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Abstract
Deep learning is computationally intensive. Much
effort has been given to reduce the arithmetic com-
plexity whilst energy consumption is the most rel-
evant bottleneck, in which data movement is the
dominant part. In addition, the literature focus
has been on inference whereas training is sev-
eral times more intense. In this paper, we make
use of the Boolean neuron design and Boolean
logic backpropagation to train deep models in the
binary domain using Boolean logic instead of gra-
dient descent and real arithmetic. We propose a
detailed energy evaluation for both training and
inference phases. Our method achieves the best
results in standard image classification tasks and
consumes almost 27 times less energy with our
most efficient and best performing Boolean net-
work. This energy efficiency paves the way for
an edge device use, in particular for fine-tuning
large models on a dedicated task. In practice,
our approach outperforms the state-of-the-art se-
mantic segmentation and shows promising image
super-resolution performance.

1. Introduction
Running deep models, i.e., inference, requires considerable
computational resources, it is yet the tip of the iceberg. Deep
model training is an iterative process involving abundant
computation and data for learning. It incurs storing multiple
temporal variables and buffers for gradient computation
and parameter optimization. This intense process is further
repeated for hyper-parameter tuning, running for weeks
or months on specialized equipment, resulting in another
order of magnitude of carbon footprint and computational
resource requirement (Strubell et al., 2019).

The vast majority of works that target the resource con-
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strained training bottleneck focus on the number of arith-
metic operations (FLOPS or BOPS)(Garcı́a-Martı́n et al.,
2019; Qin et al., 2020a) rather than the consumed en-
ergy/memory. However, it has been shown that OPs number
is meaningless, even harmful, because it does not map di-
rectly to actual system complexity. Instead, energy and
memory consumption are the consistent and efficient mea-
sures of computing hardware (Sze et al., 2017; 2020; Yang
et al., 2017; Strubell et al., 2019). In particular, data move-
ment dominates computing in energy consumption and is
strictly tied to system architecture, memory hierarchy, and
dataflow (Kwon et al., 2019; Sim et al., 2019; Yang et al.,
2020a; Chen et al., 2016). Therefore, design effort subjected
to reducing OPs alone is inefficient. Currently, the main
approach to tackle such bottleneck is quantization. It is
becoming popular for LLMs (Frantar et al., 2022; Lin et al.,
2023; Kim et al., 2023) to enable inference on affordable
devices. But only post-training quantization is available
on standard GPUs. Better quantized models can be ob-
tained through quantization-aware training (Gupta et al.,
2015; Zhang et al., 2018a; Jin et al., 2021; Yamamoto, 2021;
Huang et al., 2021; Umuroglu et al., 2017), and quantized
training (Chen et al., 2020; Sun et al., 2020; Yang et al.,
2022; Chmiel et al., 2021), that reduce the numeric precision
of weights, activations, and dataflow from full-precision
(FP) to finite-precision format.

A special case of quantization-aware training is binarized
neural networks (BNNs) which were first proposed by Cour-
bariaux et al. (2015; 2016) and have been followed by a
huge amount of subsequent contributions (Gholami et al.,
2022; Zhao et al., 2020; Guo, 2018; Nagel et al., 2021). This
design usually binarizes weights and activations to obtain
principal forward computation blocks in binary. It learns
binarized weights via full-precision latent ones, which are
updated by the classical gradient descent backpropagation.
The gradient of the binarized variables is usually approxi-
mated by a differential proxy of the binarization function,
which is most often the identity proxy. Many concurrent
approaches (Bai et al., 2018; Ajanthan et al., 2019; 2021;
Lin et al., 2020b; Leconte et al., 2023) formulated the BNN
learning task as a constrained optimization problem and dis-
cussed different methods to generate binary weights from
real-valued latent ones. In practice, these works showed
that BNNs could achieve state-of-the-art accuracy in study-
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level classification problems such as CIFAR-10 or MNIST,
but suffer significant accuracy drop on more challenging
problems such as ImageNet (Rastegari et al., 2016; Qin
et al., 2020a). Besides the reduced network approximation
capacity due to lower data precision (Zhou et al., 2016),
the use of full-precision optimizers for estimating binary
weights are the causes of this degradation. To compensate
for this accuracy loss, most recent prominent works (Liu
et al., 2020; Nie et al., 2022; Guo et al., 2022) used multiple
full-precision components in the network, whereas only a
few dataflows have remained binary.

In this work we aim to answer whether energy-friendly deep
learning is possible both for inference and training all while
maintaining performance. For that, we explore Boolean
notions to define networks that are predominantly Boolean,
with low energy demands, and that are trained in the binary
domain. Extensive experimental evaluation is conducted on
a set of common vision tasks requiring moderate to higher
levels of accuracy.

Our contributions are: (1) We make use of Boolean neu-
ron design and Boolean logic backpropagation principle
for the training of deep models in binary domain. (2) We
introduce a new methodology to fairly assess the energy
complexity of both training and inference phases. (3) We
show competitive or state-of-the-art results of this design
in complex computer vision-related tasks, including image
super-resolution. (4) We show that employing pre-trained
Boolean NNs for edge device fine-tuning tasks, such as clas-
sification and segmentation, yields very good performances
at low energy cost.

2. Related works
Energy consumption is a fundamental metric for measuring
hardware complexity. However, it requires specific knowl-
edge of computing systems and makes it hard to estimate.
Only few results are available, though experimental-based
and limited to specific tested models, e.g., Gao et al. (2020);
Shao & Brooks (2013); Mei et al. (2014); Bianco et al.
(2018); Canziani et al. (2016); Garcı́a-Martı́n et al. (2019).
Although experimental evaluation is precise, it requires con-
siderable implementation efforts while not generalizing. In
addition, most relevant works are only limited to inference
and not training (Chen et al., 2016; Kwon et al., 2019; Yang
et al., 2020a). Therefore, developing an analytic method
to efficiently estimate training energy consumption is desir-
able.

Regarding NN architectures, significant advances have been
made on BNNs (Binarized Neural Networks) for the Ima-
geNet classification task, driving their performance to higher
grounds (Guo et al., 2022; Liu et al., 2020; Tu et al., 2022;
Lee et al., 2022; Zhang et al., 2022; Xing et al., 2022; Mar-
tinez et al., 2020; Wang et al., 2023b). These works, which

attempt to reduce the accuracy gap between BNNs and full-
precision networks, typically target the primary sources of
the computational burden of CNNs, essentially convolutions,
data-streams memory (both numeric type and size) and net-
work depth. Consequently, modern BNNs are improved
over the following three main areas.

Binarization strategy. It seeks to efficiently binarize real-
valued data. The sign function is the primary alternative
to binarize data-streams, with additional constraints on the
data like clipping (Zhang et al., 2022; Guo et al., 2022). Re-
ActNet (Liu et al., 2020) is a prominent work that proposes
RSign, a more general alternative to sign, which deals with
the fact that distributions may be shifted or biased. A more
recent option, Tu et al. (2022) argues that binary values {1,
−1} might restrain the approximation capabilities of BNNs,
which is why they binarize activations to two real values for
more representative power.

Optimization strategy. Since latent-based training (Cour-
bariaux et al., 2015) remains the underlying method for
updating binarized weights, a differential proxy of sign
is required. Different or modified alternatives to straight-
through-estimator (STE) have been proposed (Liu et al.,
2020). Piece-wise polynomials and hyper-parameterized
tanh have been used (Nie et al., 2022). The latent-based ap-
proach requires storing both binary and real parameters dur-
ing training. Furthermore, this approach typically requires
a sequential training of multiple stages where activations
and weights get progressively converted from full-precision
to binary types (Guo et al., 2022; Zhang et al., 2022; Xing
et al., 2022), resulting in longer training times. Modern
BNN methodologies (Xing et al., 2022; Liu et al., 2020;
Guo et al., 2022; Zhang et al., 2022; Tu et al., 2022; Lee
et al., 2022; Liu et al., 2022) agree on the fact that using
knowledge distillation (KD) closes the gap between BNNs
and full-precision models for which additional data aug-
mentation is needed to reduce the common overfitting of
BNNs (Guo et al., 2022). In most cases, a single teacher like
ResNet34 or ResNet50 suffices to significantly increase the
accuracy. More recently, using multi-KD with four teachers,
BNext (Guo et al., 2022), reached performances not reported
before. In this sense, existing works have investigated BNNs
from the perspective that network binarization is considered
as a plugin feature to an existing full-precision DNN. For
KD, the goal is to transfer the knowledge of a teacher model
to a smaller student model. If trained from scratch, the
student model generally performs worse than its teacher.
However, under the supervision of the teacher network, the
binary network can preserve the learning capability and
thus obtain comparable performance to the teacher network.
Consequently, the process still requires full-precision model
training, and cannot tackle the complexity problem of the
network training. Furthermore, KD-based training depends
on specialized teachers on a particular task, thus reducing
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functionality on new data. Helwegen et al. (2019); Wang
et al. (2021) proposed some heuristic and improvement of
the classic BNN latent-based optimizer.

