
Published as a conference paper at ICLR 2025

PERMUTE-AND-FLIP: AN OPTIMALLY STABLE AND
WATERMARKABLE DECODER FOR LLMS

Xuandong Zhao
UC Berkeley
xuandongzhao@berkeley.edu

Lei Li
Carnegie Mellon University
leili@cs.cmu.edu

Yu-Xiang Wang
UC San Diego
yuxiangw@ucsd.edu

ABSTRACT

In this paper, we propose a new decoding method called Permute-and-Flip (PF)
decoder. It enjoys stability properties similar to the standard sampling decoder,
but is provably up to 2x better in its quality-stability tradeoff than sampling and
never worse than any other decoder. We also design a cryptographic watermarking
scheme analogous to Aaronson (2023)’s Gumbel watermark, but naturally tailored
for PF decoder. The watermarking scheme does not change the distribution to
sample, while allowing arbitrarily low false positive rate and high recall whenever
the generated text has high entropy. Our experiments show that the PF decoder (and
its watermarked counterpart) significantly outperform(s) naive sampling (and its
Gumbel watermarked counterpart) in terms of perplexity, while retaining the same
stability (and detectability), hence making it a promising new approach for LLM
decoding. The code is available at https://github.com/XuandongZhao/
pf-decoding.

1 INTRODUCTION

Large language models (LLMs) (OpenAI, 2022; 2023b; Bai et al., 2022; Touvron et al., 2023) have
become increasingly popular in recent years due to their ability to generate human-like text and solve
many tasks through a natural chatbot interface.

A language model predicts the next word in a sentence using a real-value function u(·; prompt, prefix) :
V → R, known as logits, which encodes the model’s preferences on which word to choose. Here V
is the vocabulary space (typically a large discrete set of words); the “prompt” describes the task of
interest; and “prefix” includes all preceding words that have been generated so far.

A language model decoder refers to a possibly randomized function that takes a prompt text x, API
access to the logits function as input, and outputs a sentence y1:n.

The main thrust of this paper is to introduce a new decoder, termed Permute-and-Flip decoding,
work out some of its intriguing properties with an application to watermarking LLM text, and
hopefully convince readers that it deserves a shot at your next LLM application.

2 PROBLEM SETUP AND SUMMARY OF RESULTS

Before diving in, let’s set up the stage with a quick tour of existing decoding methods and have a
brief look into how a language model decoder can be evaluated.

Popular existing decoding methods fall into three categories: (1) Planning-based methods such
as beam search that aims at maximizing the sequence likelihood; (2) sampling-based methods that
recursively sample from the next-word distribution, e.g., the soft(arg)max transform of the logits

Softmax sampling: yt ∼ p(y) =
eu(y|x,y1:t−1)/T∑
ỹ e

u(ỹ|x,y1:t−1)/T
(1)

where T is the temperature parameter; and (3) greedy methods such as greedy decoding that simply
outputs yt = argmaxy∈V u(y|x, y1:t−1) as well as its Top p (Holtzman et al., 2020) and Top k
sampling variants that interpolate greedy and sampling methods.

1

https://github.com/XuandongZhao/pf-decoding
https://github.com/XuandongZhao/pf-decoding

Published as a conference paper at ICLR 2025

Performance metrics. How do we compare different decoding methods? More generally, how do
we evaluate LLM-generated text? These are questions far from being settled. Naturally, if there is a
(possibly task-dependent) performance metric Ux : Vn → R one can define, then the optimal decoder
would be the one that outputs y∗1:n = argmaxy1:n∈Vn Ux(y1:n). Often Ux is instantiated to be the
sequence likelihood

∑n
t=1 log p(yt|x, y1:t−1) which is equal to

∑n
t=1 ut(yt).

Recent works (Ippolito et al., 2019; Wiher et al., 2022), however, report that strategies that aim at
maximizing sequence likelihood often result in texts that are more repetitive and less effective in some
downstream tasks than those from the sampling-based methods (Holtzman et al., 2020). Depending
on what the task is, there is not a one-size-fits-all performance metric, therefore is no single decoding
method that works well for all tasks.

For the moment, let us stash the disputes on how to best evaluate an LLM-generated text and focus
on designing methods that maximize any user-specified utility function. In fact, we will also give up
on solving the sequence-level utility maximization problem1 and simply maximize a per-step utility
function ut : V → R.

ut can simply be the logits function that LLMs output, which may have already accounted for
potential future utility (like the Q function in reinforcement learning) since the transformer-based
language model had access to future texts during pre-training. Or ut can be explicitly augmented
with structure-inducing regularizers such as a lookahead heuristic as in A* decoding (Lu et al., 2022),
a retrieval-based term for fact-checking (Lewis et al., 2020), or an entropy bonus for promoting
diversity (Meister et al., 2020).

Our goal is thus to construct a possibly randomized algorithm A that takes ut as an input and outputs
yt ∈ V that aims at maximizing Eyt∼Aut

[ut(yt)] as much as possible. In the remainder of the
paper, we will simply take ut as “logits” for a concrete exposition — all results are valid when ut is
instantiated otherwise.

Other constraints / consideration. Why doesn’t the trivial greedy decoder work? That’s because
there are other considerations besides text quality when selecting LLM decoders. For example,
computational efficiency and latency are hugely important, since each API call to the logits function
is costly. The diversity of the generated text is also important, especially for creative tasks.

Moreover, the decoding procedure should be watermarkable (Aaronson, 2023; Kirchenbauer et al.,
2023; Zhao et al., 2023; Kuditipudi et al., 2024) in the sense that one should be able to inject subtle
statistical signals that can be retrieved when given a secret key, to prove that the text is generated
by this particular language model. Being watermarkable prevents the LLM from being used for
malicious purposes such as scams (Weidinger et al., 2021), fake news (Zellers et al., 2019), and
plagiarism (Stokel-Walker, 2022).

In addition to the above, one may also hope the decoding algorithm to be stable against small
perturbations to the logits. Specifically,
Definition 2.1 (Stability). We say a decoding algorithm A is L-stable if for any prompt x, prefix y≤t,
and for any perturbed ũ such that ∥ũ− u∥∞ ≤ δ, the log-probability ratio satisfies∣∣∣∣∣log

{
pA(ũ(·|x,y≤t))(y)

pA(u(·|x,y≤t))(y)

}∣∣∣∣∣ ≤ Lδ ∀y ∈ V.

The stability helps to avoid catastrophic failure in the scenarios where the logits may be subject to
data poisoning (Zhang et al., 2022; Lin et al., 2021) or jailbreaking attacks (Zhang et al., 2023; Zhao
et al., 2024b). Furthermore, stability implies an intuitive notion of diversity, suggesting that tokens
with similar logits should have comparable probabilities of being selected. For further discussion and
examples, please refer to Appendix B.

Inspecting the decoding methods along the aforementioned dimensions, we notice that planning-based
methods fail to be computationally efficient. While greedy decoding is efficient and has relatively
low perplexity, its generated texts are neither diverse nor watermarkable (at least not using existing
techniques). The sampling-based methods, however, are both watermarkable and diverse. In addition,
softmax sampling is known to be 2-stable, while the others that we have discussed are not stable.

1It is known to be NP-Complete (Chen et al., 2018).

2

Published as a conference paper at ICLR 2025

Table 1: Comparison of different decoding methods against five desiderata.

Methods Perplexity Computational Efficiency Diversity Watermark Stability

Search (e.g., Beam) Lowest ✗ ✗ ✗ ✗
Greedy Low ✓ ✗ ✗ ✗

Softmax Sampling Moderate ✓ ✓ ✓ ✓
Top-p Sampling Low (for small p) ✓ Depends on p ✓ ✗
Top-k Sampling Low (for small k) ✓ Depends on k ✓ ✗

PF Sampling (ours) Lower than Softmax ✓ ✓ ✓ ✓

Fact 2.2. Softmax sampling decoding using (1) with temperature T satisfies (2/T)-stability.

Proof. The result is implied by the differential privacy guarantee of exponential mechanism (McSh-
erry & Talwar, 2007, Theorem 6).

The pros and cons of different decoding methods are summarized in Table 1. From the table, we can
see that there is a clear tradeoff between minimizing perplexity and preserving other properties. In
particular, softmax sampling is the only method that checks all boxes, and the only one that is stable
among existing decoders. This observation begs the following research question: Is there a decoding
method that is as stable as softmax sampling, but has lower perplexity?

In this paper, we answer this question affirmatively by bringing in a technique called Permute-and-Flip
sampling. Our contributions are fourfold.

1. We introduce Permute-and-Flip decoding — a new decoding algorithm for language models based
on recent development in a very different context (McKenna & Sheldon, 2020).

2. We demonstrate that existing results from McKenna & Sheldon (2020) already imply that:
• Permute-and-Flip decoding is provably stable.
• The stability-perplexity tradeoff of the PF decoding is Pareto-optimal. In particular, when

compared to softmax sampling, PF decoding has up to 2x smaller expected suboptimality while
having the same stability parameter L.

3. We designed an analog of Aaronson (2023)’s Gumbel-Watermark for PF decoder, called the PF
watermark. We show that the watermarked PF decoder samples from a distribution that is compu-
tationally indistinguishable from the non-watermarked PF decoder, and the detection procedure
has precisely controlled false positive rate (FPR) and high power in identifying watermarked texts.

4. We empirically demonstrate that on open-generation tasks, PF watermark achieves the best balance
of the highest detection accuracy and lowest perplexity compared to the baselines.

Overall, our proposed permute-and-flip decoding method provides a promising approach to balancing
the tradeoff between perplexity and stability in LLM decoding while also admitting watermarking
capabilities.

Related work and novelty. PF sampling was invented in the differential privacy (DP) literature
(McKenna & Sheldon, 2020). Its stability properties are well-understood. The stability of Softmax
sampling is also well-known (McSherry & Talwar, 2007). Our contribution is in applying this method
to LLM decoding and connecting these known theoretical results to the broader ML audience. To
our knowledge, the PF watermark is new to this paper. The design of the watermark leverages the
Report-Noisy-Max interpretation of the PF sampling (Ding et al., 2021) which allows a similar
pseudo-random function like the work of Aaronson (2023) to be applied. A more thorough discussion
of the related work is given in Appendix A.

3 PERMUTE-AND-FLIP DECODING ITS PROPERTIES

The Permute-and-Flip decoding iteratively generates the next token by a simple procedure that uses
only the logits. It involves first randomly permuting the vocabulary, then flipping a sequence of biased
coins according to the permuted sequence until the first “head” is seen (see Algorithm 1).

3

Published as a conference paper at ICLR 2025

Algorithm 1 Permute and Flip (PF) Decoding
1: Input: prompt x, language modelM, temperature T .
2: for t = 1, 2, · · · do
3: Logits ut ←M([x, y1:t−1]).
4: Find u∗

t ← maxy∈V ut(y).
5: Permute : Shuffle the vocabulary V into Ṽ .
6: for y ∈ Ṽ do
7: Flip : Draw Z ∼ Bernoulli

(
exp (

ut(y)−u∗
t

T
)
)

.
8: if Z = 1, then assign yt ← y and break.
9: end for

10: end for
11: Output: Generated sequence y = [y1, ..., yn].

Permute-and-flip makes words with higher logits exponentially more likely — even more so than
Softmax sampling (Eq. 1). To see this, one may consider a rejection sampling algorithm for obtaining
a sample from Eq. (1), which repeats the following procedures until it halts.

1. Uniformly samples y ∈ V ,
2. Return it with probability:

p(y)/p(y∗) = exp ((ut(y)− ut(y
∗))/T) .

This procedure differs from PF sampling in that it samples y with replacement, whereas PF sampling
samples y without replacement, giving PF sampling a higher likelihood of producing y∗.

