flat tables or designing a tree-
based structure extraction method to effectively locate target data.

Table-of-Focus Construction. In designing the Table-of-Focus, we employ two efficient methods:
LM prompting for column lookup and SQL generation for row lookup. The Table-of-Focus is then
constructed based on the results of these two lookups. Many previous works (Ji et al., 2024; Wang
et al., 2024) have introduced complex approaches for extracting relevant sub-tables. In contrast, our
method remains intentionally simple, prioritizing efficiency and adaptability. We believe that in the
future, more advanced techniques may emerge to further enhance the extraction of key information.

Table Verbalization. To facilitate the implementation of TableMaster, we utilize language models
themselves to verbalize the table. However, the quality of the generated text is not optimal due to
the challenges of open-ended text generation. Several existing studies, such as Table-to-Text (Parikh
et al., 2020), have explored this sub-task. In the future, we can enhance performance and efficiency
by replacing this step with specifically trained small language models, which could further improve
the semantic density of the verbalized table.

Adaptive Reasoning. Adaptive reasoning can be unstable, as language models may not always
select the optimal strategy. We further explore this issue in Appendix M. In the future, training a
dedicated machine learning model to guide LMs in selecting the most effective reasoning strategy
could improve stability and performance.

Information Missing. The construction of the Table-of-Focus involves a trade-off between preci-
sion and recall. If recall is insufficient, essential information may be missing for final reasoning,
while low precision can render the extracted content less useful. Although we use re-construction to
mitigate information loss during the Table-of-Focus construction process, our analysis reveals that
some information missing persist in row lookup. We further investigate this issue in Appendix N.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Efficiency. Efficiency is crucial in table processing and table understanding. To enhance efficiency,
we incorporate the table peek technique, which reduces the context that language models need to
process at certain steps. We further explore this technique in Appendix I and analyze the overall
efficiency in Appendix J. In real-world applications, for optimal efficiency, we consider replacing
certain steps with specialized small language models, balancing the trade-off between efficiency and
performance .

C.2 DOWNSTREAM APPLICATIONS

Web Tables. The web contains a vast number of structured tables, including Wikipedia tables,
government reports, and other online tabular data. Extracting and reasoning over these tables is
crucial for applications such as fact verification, web search, and knowledge graph construction.
TableMaster enhances the ability to interpret, query, and reason over these tables, enabling more
accurate and context-aware information retrieval.

Spreadsheets. Spreadsheets are widely used in business, finance, and scientific research for data
management and analysis. Traditional spreadsheet tools require manual formula creation and human
intervention to derive insights. In contrast, TableMaster can automate tasks such as data summa-
rization, trend analysis, anomaly detection, and reasoning-based computations. By integrating with
tools like Microsoft Excel and Google Sheets, TableMaster enables intelligent spreadsheet interac-
tions, allowing users to query data using natural language and receive precise, structured responses.

Databases. Structured databases store vast amounts of relational data, typically accessed through
SQL queries or predefined interfaces. However, many users lack SQL proficiency, posing barriers
to efficient data retrieval. TableMaster, with its Table-of-Focus mechanism, facilitates the quick
understanding of large databases, enabling seamless querying of relational data without the need for
manual SQL query writing. Additionally, it enhances database reasoning tasks, including knowledge
extraction, making structured data more accessible to non-technical users.

In real-world applications, different scenarios have varying requirements, and it may not be nec-
essary to incorporate all aspects of TableMaster. Instead, certain components can be adapted or
selectively applied based on specific needs.

Finally, as discussed above, there is still much work to be done in the future to further enhance
language model-based table understanding. We hope this work serves as a recipe of comprehensive
references on current state-of-the-art methods and provides guidance for future advancements in this
field.

D DATASETS USED FOR EVALUATION

Table 3 shows all datasets use for evluation in this study, license and source are also included.

Table 3: Benchmarks used for evaluation.

Dataset # Test Table Type Domain License Source

WikiTQ (Pasupat & Liang, 2015) 4,217 Relational Wikipedia CC-BY-SA-4.0 Link
TabFact (Chen et al., 2020) 2,024 Relational Wikipedia CC-BY-4.0 Link
FetaQA (Nan et al., 2022) 1,165 Relational Wikipedia CC-BY-SA-4.0 Link
FinQA (Chen et al., 2021b) 1,147 Relational Finance MIT Link
HiTab (Cheng et al., 2022) 1,583 Hierarchical Reports C-UDA 1.0 Link

E DETAILED SETTINGS OF CHALLENGE ANALYSIS EXPERIMENTS

We conduct extensive experiments to analyze the challenges of table understanding with language
models (LMs). Specifically, we perform challenge analysis experiments on the WikiTQ dataset
(Pasupat & Liang, 2015), which consists of 4,344 data instances. Following previous work (Wang
et al., 2024; Liu et al., 2024b), we use the exact match of the final answer as the evaluation metric to
measure accuracy. Our experiments utilize OpenAI models hosted on Microsoft Azure1. Unless oth-

1https://azure.microsoft.com/en-us/support/legal/

20

https://github.com/ppasupat/WikiTableQuestions
https://github.com/wenhuchen/Table-Fact-Checking
https://github.com/wzhouad/FetaQA
https://github.com/czyssrs/FinQA
https://github.com/microsoft/HiTab
https://azure.microsoft.com/en-us/support/legal/

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

erwise stated, we set the temperature to 0 to ensure stable output while keeping all other hyperparam-
eters at their default values. For each model, we use the following versions: gpt-4o (gpt-4o-0806),
gpt-4o-mini (gpt-4o-mini-0718), gpt-3.5-turbo (gpt-3.5-turbo-0125), and o1 (o1-preview-0912).

Effect of Table Size (Figure 2(a)). We evaluate how table size impacts task difficulty using a direct
prompting approach (Prompt 21) with gpt-4o, gpt-4o-mini and gpt-3.5-turbo to generate answers.
We categorize table size based on four metrics: row count, column count, area size (computed as the
product of row and column counts), and token count (measured using the cl100k_base encoding).
The tables are divided into four size categories—small, medium, large, and extra-large—strictly
partitioned into quartiles from the smallest to the largest. We then analyze results by splitting per-
formance based on table size.

Effect of Verbalization (Figure 2(b)). We investigate the impact of enriching semantic context
through verbalized tables by comparing three approaches. In the Table setting, the LM processes
the raw table directly using direct prompting (Prompt 21). In Table + Verbal, the table is first
verbalized using the LM itself (Prompt 24), and both the original and verbalized tables are then
provided as input. Lastly, in Table + Verbal Plus, the verbalized table is generated using gpt-4o,
further enhancing the semantic richness of the input.

Comparison of Reasoning Methods (Figure 2(c)). We compare different reasoning ap-
proaches—textual reasoning (Prompt 22), symbolic reasoning (Prompt 23), and text-guided sym-
bolic reasoning (Prompt 25)—on calculation-required versus non-calculation questions using gpt-
3.5-turbo. To classify WikiTQ questions into calculation-required or not, we use o1 (Prompt 28),
identifying 2,692 calculation-required questions and 1,652 non-calculation questions. The results
are then analyzed based on this classification.

Impact of Noisy Tables (Figure 2(d)). We investigate how performance varies between normalized
and noisy tables. To generate noisy tables, we use o1 (Prompt 29), instructing it to introduce noise
into table contents while preserving actual values and diversifying entries within columns. Addi-
tionally, each table has a 50% chance of being randomly transposed from the default row-major
format to the column-major format. We then filter the generated tables through a combination of
human verification and o1 checks to ensure that answers remain derivable from the noisy tables.
After filtering, 2,565 noisy tables remain. We evaluate textual reasoning (Prompt 22) and symbolic
reasoning (Prompt 23) on both the noisy and original normalized tables using gpt-4o-mini.

F EXTENDED EXPERIMENTS ON ADDITIONAL TABLE UNDERSTANDING
BENCHMARKS

We perform additional experiments on diverse table-understanding tasks to further assess the robust-
ness of TableMaster.