Architecture design. ResNet (Liu et al., 2020; 2018; Guo
et al., 2022; Bethge et al., 2020) and MobileNet (Liu et al.,
2020; Guo et al., 2022) are the most frequent layouts. In
(Zhou et al., 2016; Rastegari et al., 2016) the authors ex-
perimented with Alexnet. Among these methodologies, the
basic blocks have been greatly transformed. Common mod-
ifications include additional shortcuts, automatic channel
scaling with Squeeze-and-Excitation (Zhang et al., 2022) or
block duplication plus concatenation in the channel domain
(Liu et al., 2020; Guo et al., 2022). Recent alternatives incor-
porate modules that better adapt the input domain to binary
dataflows (Xing et al., 2022), replace standard convolutions
with lighter pointwise convolutions (Liu et al., 2022), or
propose 1-bit alternatives of linear projections (Wang et al.,
2023a).

Since the release of ReActNet, the best results are obtained
by alternating low-precision dataflows to full-precision after
every binary convolution within the network. These works
substantially rely on real-valued dataflows during feedfor-
ward such as PReLU, Batch Normalization, FP scaling, and
further boost accuracy via KD. This highlights the need for
native binary neural networks (Nguyen, 2023), and a precise
complexity evaluation method to be able to assess gains in
regards of memory, energy, and latency.

3. Method
3.1. Boolean training

The design and training of Boolean layers follows the prin-
ciple proposed by Nguyen (2023). For illustration purpose,
Algorithm 1 presents a pseudo code of our implementation
of a Boolean fully-connected layer that uses Boolean logic
B e.g. XOR, XNOR, or any other. In the forward pass, at it-
eration t, input xl,t is buffered for later use in the backward,
and the jth neuron output at kth sample is computed as:

xl+1,t
k,j = wl0,j +

m∑
i=1

B
(
xlk,i, w

l
i,j

)
, (1)

∀k ∈ [1,K],∀j ∈ [1, n] where K, m, n are, resp., the
training mini-batch, layer input and output size. Here, to
take into account the case of real-valued input data, defi-
nitions due to Nguyen (2023) are presented in the follow-
ing. For x ∈ R, define xbool = True ⇔ x ≥ 0, and
xbool = False⇔ x < 0, and |x| its magnitude. Then, logic
operation between x ∈ R and b ∈ {False,True} is defined
according to (Nguyen, 2023) as follows:

B(b, x)
def
= y, s.t. ybool = B(b, xbool), and |y| = |x|.

Algorithm 1: Illustration of Boolean training with a
fully-connected layer.
Input :Learning rate η, nb iterations T ;

1 Initialize
2 ml,0

i,j = 0; β0 = 1;
3 for t = 0, . . . , T − 1 do

/* 1. Forward */

4 Receive and buffer xl,t;
5 Compute xl+1,t following (1);

/* 2. Backward */

6 Receive gl+1,t;
/* 2.1 Backpropagation */

7 Compute and backpropagate gl,t following (2);
/* 2.2 Weight update */

8 Ctot := 0, Ckept := 0;
9 foreach wl

i,j do
10 Compute ql,t+1

i,j following (3);
11 Update ml,t+1

i,j = βtml,t
i,j + ηtql,t+1

i,j ;
12 Ctot ← Ctot + 1;
13 if XNOR(ml,t+1

i,j , wl,t
i,j) = True then

14 wl,t+1
i,j ← ¬wl,t

i,j ; /* invert */

15 ml,t+1
i,j ← 0;

16 else
17 wl,t+1

i,j ← wl,t
i,j ; /* keep */

18 Ckept ← Ckept + 1;
19 Release buffer xl,t;
20 Update βt+1 ← Ckept/Ctot ;
21 Update ηt+1;

In the backward pass, this layer receives gl+1,t from down-
stream layer l + 1, which is usually an activation or a batch
normalization (BN) layer. The backpropagation through bi-
nary activation function is considered for two cases: without
vs. with BN. In the first case, arithmetic layer is directly
followed by the binary activation to avoid BN for complex-
ity reduction, tanh′ is used as the backward activation. In
the second case, a simple approximation such as the one
proposed by (Liu et al., 2018) can be used. Then, backprop-
agation signal gl,t, cf . line 7 in Algorithm 1, is computed
following Nguyen (2023) as:

gl,tk,i =

n∑
j=1

1
(
gl,tk,i,j = True

)
|gl,tk,i,j |

−
n∑
j=1

1
(
gl,tk,i,j = False

)
|gl,tk,i,j |, (2)

∀k ∈ [1,K],∀i ∈ [1,m], where gl,tk,i,j is given according to
Nguyen (2023) for the utilized logic B, for example:

gl,tk,i,j =

{
XNOR(gl+1,t

k,j ,¬wl,ti,j), for XOR neuron,
XNOR(gl+1,t

k,j , wl,ti,j), for XNOR neuron,

in which ¬ is the logic negation. Optimization signal at line
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10 in Alogrithm 1 is given according to (Nguyen, 2023) as:

ql,t+1
i,j =

K∑
k=1

1
(
ql,ti,j,k = True

)
|ql,ti,j,k|

−
K∑
k=1

1
(
ql,ti,j,k = False

)
|ql,ti,j,k|, (3)

∀i ∈ [1,m],∀j ∈ [1, n] where

ql,ti,j,k =

{
XNOR(gl+1,t

k,j ,¬xl,tk,i), for XOR neuron,
XNOR(gl+1,t

k,j , xl,tk,i), for XNOR neuron.

Finally, the weights are updated in lines 13–18 of Algorithm
1 just following the rule formulated in Nguyen (2023).

3.2. Energy estimation

Energy consumption is a fundamental metric for measuring
hardware complexity. However, it requires specific knowl-
edge of computing systems and makes it hard to estimate.
Few results are available, though experimental-based and
limited to specific tested models, e.g. (Gao et al., 2020;
Shao & Brooks, 2013; Mei et al., 2014; Bianco et al., 2018;
Canziani et al., 2016; Garcı́a-Martı́n et al., 2019). Although
experimental evaluation is precise, it requires considerable
implementation efforts while not generalizing. In addition,
most relevant works are only limited to inference and not
training. (Chen et al., 2016; Kwon et al., 2019; Yang et al.,
2020a).

3.2.1. HARDWARE SPECIFICATION

In this work, we intend to estimate the training energy con-
sumption on Ascend chip architecture introduced in Liao
et al. (2021) and dedicated to DNN computing. Its evalu-
ation on GPU hardware is subject to future work. Ascend
architecture has achieved important commercial successes
with more than 100 million chips that have been used in
real products for applications ranging from smartwatches,
smartphones, and smart cars to intelligent clouds.

The core design of Ascend is well described in (Liao et al.,
2021). Essentially, it introduces a 3D (cube) computing unit,
providing the bulk of high-intensity computation and in-
creasing data reuse. On the other hand, it provides multiple
levels of on-chip memory. In particular, memory L0, which
is nearest to the computing cube, is tripled to boost further
near-memory computing capability, namely L0-A dedicated
to the left-hand-side (LHS) input data, L0-B dedicated to
RHS input data, and L0-C for the output. For instance, in
a convolution, L0-A, L0-B, and L0-C correspond to the
input feature maps (ifmaps), filters, and output feature maps
(ofmaps), resp. In addition, the output results going through
L0-C can be processed by a Vector Unit for in-place opera-
tions such as normalization and activation. Table 1 shows

energy efficiency and capacity of the memory hierarchy of
a commercial Ascend architecture (Liao et al., 2021).