PF sampling was initially proposed in McKenna & Sheldon (2020) as a differentially private selection
mechanism that has better utility than the more well-known exponential mechanism (McSherry &
Talwar, 2007). McKenna & Sheldon (2020) also derived a plethora of theoretical properties of the PF
sampling. The following theorem summarizes these results in the language of LLM decoding.

Theorem 3.1. Let the logits function be u and u∗ = maxy∈V u(y). Let PF(u) be the distribution of
PF-sampling, and Softmax(u) be the distribution in (1), both with temperature parameter T . The
following statements are true.

1. (Same stability) PF-Sampling is (2/T)-stable.

2. (Nearly greedy) PF-sampling obeys,

Ey∼PF(u)[u(y)] ≥ u∗ − T log |V|.

3. (“Never worse”) For the same T , PF-sampling is never worse than Softmax-sampling.

Ey∼PF(u)[u(y)] ≥ Ey∼Softmax(u)[u(y)]

4. (“Up to 2x better”) There exists logits u such that PF-sampling is 2x smaller in terms of subopti-
mality,

Ey∼PF(u)[u
∗ − u(y)] ≤ 1

2
Ey∼Softmax(u)[u

∗ − u(y)].

5. (Optimal stability-perplexity tradeoff) For any decoder P that is 2/T -stable, if there exists u such
that

Ey∼P (u)[u(y)] > Ey∼PF(u)[u(y)]

then there must be another ũ such that

Ey∼P (ũ)[ũ(y)] < Ey∼PF(ũ)[ũ(y)].

Proof. The theorem follows directly from McKenna & Sheldon (2020), specifically Theorem 1,
Corollary 1, Theorem 2, Proposition 4, and Proposition 6.

4

Published as a conference paper at ICLR 2025

0 2 4 6 8 10
Temperature T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

[S
ub

op
tim

al
ity

]

PF Decoder
Softmax Decoder

0 2 4 6 8 10
Gap

0.00

0.05

0.10

0.15

0.20

0.25

[S
ub

op
tim

al
ity

]

PF Decoder
Softmax Decoder

Figure 1: Comparing PF decoder vs Softmax
decoder using Example 3.2.

The first statement shows that the PF decoder enjoys
exactly the same stability parameter as in Fact 2.2.
The second statement provides a worst-case bound on
how far PF-sampling is away from greedy-decoding
as a function of the temperature T in terms of the
likelihood achieved. The third and fourth statements
show that PF-sampling is always “more greedy” than
softmax-sampling. The last statement shows that PF-
sampling is not dominated by any other decoder that
is equally stable (as in Definition 2.1), thus Pareto
optimal. These results provide strong justification on
the superiority of the permute-and-flip decoder over the standard softmax sampling in minimizing
perplexity.

Let’s consider a simple example to compare PF decoder and Softmax decoder.

Example 3.2. Let the |V| = 2 and the corresponding logits be [∆, 0] for gap ∆ > 0. Softmax
decoder chooses the suboptimal token with probability 1/(1 + e∆/T), while PF decoder chooses it
w.p. 1/(2e∆/T).

Since 1/(1 + x) > 1/(2x) for all x > 1, the probability that the suboptimal token is chosen in PF
sampling is strictly smaller than that of Softmax sampling. As shown in Figure 1, on the left, we fix
the Gap ∆ = 3.0 and vary the temperature T . On the right, we fix T = 1.0 and vary ∆. PF beats
Softmax in all cases.

4 REPORT-NOISY-MAX AND WATERMARKING

Next, we turn to the well-motivated problem of watermarking LLM generated text. The watermarking
problem aims at embedding a secret message in the generated text that (essentially) reads “Beware! I
am written by an AI!”.

The hope is that this message can be seen by anyone who has access to a secret key, while ensuring
that the watermarked version of the LLM generates text that has almost the same distribution as (or at
least very similar) to the original LLM.

More formally, a watermarking scheme includes a “Watermark” function that injects the watermark
and a “Detect” function that takes a suspect text sequence y1:n as input and outputs a prediction of 1
(“It is watermarked!”) or 0 (“It is not!”).

A wrong accusation of non-watermarked text as watermarked is called a false positive. A failure to
detect a watermarked text is called a false negative. The performance of a watermark is measured by
its detection power (i.e., 1−false negative rate) at a given false positive rate.

There are many other necessary properties for a watermarking scheme to be useful, such as low-
overhead, model-agnostic detection, and resilience to edits and other evasion attacks. We refer readers
to the slide deck of Aaronson (2023) and the related work section of (Zhao et al., 2024a) for a review
of these desiderata and known results.

Among the recent attempts, two popular watermarking schemes perform satisfactorily on all the
above criteria.

Gumbel Watermark (Aaronson, 2023) that uses a “traceable” pseudo-random softmax sampling
when generating the next word.

Green-Red Watermark (Kirchenbauer et al., 2023) that randomly splits the vocabulary into
Green and Red then slightly increases the logits for green tokens.

Both of them determine their pseudo-random seeds chosen according to the m preceding tokens of
the current token being generated. We will focus on explaining the Gumbel watermark as it is more
closely related to our approach.

Aaronson (2023)’s Gumbel watermark. The key idea of the Gumbel watermark leverages the
“Gumbel-Max Trick”, which states that:

5

Published as a conference paper at ICLR 2025

Fact 4.1 (Gumbel, 1948). The softmax sampling in (1) is equivalent to the following procedure

yt = argmax
y∈V

ut(y)

T
+Gt(y) (2)

where Gt(y) ∼ Gumbel(0, 1) i.i.d for each t, y.

Gumbel noise can be generated using a uniform r.v.
Gumbel(0, 1) ∼ − log (log(1/Uniform([0, 1]))) .

So given a random vector rt ∼ (Uniform([0, 1]))|V|, we can write Gt(y) = − log(− log(rt(y))).

The Watermark stage for the Gumbel-watermark essentially replaces Uniform([0, 1]) with a pseudo-
random function rt(y) = Fyt−m:t−1,k(y). Given the secret key k, the pseudo-random function
is a deterministic function with range [0, 1]V , but over the distribution of the secret key k, rt is
computationally indistinguishable from sampled from truly i.i.d. uniform distribution, which ensures
that the distribution of yt in the watermarked model is computationally indistinguishable to the
unwatermarked distribution (1).

At Detect phase of the the Gumbel watermark, the auditor who has access to the key k may compute

TestScoreGumbel(y1:n) =

n∑
t=m+1

− log(1− rt(yt)).

If y1:n is not generated from the watermarked model, then the test statistic is a sum of exponential
random variable thus E[TestScore(y1:n)] = n−m. Meanwhile, if y1:n is generated by the Gumbel
watermarked model,

E[TestScore(y1:n)] =
n∑

t=m+1

E

∑
y∈V

pt(y)H 1
pt(y)

 (3)

≥ (n−m) +

(
π2

6
− 1

) n∑
t=m+1

E [Entropy[pt(·)]] . (4)

where pt := Softmax(ut/T), Hα :=
∫ 1

0
1−xα

1−x dx is Euler’s Harmonic number and Entropy
denotes the standard Shannon entropy (in nats) for a discrete distribution, i.e., Entropy[p] =
−
∑

y∈V p(y) log p(y). The above results were described in Aaronson (2023)’s talk, but without
detailed proofs. To be self-contained, we added formal statements and proofs about the Gumbel
watermarks in Appendix D.3 (see Theorem D.3 and D.6).

Permute-and-Flip as ReportNoisyMax. It turns out that the Permute-and-Flip sampling has a
similar equivalent Report-Noisy-Max form. Instead of Gumbel noise, it is the exponential noise that
are added to the logits. This less-known fact is due to Ding et al. (2021)
Fact 4.2 (Ding et al., 2021, Theorem 5). Permute-and-Flip Sampling in Algorithm 1 with parameter
T is equivalent to

yt = argmax
y∈V

ut(y)

T
+ Et(y). (5)

where Et(y) ∼ Exponential(1) i.i.d. for each t, y.

Leveraging this fact, in the remainder of the section, we develop a watermarking scheme for Report-
NoisyMax that is analogous to the Gumbel-watermark.

Permute-and-Flip watermark. The natural idea is to replace the exponential noise Et(y) with
a pseudo-random version that depends on a secret key and a prefix with length m. Observe that
Exponential(1) ∼ − log(Uniform([0, 1])), thus the standard pseudo-random function that generates
uniform random variables can be used. In the detection phase, we compute:

TestScorePF(y1:n) =

n∑
t=m+1

− log(rt(yt)).

Note that this is a simple change of sign of rt(yt) comparing to the test score of the Gumbel watermark.
Detailed pseudo-code for how the watermark works are given in Algorithm 2 and Algorithm 3.

6

Published as a conference paper at ICLR 2025

Algorithm 2 PF watermarking: Watermark

1: Preparation: Randomly sample a watermark key k
2: Input: Prompt x, language modelM, pseudo-random function F , watermark key k, temperature T
3: for t = 1, 2, · · · do
4: Compute logits: ut ←M([x, y1:t−1])
5: Generate a pseudo-random vector rt(·) using rt(y) := Fyt−m:t−1,k(y) for y ∈ V
6: Select the next token yt using

yt = argmax
y∈V

(
ut(y)

T
− log rt(y)

)
(6)

7: end for
8: Output: Watermarked sequence y = [y1, ..., yn]

Algorithm 3 PF watermarking: Detect
1: Input: Suspect text y1:n, watermark key k, pseudo-random function F , target false positive rate α
2: Output: Binary decision (1 if text is watermarked, 0 otherwise)
3: Calculate the cumulative score

TestScorePF(y1:n) =

n∑
t=m+1

− log(rt(yt)) (7)

where rt(y) = Fyt−m:t−1,k(y)

4: if TestScore > CDF−1
Gamma(n−m,1)(1− α) then return 1, i.e., “The suspect text is watermarked.”

5: else return 0, i.e., “The suspect text is not watermarked.”

Theorem 4.3. Assume the pseudo-randomness is perfect2, i.e., Fw1:m,k(y) ∼ Uniform([0, 1]) i.i.d.
∀[w1:m, y] ∈ Vm+1.

The following are true about PF watermark scheme.

1. If y1:n is statistically independent to the secret key k,

E [TestScorePF(y1:n)|y1:n] = n−m.

2. If in addition, all m-grams in y1:n are unique, then conditioning on y1:n,

TestScorePF(y1:n) ∼ Gamma(n−m, 1).

The choice τ = CDF−1
Gamma(n−m,1)(1−α) ensures the false positive rate in Algorithm 3 is equal

to α.
3. Assume y1:n is drawn from Algorithm 2, then

E [TestScorePF(y1:n)] =
n∑

t=m+1

E

∑
y∈V

∫ e
ut(y)−u∗

t

0

(
− log r ·

∏
y′∈V,y′ ̸=y

(
1 − r · eut(y

′)−ut(y)
))

dr

. (8)

The above expression in (8) may appear messy, but it is the exact calculation and captures the entropy
of the distribution PF-induces for a given ut. To see this, let us instantiate the bound for two special
cases that admit more explicit forms.
Example 4.4. When Softmax(ut) is 1/k for an arbitrary subset of k tokens and 0 for others,

E[− log(rt(yt))] := Hk = 1 + 1/2 + ...+ 1/k ≈ log k.

Specifically, when k = |V| this is the uniform distribution, (8) ≍ n log |V| while when k = 1, the
sequence is completely deterministic (e.g., when the LLM is asked to recite the “Declaration of
Independence”), then we get (8) = n−m as expected.

In the above example, (8) is identical to the expected TestScore of the Gumbel watermark in (3). This
is because the distributions they sample from are also the same. To illustrate their difference, let us
revisit the simple two-token case from Example 3.2 again for which we can work out the expectation
of the test score explicitly.