F.1 EVALUATION ON FREE-FORM QA WITH THE FETAQA DATASET

Table 4: Performance comparison on FetaQA. The values are multiplied by 100, and the percentage
improvement represents the performance gain compared to the end-to-end QA of the base model.
The results demonstrate that TableMaster achieves strong performance in long-form question an-
swering.

Methods BLEU ROUGE-1 ROUGE-2 ROUGE-L
Fine-Tuning (T5-large) (Ye et al., 2023) 30.54 63 41 53
End-to-End QA (Codex) (Chen et al., 2021a) 27.96 62 40 52

End-to-End QA (PaLM 2) (Wang et al., 2024) 28.37 63 41 53
Dater (PaLM 2) (Ye et al., 2023) 29.47 63 41 53
Chain-of-Table (PaLM 2) (Wang et al., 2024) 32.61 (+14.9%) 66 (+4.8%) 44 (+7.3%) 56 (+5.7%)

End-to-End QA (gpt-4o) 24.91 62.05 41.29 50.36
Ours (Tablemaster - gpt4o) 28.94 (+16.2%) 66.06 (+6.5%) 45.29 (+9.7%) 54.56 (+8.3%)

PaLM 2 has been deprecated (Anil et al., 2023) and is no longer accessible. Therefore, we use a
comparable language model, gpt-4o, to conduct experiments on FetaQA and compare the results

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

%VotesCandidatePartyParty

175,467Phil GarwoodRepublican-

185,580Victoria NapolitanoRepublican-

175,321Pete PalkoRepublican-

175,345J. Greg NewcomerDemocratic-

154,899Brian SattingerDemocratic-

154,869Mark HinesDemocratic-

Question: How did Napolitano perform compared to the other candidates?

On election day, Napolitano was the top vote-getter with
5,580 votes, outpacing her Republican running mates as
well as her Democrat opponents.

Victoria Napolitano performed the best among
the candidates, receiving the highest percentage
of votes at 18% with a total of 5,580 votes.

BLEU: 0.0411
ROUGE-1: 0.2791
ROUGE-2: 0.0976
ROUGE-L: 0.2790

TableMaster Prediction

Ground-truth
Evaluation Results

Figure 4: An example (fetaqa-164) from the FetaQA dataset where the result is accurate, but the
evaluation metric assigns a low score.

with previous methods. Additionally, we use 20 exemplars for few-shot in-context learning to align
with the dataset’s format.

Table 4 shows that TableMaster improves free-form question answering performance on FetaQA
compared to the base End-to-End QA model, achieving improvements of 16.2% in BLEU and 6.5%
in ROUGE-1. These improvements surpass those of Chain-of-Table when compared to its respective
End-to-End QA baseline.

However, the improvement of TableMaster over baseline methods remains marginal, with some
values even falling below those of previous approaches in absolute terms. We believe this does
not fully reflect the model’s actual performance in free-form QA. We attribute this to the n-gram
text similarity metrics used in ROUGE-1/2/L (Lin, 2004), which are known to be insensitive to
improvements gained from in-context learning (Maynez et al., 2023). These metrics struggle to
capture stylistic and structural enhancements in free-form text generation. Since models rely on
instructions and a limited number of examples, they may not fully adapt to the expected output
format, leading to an underestimation of performance gains.

To further investigate this, we analyze a specific case, FetaQA-164, as shown in Figure 4. In this
instance, the BLEU and ROUGE metrics assign low scores, as only two words match in the entire
sentence. However, manual review confirms that the generated answer is indeed correct—these
two words are the most important, and the overall meaning of the response is both accurate and
superior to the ground truth. This highlights the limitations of ROUGE in evaluating free-form QA
and suggests that qualitative analysis is essential for a more comprehensive assessment of model
improvements. Nonetheless, based on quantitative analysis, TableMaster is overall effective.

F.2 EVALUATION ON HIERARCHICAL TABLES WITH THE HITAB DATASET

UUnlike WikiTQ and TabFact, the HiTab dataset (Cheng et al., 2022) contains hierarchical tables
that violate the flat row–column assumption. Such structure challenges models to reason across
multi-level headers and parent–child cell relations.

We employ a GPT-4o backbone and follow HiTab’s official data split. MultiCoT (CYQIQ, 2025)
extends Chain-of-Table reasoning to multiple tables; both MultiCoT and TableMaster operate on
the same converted relational tables. E5 (Zhang et al., 2024c) represents the current SOTA on HiTab,
being explicitly tailored for complex tables. Because our framework (TableMaster) is designed for
relational tables, we introduce a lightweight relational-table converter via prompting o1: each hier-
archical table is decomposed into several relational subtables, while contextual tags are propagated
to preserve structural cues.

Table 5 shows that TableMaster outperforms the strongest chain-of-table baseline by +0.7 point
(from 73.5 to 74.2). Residual errors are mainly due to information loss during the conversion step.
Future work will integrate hierarchical relations directly into the reasoning module.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Accuracy (%) on the HiTab dataset. “After Converting” rows evaluate models on relational
tables produced by our converter; “Direct” reports results on the original hierarchical tables.

Method Accuracy
After Converting to Relational Tables

MultiCoT (original (CYQIQ, 2025)) 64.0
MultiCoT (optimized prompt) 70.0
MultiCoT (optimized prompt + verbalized table) 73.5
TableMaster 74.2

Direct
E5 (Zhang et al., 2024c) 77.3

F.3 EVALUATION ON NUMERICAL REASONING WITH THE FINQA DATASET

FinQA (Chen et al., 2021b) requires multi-step numerical reasoning over financial reports—e.g.,
computing growth rates or combining multiple cells with arithmetic operators. Hence it evaluates
whether TableMaster can execute numerical formulas correctly, not just extract text spans. We keep
the same training recipe as in. Two backbones are considered: GPT-4o-mini (4m) and GPT-4o (4o).

Table 6: Accuracy on FinQA. TableMaster consistently boosts numerical-reasoning accuracy over
both backbones.

Method Accuracy (%) ∆

GPT-4o-mini 50.7 –
TableMaster (4m) 66.4 +15.7

GPT-4o 63.1 –
TableMaster (4o) 70.9 +7.8

Table 6 shows that TableMaster delivers impressive improvements on both backbones, demonstrat-
ing that its symbolic reasoning module reliably handles complex calculations in the financial do-
main.

G TABLE UNDERSTANDING BASELINES

To better facilitate future research, we evaluate different reasoning methods across various base mod-
els. Table 7 presents the accuracy results of our reproduced baselines on WikiTQ and TabFact, com-
paring different base LLMs and reasoning methods. The table includes evaluations on o1-preview
(∼300B), o1-mini (∼100B), gpt-4o (∼200B), gpt-4o-mini (∼8B), and gpt-3.5-turbo (∼175B). The
exact number of parameters for several LMs (e.g., GPT, o1) has not been publicly disclosed. Most
parameter counts are estimates reported to provide context for understanding model performance.
For more precise information, please refer to the original or future official documentation (Abacha
et al., 2025). Each model is tested with various reasoning strategies, including Direct, chain of
thought, and Program of Thought, alongside our proposed TableMaster.

Across all base models, TableMaster consistently achieves the highest accuracy. For gpt-4o, Table-
Master reaches 84.55% on WikiTQ and 94.52% on TabFact, outperforming both chain of thought
(83.98%, 91.90%) and Program of Thought (74.63%, 90.02%). Similarly, for gpt-4o-mini, Table-
Master achieves 78.13% on WikiTQ and 90.12% on TabFact, significantly improving over the Direct
method (59.53%, 71.25%) and surpassing chain of thought (72.97%, 87.40%).

The performance gap is even more pronounced for gpt-3.5-turbo, where TableMaster reaches
68.21% on WikiTQ and 83.65% on TabFact, significantly outperforming both chain of thought
(59.92%, 69.52%) and Program of Thought (50.32%, 68.82%). Interestingly, we observe that while
TableMaster ’s improvement is limited on gpt-4o, the weaker the base model, the greater the perfor-
mance improvement. While o1-preview and o1-mini achieve high accuracy with the Direct method

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 7: Results of our reproduced baselines on WikiTQ and TabFact. The values in the table
represent accuracy (%).

