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Reproducibility Summary1

Scope of Reproducibility2

We test the claim that Adversarially Reweighted Learning (ARL) improves Rawlsian Max-Min fairness for supervised3

classification compared to previous methods and simple baselines in the case of missing demographic data.4

Methodology5

We completely re-implemented all models and training routines in PyTorch, using the paper and the published code as a6

reference. We compared our implementation to the one provided by the authors and then reproduced the hyperparameter7

search as described in the paper using our implementation. In addition, we applied the method to image data, in order to8

test how well it generalizes across modalities.9

Due to the general simplicity of the used models, it was straightforward to implement the code base from scratch and10

run the experiments. Parts of the experiments were run on a computing cluster with 12 CPUs and parts on Google11

Colab (GPU). Overall, it took 4 weeks to produce the results, with four people working on it. A complete grid search12

took 4 hours and producing the final results with fixed hyperparameters 5 hours, of which a single training run of one13

model on one dataset took about 2 minutes.14

Results15

We could not replicate the advantage of ARL over the investigated baselines. This seems to be mainly due to a better16

baseline performance than reported in the paper. Our baseline’s performance is on average 2.615 standard deviations17

higher than the authors’. Our ARL results do not deviate significantly from the papers’ result, they are on average 0.84118

standard deviations higher.19

What was easy20

ARL itself was very easy to implement. We were also able to run the code provided by the authors quite easily. Running21

the experiments required little computational resources because of the small datasets and models.22

What was difficult23

Pre-processing the data took time because the notebooks provided by the authors contained some errors that we needed24

to debug. For the replication of the grid search for hyperparameter optimization of all models on all dataset, we had to25

limit the training duration to a maximum of 5k steps in order to finish all experiments on time.26

Communication with original authors27

We asked the authors about details regarding their training procedure. The authors provided us with the missing details28

and adapted their GitHub repository as a response to our communication.29



1 Introduction30

As machine learning (ML) systems are increasingly often applied to high-stakes situations, it is becoming more31

important to ensure that they do not discriminate against groups of individuals based on features such as race and sex.32

Lahoti et al. present an approach called Adversarially Reweighted Learning (ARL) that aims to improve a model’s33

performance measured according to the Rawlsian Max-Min fairness principle by reformulating the training procedure34

as an adversarial min-max game [1]. While previous work mainly addresses the case where protected features are part35

of the dataset, ARL does not require such information. As Lahoti et al. point out, such an approach is important because36

information about group membership is often sensitive and not available in many real-world scenarios, for example due37

to privacy concerns.38

1.1 Replication of Main Experiments39

The main empirical claim of Lahoti et al. is that ARL outperforms several other methods across several (tabular)40

datasets in terms of both performance and fairness. Their most important comparison models are Distributionally robust41

optimization (DRO) [2], inverse probability weighting (IPW) and a simple empiricial risk minimization baseline. The42

focus of our reproducibility study is therefore whether we can replicate an advantage of ARL over these methods.43

We implemented all of the methods ourselves in PyTorch [3]. For ARL, IPW and the baseline, we mostly relied on the44

description in the paper and referred to the authors’ TensorFlow [4] code where necessary. For DRO, we adapted the45

publicly available implementation to our framework. Our own code is available in the supplementary material.46

Following the paper, we performed a grid search over hyperparameters. We report the performance of our own47

implementation on the same datasets as used by the authors, namely UCI Adult, LSAC and COMPAS. Based on our48

own results and the process of obtaining these, we evaluate the replicability of the paper. We pay special attention to the49

following criteria:50

• Are our own results in line with the results reported by the authors?51

• What challenges did we meet when replicating the authors’ method?52

• What differences exist between the authors’ paper and their code?53

• Can we support the explicit and implicit assumptions made by the authors to substantiate their method?54