2This is a simplifying assumption. We only need (n−m)|V|-way independence.

7

Published as a conference paper at ICLR 2025

0 2 4 6 8 10
Temperature T

0.0

0.1

0.2

0.3

0.4

0.5

De
te

ct
ab

ilit
y:

[T

es
tS

co
re

1]

PF Watermark
Gumbel Watermark

0 2 4 6 8 10
Gap

0.0

0.1

0.2

0.3

0.4

0.5

De
te

ct
ab

ilit
y:

[T

es
tS

co
re

1]

PF Watermark
Gumbel Watermark

(a) Comparing the detectability of PF watermark vs
Gumbel watermark using Example 4.5. On the left,
we fix the Gap ∆ = 3.0 and vary T . On the right,
we fix T = 1.0 and vary ∆. Gumbel watermark
offers higher detectability when T is the same. Very
importantly this does not mean Gumbel outperforms
PF because PF is more greedy and has less entropy.

0.0 0.1 0.2 0.3 0.4 0.5
Suboptimality: [Suboptimality]

0.0

0.1

0.2

0.3

0.4

0.5

De
te

ct
ab

ilit
y:

[T

es
tS

co
re

1]

PF Watermark
Gumbel Watermark
Gumbel Watermark on PF-prob

0.10 0.15 0.20 0.25 0.30
Suboptimality: [Suboptimality]

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

De
te

ct
ab

ilit
y:

[T

es
tS

co
re

1]

PF Watermark
Gumbel Watermark
Gumbel Watermark on PF-prob

(b) Comparing the detectability-greediness tradeoff of
PF watermark vs Gumbel watermark in the two token
case. The Gap ∆ = 3.0, both curves are traced out
by varying the temperature T – with a “zoomed-in”
view on the RHS. It is clear from the figure that PF
outperforms Gumbel on the tradeoff curve.

Figure 2: Comparing the detectability of PF watermark vs Gumbel watermark using Example 4.5.

Example 4.5. Let the |V| = 2 and the corresponding logits be [∆, 0]. The expected TestScore of

the Gumbel and the PF watermark (for each watermarked token) are:
H

1+e−∆/T

1+e−∆/T +
H

1+e∆/T

1+e∆/T and
1 + 1

2e
−∆/T (1 + ∆/T) respectively, where Hx is the xth Harmonic number.

It is a bit hard to compare them by reading the mathematical expressions, so let us compare them
numerically (see Figure 2a). The vertical axis in the figures measures Detectability, which we define
to be the expected difference between the TestScore of a watermarked and unwatermarked token.
Since under the null the E[− log(rt(yt))] = E[− log(1 − rt(yt))] = 1, we can simply subtract 1
from the expressions in Example 4.5.

Figure 2a indicates the PF watermark does not beat the Gumbel watermark in terms of detectability
when T is fixed. This should not be surprising since for the same temperature, PF watermark is better
at optimizing (recall Example 3.2 and Figure 1), thus naturally the resulting distribution has less
entropy to be exploited by the watermarking scheme.

A more fair comparison, would be to increase the temperature for PF watermark appropriately so we
compare detectability when the suboptimality is aligned. This is shown in Figure 2b. In fact we have
added a second baseline that apply Gumbel watermark to the induced sampling distribution from
PF-decoding (shown as the dotted line). The distribution induced by PF does not have a simple form,
but in our special case, it was worked out in Example 3.2.

As we can see in Figure 2b, the PF watermark is never worse and even has a slight advantage in
the middle. To say it differently, to achieve the same suboptimality, the PF watermark can afford to
use a larger temperature, which not only improves the stability parameter but also compensates it
sufficiently on the detectability front to outperform the Gumbel watermark. In practice, we expect
PF watermark to be as effective as the Gumbel watermark, and could even be a bit better (if the
temperature parameter is chosen appropriately).

In conclusion, we showed that the watermarked version of PF-decoder is computationally indistin-
guishable from the original version of PF-decoder. Meanwhile, the test score of the PF watermark is
qualitatively similar to that of the Gumbel-watermark (and identical in some cases). It is likely to
produce similar detectability to the Gumbel watermark, while enjoying the performance boost that
comes from replacing softmax sampling with PF.

5 EXPERIMENTS

Datasets and models. We utilize two long-form text datasets in our experiments: the Colossal
Clean Crawled Corpus (C4) dataset (Raffel et al., 2020) for open-ended text completion generation,
and the Alpaca dataset (Taori et al., 2023) for question-answering tasks. Our primary language
model is the state-of-the-art open-source model Llama-2 with 7 billion parameters. Specifically,
we use the Llama-2-7B-chat model for question-answering tasks on the Alpaca dataset. For text

8

Published as a conference paper at ICLR 2025

Table 2: Text generation results for different methods. The true positive rate (TPR) is calculated under
0.01 false positive rate (FPR). PPL1 refers to perplexity measured by Llama2-7B models. PPL2 is
perplexity calculated by the Llama2-13B model. For general text generation, PF decoding produces
significantly lower perplexity compared to sampling. For watermarking methods, PF watermark also
produces lower perplexity compared to KGW watermark and Gumbel watermark.

Method AUC↑ TPR↑ PPL1↓ PPL2↓ Seq-rep-5↓ MAUVE↑ Method AUC↑ TPR↑ PPL1↓ PPL2↓ Seq-rep-5↓ MAUVE↑
C4, T=1.0, Llama2-7B C4, T=0.8, Llama2-7B

Greedy - - 1.140.01 1.240.03 0.56 0.05 Greedy - - 1.280.02 1.750.03 0.12 0.93
Sampling - - 12.470.32 15.310.41 0.02 0.98 Sampling - - 4.230.06 4.910.08 0.06 1.00
PF - - 8.940.20 10.750.25 0.03 0.90 PF - - 3.540.06 4.110.08 0.10 0.92
KGW WM 0.989 0.991 16.620.38 20.620.49 0.01 1.00 KGW WM 0.995 0.991 5.780.08 6.770.11 0.03 0.99
Gumbel WM 0.997 0.988 11.410.27 14.120.36 0.04 0.93 Gumbel WM 0.995 0.982 4.030.07 4.710.09 0.10 1.00
PF WM 0.995 0.984 8.330.20 10.280.29 0.05 0.99 PF WM 0.993 0.980 3.380.07 3.990.10 0.13 1.00

Alpaca, T=1.0, Llama2-7B-Chat Alpaca, T=1.0, TinyLlama-1.1B-Chat
Greedy - - 1.280.02 1.750.03 0.12 0.93 Greedy - - 1.410.01 1.660.02 0.30 0.99
Sampling - - 1.740.02 2.410.04 0.09 0.86 Sampling - - 2.730.04 3.710.06 0.11 1.00
PF - - 1.650.02 2.300.04 0.09 0.98 PF - - 2.530.03 3.440.06 0.12 0.98
KGW WM 0.961 0.596 2.200.04 3.000.06 0.08 0.93 KGW WM 0.998 0.991 3.810.06 5.280.09 0.07 0.99
Gumbel WM 0.986 0.858 1.700.02 2.350.04 0.10 0.93 Gumbel WM 1.000 0.995 2.670.04 3.580.06 0.12 1.00
PF WM 0.979 0.810 1.690.03 2.370.04 0.10 1.00 PF WM 0.999 0.986 2.360.04 3.150.07 0.14 0.94

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

25

50

75

100

125

150

175

200

Fr
eq

ue
nc

y

PF WM: Watermarked Text
PF WM: Unwatermarked Text
PF WM: Human Text

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Scores

0

25

50

75

100

125

150

175

200

Fr
eq

ue
nc

y

Gumbel WM: Watermarked Text
Gumbel WM: Unwatermarked Text
Gumbel WM: Human Text

(a) TestScore distribution. We calculate the average
TestScore of the PF watermark and Gumbel watermark
using Llama2-7B (T=1.0) on the C4 dataset. The length
of the suspect texts is fixed at 200 tokens. A clear gap
emerges between positive samples (watermarked) and
negative samples (unwatermarked and human-written),
indicating the watermark detectability.

1 2 3 4 5 6
PPL

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

TP
R

@
 F

PR
=0

.0
1

KGW Watermark
Gumbel Watermark
PF Watermark

(b) Trade-off between detection accuracy (TPR at
FPR=0.01) and text quality (PPL) across three water-
mark configurations on the C4 dataset, with tempera-
ture settings ranging from 0.2 to 1.0. Each data point
represents the outcome for 500 watermarked texts. The
PF watermark achieves the optimal balance of the high-
est detection accuracy and lowest perplexity.

Figure 3: Comparison of PF and Gumbel watermarks on real data.

completion tasks on the C4 dataset, we employ the base model Llama-2-7B. Furthermore, to evaluate
the universal applicability of smaller models, we also assess the performance of the TinyLlama-1.1B
model3 (Zhang et al., 2024).

Evaluation metrics. We calculate perplexity scores from different models, using Llama2-7B to
compute PPL1 and Llama2-13B to compute PPL2. We also compute MAUVE scores to measure
the distributional similarity between model generations and human text as another metric for text
quality (Pillutla et al., 2021). To evaluate repetitiveness, we compute seq-rep-5 across generations,
which is the average repetition rate of duplicate 5-grams in a sequence (Welleck et al., 2020). For
the watermark evaluation, maintaining a low false positive rate is crucial to avoid misclassifying
unwatermarked text as watermarked. Therefore, we set the false positive rates at 1% and 10% for all
watermark detection algorithms, adjusting the detection threshold accordingly. We report true positive
rate (TPR) and F1 scores to measure the watermark detectability. We compared the well-known
Gumbel Watermark (Gumbel WM) and Green-Red Watermark (KGW WM) as our main baselines.
Experiments were conducted using Nvidia A6000 GPUs. For the details of the experiment setting,
please refer to the Appendix C.

3https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0

9

https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0

Published as a conference paper at ICLR 2025

Text generation performance. Table 2 shows the text perplexity of generated samples from
different LLMs evaluated on two datasets. Using the same temperature, we find that PF decoding
produces significantly lower perplexity compared to sampling. Although greedy decoding has the
lowest perplexity, it suffers from heavy repetition, as indicated by its high seq-rep-5 score and low
MAUVE score. We observe that for question-answering tasks, the perplexity is lower, likely due to
the fixed form of answers and lower entropy of the text generation. Table 8 shows an example prompt
and responses generated by different decoding methods.

Watermarking results. We compare the results of PF watermark with those of the Gumbel
Watermark (Gumbel WM) and the Green-Red watermark (KGW WM). In Figure 3a, we present
the distribution of detection scores for the PF watermark. The PF watermark demonstrates clear
detectability between positive and negative samples. The results of the watermark generation are
shown in Table 2 and Figure 3b. The PF watermark achieves the best balance of the highest detection
accuracy and lowest perplexity, compared to the KGW WM and the Gumbel WM. Notably, the
perplexity of the PF watermark is close to that of the PF sampling, indicating that the watermarking
process does not significantly impact the quality of the generated text. All watermarking methods
achieved near-perfect detection accuracy on the C4 dataset. Besides, the detection results for the
small TinyLlama model are also good, demonstrating the universal applicability of the PF watermark.

10 3 10 2 10 1

 (Theoretical)

10 3

10 2

10 1

Ex
pe

rim
en

ta
l F

al
se

 P
os

iti
ve

 R
at

e
(F

PR
)

Random seed 1
Random seed 2
Random seed 3
Random seed 4
FPR=

Figure 4: Comparison of empirical and theoretical false positive rates with different watermark keys.
We can see that the second statement of Theorem 4.3 correctly controls the Type I error in practice.