3.2.2. COMPUTE ENERGY

Energy consumption is the sum of compute and memory
energies. Compute energy is simply given by the number
of arithmetic operations multiplied by their unit cost. The
number of arithmetic operations is directly determined from
the layer’s parameters. Their unit cost is obtained by con-
sidering the compute efficiency at 1.7 TOPS/W (Liao et al.,
2021). For Boolean logic operations, we follow the usual
estimation that ADD INT-n costs (2n− 1) logic operations
where n stands for bitwidth.

3.2.3. MEMORY ENERGY

On the other hand, memory energy is all consumed for mov-
ing data between their storage through memory levels and
the computing unit during the entire lifetime of the process.
Since energy consumed at each memory level is given by
the number of data accesses to that level times per-access en-
ergy cost, it consists in determining the number of accesses
to each level of all data streams (i.e., LHS, RHS, Output).
Besides taking into account the hardware architecture and
memory hierarchy of Ascend chip, our approach to quanti-
fying memory energy is based on existing methods (Chen
et al., 2016; Sze et al., 2017; Kwon et al., 2019; Yang et al.,
2020a; Horowitz, 2014; Yang et al., 2017) for dataflow and
energy evaluation. Given the layer parameters and memory
hierarchy, it amounts to 1© Tiling: determining the tiling
strategy for allocating data streams on each memory level;
and 2© Data movement: specifying how data streams are
reused or kept stationary to determine their access numbers.
In the following, we present our method for the forward and
backward passes by taking the example of a convolution
layer, as convolutions are the main components of CNNs
and the primary source of complexity due to their high data
reuse. Denote by I , F , and O its ifmaps, filters, and ofmaps,
respectively.

Tiling. Since the ifmaps and filters are usually too large to
be stored in buffers, the tiling strategy is aimed at efficiently
transferring them to the computing unit. For the forward,
denote tiling parameters of ifmaps and filters at memory

L3 (DRAM) L2 L1 L0-A L0-B L0-C

EE [GBPS/mW] 0.02 0.2 0.4 4.9 3.5 5.4

Capacity [KB] − 8192 1024 64 64 256

Table 1: Memory hierarchy and energy efficiency (EE) of
an Ascend core (Liao et al., 2021) used in our evaluation.
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level i as follows:

Ifmaps : [Ni, Ci, H
I
i ,W

I
i ], Filters : [Mi, Ci, H

F ,WF ],

where HF ×WF is the filter size, and the remaining nota-
tions are used as follows: N –batch size, M –output chan-
nels, C –input channels, H –height, and W –width. Tiling
is to determine all these parameters, which is an NP-Hard
problem (Yang et al., 2020a). The strategy that we follow is
to maximize the buffer utilization as well as near compute
stationary (i.e., as much reuse as possible to reduce the num-
ber of accesses to higher levels). An iterative search over
possibilities subject to memory capacity constraint provides
tiling combinations of ifmaps and filters on each memory
level. The tiling parameters used in this design are listed in
the appendix.

Data movement. For data movement, at level L0, sev-
eral data stationary strategies, called dataflows, have been
proposed in the literature, notably weight, input, output,
and row stationary (Chen et al., 2016). Since Ascend chip
provides tripled L0 buffers, partial sums can be directly sta-
tionary in the computing cube, hence equivalent to output
stationary whose implementation is described in (Du et al.,
2015). For the remaining levels, our question of interest is
how to move ifmaps block [Ni+1, Ci+1, H

I
i+1,W

I
i+1] and

filters block [Mi+1, Ci+1, H
F ,WF ] from level i+1 to level

i efficiently. Considering that: (i) ifmaps are reused by the
filters over output channels, (ii) filters are reused over the
ifmaps spatial dimensions, (iii) filters are reused over the
batch dimension, (iv) ifmaps are usually very large whereas
filters are small, the strategy that we follow is to keep fil-
ters stationary on level i and cycle through ifmaps when
fetching them from level i + 1 as shown in ?? 2. Therein,
filters and ifmaps are read block-by-block of their tiling
sizes, i.e., filters block [Mi, Ci, H

F ,WF ] and ifmaps block
[Ni, Ci, H

I
i ,W

I
i ]. Hence, the number of filter accesses to

level i + 1 is 1 whereas the number of ifmaps accesses to
level i + 1 equals the number of level-i filters blocks con-
tained in level i + 1. Following this method, the number
of accesses to memory levels of each data stream can be
determined. Hence, denote by ndi the number of accesses to
level i of data d, and εi the energy cost of accessing level
i, given as the inverse of energy efficiency from Table 1.
Following (Chen et al., 2016), the energy cost of moving
data d from DRAM (L3) into the cube is given as:

Ed = nd3ε3 + nd3n
d
2ε2 + nd3n

d
2n

d
1ε1 + nd3n

d
2n

d
1n

d
0ε0. (4)

Regarding the output partial sums, the number of accumu-
lations at each level is defined as the number of times each
data goes in and out of its lower-cost levels during its life-
time. Its data movement energy is then given as:

EO = (2nO3 − 1)ε3 + 2nO3 (nO2 − 1)ε2

+ 2nO3 n
O
2 (nO1 − 1)ε1 + 2nO3 n

O
2 n

O
1 (nO0 − 1)ε0, (5)

Algorithm 2: Data movement from i+ 1 to i levels
Input: tiling parameters of ifmaps and filters at levels

i+ 1 and i.
1 repeat
2 read next filters block of size [Mi, Ci, H

F ,WF ]
from levels i+ 1 to i;

3 repeat
4 read next ifmaps block of size

[Ni, Ci, H
I
i ,W

I
i ] from levels i+ 1 to i;

5 let the data loaded to i be processed;
6 until all ifmaps are read into level i;
7 until all filters are read into level i;

where factor of 2 accounts for both reads and writes and the
subtraction of 1 is because we have only one write in the
beginning (Chen et al., 2016). The appendix provides more
details on the number of reuses at each memory level.

Backward. For the backward pass, given that ∂Loss/∂O
is backpropagated from the downstream, it consists in com-
puting ∂Loss/∂F and ∂Loss/∂I . Following the derivation
of backpropagation in CNNs by (Zhang, 2016), it is given
that:

∂Loss/∂F = Conv(I, ∂Loss/∂O), (6)
∂Loss/∂I = Conv(Rotπ(F ), ∂Loss/∂O), (7)

where Rotπ(F ) is the filter rotated by 180-degree. As a
result, the backward computation structure is also convolu-
tion operations, hence follows the same process as detailed
above for the forward pass.

4. Experiments
Our design was benchmarked on different computer vision
tasks: classification (using CIFAR-10 (Krizhevsky et al.,
2009) and ImageNet (Krizhevsky et al., 2012)) and super-
resolution (using DIV2k (Agustsson & Timofte, 2017; Timo-
fte et al., 2017), Set5 (Bevilacqua et al., 2012), Set14 (Zeyde
et al., 2012), BSD100 (Huang et al., 2015), and Urban100
(Martin et al., 2001)).

In addition, to conceal that our Boolean Logic is advan-
tageous for edge device learning, we explore the scenario
where a pretrained model is deployed to an edge device, i.e.
fine tuning. On this regard, we analyze two tasks: classi-
fication and segmentation. For classification, the trained
Boolean VGG-Small architecture is fine-tuned over CIFAR-
100. For segmentation, the trained Boolean ResNet18 is
used as backbone on DeepLabv3 (Chen et al., 2017) and
fine-tuned over the Cityscapes (Cordts et al., 2016), and
Pascal VOC 2012 (Everingham et al.) datasets.

In all benchmarks, the Boolean model was built following
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Method W/A Acc.(%) Cons.(%) Gain (×)

Full-precision (Zhang et al., 2018a) 32/32 93.80 100.00 1.00
BinaryConnect (Courbariaux et al., 2015) 1/32 90.10 38.58 2.59

XNOR-Net (Rastegari et al., 2016) 1/1 89.83 34.21 2.92
Hubara et al. (Hubara et al., 2017) 1/1 89.85 32.60 3.06

Boolean w/o BN (Ours) 1/1 90.29 3.64 27.42
Boolean with BN (Ours) 1/1 92.37 4.87 20.53

Table 2: Experimental results with the standard VGG-Small
(ending with 3 FC layers) baseline on CIFAR-10. Energy
consumption is evaluated on 1 iteration. ‘Cons’ and ‘Gain‘
are the energy consumption and gain w.r.t. the FP baseline.

the sketch of the baseline full-precision (FP) architecture
such that its arithmetic layers are Boolean and removing
FP-specific components, such as ReLU, PReLU activations
or BatchNorm (unless mentioned otherwise). Following
the literature (Chmiel et al., 2021), the first and the last
layers were kept in FP. Adam (Kingma & Ba, 2014) was
used as the optimizer of these FP layers, while our Boolean
optimizer was used on the remaining Boolean part. The full
details of all experiments are provided in the supplementary
material.