1.2 Additional Contributions55

Given the tabular nature of the UCI Adult, LSAC and COMPAS datasets, the authors apply their method to fully-56

connected networks. Adversarial reweighting is, however, not limited to fully-connected networks, but serves as a57

general framework to modify optimization such that worst-case performance over unobserved protected groups is58

improved. We therefore applied the method to image data, in order to test how well it generalizes across modalities. For59

this, we trained a convolutional ARL on a custom image dataset based on EMNIST.60

2 Methodology61

2.1 Model Descriptions62

ARL, DRO and IPW have in common that they modify the optimization objective in order to improve fairness. Even63

though the ARL introduces an additional adversary network to dynamically learn the exact form of this modification,64

the network architecture of the inference model is identical for all different methods. (Note that this does not transfer to65

the adversary network of ARL, which is not used for inference.)66

For training on the UCI Adult, LSAC and COMPAS datasets, we used a simple fully-connected feed forward neural67

network. As in the paper, the network consists of two hidden layers with 64 and 32 units respectively, and ReLU68

activation functions applied after each hidden layer. For the given binary classification tasks, the output layer consists69

of one output unit.70

Adversarially Reweighted Learning (ARL)71

The key component to ARL is its adversarial setting. Concretely, a so-called learner is trained to minimize a task-
specific loss function. Alternatingly, a so-called adversary is trained to reweight the loss terms that are produced by the
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learner for each individual training sample in order to maximize the overall loss. Using θ and φ to respectively denote
the parameters of the learner and the adversary, the overall training objective for n training samples is formulated as:

J(θ, λ) := min
θ

max
φ

n∑
i=1

λφ(xi, yi)`(hθ(xi), yi),

where ` : Ŷ × Y → R denotes the loss function of the underlying task and hθ : X → Ŷ denotes the function that is
implemented by the learner. The weights λφ(X,Y ) are produced by the adversary as follows:

λφ(xi, yi) = 1 + n · fφ(xi, yi)∑n
j=1 fφ(xj , yj)

,

where fφ(xi, yi) is the adversary’s output. During training, the adversary implicitly learns to identify areas in the72

input space that lead to high losses `. By assigning higher weights to samples from these areas, it drives the learner73

towards improving in the identified subspaces. The authors claim that this ultimately leads to improved performance for74

protected groups whose sensible characteristic features are not included in the input data X , i.e. the groups that are75

identified by the adversary correspond to a certain degree to the groups that are to be protected.76

We implemented the adversary with one linear layer, followed by a sigmoid function and the normalization, scaling and77

shifting as stated above. Instead of using the sum of single reweighted losses, we used the mean, following the authors’78

code. In their code they used two consecutive linear layers, which is not perfectly in line with the paper. Their code also79

reveals that the learner network was pretrained, which they do not mention in their paper.80

Empiricial Risk Minimization (Baseline)81

This model is identical to the learner in ARL. The authors note that they increased the number of hidden units in this82

model to compensate for the added capacity in form of the adversary in ARL. However, it was neither clear from the83

paper how they implemented this, nor evident from their code that they actually did. Going by parameter count, a84

single additional unit would already result in more parameters than for ARL. Since the simple fully-connected model85

did already match the performance of ARL (see Table 1), we did not investigate the effect of adding more units. The86

fully-connected model will also be referred to as ’baseline’ in the rest of the text.87

Inverse Probability Weighting (IPW)88

Instead of learning the weights to reweight the loss function dynamically, a simpler approach is to weight each sample89

with the inverse probability of drawing this sample from the dataset. This gives underrepresented groups in the dataset90

a larger weight. In the IPW(S) approach, the probabilities are calculated based only on the membership to protected91

groups (e.g. "sex" or "race"), resulting in weights of the form 1/p(s). Additionally to the protected group we can92

take into account the label, resulting in a model called IPW(S+Y). Here, the probabilities are calculated as the joint93

probabilities of being in a certain protected group and belonging to a certain label (e.g. "being black" and "earning94

more than fifty thousand dollars a year"). This results in weights of the form 1/p(s, y).95