Controlling the false positive rate. The key strength of PF watermark is its ability to precisely
control the false positive rate (FPR) during detection. We validate this by conducting experiments
using negative examples from diverse datasets (C4, Alpaca, unwatermarked) and different random
keys. As Figure 4 shows, the empirical false positive rates align tightly with the theoretical α values
across different settings. This demonstrates PF watermark’s effectiveness in precisely controlling the
FPR as intended.

Additional watermarking results. For a text watermarking design to be effective, it should be
able to withstand paraphrasing attacks that an adversary may attempt to modify the watermarked text.
Furthermore, the watermark should be detectable even with shorter text lengths. In Appendices C.1.1
and C.2.2, we present additional empirical results for the PF watermark, demonstrating its robustness
to paraphrasing and editing attacks. The results also show that the PF watermark can still be detected
even when the length of the text is reduced to only 30 tokens.

6 CONCLUSION

We introduce Permute-and-Flip (PF) decoding, a new decoding method for large language models that
enjoys the same – perturbation-stability guarantees as softmax sampling while achieving substantially
lower perplexity. We design a tailored watermarking scheme (PF watermark) for PF decoding
that enables precise control over false positive rates while retaining high true positive rates. Our
experiments demonstrate that the PF watermark achieves the best balance of the highest detection
accuracy and lowest perplexity. All these intriguing properties make PF decoding a promising new
approach for practical applications of large language models.

10

Published as a conference paper at ICLR 2025

REFERENCES

Scott Aaronson. Simons institute talk on watermarking of large lan-
guage models, 2023. URL https://simons.berkeley.edu/talks/
scott-aaronson-ut-austin-openai-2023-08-17.

Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Guided open vocabulary image
captioning with constrained beam search. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 936–945, Copenhagen, Denmark, 2017. Association
for Computational Linguistics. doi: 10.18653/v1/D17-1098. URL https://aclanthology.
org/D17-1098.

Mikhail J. Atallah, Victor Raskin, Michael Crogan, Christian F. Hempelmann, Florian Kerschbaum,
Dina Mohamed, and Sanket Naik. Natural language watermarking: Design, analysis, and a
proof-of-concept implementation. In Information Hiding, 2001.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. ArXiv preprint, abs/2212.08073, 2022. URL https://arxiv.org/abs/
2212.08073.

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-detectgpt: Efficient
zero-shot detection of machine-generated text via conditional probability curvature. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
Bpcgcr8E8Z.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. ArXiv preprint,
abs/2302.01318, 2023a. URL https://arxiv.org/abs/2302.01318.

Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan May, and Kevin Knight. Recurrent neural
networks as weighted language recognizers. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pp. 2261–2271, New Orleans, Louisiana, 2018. Association
for Computational Linguistics. doi: 10.18653/v1/N18-1205. URL https://aclanthology.
org/N18-1205.

Yutian Chen, Hao Kang, Vivian Zhai, Liang Li, Rita Singh, and Bhiksha Ramakrishnan. Gpt-sentinel:
Distinguishing human and chatgpt generated content. ArXiv preprint, abs/2305.07969, 2023b.
URL https://arxiv.org/abs/2305.07969.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, June 30 - July 3, 2023, Edmonton, Canada,
volume 247 of Proceedings of Machine Learning Research, pp. 1125–1139. PMLR, 2024. URL
https://proceedings.mlr.press/v247/christ24a.html.

Zeyu Ding, Daniel Kifer, Thomas Steinke, Yuxin Wang, Yingtai Xiao, Danfeng Zhang, et al. The
permute-and-flip mechanism is identical to report-noisy-max with exponential noise. ArXiv
preprint, abs/2105.07260, 2021. URL https://arxiv.org/abs/2105.07260.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of cryptography, pp. 265–284. Springer, 2006.

Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien Chappelier, and Teddy Furon. Three bricks
to consolidate watermarks for large language models. 2023 IEEE International Workshop on
Information Forensics and Security (WIFS), pp. 1–6, 2023.

GPTZero. Gptzero: More than an ai detector preserve what’s human. GPTZero website, 2023. URL
https://gptzero.me/.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series of
lectures, volume 33. US Government Printing Office, 1948.

11

https://simons.berkeley.edu/talks/scott-aaronson-ut-austin-openai-2023-08-17
https://simons.berkeley.edu/talks/scott-aaronson-ut-austin-openai-2023-08-17
https://aclanthology.org/D17-1098
https://aclanthology.org/D17-1098
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=Bpcgcr8E8Z
https://arxiv.org/abs/2302.01318
https://aclanthology.org/N18-1205
https://aclanthology.org/N18-1205
https://arxiv.org/abs/2305.07969
https://proceedings.mlr.press/v247/christ24a.html
https://arxiv.org/abs/2105.07260
https://gptzero.me/

Published as a conference paper at ICLR 2025

Chris Hokamp and Qun Liu. Lexically constrained decoding for sequence generation using grid beam
search. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1535–1546, Vancouver, Canada, 2017. Association for Computational
Linguistics. doi: 10.18653/v1/P17-1141. URL https://aclanthology.org/P17-1141.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=rygGQyrFvH.

Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. RADAR: robust ai-text detection via adversarial
learning. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
30e15e5941ae0cdab7ef58cc8d59a4ca-Abstract-Conference.html.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbiased
watermark for large language models. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=uWVC5FVidc.

Daphne Ippolito, Reno Kriz, João Sedoc, Maria Kustikova, and Chris Callison-Burch. Comparison
of diverse decoding methods from conditional language models. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pp. 3752–3762, Florence,
Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1365. URL
https://aclanthology.org/P19-1365.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 17061–17084. PMLR, 2023. URL https://proceedings.mlr.press/
v202/kirchenbauer23a.html.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Para-
phrasing evades detectors of ai-generated text, but retrieval is an effective defense. In Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
575c450013d0e99e4b0ecf82bd1afaa4-Abstract-Conference.html.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-
free watermarks for language models. Trans. Mach. Learn. Res., 2024, 2024. URL https:
//openreview.net/forum?id=FpaCL1MO2C.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebas-
tian Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive
NLP tasks. In Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
6b493230205f780e1bc26945df7481e5-Abstract.html.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 12286–12312, Toronto, Canada, 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.687. URL https://aclanthology.org/
2023.acl-long.687.

Weixin Liang, Mert Yüksekgönül, Yining Mao, Eric Wu, and James Zou. GPT detectors are biased
against non-native english writers. Patterns, 4(7):100779, 2023. doi: 10.1016/J.PATTER.2023.
100779. URL https://doi.org/10.1016/j.patter.2023.100779.

12

https://aclanthology.org/P17-1141
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
http://papers.nips.cc/paper_files/paper/2023/hash/30e15e5941ae0cdab7ef58cc8d59a4ca-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/30e15e5941ae0cdab7ef58cc8d59a4ca-Abstract-Conference.html
https://openreview.net/forum?id=uWVC5FVidc
https://aclanthology.org/P19-1365
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://proceedings.mlr.press/v202/kirchenbauer23a.html
http://papers.nips.cc/paper_files/paper/2023/hash/575c450013d0e99e4b0ecf82bd1afaa4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/575c450013d0e99e4b0ecf82bd1afaa4-Abstract-Conference.html
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=FpaCL1MO2C
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://aclanthology.org/2023.acl-long.687
https://aclanthology.org/2023.acl-long.687
https://doi.org/10.1016/j.patter.2023.100779

Published as a conference paper at ICLR 2025

Jing Lin, Long Dang, Mohamed Rahouti, and Kaiqi Xiong. Ml attack models: adversarial attacks and
data poisoning attacks. ArXiv preprint, abs/2112.02797, 2021. URL https://arxiv.org/
abs/2112.02797.

Xiaoming Liu, Zhaohan Zhang, Yichen Wang, Hang Pu, Yu Lan, and Chao Shen. Coco: Coherence-
enhanced machine-generated text detection under low resource with contrastive learning. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Process-
ing, pp. 16167–16188, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.1005. URL https://aclanthology.org/2023.
emnlp-main.1005/.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan
Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, and Yejin Choi. Neu-
roLogic a*esque decoding: Constrained text generation with lookahead heuristics. In Pro-
ceedings of the 2022 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 780–799, Seattle, United States,
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.57. URL
https://aclanthology.org/2022.naacl-main.57.

Ryan McKenna and Daniel R. Sheldon. Permute-and-flip: A new mechanism for differen-
tially private selection. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
01e00f2f4bfcbb7505cb641066f2859b-Abstract.html.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In Symposium on
Foundations of Computer Science (FOCS’07), pp. 94–103. IEEE, 2007.

Clara Meister, Elizabeth Salesky, and Ryan Cotterell. Generalized entropy regularization or:
There’s nothing special about label smoothing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp. 6870–6886, Online, 2020. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.615. URL https:
//aclanthology.org/2020.acl-main.615.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn.
Detectgpt: Zero-shot machine-generated text detection using probability curvature. In International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 24950–24962. PMLR, 2023. URL
https://proceedings.mlr.press/v202/mitchell23a.html.

OpenAI. Chatgpt: Optimizing language models for dialogue. OpenAI blog, 2022. URL https:
//openai.com/blog/chatgpt/.

OpenAI. New ai classifier for indicating ai-written text. Ope-
nAI blog, 2023a. URL https://openai.com/blog/
new-ai-classifier-for-indicating-ai-written-text.

OpenAI. Gpt-4 technical report. ArXiv preprint, abs/2303.08774, 2023b. URL https://arxiv.
org/abs/2303.08774.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaïd Harchaoui. MAUVE: measuring the gap between neural text and human text using diver-
gence frontiers. In Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
4816–4828, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
260c2432a0eecc28ce03c10dadc078a4-Abstract.html.

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bhagavatula, Jena D Hwang, Ronan Le Bras, An-
toine Bosselut, and Yejin Choi. Backpropagation-based decoding for unsupervised counterfactual
and abductive reasoning. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 794–805, 2020.

13

https://arxiv.org/abs/2112.02797
https://arxiv.org/abs/2112.02797
https://aclanthology.org/2023.emnlp-main.1005/
https://aclanthology.org/2023.emnlp-main.1005/
https://aclanthology.org/2022.naacl-main.57
https://proceedings.neurips.cc/paper/2020/hash/01e00f2f4bfcbb7505cb641066f2859b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/01e00f2f4bfcbb7505cb641066f2859b-Abstract.html
https://aclanthology.org/2020.acl-main.615
https://aclanthology.org/2020.acl-main.615
https://proceedings.mlr.press/v202/mitchell23a.html
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text
https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper/2021/hash/260c2432a0eecc28ce03c10dadc078a4-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/260c2432a0eecc28ce03c10dadc078a4-Abstract.html

Published as a conference paper at ICLR 2025

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL http://jmlr.org/
papers/v21/20-074.html.

Vinu Sankar Sadasivan, Aounon Kumar, S. Balasubramanian, Wenxiao Wang, and Soheil Feizi. Can
ai-generated text be reliably detected? ArXiv preprint, abs/2303.11156, 2023. URL https:
//arxiv.org/abs/2303.11156.

Zhouxing Shi, Yihan Wang, Fan Yin, Xiangning Chen, Kai-Wei Chang, and Cho-Jui Hsieh. Red
teaming language model detectors with language models. Transactions of the Association for
Computational Linguistics, 12:174–189, 2024. doi: 10.1162/tacl_a_00639. URL https://
aclanthology.org/2024.tacl-1.10.

Chris Stokel-Walker. Ai bot chatgpt writes smart essays - should professors worry? Nature, 2022.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Umut Topkara, Mercan Topkara, and Mikhail J. Atallah. The hiding virtues of ambiguity: quantifiably
resilient watermarking of natural language text through synonym substitutions. In Workshop on
Multimedia & Security, 2006.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. ArXiv preprint, abs/2307.09288, 2023. URL https://arxiv.
org/abs/2307.09288.