Base LLM Method WikiTQ TabFact
o1-preview∼300B Direct 84.60 92.05
o1-mini∼100B Direct 83.49 91.35

gpt-4o∼200B

Direct 73.07 84.73
Chain of Thought 83.98 91.90
Program of Thought 74.63 90.02

TableMaster (gpt-4o) 84.55 94.52

gpt-4o-mini∼8B

Direct 59.53 71.25
Chain of Thought 72.97 87.40
Program of Thought 61.83 85.18

TableMaster (gpt-4o-mini) 78.13 90.12

gpt-3.5-turbo∼175B

Direct 56.58 70.90
Chain of Thought 59.92 69.52
Program of Thought 50.32 68.82

TableMaster (gpt-3.5-turbo) 68.21 83.65

(84.60%, 92.05% for o1-preview and 83.49%, 91.35% for o1-mini), the results of TableMaster on
gpt-4o demonstrate that our method is capable of achieving state-of-the-art performance across dif-
ferent LL architectures.

Additionally, we find that chain of thought reasoning is highly effective, achieving strong accuracy
across models. Even a simple chain of thought approach outperforms previous methods that rely
solely on symbolic reasoning (Mao et al., 2024), indicating that chain of thought should be retained
as a key component in the reasoning framework.

These results confirm that TableMaster enhances table reasoning performance across various LLMs,
effectively outperforming both direct prompting and traditional reasoning strategies, particularly in
cases where table complexity and reasoning demands are higher.

H PERFORMANCE ANALYSIS UNDER DIFFERENT TABLE SIZES

Table 8: Performance Comparison Across Table Sizes (Token).

Method Table Size (Token)
Small (<2k) Medium (2k ∼ 4k) Large (>4k)

Binder (Cheng et al., 2023) 56.54 26.13 6.41
Dater (Ye et al., 2023) 62.50 42.34 34.62
Chain-of-Table (Wang et al., 2024) 68.13 52.25 44.87
TableMaster (gpt-3.5-turbo) 69.01 58.00 56.73
TableMaster (gpt-4o-mini) 78.71 70.50 70.19

Table 8 presents a performance comparison across different table sizes, categorized into small (<2k
tokens), medium (2k∼4k tokens), and large (>4k tokens). The results compare several methods,
including Binder (Cheng et al., 2023), Dater (Ye et al., 2023), and Chain-of-Table (Wang et al.,
2024), against TableMaster. All methods are evaluated using gpt-3.5-turbo, with additional results
of TableMaster provided for gpt-4o-mini.

Across all table sizes, TableMaster consistently outperforms baseline methods. Specifically, for
gpt-3.5-turbo, TableMaster achieves the highest performance in all table size categories, scoring
69.01% on small tables, 58.00% on medium tables, and 56.73% on large tables. This demonstrates

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 5: Performance Comparison Across Table Sizes (Row Count, Column Count, Area Size,
Token Count).

its ability to maintain robust performance even as table size increases, significantly outperforming
Binder, Dater, and Chain-of-Table, especially on medium and large tables, where the performance
gap becomes more pronounced.

Furthermore, TableMaster with gpt-4o-mini achieves even stronger performance, with accuracy
scores of 78.71% (small tables), 70.50% (medium tables), and 70.19% (large tables). These re-
sults highlight that leveraging stronger base models further enhances TableMaster ’s effectiveness,
making it particularly well-suited for large-scale table reasoning tasks. Notably, when transition-
ing from medium to large tables, TableMaster (gpt-4o-mini) experiences only a 0.31% performance
drop (from 70.50% to 70.19%), demonstrating its strong capability in handling increasing table com-
plexity. This minimal decline contrasts sharply with other methods, which show significantly larger
drops, further reinforcing the scalability and robustness of TableMaster in processing large-scale
tabular data.

Figure 5 illustrates the accuracy trends of different models across various table sizes, categorized
based on row count, column count, area size, and token count. The models evaluated in this study
include gpt-3.5-turbo (gpt35), gpt-4o-mini (gpt4m), TableMaster (gpt35), and TableMaster (gpt4m).
The results provide insights into how these models handle increasing table complexity and size,
revealing the comparative strengths and limitations of each approach. The size split in this study is
strictly partitioned into quartiles, ranging from the smallest to the largest tables.

Row Count. The top-left plot analyzes accuracy trends as row count increases. TableMaster (gpt4m)
consistently outperforms other models, maintaining high accuracy levels even with an increasing
number of rows. In contrast, gpt-3.5-turbo (gpt35) starts with the highest accuracy, peaking in the
11–15 row range before experiencing a decline as row count further increases. Smaller models such
as gpt35 and gpt4m exhibit a sharper decline, highlighting the challenge of processing larger tables
with more rows.

Column Count. The top-right plot examines model performance as column count increases. Table-
Master (gpt4m) again achieves strong performance, peaking at around five columns before showing
a slight decline. This result highlights the effectiveness of table-of-focus re-construction, demon-
strating that column re-selection can effectively adapt to scenarios with many columns. While gpt35
initially maintains the highest accuracy, other models experience a steeper drop as the number of
columns increases. These trends suggest that column-heavy tables pose greater challenges for rea-
soning compared to row-heavy tables, likely due to the increased dimensional complexity and inter-
dependencies between attributes.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Area Size. The bottom-left plot evaluates the relationship between accuracy and table area size, cal-
culated as the product of row and column counts. TableMaster (gpt4m) reaches peak performance in
the mid-range (96–167 area size) before slightly declining for larger tables. gpt35 initially performs
well but deteriorates as table area size increases, while gpt4m and gpt35 show a noticeable decline
overall, reinforcing that larger tables significantly impact accuracy across models.

Token Count. The bottom-right plot assesses accuracy as a function of table token count, which
reflects the amount of textual information models need to process. TableMaster (gpt4m) consistently
achieves the highest accuracy, followed by TableMaster (gpt35). A general downward trend is
observed across all models as token count increases, indicating that larger input lengths negatively
affect performance. Notably, gpt35 experiences the sharpest drop, suggesting its lower capacity for
handling long-context table data compared to gpt4m.

Overall, these findings confirm that TableMaster is highly scalable and generalizable across different
table sizes, consistently outperforming previous methods, particularly in handling larger and more
complex tables. Its robust performance and gradual decline in accuracy as table size increases make
it a reliable and efficient solution for table-based reasoning tasks.

I PERFORMANCE ANALYSIS UNDER DIFFERENT TABLE PEEK SIZES

0 20 40 60 80 100 120 140
Number of Rows per Table

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

Density Plot of Row Sizes in WikiTQ Dataset

(a)

2 4 10 25 50 All
Peek Size

70

72

74

76

78

80

A
cc

ur
ac

y
(%

)

74.2

72.3

73.7

75.6

76.1

77.2

78.1

Accuracy vs Peek Size

(b)

Figure 6: The row count distribution in the WikiTQ dataset and the analysis of accuracy variation
with different peek sizes.

We propose the concept of table peek, which enhances the efficiency of TableMaster for table un-
derstanding tasks by reducing the context that language models need to process at certain steps.

To analyze the effectiveness of this approach, we first examine the row count distribution in the Wik-
iTQ dataset, as shown in Figure 6a. To improve visualization, we remove 72 extreme outliers with
exceptionally large row counts. The resulting density plot illustrates that the majority of tables con-
tain fewer than 20 rows, with a pronounced peak around 10 rows. As the number of rows increases,
the density gradually declines, indicating that large tables are relatively uncommon. Although a
small number of tables exceed 100 rows, their frequency is minimal.

The line graph in Figure 6b illustrates the variation in accuracy with different peek sizes, where
the peek size determines the number of rows considered during processing. Initially, accuracy is
relatively low when only a small number of rows (e.g., 2–4) are used, reaching its minimum at a
peek size of 4. We hypothesize that this occurs because, at a peek size of 2, the table includes only
the top headers and a single example row, which may provide a clear structure for the language
model to follow. However, at a peek size of 4, the table includes three example rows, potentially
causing the language model to overfit the first few rows and misinterpret the overall table structure.
This misalignment may lead to ineffective SQL generation for row lookup, resulting in a temporary
drop in accuracy.