IPW can only be used if group probabilities are known. It therefore offers a comparison of the ARL’s claim of improving96

fairness without demographics to a method that improves fairness with demographics.97

Distributionally Robust Optimization (DRO)98

Similar to ARL, DRO aims to improve Rawlsian Max-Min Fairness for tasks where protected groups are unknown.99

Hashimoto et al. propose the following optimization objective:100

min
θ∈Θ

EP [`(θ;Z)− η]2+

P denotes the data generating distribution, `(θ;Z) the loss of a query Z under the model with parameters θ, and101

η a hyperparameter to threshold the losses. In the publicly available code by Hashimoto et al. that we used in our102

implementation, a ReLU activation function is applied after subtracting η from losses of single data points, ensuring that103

only positive losses remain. The method focuses on the worst-case group by only considering losses for optimization104

that exceed the threshold η, which implicitly decides about the size of the worst-case group. Squaring the thresholded105

losses upweights the influence of higher losses on the learning objective further.106
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2.2 Datasets107

We use the three datasets also used in the paper: UCI Adult [5], COMPAS [6] and LSAC [7], all of which are publicly108

available. Every dataset describes a binary prediction task. In UCI Adult, the income of a person is to be predicted to be109

above fifty thousand dollars. COMPAS is concerned with predicting the recidivism of indviduals convicted of crimes.110

For LSAC, the task is to predict whether a given law student will pass the bar exam.111

All datasets exhibit some form of imbalance and include information about sensitive attributes like sex and race which112

makes them suitable for evaluating model fairness. UCI Adult consists of 48,842 records, of which 67% are male and113

85% white (10% black). The dataset is also imbalanced in its target class, as only 24% have an income of more than114

fifty thousand dollars. LSAC consists of 26,551 samples, of which 56% are male and 83% white (6% black). COMPAS115

consists of 7,185 records with 81% being male and 37% white (51% black). In all datasets, there exists some correlation116

between sensitive attributes and target class [8, 7, 9].117

Pipeline118

We split each dataset randomly into 70% training data and 30% test data, except for UCI Adult, where a split is already119

provided. For our main experiments, the sensitive columns race and sex were removed from the features, such that these120

demographics were not available to the models. To access sensitive information during evaluation, each data element121

was categorized as being a member of one of the following groups: "not black and male", "not black and female",122

"black and male", "black and female". Of these, the group with the fewest members is referred to as minority. This123

treatment of the subgroups was inferred from the publicly available code. The paper however used the term "white"124

instead of "not black", which does not accurately reflect the work done in their code. We will adopt their term usage125

from hereon for better comparability.126

We represented categorical features using one-hot encoding and normalized numerical features to have zero mean and127

unit standard deviation. All features of a datapoint were then appended into one feature vector. A script to download128

and preprocess the datasets is available as part of our code base.129

2.3 Hyperparameters130

We determined the optimal batch size and learning rate for each method using a grid search and 5-fold cross validation131

over the same search space as described in the appendix to the paper.132

All results were obtained by training from scratch with the obtained optimal hyperparameters using ten different random133

seeds, then evaluating on the test set and averaging the results. We pretrained the learner for ARL for 250 steps, which134

is the default in the code provided by the authors. We used AdaGrad as the optimizer, following the paper. Initialization135

for the weights and the optimizer were chosen to agree with TensorFlow defaults. In the initial experiments, we ran136

each grid search for 5000 training steps, with early stopping if the overall AUC on the validation set had not improved137

for 10 epochs.138

For the grid search space and the optimal hyperparameters found, see Appendix C. For the hyperparameters obtained by139

the authors and a comparison to the hyperparameters found in our grid search, see Appendix D.140

2.4 Computational Requirements141

The grid searches took about 3-4h on twelve CPUs for the 5k step runs on tabular data and an additional 10h on a GPU142

for the image grid searches. The 100k step grid seach took much longer, about 1-2 days. The final results (training each143

model on ten different random seeds) were obtained from a notebook that ran about 5h on Google Colab with a GPU.144