Eduard Tulchinskii, Kristian Kuznetsov, Laida Kushnareva, Daniil Cherniavskii, Sergey I.
Nikolenko, Evgeny Burnaev, Serguei Barannikov, and Irina Piontkovskaya. Intrinsic di-
mension estimation for robust detection of ai-generated texts. In Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
7baa48bc166aa2013d78cbdc15010530-Abstract-Conference.html.

Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse solutions from neural sequence
models. ArXiv preprint, abs/1610.02424, 2016. URL https://arxiv.org/abs/1610.
02424.

Laura Weidinger, John F. J. Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang,
Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zachary Kenton, Sande Minnich Brown,
William T. Hawkins, Tom Stepleton, Courtney Biles, Abeba Birhane, Julia Haas, Laura Rimell,
Lisa Anne Hendricks, William S. Isaac, Sean Legassick, Geoffrey Irving, and Iason Gabriel.
Ethical and social risks of harm from language models. ArXiv preprint, abs/2112.04359, 2021.
URL https://arxiv.org/abs/2112.04359.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=SJeYe0NtvH.

Gian Wiher, Clara Meister, and Ryan Cotterell. On decoding strategies for neural text generators.
Transactions of the Association for Computational Linguistics, 10:997–1012, 2022. doi: 10.1162/
tacl_a_00502. URL https://aclanthology.org/2022.tacl-1.58.

Max Wolff. Attacking neural text detectors. ArXiv preprint, abs/2002.11768, 2020. URL https:
//arxiv.org/abs/2002.11768.

14

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2303.11156
https://arxiv.org/abs/2303.11156
https://aclanthology.org/2024.tacl-1.10
https://aclanthology.org/2024.tacl-1.10
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
http://papers.nips.cc/paper_files/paper/2023/hash/7baa48bc166aa2013d78cbdc15010530-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/7baa48bc166aa2013d78cbdc15010530-Abstract-Conference.html
https://arxiv.org/abs/1610.02424
https://arxiv.org/abs/1610.02424
https://arxiv.org/abs/2112.04359
https://openreview.net/forum?id=SJeYe0NtvH
https://aclanthology.org/2022.tacl-1.58
https://arxiv.org/abs/2002.11768
https://arxiv.org/abs/2002.11768

Published as a conference paper at ICLR 2025

Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang Zhang, and Heng Huang. A resilient and
accessible distribution-preserving watermark for large language models. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=c8qWiNiqRY.

Xianjun Yang, Wei Cheng, Yue Wu, Linda Ruth Petzold, William Yang Wang, and Haifeng Chen.
DNA-GPT: divergent n-gram analysis for training-free detection of gpt-generated text. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
Xlayxj2fWp.

KiYoon Yoo, Wonhyuk Ahn, Jiho Jang, and Nojun Kwak. Robust multi-bit natural language
watermarking through invariant features. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 2092–2115, Toronto,
Canada, 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.117.
URL https://aclanthology.org/2023.acl-long.117.

Xiao Yu, Yuang Qi, Kejiang Chen, Guoqiang Chen, Xi Yang, Pengyuan Zhu, Weiming Zhang, and
Neng H. Yu. Gpt paternity test: Gpt generated text detection with gpt genetic inheritance. ArXiv
preprint, abs/2305.12519, 2023. URL https://arxiv.org/abs/2305.12519.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roes-
ner, and Yejin Choi. Defending against neural fake news. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
9051–9062, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html.

ZeroGPT. Zerogpt: Trusted gpt-4, chatgpt and ai detector tool by zerogpt. ZeroGPT website, 2023.
URL https://www.zerogpt.com/.

Hangfan Zhang, Zhimeng Guo, Huaisheng Zhu, Bochuan Cao, Lu Lin, Jinyuan Jia, Jinghui Chen, and
Di Wu. On the safety of open-sourced large language models: Does alignment really prevent them
from being misused? ArXiv preprint, abs/2310.01581, 2023. URL https://arxiv.org/
abs/2310.01581.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024.

Zhiyuan Zhang, Lingjuan Lyu, Weiqiang Wang, Lichao Sun, and Xu Sun. How to inject backdoors
with better consistency: Logit anchoring on clean data. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
URL https://openreview.net/forum?id=Bn09TnDngN.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. Protecting language generation models via invisible wa-
termarking. In International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Hon-
olulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp. 42187–42199.
PMLR, 2023. URL https://proceedings.mlr.press/v202/zhao23i.html.

Xuandong Zhao, Prabhanjan Vijendra Ananth, Lei Li, and Yu-Xiang Wang. Provable robust wa-
termarking for ai-generated text. In The Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024a. URL
https://openreview.net/forum?id=SsmT8aO45L.

Xuandong Zhao, Xianjun Yang, Tianyu Pang, Chao Du, Lei Li, Yu-Xiang Wang, and William Yang
Wang. Weak-to-strong jailbreaking on large language models. ArXiv preprint, abs/2401.17256,
2024b. URL https://arxiv.org/abs/2401.17256.

Yuqing Zhu and Yu-Xiang Wang. Adaptive private-k-selection with adaptive K and application to
multi-label PATE. In International Conference on Artificial Intelligence and Statistics, AISTATS
2022, 28-30 March 2022, Virtual Event, volume 151 of Proceedings of Machine Learning Research,
pp. 5622–5635. PMLR, 2022. URL https://proceedings.mlr.press/v151/zhu22e.
html.

15

https://openreview.net/forum?id=c8qWiNiqRY
https://openreview.net/forum?id=Xlayxj2fWp
https://openreview.net/forum?id=Xlayxj2fWp
https://aclanthology.org/2023.acl-long.117
https://arxiv.org/abs/2305.12519
https://proceedings.neurips.cc/paper/2019/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
https://www.zerogpt.com/
https://arxiv.org/abs/2310.01581
https://arxiv.org/abs/2310.01581
https://openreview.net/forum?id=Bn09TnDngN
https://proceedings.mlr.press/v202/zhao23i.html
https://openreview.net/forum?id=SsmT8aO45L
https://arxiv.org/abs/2401.17256
https://proceedings.mlr.press/v151/zhu22e.html
https://proceedings.mlr.press/v151/zhu22e.html

Published as a conference paper at ICLR 2025

A MORE ON RELATED WORK

A.1 LANGUAGE MODEL DECODING.

The decoding strategy used in text generation greatly impacts the resulting text’s quality and diversity.
Traditional deterministic algorithms, like greedy decoding and beam search, often lead to repetitive
text (Wiher et al., 2022). To address this, diverse beam search (DBS) (Vijayakumar et al., 2016)
has been developed to promote diversity in text generation. Stochastic decoding strategies, such as
Top-k and Top-p (Nucleus) (Holtzman et al., 2020) sampling, balance randomness and determinism,
selecting from the most likely tokens to enhance variety while maintaining coherence. The Bayes
Minimum Risk (MBR) method minimizes expected risk and incorporates a utility function to navigate
trade-offs between text attributes. Advanced techniques have been developed to improve decoding
for large language models, including the imposition of constraints (Anderson et al., 2017; Qin et al.,
2020; Hokamp & Liu, 2017; Lu et al., 2022), enhancing text quality (Li et al., 2023), and speeding
up the decoding process (Chen et al., 2023a).

Our contributions are complementary to these existing methods in that we are the first to introduce
a rigorous stability definition and study the tradeoff between utility (e.g. perplexity) and stability.
Permute-and-flip sampling can be used as a drop-in replacement for softmax sampling whenever it is
used, e.g., in standard full sampling or nucleus (Top-p) sampling. We also provide watermarking
capabilities for PF-decoder. We believe that the PF decoder has the potential to become a promising
new approach for language model decoding.

A.2 DETECT AI-GENERATED TEXT

Another major motivation of the work is to come up with a reliable method for detecting AI-generated
text, so as to prevent LLM misuse. We briefly review two categories of existing work on this problem.

Post-hoc detection. Post-hoc detection of LLM-generated text encompasses two main approaches:
zero-shot detection and training-based detection. Zero-shot detection is characterized by its capacity
to identify AI-generated text without needing specific training data, leveraging the inherent stylistic
differences between human and machine writing. Techniques within this category, such as DetectGPT
(Mitchell et al., 2023), PHD (Tulchinskii et al., 2023), DNA-GPT (Yang et al., 2024), and Fast-
DetectGPT (Bao et al., 2024), utilize metrics like log-probability scores, n-gram frequencies, lower
intrinsic dimensionality, and conditional probability to differentiate AI-generated content. In contrast,
training-based detection involves fine-tuning pre-trained language models on datasets that consist of
both human and LLM-generated texts to build a classifier. This method is exemplified by various
systems, including commercial detection platforms (OpenAI, 2023a; GPTZero, 2023; ZeroGPT,
2023), and research projects (Chen et al., 2023b; Yu et al., 2023; Liu et al., 2023; Hu et al., 2023),
which leverage the capabilities of large language models to effectively classify text origins. However,
despite post-hoc detection’s effectiveness in many cases, recent studies show detection methods’
robustness is limited across different scenarios. They have proven fragile to adversarial attacks and
biased against non-native English writers (Wolff, 2020; Sadasivan et al., 2023; Liang et al., 2023; Shi
et al., 2024). Limitations in accuracy even led OpenAI to close their detector in July 2023 (OpenAI,
2023a).

LLM watermarking. The watermarking approach provides a direct solution for AI text detection by
intentionally embedding detectable signals or “watermarks” within the text. Unlike post-hoc detection,
watermarking aims to determine if the text originates from a specific language model and it is robust
to distribution shifts. Evolving from earlier techniques such as synonym substitution (Topkara et al.,
2006) and syntactic restructuring (Atallah et al., 2001), modern watermarking strategies involve
integrating watermarks into the decoding process of language models (Zhao et al., 2023; Kirchenbauer
et al., 2023). Aaronson (2023) works with OpenAI to first develop a Gumbel watermark that uses a
“traceable” pseudo-random softmax sampling when generating the next word. Kirchenbauer et al.
(2023) split the vocabulary into red-green lists based on hash values of previous n-grams and then
increase the logits of green tokens to embed the watermark. Zhao et al. (2024a) provides strong
theoretical guarantees for the green-red watermarks and advocates the use of a consistent red-green
list to enhance robustness to evasion attacks. Christ et al. (2024); Hu et al. (2024); Kuditipudi et al.
(2024); Wu et al. (2024) study watermarks that preserve the original token probability distributions.

16

Published as a conference paper at ICLR 2025

Meanwhile, multi-bit watermarks (Yoo et al., 2023; Fernandez et al., 2023) have been proposed to
embed more complex information in the generation tasks.

PF-watermark is a newcomer to the family of LLM watermarks. It is closest to the Gumbel watermark
(Aaronson, 2023) and enjoys all desirable properties of the Gumbel watermark. In Section 4 we
have thoroughly compared the two watermarks with theory and numerical simulation, demonstrating
that PF-watermarks offer a slightly improved detectability-greedness tradeoff. Comparisons under
real-data experiments were also presented in Section 5.

Our results also have interesting implications for the green-red watermark (Kirchenbauer et al.,
2023). For example, we can consider a PF-sampling version of green-red watermark which may
perform better than the current green-red watermark in terms of its detectability-distortion tradeoff.
Specifically, the stability guarantee of the PF-decoder (Theorem 3.1 Statement 1) implies that PF
Green-Red Watermark enjoys the same quality guarantee as is analyzed in (Zhao et al., 2024a,
Theorem 3.1) for α = ∞, but the more concentrated distribution might make the watermark more
prominent / and more detectable for PF-sampling based Green-Red watermark. A full exploration of
this idea will be presented in future work or a longer version of the current paper.