As the peek size increases, accuracy improves significantly, showing a sharp rise up to 25 rows.
Beyond this point, the accuracy continues to improve but at a slower rate, eventually reaching its
peak when the entire table is utilized (‘All’). This trend suggests that a moderate peek size can
effectively balance efficiency and accuracy, eliminating the need to process the full table while still
maintaining strong performance.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

J EFFICIENCY ANALYSIS OF TableMaster

J.1 THEORETICAL ANALYSIS

Efficiency is a critical factor in table-understanding methods. We analyze the efficiency of Table-
Master theoretically, following the notations introduced in Section 4. Our analysis considers the
length of the table input as the primary computational cost, excluding any additional prompts or
external information, and does not account for output length. This is because, in most cases, the
output is relatively short compared to the large volume of data in the table. Specifically, we define
the computational cost in terms of the total area size of the table that the language model processes.

Below are the main components of our efficiency analysis:

• Structure extraction: k × n

• Row lookup: k × n

• Column lookup: n
• Table-of-Focus Re-Construction a× b× e

• Table Verbalization: a× b,
• Reasoning Strategy Assessment: a× b,
• Reasoning: 1.5 a × b (where the factor 1.5 accounts for textual processes weighted as 1

and symbolic processes weighted as 2)

Here, k represents the size of table peek, and e represents the number of table-of-focus re-
constructions after information estimation. a and b denote the dimensions of the table-of-focus
Ta×b. Combining these components, the total computational cost is given by:

Total Cost = (2 k + 1)× n+ (e+ 2.5)× (a× b). (1)

J.2 EMPIRICAL ANALYSIS

WikiTQ TabFact
Dataset

Si
ze

Change of Table Size
Original Table
Condensed Table

Figure 7: Changes in Table Condensation After Table-of-Focus Construction in Table Structure
Understanding.

The bar chart in Figure 7 illustrates the change in table area size before and after table condensation
for the WikiTQ and TabFact datasets. The y-axis represents the table size, while the x-axis catego-
rizes the datasets. Each dataset has two bars: the blue bar represents the original table size, and the
orange bar represents the condensed table size after table-of-focus construction. WikiTQ exhibits a
significant reduction in table size, approximately 1:3, with the condensed table being much smaller
than the original. In contrast, TabFact also undergoes condensation but to a lesser extent, around
1:2. This suggests that WikiTQ tables require more substantial structural modifications to focus on
relevant content, while TabFact tables need comparatively less condensation.

As shown in Equation 1, the theoretical cost is independent of the number of rows m, while a × b
reflects the size of the small sub-table, which is influenced by the estimated table condensation ratio

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

2.5. As stated in Table 10, the reconstruction occurs 1.5 averagely, so e is typically 1.5. In an
ideal scenario, if the peek size is negligible, the cost is approximately 1.6× (m× n). In the worst-
case scenario, where the entire table must be examined and all content is required, the cost reaches
6 × (m × n) approximately.The estimation range for each table is 1.6 to 6 times the original table
size.

Recent advancements in table understanding, such as CHAIN-OF-TABLE (Wang et al., 2024) and
TREE-OF-TABLE (Ji et al., 2024), involve a step-by-step evolution of tables through a long chain of
transformations. In each new step, both the original table and the newly generated sub-table must be
processed by language models. Additionally, their iterative process is complex, unstable, and diffi-
cult to analyze theoretically. In contrast, our approach is general and comprehensive, avoiding the
trivial overhead of sub-table extraction. Instead, it focuses on holistic reasoning while maintaining
ideal efficiency.

On the first 100 examples of TabFact, we evaluate TableMaster against the representative base-
line CHAIN-OF-TABLE (Wang et al., 2024) using GPT-4o, ensuring a fair comparison without self-
consistency decoding.

Table 9: Token usage comparison on the TabFact subset using GPT-4o.

Method Prompt Tokens Completion Tokens
Chain-of-Table 13,209.6 914.2
TableMaster (Ours) 3,393.5 738.6

As shown in Table 9, TableMaster consumes substantially fewer tokens while maintaining strong
performance. While our design may appear intricate, it integrates practical features such as fall-
backs to early-exit or full-table reasoning, thereby avoiding unnecessary table transformations. In
contrast, CHAIN-OF-TABLE continuously evolves the table without fallback safeguards, leading to
much higher token usage. This limitation is not acknowledged in the original paper, whereas our
framework explicitly incorporates token efficiency as a design principle.

K DETAILED ALGORITHM OF TABLE-OF-FOCUS RE-CONSTRUCTION

Here, we provide a detailed description of the Table-of-Focus Re-Construction algorithm, as shown
in Algorithm 1.

Algorithm 1 Algorithm of Table-of-Focus Re-Construction

Require: T: The original table
Require: Q: The question
Require: R: Selected rows
Require: C0: Initially selected columns
Require: C: Ranked candidate column indices
Ensure: TF : Final table-of-focus
Ensure: C: Updated selected columns

1: Initialize Ccandidate ← {c ∈ C | c /∈ C0}
2: Initialize C ← Copy(C0)
3: while true do
4: TF ← extractTable(T, R, C)
5: E ← estimateInformation(TF , Q)
6: if E or len(Ccandidate) = ∅ then
7: break
8: else
9: c← popFront(Ccandidate) {Select the next candidate column}

10: C ← C ∪ {c}
11: end if
12: end while
13: return TF , C

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

The Table-of-Focus Re-Construction Algorithm iteratively refines a table by selecting relevant
columns to form the final table-of-focus TF . It starts by initializing the set of candidate columns
Ccandidate that are not part of the initially selected columns C0, and copies C0 to initialize C. In
each iteration, it extracts a sub-table TF using the current selected columns and estimates whether
the extracted sub-table contains sufficient information to answer the given question Q. If the in-
formation is sufficient E = True or no more candidate columns remain, the process terminates.
Otherwise, the next ranked candidate column is selected and added to C, repeating the process. The
algorithm ultimately returns the refined table TF and the updated set of selected columns, ensuring
an efficient and structured approach to dynamically refining a table while balancing relevance and
minimal table size.

L ANALYSIS OF TABLE-OF-FOCUS RE-CONSTRUCTION

Table 10: Column Selection Statistics Before and After Table-of-Focus Re-Construction for TabFact
and WikiTQ.

Dataset Initial Columns Final Columns Added Columns
Number (#) Percentage (%) Number (#) Percentage (%) Number (#) Percentage (%)

TabFact 2.44 40.74 3.34 54.64 0.90 13.91
WikiTQ 2.87 47.67 4.72 75.91 1.85 28.23

Table 10 presents Column Selection Statistics before and after Table-of-Focus Re-Construction for
two datasets: TabFact and WikiTQ. The table measures how many columns were initially selected,
how many remained after refinement, and how many were newly added during the reconstruction
process.

The table is structured into three main sections: Initial Columns, Final Columns, and Added
Columns. Each section includes two metrics: the number of columns and the percentage of total
columns in the dataset. The Initial Columns represent the starting number of columns before any
refinement. The Final Columns show the number of columns retained after the reconstruction pro-
cess. The Added Columns indicate the number of additional columns incorporated to enhance table
comprehension.

For the TabFact dataset, the number of Initial Columns is 2.44, covering 40.74% of the table’s total
columns. After the reconstruction process, the Final Columns increase to 3.34, covering 54.64%.
This means that 0.90 additional columns were introduced averagely, which accounts for 13.91%
of the total columns. For the WikiTQ dataset, the pattern is similar but with higher values. The
Initial Columns start at 2.87, representing 47.67% of the total table. After reconstruction, the Final
Columns expand to 4.72, covering 75.91% of the table’s total structure. This increase results from
1.85 additional columns, which make up 28.23% of the total columns.