3 Results145

Table 1 shows the results of comparing ARL to DRO and the baseline model. We observe that all methods obtain very146

similar results for each dataset and metric. Many of the differences that do exist between methods are not significant,147

and in any case which methods performs best varies strongly between metrics and datasets.148

Table 2 shows the relative deviation of our results in Table 1 to those reported in the paper. Positive numbers mean that149

our performance was higher, negative that it was lower than that from the paper. All numbers are measured in multiples150

of the standard error of the difference, calculated as
√
σ2

ours + σ2
theirs, where σours and σtheirs are the standard deviations151

of our and their results over the 10 runs with different seeds. Because Lahoti et al. do not report standard deviations for152

macro-avg, minimum and minority AUC, we calculated the errors for those measure using error propagation from the153
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values they report for all protected subgroups (tables 6 to 8 in their supplementary material). Overall, all three methods154

tend to have a slightly better performance in our results than in the paper. But for ARL, this effect is smaller than for155

the baseline and in particular than for DRO. This explains why in our results, ARL doesn’t have an advantage like it156

does in the paper: it doesn’t perform any worse, but the comparison methods perform better.157

Dataset Method AUC avg AUC macro-avg AUC min AUC minority Accuracy
Adult baseline 0.9093 ± 0.0016 0.9193 ± 0.0011 0.8842 ± 0.0019 0.9440 ± 0.0040 0.8498 ± 0.0070
Adult DRO 0.9102 ± 0.0007 0.9187 ± 0.0018 0.8853 ± 0.0007 0.9414 ± 0.0059 0.8574 ± 0.0015
Adult ARL 0.9104 ± 0.0006 0.9196 ± 0.0012 0.8852 ± 0.0008 0.9433 ± 0.0042 0.8530 ± 0.0036
LSAC baseline 0.8309 ± 0.0061 0.8263 ± 0.0063 0.8096 ± 0.0073 0.8371 ± 0.0087 0.8604 ± 0.0047
LSAC DRO 0.8242 ± 0.0051 0.8217 ± 0.0053 0.8024 ± 0.0055 0.8361 ± 0.0088 0.8570 ± 0.0057
LSAC ARL 0.8333 ± 0.0046 0.8272 ± 0.0041 0.8115 ± 0.0057 0.8375 ± 0.0042 0.8644 ± 0.0032

COMPAS baseline 0.7357 ± 0.0025 0.7340 ± 0.0027 0.6995 ± 0.0029 0.7475 ± 0.0024 0.6735 ± 0.0057
COMPAS DRO 0.7361 ± 0.0030 0.7347 ± 0.0032 0.6997 ± 0.0035 0.7533 ± 0.0044 0.6688 ± 0.0071
COMPAS ARL 0.7315 ± 0.0049 0.7290 ± 0.0059 0.6951 ± 0.0070 0.7511 ± 0.0066 0.6498 ± 0.0380

Table 1: Main results: Baseline vs ARL vs DRO, best results for each dataset are marked bold

Dataset Method AUC avg AUC macro-avg AUC min AUC minority
Adult baseline 6.880 8.076 0.379 2.822
Adult DRO 14.134 5.102 17.038 1.408
Adult ARL 3.096 1.115 2.962 0.093
LSAC baseline 2.702 2.113 2.456 1.287
LSAC DRO 22.782 21.160 21.896 12.003
LSAC ARL 1.704 1.147 1.405 0.283

COMPAS baseline -2.851 1.665 8.197 -2.352
COMPAS DRO 6.439 10.727 6.219 3.881
COMPAS ARL -2.034 0.553 3.197 -3.425

Table 2: Relative deviations between our results and those reported in the paper (difference divided by standard deviation
across runs, see main text for details). Deviations of more than 2 standard deviations are marked bold. Accuracy was
not reported by the authors and is thus missing.