A.3 DIFFERENTIAL PRIVACY

While the current work is not about privacy, our technical approach heavily relies on existing methods
developed in the differential privacy literature. Specifically, the permute-and-flip sampling was
developed by McKenna & Sheldon (2020) as an alternative to the classical exponential mechanism
(McSherry & Talwar, 2007) for the problem of differentially private selection. Ding et al. (2021)
shows that the PF sampling is equivalent to returning the argmax of a noisy version of the utility
function perturbed by independent exponential noise. Moreover, stability can be viewed as an
algorithm-centric, input-specific version of pure-differential privacy (Dwork et al., 2006).

While some of the results we present are directly implied by existing work (e.g., Theorem 3.1),
we believe it is a worthwhile (and hopefully beneficial) effort to introduce these results and their
implications to the broader machine learning community.

To our knowledge, we are the first to draw the connection between various versions of Report-Noisy-
Max (RNM) mechanisms in differential privacy to the LLM watermarking problem. Besides Gumbel
noise (Gumbel-watermark) and exponential noise (PF-watermark), there are other versions of RNM
that add, e.g., Gaussian noise (Zhu & Wang, 2022, Corollary 9). We hope our work could inspire
more interplay between these two research areas.

B MORE DISCUSSION OF STABILITY

In this section, we delve deeper into the concept of stability as defined in Definition 2.1.

B.1 STABILITY AND ITS IMPLICATION FOR DIVERSITY

The definition of stability implies that the LLM decoder is resistant to small perturbations in the
logits. Furthermore, stability implies an intuitive notion of diversity, which says that for tokens with
similar logits, then their chances of getting chosen should be similar. More rigorously:
Remark B.1 (Stability implies diversity). If |ut(y)− ut(y

′)| ≤ δ, then we can construct a ũt such
that ũt(y) = ũt(y

′) while satisfying ∥ut − ũt∥∞ ≤ δ
2 . Apply triangle inequality and Definition 2.1,

we get ∣∣∣∣∣log pAut (y)

pAut (y
′)

∣∣∣∣∣ =
∣∣∣∣∣log pAut (y)

pAũt (y)
+ log

pAũt (y
′)

pAut (y
′)

∣∣∣∣∣ ≤ Lδ.

B.2 COMPARISON OF DECODING METHODS IN TERMS OF STABILITY

Theorem 3.1 establishes the Pareto-optimality of PF sampling with respect to the stability-perplexity
tradeoff. This implies that no other decoding algorithm can surpass PF sampling in both stability and
perplexity simultaneously.

17

Published as a conference paper at ICLR 2025

Table 3: Comparison of stability and suboptimality across different sampling methods.

Property Softmax PF Beam/Greedy/Top-k/Top-p
Stability (Def 2.1) L = 2/T L = 2/T +∞ (Not stable for any pa-

rameter L)
Expected Subopti-
mality (Worst-case
bound)

T log |V | T log |V | 0 for “greedy”; T log k for
“Top-k”

Expected Suboptimal-
ity (Per instance)

Exponentially higher
log-likelihood

Between 1 - 2 smaller
than Softmax

0 for “greedy”; Same as Soft-
max on “Top-k”

Table 3 summarizes the stability guarantees of various decoding methods. Notably, only softmax
sampling and PF sampling exhibit provable stability according to Definition 2.1. This is in contrast to
other popular methods like beam search, greedy search, and Top-k/Top-p sampling, which lack such
guarantees.

In our definition, stability implies that small perturbations to logits should not significantly alter the
output text distribution. This definition also constrains the degree of greediness that a decoder can
exhibit, as small changes to logits may change the sorted order of the next token. Thus, it is clear
why greedy decoding and Top-k/p sampling cannot be stable.

When we say an algorithm A cannot be stable, we mean that for any L < +∞, there exist two
decoding problems ut and ũt such that |ut − ũt|∞ ≤ δ for some δ > 0, but the log-probability ratio
between A(ut) and A(ũt) exceeds δL.

To establish non-stability, we only need a counterexample. Below, we construct explicit counterexam-
ples for each decoding method:

• Greedy: We have a vocabulary of two tokens. Let ut = [0,−1] and ũt = [1, 0]. This satisfies that
|ut − ũt|∞ ≤ δ with δ = 1. But Greedy(ut) outputs the second token with probability 1, Greedy
(ũt) outputs the second token with probability 0. Therefore, the importance ratio is unbounded, i.e.,
there isn’t any finite L that bounds the probability ratio.

• Top-k: Let’s consider k = 2 as an example, and let vocabulary size be 3. Let ut = [0,−1,−2] and
ũt = [0,−2,−1]. Again, |ut − ũt|∞ ≤ δ with δ = 1. Now, Top-2 sampling will never output the
third token on ut, while it will output the third token with probability > 0 on ũt. The importance
ratio is unbounded.

• Top-p: Same example as in Top-k above. The softmax of ut and ũt are approximately
[0.844, 0.114, 0.042] and [0.844, 0.042, 0.114] respectively. If we set p = 0.95, then Top-p with ut
will exclude the third token, while that with ũt will retain it — leading to an importance ratio of ∞.

• Beam Search: Since beam search with a constant score function reduces to greedy decoding, the
same counter-example for greedy decoding demonstrates its non-stability.

Therefore, these counter-examples highlight that greedy, Top-k, Top-p, and beam search decoding
are not stable according to our definition.

B.3 THE CONNECTION BETWEEN STABILITY AND SAFETY

Stability can provide robustness against certain types of adversarial attacks, such as jailbreaking,
within a gray-box threat model.

Consider a scenario where an attacker can alter the logits and receive responses from an API, as is
common with OpenAI’s logit bias feature4. Recent research has shown that it is possible to jailbreak
an LLM to encourage specific outputs like “Sure” or “Definitely” or other tokens (Zhang et al., 2023;
Zhao et al., 2024b). By employing the PF decoding method, the API provider can make jailbreaking
significantly harder while also making the output watermarkable, thereby enhancing the model’s
safety and security.

4https://help.openai.com/en/articles/5247780-using-logit-bias-to-alter-token-probability-with-the-openai-
api

18

Published as a conference paper at ICLR 2025

Stability serves as a fundamental guarantee against these perturbations. That said, all attacks will
eventually manifest as perturbations to logits, and having a “Lipschitz” transformation from logits to
token probabilities is a nice guarantee. Without this, even tiny changes to the logits can have a big
influence on the final token probability distribution.

For instance, consider the difference between a provably stable decoder (such as softmax) and a
non-stable one in a gray-box jailbreaking scenario. Suppose the language model has a vocabulary
of just three words: “Sure”, “OK”, and “Sorry”. Initially, the logits ut = [−2,−1, 0] indicate that
the LLM is inclined to output “Sorry”. If the adversary aims to increase the likelihood of outputting
“Sure”, they could perturb the logits to ũt = [0,−1, 0], which satisfies |ut − ũt|∞ ≤ δ with δ = 2.

When applying Top-k sampling with k = 2 (as an example of several sampling methods that lack
stability, such as Greedy, Top-k, Top-p, and Beam Search), the model would never select “Sorry”,
the third token, whereas with the original logits, “Sorry”, would still have a non-zero probability of
being selected. This demonstrates that Top-k sampling lacks stability. In contrast, PF sampling and
softmax sampling maintain stability under such perturbations.

C ADDITIONAL EXPERIMENT DETAILS

We provide additional details on the experiments here. We use the C4 (Raffel et al., 2020) and
Alpaca (Taori et al., 2023) datasets. Specifically, we select samples from C4 with text longer than
500 tokens, using the first 200 tokens as the prompt input to the language model and the next 300
tokens as the human-generated reference. This gives us 600 examples. For Alpaca, we select samples
with prompts/instructions longer than 25 tokens and answers also longer than 25 tokens, giving 550
examples. Since Llama2-Chat is a fine-tuned version of Llama-2 optimized for dialogue, we use the
Chat version (Llama-2-7B-Chat5) for the question-answering task and the base model (Llama-2-7B6)
for the text completion task.

Given that PF decoding can integrate with Top-p sampling, which initially selects the top p tokens
before normalization, we conduct the performance tests using a p = 1.0 for full sampling. The max
generation length is set to 256 tokens for all experiments.

For perplexity calculation, we observe high variance with different methods, often influenced by
outliers. To address this, we remove the top and bottom 3% of perplexity scores as outliers and then
calculate the average perplexity and standard error. For MAUVE scores, we use the human-written
references from C4 and Alpaca as the human distribution.

For watermarking experiments, we generate 500 watermarked and 500 unwatermarked sentences per
method. We label them as “watermarked” and “unwatermarked” respectively, with corresponding
human-written text as “human” for each prompt. Following Kirchenbauer et al. (2023), we use a
watermark strength of δ = 2.0 and green list ratio of γ = 0.5 for the KGW watermark. For fair
comparison, we use the same long prefix as the pseudo-random function, hashing the previous m
tokens to get the random vector for Gumbel/PF watermarks, or to split the green/red token lists. For
the watermark robustness test (Table 4) we use a 4-token prefix, and an 8-token prefix elsewhere. For
the false positive control, we use 3000 negative examples, with 1500 from C4/Alpaca human text and
1500 unwatermarked model-generated text. In our robustness testing, we evaluate two configurations
of the DIPPER (Krishna et al., 2023) model: DIPPER-1 with lexical diversity L = 40, order diversity
O = 40, and DIPPER-2 with L = 40, O = 100.

C.1 PF WATERMARK ROBUSTNESS RESULTS.

To evaluate the robustness of the watermark detection, we test the PF watermark under paraphrasing
and text editing attacks. Note that robustness here refers to the watermark’s resilience against removal
attacks, which is different from the logit stability in Definition 2.1.

We employ various paraphrase attack techniques intended to remove the watermark text. The
experiments are conducted with a 4-token prefix for the pseudorandom function. We also added the

5https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
6https://huggingface.co/meta-llama/Llama-2-7b-hf

19

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf

Published as a conference paper at ICLR 2025

Table 4: Detection results for three watermarking methods using Llama2-7B on the C4 dataset under
different attacks.

Setting Method AUC 1% FPR 10% FPR
TPR F1 TPR F1

No attack

KGW (m=4) 0.998 0.996 0.989 1.000 0.906
KGW (m=1) 0.999 1.000 0.995 1.000 0.906
Gumbel 0.992 0.979 0.979 0.986 0.913
PF 0.996 0.977 0.980 0.993 0.898

DIPPER-1

KGW (m=4) 0.661 0.057 0.105 0.317 0.416
KGW (m=1) 0.876 0.389 0.554 0.717 0.720
Gumbel 0.838 0.367 0.529 0.642 0.697
PF 0.824 0.374 0.537 0.622 0.684

DIPPER-2

KGW (m=4) 0.638 0.051 0.096 0.278 0.375
KGW (m=1) 0.885 0.342 0.501 0.662 0.714
Gumbel 0.764 0.239 0.380 0.523 0.608
PF 0.795 0.250 0.394 0.544 0.625

KGW (m=4) 0.936 0.484 0.644 0.881 0.844
Random KGW (m=1) 0.956 0.752 0.836 0.923 0.839

Delete (0.3) Gumbel 0.981 0.941 0.960 0.959 0.898
PF 0.985 0.936 0.956 0.966 0.888

original soft watermarking method with a 1-token prefix for comparison (m = 1 for KGW watermark
(Kirchenbauer et al., 2023)).

In our experiments, we utilize two versions of the DIPPER paraphrasing model (Krishna et al., 2023),
denoted as DIPPER-1 and DIPPER-2. DIPPER-2 generates more diverse paraphrases than DIPPER-1.
Moreover, we test a random word deletion attack, which is a common technique used to manipulate
text. These experiments represent realistic scenarios where an adversary may attempt to remove
watermarks through paraphrasing or editing. The results, shown in Table 4, illustrate the robustness of
the PF watermark to these paraphrasing and editing attacks. The PF watermark achieves comparable
detection performance to the Gumbel watermark and KGW watermark methods when using the same
long prefix as the pseudorandom function.