4.1. Image classification

Proof of the proposed concept was initially validated on
CIFAR-10 with VGG-Small (Simonyan & Zisserman, 2014)
baseline. In the experiments, our boolean architecture fol-
lows the layout of (Courbariaux et al., 2015), except that we
exclude batch normalization. This configuration obtained a
top-1 accuracy of 90.29± 0.09% (estimated over six repeti-
tions), showing similar performance to (Courbariaux et al.,
2015), which has 32-bit activations and is full-precision dur-
ing training (see Table 2). Higher performances are obtained
when including batch normalization after convolutions and
the activation from (Liu et al., 2018) (referred to as Boolean
with BN in the table), with a classification performance
equal to 92.37 ± 0.01% (estimated over five repetitions)
which is almost 1 point closer to the FP counterpart. Com-
plementary comparisons with other methodologies using the
modified version of VGG-Small (ending with 1 FC layer)
are available in the supplementary material.

In terms of energy, it is clear that our Boolean methodol-
ogy is much more energy efficient for inference and train-
ing than latent-based training, which uses FP data streams.
Compared to the FP network, our methodology with and
without BN achieves 20.53× and 27.42× gain in energy,
respectively. Notably, the use of BN provides greater net-
work accuracy at the expense of a slight increase in energy
consumption. Yet, even with BN, our methodology provides
the best energy/accuracy ratio of all methods.

For ImageNet classification, we use the ResNet18 (He et al.,
2015) baseline to validate our Boolean methodology with
and without BN. In the former case, our network follows

(Liu et al., 2018) to define the basic block, whilst replac-
ing the average pooling by a Boolean activation on down-
sampling blocks, see Figure 7a. The latter case, Boolean w/o
BN, uses the Boolean arithmetic components and Boolean
activations arranged as the FP analogues in the original
down-sampling block (He et al., 2015), see Figure 7b.

(a) Block with BN. (b) Block w/o BN.
Figure 1: Proposed Boolean blocks used in the ResNet18
baseline. In the Boolean convolutions,M andN correspond
to input and output tensor depth, respectively.

Table 3 presents the results of this experiment. In the com-
parison, we include methodologies using the standard ar-
chitecture, and also architectures with additional training
strategies to increase performance. For instance, models
with larger size, FP data propagation throughout the network
via residuals and knowledge distillation (KD)-based learn-
ing (with a ResNet34 teacher). In addition to Boolean logic
training, it is important to emphasize that our concept has
streamlined Boolean architecture. In contrast, the compar-
ative BNNs methods heavily enrich the network with full-
precision components, e.g., FP shifts (Liu et al., 2020), FP
attention weights (Guo et al., 2022) or FP scalars on binary
weights (Rastegari et al., 2016) (details are provided in the
supplementary material). Even deprived of such FP mecha-
nisms, our native Boolean learning methodology achieves
the best accuracy on learning with the basic architecture and
without a teacher. In both modalities, our method proves to
be the most favorable from the energy point of view, reduc-
ing by up to 11.21× the energy consumption of 32-bit FP
training and several orders of magnitude better than the pop-
ular Bi-RealNet. These findings are paramount for training
on low powerful computing devices. Further, based on ap-
proximation theory showing that reduced-precision models
require a larger size to close the gap to full-precision coun-
terparts (Elbrächter et al., 2021), we investigated how much
Boolean models need to be enlarged to reach full-precision
performance. Table 3 shows that the Boolean concept re-
covers totally and outperforms the FP level by 4× filter
enlarging, i.e., base 256, at which it still provides 2.58× en-
ergy reduction. It also outperforms PokeBNN (Zhang et al.,
2022), which uses ResNet50 as a teacher. In order to avoid
additional computational burden during evaluation, the log-
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its predicted from the ResNet34 teacher were precomputed
before launching the experiments.

Training Method Acc. Cons. Gain
Modality (%) (%) (×)

Baseline ResNet18 (He et al., 2015) 69.7 100.00 1.00

BNN (Courbariaux et al., 2016) 42.2 −− −−
XNOR-Net (Rastegari et al., 2016) 51.2 −− −−

Ours with BN (Base 64) 51.8 8.92 11.21

FP Shortcut Bi-RealNet:18 (Liu et al., 2018) 56.4 46.60 2.15

Larger
Models

Bi-RealNet:34 (Liu et al., 2018) 62.2 80.00 1.25
Bi-RealNet:152 (Liu et al., 2018) 64.5 −− −−

Melius-Net:29 (Bethge et al., 2020) 65.8 −− −−
Ours w/o BN (Base 256) 66.9 38.82 2.58

KD:
ResNet34

Real2Binary (Martinez et al., 2020) 65.4 −− −−
ReActNet-ResNet18 (Liu et al., 2020) 65.5 45.43 2.20

BNext:18 (Guo et al., 2022) 68.4 47.48 2.11
Ours with BN (Base 192) 65.9 26.91 3.72
Ours w/o BN (Base 256) 70.0 38.82 2.58

KD: ResNet50 PokeBNN-ResNet18 (Zhang et al., 2022) 65.2 −− −−

Table 3: ImageNet classification performance for multiple
binary methodologies using different training settings on
the ResNet18 baseline. Energy consumption is evaluated on
1 iteration. ‘Base’ refers to the output channel of the first
convolution. ‘Cons’ and ‘Gain‘ are the energy consumption
and gain w.r.t. the FP baseline.

For completeness, we also implemented neural gradient
quantization to quantize it by using INT4 quantization with
logarithmic round-to-nearest approach (Chmiel et al., 2021)
and statistics aware weight binning (Choi et al., 2018). On
ImageNet, we confirm that 4 bits quantization is enough to
recover standard backpropagation performances (67.53% in
100 epochs, more details in the appendix).

4.2. Fine-tuning

The detailed energy analysis from Section 3.2 indicates that
our method consumes significantly less energy than other
popular BNN methodologies (see Table 2). This suggests
that Boolean trained networks are particularly well suited
for training and fine-tuning on low capacity devices. The
main idea is to take advantage of a large central server that
is amenable to gather large number of samples for training
a Boolean NN with low error. This pre-trained network is
then downloaded by edge devices. We assume edge devices
have limited computational capacity, and limited access to
data. Hence, our goal is to employ a Boolean backbone, and
fine-tune it locally (i.e. directly on-device).

4.2.1. BOOLEAN FINE-TUNING FOR CLASSIFICATION

For this experiment, we aim at exploring the adaptation
capabilities of our methodology to similar problems but
different data. We used the VGG-Small architecture trained
on CIFAR-10 and fine-tune to CIFAR-100. We also show
the results when the starting model was trained on CIFAR-
100 and fine-tuned to CIFAR-10. In all experiments the
results are provided without BN on the architectures.

Ref. Method Model
Init.

Train./FT
Dataset

Bitwidth
W/A/G

Acc.
(%)

A Baseline FP Random CIFAR-10 32/32/32 95.27
B Baseline FP 1 Random CIFAR-100 32/32/32 77.27
C Ours Random CIFAR-10 1/1/16 90.29
D Ours1 Random CIFAR-100 1/1/16 68.43
E Baseline FP1 A CIFAR-100 32/32/32 76.74
F Ours1 C CIFAR-100 1/1/16 68.37
G Baseline FP B CIFAR-10 32/32/32 95.77
H Ours D CIFAR-10 1/1/16 92.09

Table 4: Top-1 accuracy of the proposed Boolean methodol-
ogy with the VGG-Small architecture fine-tuned on CIFAR-
10 and CIFAR-100. ‘FT’ means ‘Fine-Tuning’.