We also ran the code provided by the authors with their optimal hyperparameters (results in Appendix A). There, we get158

results much closer to those reported in the paper and in particular a (very slight) advantage for ARL. Additionally, we159

directly compared our Pytorch implementation with the original Tensorflow implementation (Appendix B) and found160

that our implementation tended to perform somewhat better. We will discuss these various discrepancies further below.161

Since some training runs did not end via early stopping but rather due to the maximum number of training steps being162

reached, we repeated the grid search and evaluation with ten seeds using a maximum number of 100k instead of 5k163

steps. We did not observe a significant increase in performance for any of the used methods, so we can probably rule164

out that training for too few training steps distorted our results. The exact results for 100k training steps can be found in165

Table 11. In the remainder of the main body of this report we use 5k training steps if not stated otherwise.166
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Figure 1: Different AUC values during training of ARL, baseline and DRO on the validation set of LSAC. Average and
standard deviation over 10 random seeds.

Figure 1 shows the micro-average AUC, minimum group AUC and the AUC of the minority group of ARL, baseline and167

DRO on the validation split of the LSAC dataset. As can be seen, ARL shows no consistent advantage in the minimum168
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group AUC and minority AUC, and a neglectable advantage in the micro-average AUC. Figures 1b and 1c show that,169

depending on the point in time where the models are saved, there exist some points of comparison where ARL seems to170

outperform the other models. Given these fluctuations, it is possible that the differences between the authors’ and our171

results can be explained by different points of comparison. We used early stopping and compared the best-performing172

models, whereas the authors used a fixed number of training steps.173

In Table 3, we compare the results between ARL and the naive reweighting approach IPW, either using only protected174

groups (S) or using protected groups and labels (S+Y) to compute the inverse probability weights. Similarly to the175

results in Table 1, ARL does not show an advantage over other methods on any of the datasets.176

Dataset Method AUC avg AUC macro-avg AUC min AUC minority Accuracy
Adult ARL 0.9104 ± 0.0006 0.9196 ± 0.0012 0.8852 ± 0.0008 0.9433 ± 0.0042 0.8530 ± 0.0036
Adult IPW(S) 0.9085 ± 0.0004 0.9179 ± 0.0007 0.8826 ± 0.0005 0.9434 ± 0.0018 0.8557 ± 0.0010
Adult IPW(S+Y) 0.9110 ± 0.0009 0.9209 ± 0.0020 0.8859 ± 0.0010 0.9465 ± 0.0047 0.7428 ± 0.0160
LSAC ARL 0.8333 ± 0.0046 0.8272 ± 0.0041 0.8115 ± 0.0057 0.8375 ± 0.0042 0.8644 ± 0.0032
LSAC IPW(S) 0.8147 ± 0.0066 0.8088 ± 0.0056 0.7933 ± 0.0089 0.8162 ± 0.0090 0.8483 ± 0.0033
LSAC IPW(S+Y) 0.8371 ± 0.0038 0.8302 ± 0.0030 0.8150 ± 0.0054 0.8374 ± 0.0072 0.8352 ± 0.0108

COMPAS ARL 0.7315 ± 0.0049 0.7290 ± 0.0059 0.6951 ± 0.0070 0.7511 ± 0.0066 0.6498 ± 0.0380
COMPAS IPW(S) 0.7300 ± 0.0040 0.7294 ± 0.0058 0.6914 ± 0.0024 0.7399 ± 0.0124 0.6661 ± 0.0159
COMPAS IPW(S+Y) 0.7362 ± 0.0029 0.7346 ± 0.0031 0.6998 ± 0.0029 0.7526 ± 0.0043 0.6733 ± 0.0096

Table 3: Comparison ARL vs IPW for 5k maximum training steps

3.1 Computational Identifiability177

Adult LSAC COMPAS
Race total 0.907 0.943 0.618

White 0.997 0.988 0.603
Black 0.058 0.325 0.631

Sex total 0.842 0.585 0.802
Male 0.876 0.807 1.000

Female 0.774 0.298 0.000

Table 4: Accuracies of a linear model trained to
predict race or sex.