Overall, this mechanism has been proven to be effective while remaining lightweight. The ta-
ble demonstrates that Table-of-Focus Re-Construction slightly increases the number of selected
columns, with a more pronounced effect in the WikiTQ dataset compared to TabFact. This suggests
that WikiTQ tables require a greater degree of expansion to ensure adequate information coverage,
whereas TabFact tables undergo a more moderate refinement process.

M ANALYSIS OF ADAPTIVE REASONING

We consider adaptive reasoning a key component in table understanding. Concurrent work, such as
Abhyankar et al. (2025), also explores this direction.

Table 11 compares different reasoning methods—textual reasoning, symbolic reasoning, and text-
guided symbolic reasoning—across various LLMs under calculation-required and no-calculation-
required scenarios. This experiment is conducted using gpt-4o-mini on the WikiTQ dataset.

For gpt-4o, textual reasoning achieves the highest accuracy (83.98% overall), excelling in both
calculation-required (81.17%) and no-calculation-required (88.56%) cases. Symbolic reasoning
performs worse (74.63% overall), while text-guided symbolic reasoning offers slight improvements

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 11: Performance of Different Reasoning Methods Across Base LLMs

Base LLM Method Calculation Required #2692 No Calculation Required #1652 Overall #4344

gpt-4o
Textual Reasoning 81.17 88.56 83.98
Symbolic Reasoning 74.59 74.70 74.63
Text-Guided Symbolic Reasoning 76.49 77.36 76.82

gpt-4o-mini
Textual Reasoning 67.50 81.90 72.97
Symbolic Reasoning 61.55 62.29 61.83
Text-Guided Symbolic Reasoning 67.24 71.43 68.83

gpt-3.5-turbo
Textual Reasoning 52.27 72.40 59.92
Symbolic Reasoning 43.28 61.80 50.32
Text-Guided Symbolic Reasoning 59.10 66.65 61.97

(76.82%). For gpt-4o-mini, a similar trend is observed, with textual reasoning maintaining the high-
est accuracy (72.97% overall), followed by text-guided symbolic reasoning (68.83%), and symbolic
reasoning performing the worst (61.83%). For gpt-3.5-turbo, performance drops significantly, with
textual reasoning at 59.92%, symbolic reasoning struggling at 50.32%, and text-guided symbolic
reasoning achieving the best results (61.97%), indicating that symbolic guidance benefits weaker
models.

Symbolic reasoning is consistently outperformed by textual reasoning, while text-guided symbolic
reasoning surpasses textual reasoning only in gpt-3.5-turbo under calculation-required scenarios.
One reason for this is that not all calculation-required questions necessarily benefit from sym-
bolic reasoning; for simple calculations, textual reasoning is more effective. However, for com-
plex calculation-required questions, text-guided symbolic reasoning is the preferred approach. This
provides a key insight for prompt design of reasoning strategy assessment.

Overall, textual reasoning consistently outperforms symbolic reasoning across all models, while
text-guided symbolic reasoning helps mitigate weaker numerical capabilities in smaller models.
These results suggest that adaptive reasoning should prioritize textual approaches, incorporating
symbolic methods selectively for numerical calculations in weaker models.

Table 12: Performance and Inference Times for Different Methods

Method Accuracy (%) Inference Times (#)
Chain of Thought 72.97 1
Program of Thought 61.83 1
Text-Guided Program of Thought 68.83 1

Self-Consistency (5 CoT) 74.98 3
Self-Consistency (5 PoT) 63.97 3
Mix Self-Consistency (3+3) 76.70 6
Mix Self-Consistency (5+5) 77.46 10
Self-Eval 70.58 2

Adaptive Reasoning (POT) 71.18 1
Adaptive Reasoning (TPOT) 74.08 1
Adaptive Reasoning (POT - Upper Bound) 82.99 1
Adaptive Reasoning (TPOT - Upper Bound) 85.06 1

Table 12 compares the performance (accuracy %) and inference times of various reasoning meth-
ods, including chain of thought (CoT), program of thought (PoT), text-guided program of thought
(TPoT), self-consistency, and adaptive reasoning. This experiment is conducted using gpt-4o-mini
on the WikiTQ dataset.

Among single-pass methods (1 inference), chain of thought achieves 72.97% accuracy, outperform-
ing program of thought (61.83%) and text-guided program of thought (68.83%). This suggests that
CoT is more effective than pure symbolic reasoning when only one inference is allowed.

Self-consistency methods, which perform multiple inferences to improve reliability, achieve better
results. Five-shot CoT self-consistency reaches 74.98%, while five-shot PoT self-consistency lags

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

behind at 63.97%. As introduced in (Liu et al., 2024b), mixed self-consistency (3 CoT + 3 PoT)
and (5+5) further improve accuracy to 76.70% and 77.46%, respectively, at the cost of increased
inference time (6 and 10 passes). Self-evaluation (self-eval) first performs CoT and PoT inferences
(Prompt 26), then selects the better result, achieving 70.58% with 2 inferences.

Adaptive reasoning achieves competitive performance while maintaining single-pass efficiency.
PoT-based adaptive reasoning reaches 71.18%, while TPOT-based adaptive reasoning, which com-
bines textual and text-guided symbolic methods, improves to 74.08%. The upper-bound perfor-
mance of these adaptive strategies (assuming perfect strategy selection) reaches 82.99% (PoT) and
85.06% (TPOT), significantly outperforming all other methods, highlighting the importance of tex-
tual guidance and strategy selection.

For the selection distribution between CoT and PoT (TPoT):

• Self-eval: 1,962 PoT and 2,382 CoT

• Adaptive reasoning (PoT): 1,590 PoT and 2,754 CoT

• Adaptive reasoning (TPoT): 1,590 PoT and 2,754 CoT

• Adaptive reasoning (PoT - upper bound): 435 PoT and 3,909 CoT

• Adaptive reasoning (TPoT - upper bound): 525 PoT and 3,819 CoT

These results suggest that language models should prioritize textual reasoning and reserve symbolic
reasoning for more complex numerical calculations where it provides a clear advantage.

Overall, self-consistency enhances accuracy but requires multiple inferences, whereas adaptive rea-
soning effectively balances accuracy and efficiency. To further improve strategy assessment, we will
explore ways to approach this upper bound in future work. This demonstrates that well-designed
adaptive reasoning strategies can rival more computationally expensive self-consistency methods
while maintaining efficiency.

N INFORMATION MISSING AND TABLE REASONING WITH FULL TABLE

Table 13: Performance comparison of reasoning with and without the full table on WikiTQ and
TabFact.

Method WikiTQ TabFact
PoTable (Previous SOTA) (Mao et al., 2024) 64.73 88.93
TableMaster w/ Full Table in Reasoning 78.13 90.12
TableMaster w/o Full Table in Reasoning 77.23 (-0.90) 89.58 (-0.54)

As discussed in our limitations, the table-of-focus process may sometimes lead to the loss or omis-
sion of key relevant information. This issue is inevitable when attempting to locate specific data. If
no relevant data exists within the selected portion, the reasoning result will naturally be incorrect.

In our experiments, we found that when using the table-of-focus and its verbalized representation
for reasoning, 265 out of 4,344 questions in the WikiTQ dataset had no available answers. This led
to a performance drop, as the language model responded with an inability to provide an answer. To
address this, we replaced the table-of-focus with the original full table, combined with verbalized
table-of-focus as input in those questions. The performance under this adjustment is shown in Ta-
ble 13, reaching 77.23% in WikiTQ. When we directly replaced the table-of-focus with the full table
for all questions in WikiTQ, the performance increased to 78.13%, resulting in a slight improvement
of 0.9%. Two results are similar.

We believe this approach does not contradict previous steps such as structure extraction and table-of-
focus selection. These steps remain valuable, as the extracted target data is retained in the verbalized
table, where the information density is higher and semantic context is richer. The language model
prioritizes this high-density information, and if it is insufficient, it can then reference the global
information from the full table. This demonstrates the complementary nature of the full table and

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

the verbalized table-of-focus. From an efficiency perspective, it is preferable to use the sub-table for
reasoning initially and only switch to the full table when necessary.