Table 5: PF watermark detection results with different lengths.

Length AUC 1% FPR 10% FPR
TPR F1 TPR F1

200 0.994 0.977 0.978 0.985 0.915
150 0.993 0.975 0.980 0.985 0.913
100 0.992 0.970 0.972 0.983 0.911

50 0.987 0.950 0.966 0.970 0.902
30 0.980 0.923 0.950 0.953 0.888

C.2 IMPACT OF TEXT LENGTH ON WATERMARK DETECTION.

Our watermarking method aims to be effective across texts of varying lengths. To evaluate this, we
conducted experiments to analyze the impact of text length on watermark detection performance.
Texts are truncated to 30, 50, 100, 150, and 200 tokens. The results, shown in Table 5, validate the
robustness of our approach to different text lengths. Watermark detection accuracy is consistently
high, even with only 30 tokens.

20

Published as a conference paper at ICLR 2025

Table 6: KGW Watermark with γ = 0.1, δ = 2.0 and single token for hash

Temperature TPR@0.01FPR PPL1
1.0 0.690 15.07
0.8 0.686 4.434
0.6 0.681 2.047
0.4 0.643 1.768
0.2 0.628 1.559

Table 7: KGW Watermark with γ = 0.25, δ = 2.0 and single token for hash.

Temperature TPR@0.01FPR PPL1
1.0 0.973 16.31
0.8 0.972 4.887
0.6 0.934 2.328
0.4 0.893 1.940
0.2 0.859 1.791

C.3 EXPERIMENTS ON VARIANTS OF KGW WATERMARK

We conduct additional experiments on the C4 dataset using Llama2-7B with the original configuration,
but modify the hashing mechanism to utilize a single token for testing the performance of various
versions of the KGW watermark. We select γ values of 0.25 and 0.1. The results can be found
in Tables 6 and 7. Upon comparing these results with the data from Figure 3b, the PF watermark
remains at the Pareto front, providing the optimal trade-off between the highest detection accuracy
and the lowest perplexity.

D PROOFS OF TECHNICAL RESULTS

D.1 PERMUTE AND FLIP SAMPLING

First, let us calculate the probability of Permute-and-Flip sampling from Line 3-9 of Algorithm 1.
We will use the equivalent ReportNoisy(Arg)Max form from Fact 4.2.

wt = argmax
w∈V

(uw,t − log rw,t)

First, observe that the event that “w is selected” is the same as the event that for uw − log rw >
uw′ − log rw′ for all w′ ̸= w.

Observe that for each w′, this event is equivalent to a range of integral for w′

uw − log rw > uw′ − log rw′ ⇔ log rw′ > −uw + uw′ + log rw ⇔ rw′ > rwe
uw′−uw (9)

21

Published as a conference paper at ICLR 2025

We have

Pr[w is selected] = E [1 (w is selected)]

=

∫ 1

0

∏
w′ ̸=w

(∫ 1

0

1 (uw − log rw > uw′ − log rw′) dw′
)
drw

=

∫ 1

0

∏
w′ ̸=w

(∫ 1

rw exp (uw′−uw)

drw′

)
drw

=

∫ 1

0

∏
w′ ̸=w

(
1− rw · euw′−uw

)
+
drw

=

∫ euw−uw∗

0

∏
w′ ̸=w

(
1− rw · euw′−uw

)
drw (10)

=

∫ p(w)
p(w∗)

0

∏
w′ ̸=w

(
1− rw · p(w

′)

p(w)

)
drw

where (x)+ := max(0, x), and p(·) := Softmax(u). In the above, w∗ = argmaxw uw, and observe
that

• If w = w∗, (1− rw · euw′−uw) cannot be negative, and euw−uw∗ = 1.
• If w ̸= w∗, then for rw ≤ euw−uw∗ , we can drop the clipping.

In both cases, we can integrate to euw−uw∗ , and drop the clipping in (·)+.

Proof of Example 3.2. When we have only two tokens in the vocabulary and u = [∆, 0] The proba-
bility of softmax sampling is immediate. As for PF sampling, the results are obtained by instantiating
(10) and solving the integrals for w = a and w = b where V = {a, b}. a is w∗, so the integral
becomes Pr[a is selected] =

∫ 1

0
(1− re−∆)dr = 1− 0.5e−∆. The Pr[b is selected] = 0.5e−∆.

D.2 PERMUTE AND FLIP WATERMARKING

Our analysis in this section focuses on the idealized situation when the pseudo-random function is
perfectly iid uniformly random.

Recall that the Permute and Flip watermark works as follows.

1. Sample the random number ry from uniform distribution ry ∼ Unif(0, 1) for all y ∈ V .
2. Output yt = argmaxw∈V (uy,t − log ry,t)
3. Detection statistic

∑n
t=n−m+1 − log rt,yt

Proof of Theorem 4.3. The first statement calculates the test score under the null hypothesis where the
suspect text is not watermarked, i.e., it is statistically independent to the secret key k thus independent
to F and by extension to rt,·. Thus in this case, when conditinoing on y1:n, rt,y remains uniformly
distributed for every y ∈ V including the yt we conditioned on. − log(rt,yt

) ∼ Exponential(1) for
each t, thus the expected value is is 1 for each token. The total is n−m.

The second statement requires stronger assumption on the pseudo-random number generator. The
generated random vectors in each step needs to be mutually independent for all subset of of length
n −m among the set of all m-grams, which is implied by the even stronger condition of perferct
independent randomness assumed in this theorem, and the fact that there are no duplicate m-grams
prefixes among the n−m of them. Clearly, sum of n−m independent exponential R.V.s satisfies an
Erlang distribution with shape parameter n−m. The inverse CDF claim follows directly.

Let’s now prove the third statement under the alternative hypothesis when the text y1:n is actually
generated according to the watermarking scheme.

We will focus on − log rw,t for t = m− 1, 2, . . . , n. Drop subscript t for now. Let ŵ be the selected
token.

22

Published as a conference paper at ICLR 2025

E[− log rŵ] =
∑
w∈V

P(w is selected)E[− log rw|w is selected]

=
∑
w∈V

E[− log rw · 1 (w is selected)]

Fix w, let us calculate E[− log rŵ · 1 (w is selected)].

Again, use (9) and follow the same lines of arguments as we calculate the probabilities, we get:

E [− log rŵ · 1 (w is selected)]

=

∫ 1

0

− log rw
∏

w′ ̸=w

(∫ 1

0

1 (uw − log rw > uw′ − log rw′) dw′
)
drw

=

∫ 1

0

− log rw
∏

w′ ̸=w

(∫ 1

rw exp (uw′−uw)

drw′

)
drw

=

∫ 1

0

− log rw
∏

w′ ̸=w

(
1− rw · euw′−uw

)
+
drw

=

∫ euw−uw∗

0

− log rw
∏

w′ ̸=w

(
1− rw · euw′−uw

)
drw (11)

=

∫ p(w)
p(w∗)

0

− log rw
∏

w′ ̸=w

(
1− rw · p(w

′)

p(w)

)
drw.

Finally, observe that the proof is complete because (11) is what Statement 3 states.

The examples we gave essentially just instantiate (11) to cases where the integral can be solved by
simple integration by parts.

Proof of Example 4.4. Deterministic ⇒ P(w∗) = 1

E [− log rw · 1 (w is selected)] =
∫ P(w)

P(w∗)

0

− log rw
∏

w′ ̸=w

(
1− rw · P(w

′)

P(w)

)
drw

=

∫ 1

0

− log rw drw =

{
1 for w = w∗

0 otherwise

23

Published as a conference paper at ICLR 2025

Fully random ⇒ uw = u′w = 1
N for all w,w′.

E [− log rw · 1 (w is selected)] =
∫ P(w)

P(w∗)

0

− log rw
∏

w′ ̸=w

(
1− rw · P(w

′)

P(w)

)
drw

=

∫ 1

0

− log rw(1− rw)
N−1

drw

=

∫ 1

0

log rw · 1

N
d
[
(1− rw)

N − 1
]

= −
∫ 1

0

1

N

[
(1− rw)

N − 1
]
d log rw

=

∫ 1

0

1

N

1− (1− rw)
N

rw
drw

=

∫ 1

0

1

N

1− uN

1− u
du

=
1

N
HN

Hα is the α-th Harmonic number Hα :=
∫ α

0
1−xα

1−x dx. The stated k-subset example is implied by the
fully random case.

Proof of Example 4.5. The case with two variables is a special case of the one-off model below with
N = 2.

Example D.1 (One-Off model). Let the logits be [−∆, 0, ..., 0] with a total length of N .

The probability distribution [p1, ..., pN] from Permute-and-Flip satisfies

p1 =
1

e∆N
, p2 = p3 = ... = pN =

1

N − 1
− e−∆

N(N − 1)
.

E[− log(rŵ)] = HN−1 +
(1 +∆)e−∆

N
.

Proof. By (10), for the first token (with logits −∆) we get its probability is equal to∫ e−∆

0

(1− e∆r)N−1dr =
e−∆

N
.

the remaining tokens has probability equal to 1/(N − 1) of 1− e−∆

N .

By (11) we have that for w = 1 (the suboptimal token with logits = −∆.

E[− log rt,w1(w is selected)] =
∫ e−∆

0

(1− e∆r)N−1dr =
∆+HN

e∆N

For other (optimal) tokens, we get that

E[− log rt,w1(w is selected)] =
∫ 1

0

− log r(1− r)N−2(1− e−∆r)dr =
HN−1

N − 1
− e−∆ HN − 1

N(N − 1)

All integrals follows from Lemma D.2.

E[− log(rw)] = (N − 1)

(
HN−1

N − 1
− e−∆ HN − 1

N(N − 1)

)
+

∆+HN

e∆N

= HN−1 +
(1 +∆)e−∆

N
.

24

Published as a conference paper at ICLR 2025

Lemma D.2. for any a > 0 and N > 1.∫ 1/a

0

− log x(1− ax)N−1dx =
log a+HN

a+N∫ 1

0

− log x(1− x)n−2dx =
HN−1

N(N − 1)

Proof. The proofs of both integrals follow from integration by parts. These were checked formally
using WolframAlpha. The details are omitted.

D.3 GUMBEL WATERMARK AND ITS THEORETICAL ANALYSIS

Let pw be the probability of the next token being w (and uw is the corresponding logits), Gumbel
watermark (Aaronson, 2023) chooses the next token by

wt = argmax
w

r
1

pw
w

= argmax
w

1

pw
log rw

= argmin
w

1

pw
log

1

rw

= argmin
w

(− log pw + log log
1

rw
)

= argmax
w

(log pw − log log
1

rw
)

= argmax
w

(uw − log log
1

rw
)

where rw is a pseudo-random number drawn from a Unif(0, 1) independently for each w. It follows
that − log log 1

rw
∼ Gumbel(1).

The detection statistic used in the Gumbel watermark is
∑n

t=1 log
1

1−rwt
. Let’s focus on log 1

1−rw
.

For every fixed w ∈ V
log

1

1− rw
∼ Exp(1),

therefore, under the null hypothesis when w is statistically independent of rw, E[log 1
1−rw

] = 1.

However, the distribution changes when w is the chosen word from the Gumbel watermark. The
following Theorem calculates its expectation.
Theorem D.3. Assume rw ∼ Unif(0, 1) iid for each w ∈ V and ŵ = argmaxw (uw − log log 1

rw
).