Table 4 shows the set of fine-tuning experiments performed
on VGG-Small. For all our experiments, including the
reproduction of the FP baseline, we used during training:
random horizontal flip and mixup learning (with random
alpha blending factor up to 0.2). Notice that fine-tuning
our trained Boolean model on CIFAR-100 (Ref. F) yields
a model that is almost identical to the Boolean model that
was entirely trained from scratch (Ref. D). Even more
outstanding is the case when the Boolean model is fune-
tuned on CIFAR-10 (Ref. H), with the final prediction
accuracy being 1.8% higher than the Boolean model trained
from random initialization (Ref. C).

These results indicate that our methodology adequately cap-
tures the underlying information needed to characterize an
object, in the sense of classification. In particular, when
fine-tuning to CIFAR-10 it takes advantage of its initial
spectrum of learned categories to better adjust the weights
to new classes. In this case, even from the first epoch it
gets 80.91%, surpassing 90% of the final accuracy of the
reference model (Ref. C). Correspondingly, fine-tuning to
CIFAR-100 requires considerably more training to reach
90% of the final accuracy of the reference model (Ref. D).
This is mainly because the number of categories is 10 times
larger with less labels per class, see Figure 2. It is worth not-
ing that, as in the FP models, the fine tuning of our Boolean
models also ensures robust learning when the initial model
was trained on a more complex task.

(a) (b)
Figure 2: Accuracy curves during fine-tuning (blue & thin
line) and number of epochs required to reach 90% of the
final accuracy of reference models (red & thick line).

1VGG-Small with the last FC layer mapping to 100 classes.

7



Boolean Logic for Low-Energy Deep Learning

4.2.2. BOOLEAN FINE-TUNING FOR SEGMENTATION

We have extended the application of our novel Boolean
Logic training methodology to the realm of semantic seg-
mentation, a task that necessitates pixel-level classification
and thus requires highly detailed feature extraction. This is a
formidable challenge for highly quantized networks. Lever-
aging the success of our method in image classification, we
adapted the same network architecture, to cater to the intri-
cacies of semantic segmentation. For this experiment the
baseline is the DeepLabv3 (Chen et al., 2017) network struc-
ture using as backbone the pretrained Boolean ResNet18
without BN (Figure 7b) and followed by the Boolean Atrous
Pyramid Pooling (BoolASPP) module. Our experimental
findings demonstrate that this approach not only retains
the inherent lightweight advantages of extremely quantized
NNs, but also markedly improves the performance in com-
plex semantic segmentation tasks.

We utilized the AdamW (Loshchilov & Hutter, 2017) op-
timizer with an initial learning rate of 5 × 10−4 for real
parameters, and the Boolean Logic optimizer with an initial
learning rate of 12 for Boolean parameters. Given the dis-
tinct characteristics of Boolean logic learning, particularly
in the early stages of training, we noticed a tendency for
parameters to flip easily due to large backward signals in se-
mantic segmentation tasks. This issue is further exacerbated
by the fact that each pixel in the image contributes to the
backward signal, even in small batch sizes. To better pre-
serve the integrity of the pretrained backbone, we reduced
the Boolean learning rate within the backbone from 12 to 6.
Throughout the process, we employed a polynomial learning
rate policy with a power factor of p = 0.9 for all parameters
and conducted the optimization using the cross-entropy loss
function. The model was trained on Cityscapes (Cordts
et al., 2016) dataset for 140K iterations, or on Pascal VOC
2012 dataset (Everingham et al.) for 80K iterations, with a
batch size of 8. It is also noteworthy that we refrained from
using auxiliary loss or knowledge distillation techniques, as
these methods introduce additional computational burdens,
which contradict our goal of efficient on-device training.

As demonstrated in Table 5, our proposed method attains a
mIoU of 67.4% on the Cityscapes dataset. This performance
significantly surpasses previous BNN attempts and closely
approaches the efficacy of full-precision networks. Simi-
larly, our methodology yields results close to the FP baseline
on the Pascal VOC 2012 dataset. Notably, this enhancement
is achieved without necessitating the intermediary use of
floating-point parameters during the training process, under-
scoring the efficiency and efficacy of our approach.

4.3. Image super-resolution

We evaluate our Boolean design capabilities to synthesize
data. In order to capitalize efficiency, we used the small

Dataset Model mIoU (%)

Cityscapes
FP baseline 70.7

Binary DAD-Net (Frickenstein et al., 2020) 58.1
Ours 67.4

Pascal VOC 2012 FP baseline 72.1
Ours 67.3

Table 5: Performance on image segmentation tasks.

version of the popular EDSR method (Lim et al., 2017) for
super-resolution, with eight residual blocks, later referred
to as Small EDSR. Our Boolean architecture uses Boolean
residual blocks as the proposed for image classification, see
Figure 7b. The results with the modified FP counterpart
were obtained using the official implementation2.

Table 6 summarizes the results of our experiments. The pro-
posed Boolean Logic methodology obtains values very close
to those of the FP reference at each task. It shows the best re-
sults for datasets like Set14 and BSD100. Notoriously, as is
the case for the reference method, the Boolean methodology
suffers significant performance reduction when the desired
scaling factor is ×4. Notice that on high-resolution images
like Div2K, our method generates images with high PSNR,
even higher on low-resolution images like Set5. These
results demonstrate that our Boolean methodology can per-
form pretty well on detail-demanding tasks while being
considerably robust to image resolution.

Task Method Set5 Set14 BSD100 Urban100 Div2K

×2
Full EDSR (FP) 38.11 33.92 32.32 32.93 35.03
Small EDSR (FP) 38.01 33.63 32.19 31.60 34.67
Ours 37.42 33.00 31.75 30.26 33.82

×3
Full EDSR (FP) 34.65 30.52 29.25 −− 31.26
Small EDSR (FP) 34.37 30.24 29.10 −− 30.93
Ours 33.56 29.70 28.72 −− 30.22

×4
Full EDSR (FP) 32.46 28.80 27.71 26.64 29.25
Small EDSR (FP) 32.17 28.53 27.62 26.14 29.04
Ours 31.23 27.97 27.24 25.12 28.36

Table 6: PSNR (dB) Performance of the proposed Boolean
methodology for super-resolution using the EDSR baseline.

5. Conclusion
We have presented a method for training deep neural net-
works that is provably efficient for resource-constrained
environments. In particular, we have developed a method to
estimate the energy consumption of NN training and apply
it to our Boolean architectures. Our results suggest that
full-precision performance can be totally recovered by en-
larged Boolean models while gaining multifold complexity
reduction. One can fine-tune these energy-efficient models
on edge devices for specific tasks. Our experiments high-
light that Boolean models can handle finer tasks, contrary
to the misbelief that binary models only work for image
classification.

2https://github.com/sanghyun-son/EDSR-PyTorch
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Supplementary Material

A. Memory energy
This section provides supplementary details on how the number of accesses to each memory level in Ascend chip architecture
is determined by taking as example a 2D convolution layer whose parameters are summarized in Table 7.

A.1. Forward

In the forward pass, there are three types of input data reuse:

• For an HI ×W I ifmap, there are HO ×WO convolutions performed with a single HF ×WF filter to generate a
partial sum. The filter is reused HO ×WO times, and this type of reuse is defined as filter convolutional reuse. Also,
each feature in the ifmaps is reused HF ×WF times, and this is called feature convolutional reuse.

• Each ifmap is further reused across M filters to generate M output channels. This is called ifmaps reuse.

• Each filter is further reused across the batch of N ifmaps. This type of reuse is called filter reuse.

As mentioned in Section 3.2, a loop tiling strategy for convolutional layers is necessary in order to transmit ifmaps and
filters through the memory hierarchy efficiently. Determining tiling parameters, which are summarized in Table 8, is a
combinatorial problem. Different approaches can be used and ?? 3 shows an example that explores the best tiling parameters
subjected to maximizing the buffer utilization and near compute stationary. Therein, the amount of data stored in level i is

Parameter Description

N batch size

M number of ofmaps channels

C number of ifmaps channels

HI/W I ifmaps plane height/width

HF /WF filters plane height/width

HO/WO ofmaps plane height/width

Table 7: Shape parameters of a convolution layer.