To highlight the performance of TableMaster, we report the best scores of 78.13 and 90.12 in the
main results table. Regardless, our method consistently outperforms the previous state-of-the-art,
PoTable (Mao et al., 2024), on both WikiTQ and TabFact.

O CASE STUDY

O.1 CASE STUDY OF TABLE VERBALIZATION

Notes/EventsPartyLeft officeTook officeNameParty

Democratic RepublicanMarch 3, 1809March 4, 1803William McCreery11

Democratic RepublicanMarch 3, 1815March 4, 1809Alexander McKim12

Resigned to …Democratic RepublicanApril 18, 1816March 4, 1815William Pinkney13

Democratic RepublicanMarch 3, 1823September 2, 1816Peter Little14

Jacksonian DRMarch 3, 1825March 4, 1823Peter Little14

AdamsMarch 3, 1829March 4, 1825Peter Little14

JacksonianMarch 3, 1833March 4, 1829Benjamin C. Howard15

Question: how many people stayed at least 3 years in office? Ground-truth: 4

William McCreery, a Democratic-Republican, served in office from March 4, 1803, to March 3, 1809, followed by
Alexander McKim, also a Democratic-Republican, who held the position from March 4, 1809, to March 3, 1815.
William Pinkney then took office on March 4, 1815, but resigned on April 18, 1816, to accept a diplomatic role as
Minister Plenipotentiary to Russia. Peter Little succeeded him, serving from September 2, 1816, to March 3, 1823,
as a Democratic-Republican, then continued in office under different political affiliations: as a Jacksonian
Democratic-Republican from March 4, 1823, to March 3, 1825, and later as an Adams supporter from March 4,
1825, to March 3, 1829. His tenure was followed by Benjamin C. Howard, a Jacksonian, who served from March 4,
1829, to March 3, 1833.

Table Verbalization

Table

Verbalized Table

Correct Prediction: 4

Error Prediction: 5

LM Reasoning

LM Reasoning

Figure 8: Case study on the impact of table verbalization. The data is from the WikiTQ dataset.

Table verbalization brings a slight overall improvement in table understanding and is particularly
effective in cases where deeper comprehension of the table’s context is required to answer questions
accurately.

Figure 8 presents a case study on the impact of table verbalization in helping language models
reason about structured data. The setup includes a table listing U.S. congressional representatives,
their terms in office, political affiliations, and notable events. The question posed is: How many
people stayed at least 3 years in office?, with a ground-truth answer of 4.

When the table is input directly, the model incorrectly predicts 5, as it mistakenly counts rows rather
than identifying unique individuals. This suggests that the model relies on simple row counting
instead of truly understanding the data. However, with the verbalized table, the model accurately
interprets the descriptions, grasps the actual meaning, and correctly answers with 4.

O.2 CASE STUDY OF TableMaster

As shown in Figure 9, we present a case study of TableMaster to illustrate its detailed workflow
in answering the question: “Total wins by Belgian riders?” with a ground-truth answer of 7. The
process begins with structure extraction, identifying key columns such as Rider, Country, and Wins.
Next, column lookup selects relevant data, and row lookup filters the rows containing Belgian riders.
SQL generation and execution retrieve only the relevant records where Country = Belgium.

The refined table is then constructed into a table-of-focus, keeping only the necessary columns.
Table verbalization converts structured data into a description to enrich semantic context, providing
insights into the number of wins for each Belgian rider. A textual guidance module generates a
structured step-by-step explanation of the counting process, ensuring clarity in symbolic reasoning.
The reasoning and execution phase involves symbolic reasoning (Program of Thought), where a
Python snippet correctly extracts and sums the wins, leading to the correct prediction of 7.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

This case study highlights TableMaster ’s ability to accurately extract, process, and reason over
structured data, demonstrating its effectiveness in table-based question answering with a combina-
tion of structured queries, reasoning steps, and code execution.

Question: total wins by belgian riders? Ground-truth: 7

Prediction: 7
11. Code Execution

WinsPointsTeamCountryRiderPlace

33066SuzukiBelgiumSylvain Geboers1
22331MaicoGermanyAdolf Weil2
02052HusqvarnaSwedenTorlief Hansen3
31865SuzukiBelgiumRoger De Coster4
11730SuzukiBelgiumJoel Robert5
21680HusqvarnaFinlandHeikki Mikkola6
01276MaicoGermanyWilly Bauer7
01112ČZBelgiumGaston Rahier8
01110HusqvarnaNetherlandsPierre Karsmakers9
01076ČZUnited KingdomDave Bickers10
0971ČZUnited KingdomJohn Banks11
0810HusqvarnaUnited KingdomAndy Roberton12
0709ČZCzechoslovakiaVlastimil Valek13
0604HusqvarnaUnited StatesMark Blackwell14
0603ČZUnited StatesBrad Lackey15
0439YamahaUnited StatesGary Jones16
0425SuzukiUnited StatesJohn DeSoto17
0416ČZUnited KingdomChris Horsefield18
0324HusqvarnaSwedenUno Palm19
0309MontesaUnited StatesPeter Lamppu20

The table highlights the performance of these four
Belgian riders. Sylvain Geboers and Roger De Coster
lead with three wins each, followed by Joel Robert
with one win, while Gaston Rahier has not won any
races.

WinsCountryRider
3BelgiumSylvain Geboers
3BelgiumRoger De Coster
1BelgiumJoel Robert
0BelgiumGaston Rahier

Table-of-Focus

1. Identify the Relevant Column – Locate the “Wins” column (C).
2. Extract the Wins Data – Retrieve the win values for Belgian riders.
3. Convert Wins to Numeric Values – Ensure all values are in numeric format.
4. Sum the Wins – Add up the total number of wins.
5. Calculate the Total – Perform the addition.
6. Verify the Calculation – Double-check for accuracy.
7. Present the Result – Provide the final total of wins.

Verbalized Table

SQL: SELECT Wins FROM T WHERE Country = Belgium

7. Table
Verbalization

6. Table-of-Focus Construction

9. Textual Guidance Generation

1. Structure Extraction

3. Row Lookup 2. Column Lookup4. SQL Generation

Key Column Index: Rider

Topheaders: Place, Rider, Country, Team, Points, Wins

Selected Column: Rider, Country, Wins

Ranked Column: Rider, Country, Wins, Team, Points, PlaceSelected Row Indices: 1, 2, 5, 6, 9

5. SQL Execution

Original Table

8. Information Estimation

Textual Guidance

10. Symbolic Reasoning (Program of Thought)

Figure 9: Case study of TableMaster. The data is from the WikiTQ dataset.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

P PROMPT DESIGN IN TableMaster

Objective
You are provided with a text representation of a table in string format, detailing the content of each cell.
Your task is to identify and extract the Top Header and Key Column of the table.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table
{table}

Instructions
1. Top Header: The section at the top of the table, often spanning multiple columns horizontally, that describes the primary information
presented in the table.
2. Key Column: A column where the values best represent the subject or key identifier for each row in the table, typically containing row
labels or keys (e.g., year, date, number, name, etc.).
3. You should extract the top headers with address and value, like ['A1,Year', 'A2,Profit', ...].
4. key_column_index should be like 'A' or 'B' ...
5. The key column should contain meaningful values instead of id.

Response Format
The response should be in JSON format:
```json
{{

"topheaders": ["address1,header1", "address2,header2", ...],
"key_column_index": "column1",

}}
```

Prompt for TableMaster – Structure Extraction

Figure 10: Prompt for structure extraction in TableMaster. Blue text indicates placeholders for vari-
ables within the prompt. The prompt guides the language model in extracting the table’s structure.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Objective
You are provided with information of a table and a question related to the table.
Your task is to rank the column indices based on the relevance to the question.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table Information
Table:
{table}

Top Headers: {topheaders}

Question
{question}

Instructions
1. The column indices must only contain letters, like ['A', 'B', 'C', ...].
2. You should first rank all the column indices based on the relevance to the question.
3. Your output should contain all the column indices.