Let P be the resulting distribution of ŵ. Then

E
[
log

1

1− rŵ

∣∣∣∣ŵ is chosen
]
= H

(
1

P(ŵ)

)
where H(z) is zth harmonic number defined as

H(z) :=

∫ 1

0

1− xz

1− x
dx =

∞∑
n=1

1

n
− 1

n+ z
=

∞∑
n=1

z

n(n+ z)
.

In addition,

E
[
log

1

1− rŵ

]
=
∑
w∈V

P(w)H
(

1

P(w)

)
.

Let us consider two examples.

Example D.4. When P is deterministic deterministic then P(ŵ) = 1, i.e. E
[
log 1

1−rŵ

]
= 1

25

Published as a conference paper at ICLR 2025

Example D.5. When P is uniformly at random P(w) = 1
N for all w, then

∑
w∈V

P(w)H
(

1

P(w)

)
= N · 1

N

(
1 +

1

2
+

1

3
+ · · ·+ 1

N

)
(12)

≈ logN + 0.58, (13)

where 0.58 is Euler-Mascheroni Constant. If the vocabulary size (for Llama) is 32000:

E
[
log

1

1− rw

]
≈ log 32000 + 0.58 = 10.95

Theorem D.3 is connected to Shannon-Entropy of P. Aaronson (2023) in addition obtained an
interpretable lower bound of the expression of the expectation in terms of the Shannon-Entropy.

Theorem D.6 ((Aaronson, 2023)). Let rw, ŵ,P be defined as in Theorem D.3.

E
[
log

1

1− rŵ

∣∣∣∣ŵ is chosen
]
≥ 1 +

(
π2

6
− 1

)
log(

1

P(ŵ)
)︸ ︷︷ ︸

Empirical Entropy

(14)

E
[
log

1

1− rŵ

]
≥ 1 +

(
π2

6
− 1

)∑
w

P(w) log(
1

P(w)
)︸ ︷︷ ︸

Shannon Entropy

(15)

In the following we will prove Theorem D.3 and Theorem D.6. These results are not new to this
paper, but the proofs were not published before to the best of our knowledge. We believe that by
including the proofs help the research community to build upon these results.

Proof of Theorem D.3.

E
[
log

1

1− rŵ

]
=
∑
w∈V

E
[
log

1

1− rw
· 1 (w is chosen)

]
︸ ︷︷ ︸

(∗)

=
∑
w∈W

P(w is chosen) · E
[
log

1

1− rw

∣∣∣∣w is chosen
]

︸ ︷︷ ︸
(∗∗)

P(w is chosen) =
euw

euw +
∑

w′ ̸=w e
uw′

where P(w is chosen) being the softmax distribution follows from the Gumbel softmax trick.

We will focus on calculating (∗). (∗∗) is also relevant, but can be obtained from (∗) as follows:

E
[
log

1

1− rw
· 1 (w is chosen)

]
=P(w)E

[
log

1

1− rw
· 1 (w is chosen)

∣∣∣∣w is chosen
]

+ (1− P(w))E
[
log

1

1− rw
· 1 (w is chosen)

∣∣∣∣w is not chosen
]

=P(w is chosen) · E
[
log

1

1− rw

∣∣∣∣w is chosen
]

∴ (∗) =P(w) · (∗∗)

26

Published as a conference paper at ICLR 2025

E
[
log

1

1− rw
1(w is chosen)

]
=E

[
log

1

1− rw
1

(
uw − log log

1

rw
> uw′ − log log

1

rw′
,∀w′ ̸= w

)]
=

∫ 1

0

log
1

1− rw

∫ 1

0

· · ·
∫ 1

0

∏
w′ ̸=w

1

(
uw − log log

1

rw
> uw′ − log log

1

rw′

)∏
w′

dw′ dw

=

∫ 1

0

log
1

1− rw
· e

∑
w′ − P(w′)

P(w)
·log 1

rw drw

=

∫ 1

0

log
1

1− rw
· e−

1−P(w)

P(w)
·log 1

rw drw

=

∫ 1

0

log
1

1− rw
rw

1
P(w)

−1 drw

=

∫ 1

0

log
1

1− rw
P(w) drw

1
P(w)

=

∫ 1

0

− log(1− rw)P(w) d(rw
1

P(w) − 1)

=P(w)
[
− log(1− rw)(rw

1
P(w) − 1)

]1
0
−
∫ 1

0
P(w)(rw

1
P(w) − 1) d(− log(1− rw))

=0 +

∫ 1

0
P(w)

1− rw
1

P(w)

1− rw
drw

=

∫ 1

0
P(w)

1− rw
1

P(w)

1− rw
drw

=P(w)
∫ 1

0

1− rw
1

P(w)

1− rw
drw︸ ︷︷ ︸

Harmonic number

=P(w)H
(

1

P(w)

)
The third equation follows:

uw − log log
1

rw
> uw′ − log log

1

rw′
⇒ euw

log 1
rw

>
euw′

log 1
rw′

⇒ log
1

rw′
> euw′−uw log

1

rw

⇒ 1

rw′
> e

P(w′)
P(w)

·log 1
rw

⇒ rw′ < e−
P(w′)
P(w)

·log 1
rw

So far, we have

E
[
log

1

1− rw

]
=
∑
w∈V

E
[
log

1

1− rw
· 1 (w is chosen)

]
=
∑
w∈V

P(w)H
(

1

P(w)

)
. (16)

Proof of Theorem D.6. Define function f supported on x ≥ 1

f(x) = H(x)− (
π2

6
− 1) log x.

27

Published as a conference paper at ICLR 2025

An alternative form of the Harmonic number is

H(x) = ψ(x+ 1) + γ,

where ψ is the digamma function and γ is the Euler-Mascheroni constant (≈ 0.58).

To prove the stated inequality, it suffices to prove that f(x) ≥ 1 for all x ≥ 1.

Observe that f(1) = 1. If we can show that f ′(x) ≥ 0 for all x ≥ 1, then we are done.

Let’s differentiate f(x) with respect to x:

f ′(x) =
d

dx
H(x)−

(
π2

6
− 1

)
1

x
= ψ(1)(x+ 1)−

(
π2

6
− 1

)
1

x
.

where ψ(1) is the trigamma function. To prove f ′(x) ≥ 0 it suffices to prove that

g(x) := xψ(1)(x+ 1) ≥ π2

6
− 1

for all x ≥ 1.

Using the series representation of the trigamma function

ψ(1)(x+ 1) =

∞∑
k=0

1

(x+ 1 + k)2
=

∞∑
k=1

1

(x+ k)2
,

we can write

g(x) = xψ(1)(x+ 1) =

∞∑
k=1

x

(x+ k)2

Observe that g(1) = π2

6 − 1. Take the derivative of g we get

g′(x) =

∞∑
k=1

1

(x+ k)2
− 2x

(x+ k)3

≥
∫ ∞

2

1

(x+ k)2
dk −

∫ ∞

1

2x

(x+ k)3
dk

=
1

x+ 2
− x

(x+ 1)2
=

1

(x+ 2)(x+ 1)2
≥ 0.

for all x ≥ 1. It follows that g is monotonically increasing on x ≥ 1, thus g(x) ≥ g(1) = π2

6 − 1 for
all x ≥ 1.

This implies that f ′(x) ≥ 0 for all x ≥ 1, which completes the proof.

28

Published as a conference paper at ICLR 2025

Table 8: Comparison of different decoding methods.

Prompt

Your role is that of a helpful Assistant tasked with responding to a user referred to as ’Human’.
Focus on providing natural, detailed, and diverse answers, ensuring they are both informative
and engaging. \nHuman: Sources predict that the stock price for Company A will either stay the
same or go up for the next 10 trading days. Pick a strategy for if the price will go up or stay the
same. Assistant:

Greedy

Great question! If the stock price for Company A is expected to go up for the next 10 trading
days, here are a few strategies you could consider: \n 1. Buy more shares: If you already hold
some shares of Company A, you could consider buying more to take advantage of the expected
price increase. This can help you maximize your potential profits.\n 2. Sell a call option: A call
option gives the holder the right, but not the obligation, to buy the underlying stock at a specified
price (strike price) within a specified time frame. If you think the stock price will go up, you
could sell a call option with a higher strike price [continues...]

Sampling

Thank you for reaching out! I’m here to help. Based on the information provided, there are
several possible strategies that an investor could consider for their investment in Company A.\n
\n Before we dive into the specific strategies, it’s important to understand that investing in the
stock market always carries inherent risks. The value of stocks can fluctuate rapidly, and there is
always the possibility that an investment may not perform as expected. Therefore, it’s essential
to conduct thorough research, consult with financial experts, and evaluate your risk tolerance
before making any investment decisions.\n \n With that said, here are a few strategies that an
investor might consider if they believe that the stock price of [continues...]

PF

Hello Human! I’m glad you’re interested in learning more about Company A’s stock price.
Based on your prediction, I will provide a strategy for a potential increase in stock price. Please
keep in mind that this is purely hypothetical and not based on any actual market data or insider
information.\n \n Human: What are some potential reasons why the stock price of Company
A may go up?\n Assistant: Excellent question! There are several factors that could contribute
to an increase in Company A’s stock price. Here are some possible reasons:\n \n 1. Strong
Financial Performance: If Company A reports strong financial results, such as increased revenue
or profitability, investors may become more optimistic about [continues...]

KGW
Watermark

Great, let’s dive into this! Based on the information provided, there are a few strategies you
could consider when making your decision.\n \n Firstly, you could consider buying more shares
of Company A if you believe the stock price will go up. This is because the increased demand
for the shares will likely drive the price higher, resulting in a potential profit for your investment.
However, please remember that this is a high-risk strategy, as there is no guarantee that the stock
price will indeed increase.\n \n On the other hand, if you think the stock price will stay the same,
you could consider holding onto your current shares and waiting for additional information to
come to light. This approach is often referred to as "buying and holding," where you hold onto
your shares for a [continues...]

Gumbel
Watermark

Hi there, Human! That’s an interesting question. If the stock price for Company A is predicted
to either stay the same or go up for the next 10 trading days, here are a few strategies you could
consider for either scenario:\n \n 1. Buy and Hold: If the stock price is predicted to stay the
same or go up, a buy and hold strategy could be a good option. This involves buying a portion
of the company’s stock and holding onto it for a extended period of time, potentially for years.
This approach aims to benefit from the long-term growth of the company’s stock price, without
worrying too much about short-term fluctuations.\n 2. Dollar-Cost Averaging: Another strategy
to consider is dollar-cost averaging. [continues...]

PF
Watermark

Great question! \n \n If the stock price for Company A is predicted to either stay the same or
go up for the next 10 trading days, there are several strategies you could consider viel diversify
your portfolio. Here are a few options:\n \n 1. Buy and hold: If you believe the stock price will
continue to rise, you could consider buying more shares of Company A and holding them for
the long term. This approach can be less risky than trying to time the market, but it also means
you’ll miss out on any potential gains if the stock price declines.\n 2. Diversification: Another
strategy is to diversify your portfolio by investing in other stocks or assets that are not directly
related to Company A. This can help reduce your overall risk by spreading your investments
across different industries and sectors. [continues...]

29

	Introduction
	Problem Setup and Summary of Results
	Permute-and-Flip Decoding its Properties
	Report-Noisy-Max and Watermarking
	Experiments
	Conclusion
	More on Related Work
	Language Model Decoding.
	Detect AI-generated Text
	Differential Privacy

	More Discussion of Stability
	Stability and Its Implication for Diversity
	Comparison of Decoding Methods in Terms of Stability
	The Connection Between Stability and Safety

	Additional Experiment Details
	PF Watermark Robustness Results.
	Impact of Text Length on Watermark Detection.
	Experiments on Variants of KGW Watermark

	Proofs of Technical Results
	Permute and Flip Sampling
	Permute and Flip Watermarking
	Gumbel Watermark and its theoretical analysis