Parameter Description

M2 number of tiling weights in L2 buffer

M1 number of tiling weights in L1 buffer

M0 number of tiling weights in L0-B buffer

N2 number of tiling ifmaps in L2 buffer

N1 number of tiling ifmaps in L1 buffer

N0 number of tiling ifmaps in L0-A buffer

HI
2/W

I
2 height/width of tiling ifmaps in L2 buffer

HI
1/W

I
1 height/width of tiling ifmaps in L2 buffer

HI
0/W

I
0 height/width of tiling ifmaps in L0-A buffer

Table 8: Tiling parameters of a convolution layer.
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Algorithm 3: Loop tiling strategy in the ith level
Input: tiling parameters of ifmaps and filters at level i+ 1, and buffer capacity of level i.
Output: tiling parameters of ifmaps and filters at level i.

1 Initialize
2 Emin :=∞;
3 for Mi ←Mi+1 to 1 do
4 for Ni ← Ni+1 to 1 do
5 for HI

i ← HI
i+1 to HF do

6 for W I
i ←W I

i+1 to WF do
7 Calculate Qi, the required amount of ifmaps and filters to be stored in the ith level of capacity Qmax

i ;
8 Calculate Ei, the energy cost of moving ifmaps and filters from the ith level;
9 if (Qi ≤ Qmax

i ) and (Ei < Emin) then
10 Retain tiling parameters as best;
11 Emin ← Ei;

12 return Best tiling parameters

Data DRAM (L3) L2 L1 L0

I (nIi )
⌈
M
M2

⌉
× αv

αv
2
× αh

αh
2

⌈
M2

M1

⌉
× αv

2

αv
1
× αh

2

αh
1

⌈
M1

M0

⌉
× αv

1

αv
0
× αh

1

αh
0

HF ×WF × αv0 × αh0

F (nFi ) 1
⌈
N
N2

⌉
×
⌈
HO

HO
2

⌉
×
⌈
WO

WO
2

⌉ ⌈
N2

N1

⌉
×
⌈HO

2

HO
1

⌉
×
⌈WO

2

WO
1

⌉ ⌈
N1

N0

⌉
×
⌈HO

1

HO
0

⌉
×
⌈WO

1

WO
0

⌉
O (nOi ) 1 1 1 1

Table 9: Numbers of accesses at different memory levels of forward convolution.

calculated as:
QIi = Ni × Ci ×HI

i ×W I
i × bI ,

QFi = Mi × Ci ×HF ×WF × bF ,
(8)

where QIi /Q
F
i and bI/bF represent the memory and bitwidth of ifmaps/filters, respectively. From the obtained tiling

parameters, the number of accesses that is used for (4) and (5) is determined by taking into account the data movement
strategy as shown in ?? 2. As a result, Table 9 summarizes the number of accesses to memory levels for each data type in
the forward pass. Therein, αv = HO/HI , αh = WO/W I , HO

i /W
O
i define the height/width of tiling ofmaps in Li buffers,

αvi = HO
i /H

I
i , and αhi = WO

i /W
I
i for i = 2, 1, and 0.

A.2. Backward

In the backward pass, it consists in computing two gradients ∂Loss/∂F and ∂Loss/∂I . As described in Section 3.2, we can
evaluate the memory energy of the backward pass by following the exact mechanism of the forward pass with the respective
shape parameters. For instance, Table 10 summarizes the number of accesses at each memory level in the backward pass
when calculating the gradient GI = ∂Loss/∂I . Therein, Ci defines the number of tiling ifmaps in Li buffer, βv = HI/HO,
βh = W I/WO, βvi = HI

i /H
O
i , and βhi = W I

i /W
O
i for i = 2, 1, and 0.

B. Experimental design
B.1. Training setup

The presented methodology and the architecture of the described Boolean NNs were implemented in Pytorch and trained on
Nvidia GPUs Tesla V100. The networks thought predominantly Boolean, also contain a fraction of FP parameters that were
optimized using the Adam optimizer with learning rate 10−3. For learning the Boolean parameters we used the Boolean
optimizer. Training the Boolean networks for Image Classification was conducted with learning rates η = 150 and η = 12,
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Data DRAM (L3) L2 L1 L0

O (nOi )
⌈
C
C2

⌉
× βv

βv
2
× βh

βh
2

⌈
C2

C1

⌉
× βv

2

βv
1
× βh

2

βh
1

⌈
C1

C0

⌉
× βv

1

βv
0
× βh

1

βh
0

HF ×WF × βv0 × βh0

F (nFi ) 1
⌈
N
N2

⌉
×
⌈
HI

HI
2

⌉
×
⌈
W I

W I
2

⌉ ⌈
N2

N1

⌉
×
⌈HI

2

HI
1

⌉
×
⌈W I

2

W I
1

⌉ ⌈
N1

N0

⌉
×
⌈HI

1

HI
0

⌉
×
⌈W I

1

W I
0

⌉
GI (nG

I

i ) 1 1 1 1

Table 10: Numbers of accesses at different memory levels for ∂Loss/∂I .

for architectures with and without batch normalization, respectively. During the experiments, both optimizers used the
cosine scheduler iterating over 300 epochs.

We highlight the importance of using data augmentation techniques when training low bit-width models which otherwise
would overfit with standard techniques. In addition to techniques like random resize crop or random horizontal flip, we
used RandAugment, lighting (Liu et al., 2020) and Mixup (Zhang et al., 2018b). Following (Touvron et al., 2019), we used
different resolutions for the training and validation sets. For ImageNet, the training images were 192×192 px and 224×224
px for validation images. The batch size was 300 for both sets and the cross-entropy loss was used during training.

B.2. CIFAR-10

VGG-Small is found in the literature with different fully-connected FC layers. Several works take inspiration from the
classic work of (Courbariaux et al., 2015), which uses 3 FC layers. Since other BNN methodologies only use a single FC
layer, Table 11 presents the results with the modified VGG-Small.

Method Forward Training Acc.
Bit-width (W/A) Bit-width (W/G) (%)

FP 32/32 32/32 93.8
XNor-Net (Rastegari et al., 2016) 1/1 32/32 87.4

LAB (Hou et al., 2016) 1/1 32/32 87.7
RAD (Ding et al., 2019) 1/1 32/32 90.0

IR-Net (Qin et al., 2020b) 1/1 32/32 90.4
RBNN (Lin et al., 2020a) 1/1 32/32 91.3
SLB (Yang et al., 2020b) 1/1 32/32 92.0

Ours 1/1 1/16 90.8

Table 11: Top-1 accuracy for different binary methodologies using the modified VGG-Small (ending with 1 FC layer) on the
CIFAR-10 dataset.

B.3. Ablation study on image classification

The final block design for image classification was established after iterating over two models. The Boolean blocks examined
were evaluated using the ResNet18 baseline architecture and adjusting the training settings to improve performance. Figure 7
presents the preliminary designs.

The Boolean Block I, Figure 3a, is similar to the original ResNet18 block in that BN operations are removed and ReLUs are
replaced by the Boolean activation. This design always includes a convolution in the shortcut with spatial resolution being
handled by the stride. Notice that for this block we add a Boolean activation after the Maxpool module in the baseline (also
for the final baseline architecture). The Boolean Block II, Figure 3b, is composed by two stacked residual modules. For
downsampling blocks we use the reshaping operation to reduce the spatial resolution and enlarge the channel dimensions
both by a factor of 2. The shortcut is modified accordingly with different operations in order to guarantee similar spatial
dimensions before the summation.

Table 12 summarizes the results obtained with the proposed designs on ImageNet. During our experimentation, we validated
the hypothesis that increasing network capacity on the convolutional layers yielded higher accuracy values. However, similar
to FP CNNs, we confirmed there is a limit by which the hypothesis ceases to be true, leading to overfitting. Incorporating a
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X

BConv(M,N, 3)

Sign(X) BConv(M,N, 1)

BConv(N,N, 3)

+

Sign(X)

(a) Boolean block I.

X

Space2Depth(2× 2)

Sign(X)

BConv(4M,N, 3)

AvgPool(X)

Sign(X)

BConv(M,N, 1)

+

Sign(X)

BConv(N,N, 3)

+

(b) Boolean block II.