Response Format
The response should be in JSON format:
```json
{{

"ranked_column_indices": ["column indexA", "column indexB", ...]
}}
```

Prompt for TableMaster – Column Ranking

Figure 11: Prompt for column ranking in TableMaster. Blue text indicates placeholders for variables
within the prompt. The prompt guides the language model to rank the priority of all columns based
on the given table, top headers, and related question.

Objective
You are provided with information of a table and a question related to the table.
Your task is to lookup the column indices that are needed to answer the question based on the table.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table Information
Table:
{table}

Top Headers: {topheaders}

Question
{question}

Instructions
1. The column indices must only contain letters, like ['A', 'B', 'C', ...].
2. Your output of the column indices should not any contain number, like ['A1', 'B2', 'C1', ...].
3. Your output of the column indices should not contain the column name.
4. You should select the column that are relevant and necessary to answer the question.

Response Format
The response should be in JSON format:
```json
{{

"selected_column_indices": ["column indexA", "column indexB", ...]
}}
```

Prompt for TableMaster – Column Lookup

Figure 12: Prompt for column lookup in TableMaster. Blue text indicates placeholders for variables
within the prompt. The prompt guides the language model to select relevant columns based on the
given table, top headers, and related question.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Objective
You are provided with information of a table and a question related to the table.
Your task is to generate a SQL query that can be used to find the rows that answer the question.

Table Information
Part of Table:
{table}

Question
{question}

Instructions
1. The SQL query must be in the format of `SELECT XXX, ... FROM Table WHERE XXX ...`,
where Table is the table name, XXX is the column name, and WHERE... is the criteria.
2. If the information is not enough to answer the question, you should return a sql to select all rows.
3. Do not give complex sql query, just simple query to select rows.
4. Use this SQL query only to select relevant rows, not for getting the final answer.

Response Format
Provide the response in the following JSON format:
```json
{{

"sql": "SELECT XXX, ... FROM Table WHERE XXX ..."
}}
```

Prompt for TableMaster – SQL Generation for Row Lookup

Figure 13: Prompt for SQL generation for row lookup in TableMaster. Blue text indicates place-
holders for variables within the prompt. The prompt guides the language model to generate SQL for
selecting relevant rows based on the given table and related question.

Objective
You are provided with a table in string format.
Your task is to convert the table into a detailed text description.

Table
{table}

Instructions
1. Provide a detailed description of the table, covering all rows and columns.
2. Include every detail and numerical value without omitting or summarizing.
3. Use external knowledge only to enhance clarity, while staying faithful to the table's content.
4. If the table only contains headers and no rows, it should be described as an empty table.

Now, please provide the verbalized description of the table:

Prompt for TableMaster – Table Verbalization

Figure 14: Prompt for table verbalization in TableMaster. Blue text indicates placeholders for vari-
ables within the prompt. The prompt guides the language model to verbalize the given table by
adding detailed descriptions and additional knowledge about the table.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Objective
You are provided with information from a table and a question related to the table.
Your task is to estimate whether the current information of the table can answer the question.

Table Information
Top Headers: {topheader_info}
Table Content:
{table}

Question
{question}

Response Format
The response should be in JSON format:
```json
{{

"results": True of False
}}
```

Prompt for TableMaster – Information Estimation

Figure 15: Prompt for information estimation in TableMaster. Blue text indicates placeholders for
variables within the prompt. The prompt guides the language model to evaluate the given table’s
content and determine whether it contains sufficient information to answer the provided question

Objective
You are provided with a table and a question related to the table.
Your task is to assess whether answering this question needs mathematical calculation.

Table
{table}

Question
{question}

Instructions
1. If the question can be directly answered using the information in the table, you should respond with `False`.
2. If the question involves counting something, you should respond with `True`.
3. If the question requires calculations based on the data in the table, you should respond with `True`.

Response Format
The response should be in JSON format:
```json
{{

"results": True of False
}}
```

Prompt for TableMaster – Reasoning Strategy Assessment

Figure 16: Prompt for reasoning strategy assessment in TableMaster. Blue text indicates placehold-
ers for variables within the prompt. The prompt guides the language model to evaluate whether
answering the given question requires direct information retrieval, counting, or mathematical calcu-
lations based on the table’s content. The response determines the subsequent reasoning strategy.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Objective
You are provided with a table, a verbalization of the table, and a question related to the table.
Your task is to reason step by step to answer the question based on the table.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table
{table}

Verbalized Table
{verbalized_table}

The answer should be short and simple. It can be a number, a word, or a phrase in the table, but not a full sentence.
Your response should end with `Answer: xxx` (answer to the question).

Your response should end with `Answer: true` or `Answer: false` (answer to the question).
If the table only contain headers and no rows, it indicates there is no information available for this question, therefore the answer
should be "false."

Now, give me the answer step by step:
Question: {question}

Prompt for TableMaster – Textual Reasoning

Question Answering

Fact Verification

Figure 17: Prompt for textual reasoning in TableMaster. Blue text represents placeholders for vari-
ables within the prompt, while the grey region indicates optional sections to adapt the prompt for
question-answering or fact-verification tasks. The prompt guides the language model to answer the
question step by step.

Objective
You are provided with a table, a verbalized table, and a question related to the table.
Your task is to give a step-by-step guidance to answer the question based on the table.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table
{table}

Verbalized Table
{verbalized_table}

You do not need to give the answer. You need to give a reasoning process as a guidance that will be used later.

Response Format
The response should be a list of steps:
1. xxx
2. xxx
...

Now, give me the guidance to answer the question step by step:
Question: {question}

Prompt for TableMaster – Textual Guidance Generation

Figure 18: Prompt for textual guidance generation in TableMaster. Blue text indicates placeholders
for variables within the prompt. The prompt guides the language model to generate textual guidance
that can be utilized for subsequent symbolic reasoning.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Objective
You are provided with a table, a verbalized table, a guidance, and a question related to the table.
Your task is to generate Python code that answers the question using the table and the guidance as a guide.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table
{table}

Verbalized Table
{verbalized_table}

Guidance
{textual_guidance}

Question
{question}

Instructions
1. The actual data of the table is stored in the variable `table` as a list of lists.
2. The result should be store in the variable `answer` as a string and do not need to print it.
3. You need to generate Python code within ```python``` code block.

Now, give me the executable python code to answer the question:
```python
table = {table_array}

Prompt for TableMaster – Symbolic Reasoning (Programming of Thought)

Figure 19: Prompt for symbolic reasoning in TableMaster. Blue text indicates placeholders for
variables within the prompt. The prompt guides the language model to generate Python code to
answer the question.

## Objective
You are provided with a process of text-guided reasoning with programming and a question related to the table.
Your task is to answer the question using the reasoning process.

## Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated 
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

## Table
{table}

## Textual Reasoning Process
{textual_reasoning_process}

## Programmed Reasoning Process
{symbolic_reasoning_process}

The answer should be short and simple. It can be a number, a word, or a phrase in the table, but not a full sentence.
Your response should be in the format of `Answer: xxx` (answer to the question).

Question: {question}
Answer:

Prompt for TableMaster – Answer Formatting

Figure 20: Prompt for answer formatting in TableMaster. Blue text indicates placeholders for vari-
ables within the prompt. The prompt guides the language model to format the final answer based on
the given table, question, and reasoning process.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Q PROMPTS USED IN ANALYSIS EXPERIMENTS

## Objective
You are provided with a table and a question related to the table.
Your task is to answer the question directly based on the table.

## Table
{table}

## Question
{question}

The answer should be short and simple. It can be a number, a word, or a phrase in the table, but not a full sentence.
Now, answer the question directly:
Answer: 

Prompt for Direct Baseline

Figure 21: Direct prompt for table understanding in analysis experiment. Blue text indicates place-
holders for variables within the prompt. The prompt guides the language model to directly give the
final answer based on the given table and question.

## Objective
You are provided with a table and a question related to the table.
Your task is to answer the question step by step based on the table.

## Table
{table}

## Question
{question}

The answer should be short and simple. It can be a number, a word, or a phrase in the table, but not a full sentence.
Your response should end with `Answer: xxx` (answer to the question).
Now, answer the question step by step:

Prompt for Chain of Thought Baseline

Figure 22: Chain of thought prompt for table understanding in analysis experiment. Blue text indi-
cates placeholders for variables within the prompt. The prompt guides the language model to give
the answer step by step based on the given table and question.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

## Objective
You are provided with a table and a question related to the table.
Your task is to answer the question based on the table by writing python code as a solution.

## Table
{table}

## Reasoning Instructions
1. You must use executable python code to solve the question.
2. The final answer should be variable named "answer" in the code.
3. Do not execute the code in the response.
4. The python code should be in the following format:
```python
your code here
```

Now, answer the question by writing python code as a solution:
Question: {question}
```python

Prompt for Program of Thought Baseline

Figure 23: Program of thought prompt for table understanding in analysis experiment. Blue text
indicates placeholders for variables within the prompt. The prompt guides the language model to
generate code to derive the answer based on the given table and question.

Objective
You are provided with a table in string format.
Your task is to convert the table into a detailed text description.

Table
{table}

Instructions
1. Provide a comprehensive description of the table.
2. Include all details and numerical values from the table in your response.
3. Do not omit or summarize any information from the table.
4. You may use external knowledge to enhance your understanding of the table, but the response must remain faithful to the table's
content.

Now, please provide the verbalized description of the table:

Prompt for Verbalization Baseline

Figure 24: Prompt for table verbalization in analysis experiment. Blue text indicates placeholders
for variables within the prompt. The prompt guides the language model to verbalize a table to add
detailed description.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Objective
You are provided with a table, and a question related to the table.
Your task is to give a step-by-step guidance to answer the question based on the table.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table
{table}

You do not need to give the answer. You need to give a reasoning process as a guidance that will be used later.
Keep the reasoning process concise and clear.
Control the number of steps in the reasoning process in the range of 1-5.

Response Format
The response should be a list of steps:
1. xxx
2. xxx
...

Now, give me the guidance to answer the question step by step:
Question: {question}

Prompt for Textual Guidance Generation

Figure 25: Prompt for textual guidance generation in analysis experiment. Blue text indicates place-
holders for variables within the prompt. The prompt guides the language model to generate textual
guidance that used for symbolic reasoning.

Question: {question}

Table: {table}

Method 1 Solution: {cot_prediction}
Method 1 Reasoning: {cot_reasoning}

Method 2 Solution: {pot_prediction}
Method 2 Reasoning: {pot_reasoning}

Please evaluate which method is better.
Respond in the following JSON format:
{{

"better_method": 1 or 2
}}

Prompt for Reasoning Strategy Evaluation

Figure 26: Prompt for reasoning strategy evaluation in analysis experiment. Blue text indicates
placeholders for variables within the prompt. The prompt guides the language model to select the
better reasoning process after table reasoning.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

You are provided with a table and a question related to the table.
Your task is to assess whether answering this question needs mathematical calculation.

Table
{table}

Question
{question}

Instructions
1. If the question can be easily answered using the information in the table, respond with False.
2. If the question involves comparison, respond with False.
2. When the question involves counting a substantial number (more than 5) of items or rows, respond with True.
3. If the question demands complex calculations or multi-step mathematical operations based on the table's data, the response should
be True.
4. For simple arithmetic or small-scale counting that requires minimal computational effort, respond with False.

Response Format
The response should be in JSON format:
```json
{{

"need_calculation": true/false
}}
```

Prompt for Reasoning Strategy Assessment in Adaptive Reasoning

Figure 27: Prompt for reasoning strategy evaluation in analysis experiment. Blue text indicates
placeholders for variables within the prompt. The prompt guides the language model to select the
better reasoning strategy before table reasoning.

Table:
{table}

Question:
{question}

Determine whether a calculation is required to answer the question, or if the question can be directly answered using the information in
the table.

Provide your response in the following JSON format:
{{

"need_calculation": true/false
}}

Prompt for Question Type Classification (Calculation Required)

Figure 28: Prompt for classifying a question type based on whether calculation is required in the
analysis experiment. Blue text indicates placeholders for variables within the prompt.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Given a table, you need to generate a new table by disrupting the content in the table.

Table:
{table}

Rules:
- Your goal is to make the content in each row within the same column follows a different format to increase diversity as much as
possible.
- You cannot change the structure of the table.
- You cannot add or remove any rows or columns.
- You cannot modify the column names in the first row.
- You can only alter the format of the content in each cell, not the actual values.
- You should not make the content in each row within the same column in the same format as much as possible.

Format Change Examples:
- Change a number format from 123456 to 123,456.
- Change a date format from 2024-01-01 to 2024/01/01.
- Simplify or abbreviate text content.

Provide your new table in the following JSON format:
```json
{{

"table": [[...], [...], [...]],
}}
```

Prompt for Noised Table Generation

Figure 29: Prompt for generating noised tables in the analysis experiment. Blue text represents
placeholders for variables within the prompt. The prompt instructs the language model to add noise
by altering the cell content format based on a given table.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

R NOTATION TABLE

Table 14 provides a comprehensive list of the notations used throughout this paper, along with their
corresponding descriptions. This table serves as a quick reference to help readers better understand
the concepts presented in our work.

Table 14: Notation used throughout the paper

Notation Description
General

Q Given question or query
A Generated answer
T Input table
TW Wild table before normalization
TN Normalized table
TF Table-of-Focus
Ci,j Cell in the i-th row and j-th column
m,n Number of rows and columns in the table

Table Structure Understanding
H Set of top headers
K Key column serving as row identifier
C Candidate column set
C0 Selected relevant columns
R Selected relevant rows
k Peek size for table processing

Table Content Understanding
TT Verbalized table (natural language text)
a′, b′ Number of refined columns and rows after reconstruction

Table Reasoning
S Selected reasoning strategy
T Textual reasoning strategy
S Symbolic reasoning strategy
G Textual reasoning guidance
P Program executor (Python/SQL)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

S THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models (LLMs) were used only to aid with writing and polishing the
manuscript. Specifically, LLMs were employed for grammar correction, phrasing suggestions, and
improving readability. All research ideas, methodological contributions, theoretical analyses, and
experiments were entirely conceived, designed, and executed by the authors without the involvement
of LLMs. The authors take full responsibility for the scientific content of the paper.

46

	Introduction
	Related Work
	Challenges in Table Understanding
	Difficulty in Locating Target Data
	Table Semantic Deficiency
	Numerical Inaccuracy in Textual Reasoning
	Semantic Inflexibility in Symbolic Reasoning

	TableMaster: A Recipe for Table Understanding
	Task Formulation
	Table Structure Understanding
	Table Content Understanding
	Table Reasoning for Question Answering

	Experiments
	Settings
	Main Results
	Ablation Study

	Conclusion
	Ethics Statement
	Scope, Key Contributions, and Comparison with Prior Work
	Limitations, Extendability, and Future Works
	Technical Refinement
	Downstream Applications

	Datasets Used for Evaluation
	Detailed Settings of Challenge Analysis Experiments
	Extended Experiments on Additional Table Understanding Benchmarks
	Evaluation on Free-form QA with the FetaQA Dataset
	Evaluation on Hierarchical Tables with the HiTab Dataset
	Evaluation on Numerical Reasoning with the FinQA Dataset

	Table Understanding Baselines
	Performance Analysis Under Different Table Sizes
	Performance Analysis Under Different Table Peek Sizes
	Efficiency Analysis of TableMaster
	Theoretical Analysis
	Empirical Analysis

	Detailed Algorithm of Table-of-Focus Re-Construction
	Analysis of Table-of-Focus Re-Construction
	Analysis of Adaptive Reasoning
	Information Missing and Table Reasoning with Full Table
	Case Study
	Case Study of Table Verbalization
	Case Study of TableMaster

	Prompt Design in TableMaster
	Prompts Used in Analysis Experiments
	Notation Table
	The Use of Large Language Models (LLMs)