Input

Conv(3, κ, 7)

Maxpool(2× 2)

Basic Block (κ, κ, 3)

Basic Block (κ, κ, 3)

Downs. Block (κ, 2κ, 3)

Basic Block (2κ, 2κ, 3)

Downs. Block (2κ, 4κ, 3)

Basic Block (4κ, 4κ, 3)

Downs. Block (4κ, 8κ, 3)

Basic Block (8κ, 8κ, 3)

AvgPool(X)

FC

(c) ResNet18 layout.

Figure 3: Preliminary designs for the baseline architecture and the Boolean basic blocks. The dashed and red-shaded
operations in the Boolean block II are introduced for downsampling blocks.

more severe training strategy had a sustained positive impact. Even so, for larger configurations, the compromise between
accuracy and size can be cumbersome.

Among the strategies to reduce overfitting during training we included: mixup data-augmentation (Zhang et al., 2018b),
image illumination tweaking, rand-augment and smaller input resolution for training than for validation (Touvron et al.,
2019). All combined, increased the accuracy by ∼3 points (check results for Block II + base channel 230 with and w/o
additional data augmentation).

Compared to Block II, notice that the data streams in Block I are predominantly Boolean throughout the design. This is
because it makes use of lightweight data types such as integer (after convolutions) and binary (after activations). In addition,
it avoids the need of using a spatial transformation that may affect the data type and data distribution. In that regard, Block
II requires 4 times more parameters for the convolution after reshaping, than the corresponding operation in Block I. This is
exacerbated in upper layer convolutions, where the feature maps are deeper. Therefore, it makes sense to use Block I, as it is
lighter and less prone to overfitting when the network capacity is expanded.

B.4. Image super-resolution

The seminal EDSR (Lim et al., 2017) method for super-resolution was used together with our Boolean methodology.
In particular, the residual blocks are directly replaced by our Boolean basic block, see Figure 4. For all three tasks in
super-resolution, training was carried out with small patches of 96×96 px (40 of them extracted randomly from each single
image in the Div2K dataset) and validated with the original full-resolution images. The learning rate for real and boolean

Block Base 1st Conv. Shortcut Data Acc.
Design Channel Bit-width Fil. Size Augmentation (%)

Block I

128 32 1× 1 Random Crop, Random Flip 53.35
192 32 1× 1 Random Crop, Random Flip 56.79
192 32 1× 1 Lighting, Mixup, RandAugment and (Touvron et al., 2019) 61.90
256 32 1× 1 Lighting, Mixup, RandAugment and (Touvron et al., 2019) 64.32
256 32 3× 3 Lighting, Mixup, RandAugment and (Touvron et al., 2019) 66.89

Block II

128 1 1× 1 Random Crop, Random Flip 56.05
128 32 1× 1 Random Crop, Random Flip 58.38
192 32 1× 1 Random Crop, Random Flip 61.10
192 32 1× 1 Lighting, Mixup, RandAugment and (Touvron et al., 2019) 63.21
230 32 1× 1 Random Crop, Random Flip 61.22
230 32 1× 1 Lighting, Mixup, RandAugment and (Touvron et al., 2019) 64.41

Table 12: Evaluation of the proposed blocks in ImageNet and their respective configurations during training.
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parameters were 10−4 and η = 36, respectively. The networks were trained by minimizing the L1-norm between the
ground-truth and the predicted upsampled image while using the Adam optimizer and Boolean optimizer. In our experiments
the batch size was 20. Some example images generated by our methodology are showed in Figures 5 and 6.

8×

X

Conv(3, κ, 3)

Conv(κ, κ, 3)

ReLU

Conv(κ, κ, 3)

Scaling 0.1×

+

Conv(κ, κ, 3)

+

Conv(κ, 4 ∗ κ, 3)

Pixel Shuffle 2×

Conv(κ, 3, 3)

(a) Small EDSR .

8×

X

Conv(3, κ, 3)

Sign(X)

BConv(κ, κ, 3)

BConv(κ, κ, 3)Sign(X)

BConv(κ, κ, 3)

+

Sign(X)

BConv(κ, κ, 3)

Sign(X)

+

Conv(κ, 4 ∗ κ, 3)

Pixel Shuffle 2×

Conv(κ, 3, 3)

(b) Our Boolean EDSR.

Figure 4: Small EDSR for single scale ×2 super-resolution and our Boolean version with Boolean residual blocks. In both
architectures the channels dimensions are κ = 256 and the shaded blocks are repeated 8×.

B.5. Neural gradient quantization

In the backward pass we implement, only the backpropagation signal is not Boolean when diff. majority aggregation is
used (Nguyen, 2023). Thus, for completeness, we also implemented neural gradient quantization to quantize it by using
INT4 quantization with logarithmic round-to-nearest approach (Chmiel et al., 2021) and statistics aware weight binning
(Choi et al., 2018). Statistics aware weight binning is a method that seeks for the optimal scaling factor, per layer, that
minimizes the quantization error based on the statistical characteristics of neural gradients. It involves per layer additional
computational computations, but stays negligible with respect to other (convolution) operations. On ImageNet, we recover
the findings from (Chmiel et al., 2021): 4 bits quantization is enough to recover standard backpropagation performances.

B.6. Popular binary basic blocks for classification

Recent BNNs methodologies have proposed different mechanisms to improve performance. Most of them exploit full-
precision operations to adjust datastreams within the network, like shift and scaling factors before binary activations (Liu
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(a) Ground-Truth. (b) Enlarged crop. (c) Predicted image. (d) Enlarged crop.

Figure 5: Ground-truth high resolution images and the output of our Boolean super-resolution methodology. First row:
image “013” from BSD100, with PSNR: 35.54 dB. Second row: image “014” from Set14, with PSNR: 33.92 dB.

et al., 2020) or channel scaling through Squeeze-and-Excitation modules (Martinez et al., 2020; Guo et al., 2022). Figure 7
shows the basic blocks of three methodologies that perform particularly well in ImageNet. Together with BN and regular
activations, those techniques not only add an additional level of complexity but also lead to heavier use of computational
resources and latency delays.

For comparison we also show the proposed block (Figure 7a) used in our experiments for Image Classification, Image
Segmentation and Image Super-Resolution. Our block is compact in the sense that it only includes Boolean convolutions
and Boolean activations, strategically placed to keep the input and output datastreams Boolean.

B.7. Semantic segmentation

B.7.1. NETWORK ARCHITECTURE

Our Boolean architecture is based on DeepLabv3 (Chen et al., 2017), which has shown great success in semantic segmentation.
It is proven that using dilated or atrous convolutions, which preserve the large feature maps, instead of strided convolutions
is prominent for this task. In our Boolean model with ResNet-18 layout, we replace the strided convolutions in the last
two ResNet layers with the non-strided version, and the dilated convolutions are employed to compensate for the reduced
receptive field. Thus, the images are 8× downsampled instead of 32×, preserving small object features and allowing more
information flow through the Boolean network. As shown in Figure 7, in the Boolean basic block, a 3 × 3 convolution
instead of 1× 1 convolution is used to ensure the comparable dynamic range of pre-activations between the main pass and
the short-cut. Keeping these Boolean convolutional layers non-dilated naturally allows the backbone to extract multi-scale
features without introducing additional computational cost.

The Atrous Spatial Pyramid Pooling (ASPP) consists of multiple dilated convolution layers with different dilation rates and
global average pooling in parallel, which effectively captures multi-scale information. In the Boolean ASPP (BoolASPP),
we use one 1 × 1 Boolean convolution and three 3 × 3 Boolean dilated convolution with dilation rates of {12, 24, 36}
following by Boolean activation functions. The global average pooling (GAP) branch in ASPP captures image-level features,
which is crucial for global image understanding as well as large object segmenting accuracy. However, in BoolASPP, as
shown in Figure 9c, the Boolean input X leads to significant information loss before the global average pooling may cause
performance degradation on large objects. Therefore, we keep the inputs integer for the GAP branch as demonstrated in
Figure 9d. To prevent numerical instability, batch normalization is used in the GAP branch before each activation function.
Using BoolASPP enhances the multi-scale feature extraction and avoids parameterized upsampling layers, e.g. transposed
convolution.
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(a) Ground-Truth. (b) Enlarged crop.

(c) Enlarged crop. (d) Enlarged crop.

Figure 6: Ground-truth high resolution image (top) and the output of our Boolean super-resolution methodology (bottom).
Image “0810” from the validation set of DIV2k, with PSNR: 34.90 dB

B.7.2. TRAINING SETUP

The model was trained on the Cityscapes dataset for 400 epochs with a batch size of 8. The AdamW optimizer (Loshchilov
& Hutter, 2017) with an initial learning rate of 5× 10−4 and the Boolean logic optimizer with a learning rate of 12 were
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(a) Boolean Block w/o BN. (b) BNext sub-block (Guo et al., 2022). (c) ReActNet (Liu et al., 2020). (d) BiNeal Net (Nie et al.,
2022).

Figure 7: Comparative graph of popular BNN techniques and our Boolean module. Notice how multiple full-precision
operations like BN, PReLU, or Squeeze-and-Excitation are overly used on each BNN block.

used respectively for real and Boolean parameters. At the early training stage, parameters could easily be flipped due to
the large backward signal; thus, to better benefit from the ImageNet-pretrained backbone, we reduce the learning rate for
Boolean parameters in the backbone to 6. We employed the polynomial learning rate policy with p = 0.9 for all parameters.
The cross-entropy loss was used for optimization. We did not employ auxiliary loss or knowledge distillation as these
training techniques require additional computational cost, which is not in line with our efficient on-device training objective.

B.7.3. DATA SAMPLING AND AUGMENTATION

We aim to reproduce closely full-precision model performance in the semantic segmentation task with Boolean architecture
and Boolean logic training. Due to the nature of the Boolean network, the common regularization method, e.g., weight
decay, is not applicable. Moreover, with more trainable parameters, the Boolean network can suffer from over-fitting. In
particular, as shown in Table 13, the imbalanced dataset for semantic segmentation aggravates the situation. There is a
significant performance gap for several classes which has low occurrence rate, including rider (9.5%), motor (11.2%), bus
(9.5%), truck (6.9%), train (17.0%). We argue that the performance gap is due to the similarity between classes and the
dataset’s low occurrence rate, which is confirmed as shown in Figure 10.

Data augmentation and sampling are thus critical for Boolean model training. Regarding data augmentation, we employed
multi-scale scaling with a random scaling factor ranging from 0.5 to 2. We adopted a random horizontal flip with probability
p = 0.5 and color jittering. In addition, we used rare class sampling (RCS) (Hoyer et al., 2022) to avoid the model
over-fitting to frequent classes. For class c, the occurrence frequency in image fc is given by:

fc =

∑N
i=1 1(c ∈ yi)

N
, (9)

where N is the number of samples and yi is the set of classes existing in sample i. The sampling probability of class c is
thus defined as:

pc =
exp
(

1−fc
T

)
∑K
c′=1 exp

(
1−fc′
T

) , (10)
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Features

Conv
1× 1, d1

Appendix B.7.1

Conv
3× 3, d12

Appendix B.7.1

Conv
3× 3, d24

Appendix B.7.1

Conv
3× 3, d36

Appendix B.7.1

GAP
Figure 9d

Conv
1× 1

Multi-scale Features

ConvClassifier

Logits

SegMap

X ∈ B
X ′ ∈ Z

concat

Bilinear Interpolation

Figure 8: Boolean segmentation architecture.

Image ratio (%) ∆ mIoU (%)

Road† 98.62 0.0
Sideway† 94.49 0.7
Building† 98.62 0.6

Wall 32.61 7.4
Fence 43.56 3.8
Pole 99.13 1.8
Light 55.73 6.5
Sign† 94.39 2.8

Vegetation† 97.18 0.1
Terrain† 55.60 0.8

Sky† 90.29 −0.2
Person 78.76 1.5
Rider∗ 34.39 7.4
Car† 95.19 0.3

Truck∗ 12.07 6.9
Bus∗ 9.21 12.8

Train∗ 4.77 17.0
Motor∗ 17.24 15.3

bike 55.33 2.0

Table 13: Class per image and performance gap occurrence rates in Cityscapes training set with naive Bool ASPP design.
Class with low performance gap† and class with high performance gap∗.

where K is the number of classes, and T is a hyper-parameter for sampling rate balancing. In particular, for the Cityscapes
dataset, we selected T = 0.5.
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X ∈ B

BConv(M,N, 1)

Sign(X)

(a) 1× 1 Conv branch.

X ∈ B

BConvd(M,N, 3)
d ∈ {12, 24, 36}

Sign(X)

(b) 3 × 3 dilated Conv branch
with dilation rate of d.

X ∈ B

Global Avg Pool

BConv(M,N, 1)

Sign(X)

(c) Naive global average pooling
branch.

X ′ ∈ Z

ReLU - BN

Global Avg Pool

BConv(M,N, 1)

BN - Sign(X)

(d) Global average pooling
branch.

Figure 9: Boolean Atrous Spatial Pyramid Pooling (BoolASPP) architecture.

Figure 10: Class per image occurrence ratio and performance gap with naive Bool ASPP design.

B.7.4. QUALITATIVE ANALYSIS ON CITYSCAPES VALIDATION SET

The qualitative results of our Boolean network and the full-precision based are demonstrated in Figure 11. Despite the loss
of model capacity, the proposed Boolean network trained with Boolean logic optimizer has comparable performance with
large objects in the frequent classes, even in the complicated scene.
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Input image Ground truth Full-precision Boolean (Ours)

Figure 11: Visual comparison of Boolean model on Cityscapes validation set.

Seg. head Model mIoU (%) ∆

FCN-32s (Long et al., 2015)
FP baseline 64.9 -

Group-Net (Zhuang et al., 2019) 60.5 4.4
Ours 60.1 4.8

DeepLabv3 (Chen et al., 2017) FP baseline 72.1 -
Ours 67.3 4.8

Table 14: Performance on Pascal VOC 2012 val set.
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FP baseline 97.3 79.8 90.1 48.5 55.0 49.4 59.2 69. 90.0 57.5 92.4 74.3 54.6 91.2 61.4 78.3 66.6 58.0 70.8 70.7

Naive Bool ASPP 97.3 79.1 89.5 41.1 51.2 51.2 52.7 66.2 90.1 56.7 92.6 72.8 47.2 91.5 54.5 65.5 49.6 42.7 68.8 66.3
∆ 0.0 0.7 0.6 7.4 3.8 -1.8 6.5 2.8 -0.1 0.8 -0.2 1.5 7.4 -0.3 6.9 12.8 17.0 15.3 2.0 4.4

Ours 97.1 78. 89.8 46.2 51.3 52.7 53.3 66.5 90.2 58. 92.7 72.6 45.1 91.9 61.1 68.8 48.7 46.8 69.1 67.4
∆ 0.2 1.8 0.3 2.3 3.7 -3.3 5.9 2.5 -0.2 -0.5 -0.3 1.7 9.5 -0.7 0.3 9.5 17.9 11.2 1.7 3.3

Table 15: Class-wise IoU performance on Cityscapes validation set.

B.7.5. MORE EXPERIMENTS ON SEMANTIC SEGMENTATION

We evaluated the effectiveness of BoolASPP by investigating the per-class performance gap to the full-precision model.
As demonstrated in Table 15, a significant gap exists between the Boolean architecture with naive Boolean ASPP design;
i.e., using Boolean activations for ASPP module as illustrated in Figure 9c. However, the gap could be reduced by using
BoolASPP and RCS. In particular, the BoolASPP improves the IoU of truck from 54.5% to 64.1% and bus from 65.5% to
68.8%, bike from 68.8% to 69.1% and motor from 42.8% to 46.8%. This indicates that combining proposed BoolASPP
and RCS improves the model performance on low occurrence classes as well as similar classes with which are easy to be
confused.

B.7.6. VALIDATION ON PASCAL VOC 2012 DATASET

We also evaluated our Boolean model on the 21-class Pascal VOC 2012 dataset with augmented additional annotated data
containing 10, 582, 1, 449, and 1, 456 images in training, validation, and test set, respectively. The same setting is used as in

11



Boolean Logic for Low-Energy Deep Learning

the experiments on the Cityscapes dataset, except the model was trained for 60 epochs.

As shown in Table 14, our model with fully Boolean logic training paradigm, i.e., without any additional intermediate latent
weight, achieved comparable performance as the state-of-the-art latent-weight-based method. Our Boolean model improved
performance by incorporating multi-resolution feature extraction modules to 67.3% mIoU.
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