To investigate whether a linear adversary is actually capable of identi-178

fying protected groups based on the observed features and labels, the179

authors trained a linear model to predict race or sex based on the fea-180

tures and the labels. They did not provide further details about their181

training method. Since we only want to test whether the adversary182

is in principle capable of performing this task and precise accuracies183

are thus not important, we limit ourselves to a single run.184

Training, validation and testing are performed with the optimal hy-185

perparameters found via the grid search in the previous section. The186

obtained test accuracies for predicting race or sex are shown in Ta-187

ble 4. The results are broadly consistent with the results from the original paper.188

The per-group accuracies show that in many cases, the linear model achieves its performance by concentrating on the189

majority class, or even just always predicting the majority class. This raises doubts on whether the adversary is indeed190

able to adequately identify and upweight minority groups.191

3.2 Adversary Outputs192

Figure 2: Output of the adversary on the Adult test set.

To inspect whether the adversary learns meaningful193

weights, the authors plotted the weights returned by the194

adversary on the training set of UCI Adult. We evaluate195

the adversary on the test set of UCI Adult to see whether196

it has meaningful weights on the test set as well. We197

perform kernel density estimation with a Gaussian kernel198

with a bandwidth parameter of 0.3 on the test weights to199

produce continuous distributions over λ. Results obtained200

using scikit-learn [10] are shown in Figure 2.201

The computed densities roughly match the authors’ re-202

sults. Thus, we can support their claim that ARL learns203

to upweight not only misclassified examples, but also un-204

derrepresented classes (bottom-right quadrant of Figure 2.205

Recall that the UCI Adult dataset exhibits a strong class206

imbalance and as we can see the adversary places larger207

weights on the less frequent class.208
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Dataset Method AUC avg AUC macro-avg AUC min AUC minority Accuracy
EMNIST_35 baseline 0.9507 ± 0.0037 0.9436 ± 0.0041 0.9256 ± 0.0055 0.9256 ± 0.0055 0.8778 ± 0.0059
EMNIST_35 ARL 0.9370 ± 0.0044 0.9281 ± 0.0052 0.9051 ± 0.0072 0.9051 ± 0.0072 0.8616 ± 0.0057

Table 5: Baseline vs ARL on image data, best results for each dataset are marked bold. Models were trained for 5k
steps or until the early stopping criterion was reached. Reported numbers are averages over 10 seeds.

It is important to point out that ARL apparently does not209

place higher weights on underrepresented demographics (see the orange and red curves in Figure 2). This is in line with210

the results from Lahoti et al. but does not agree with the original motivation for ARL.211

4 Extension of the Presented Method212

Not just tabular data, but also other modalities are in principle prone to issues regarding fairness. This is why an213

evaluation of ARL on a different type of data marks a straightforward extension to the analyses presented by Lahoti214

et al. In this section, we present and evaluate a simple extension of ARL to image data.215

4.1 Dataset216

We resorted to building a custom dataset for the evaluation in order to meet our limited computational resources and217

maintain the ability to easily tailor the input data to our experiments. The dataset is based on balanced EMNIST [11], a218

character classification dataset similar to MNIST [12] containing a balanced set of 47 different greyscale characters. We219

customized the dataset, which we refer to as EMNIST_35, such that the task is a binary prediction with balanced labels,220

and artificially created one protected minority subgroup. The minority is represented by 35% of the data for both labels.221

Further details and different data configurations are presented in Appendix G.1.222

4.2 Model Architecture223

Both the learner of ARL and the baseline model contain a single convolutional layer with 64 filters and a 3 × 3 kernel224

with stride 1. Subsequently, a max-pooling layer with kernel size 2 × 2 with stride 1 is employed. The adversary uses a225

similar setup with 32 filters. Both learner and baseline then use two fully connected layers with 64 and 32 neurons with226

a ReLU activation function in-between. In the adversary, the sample label is appended to the flattened output of the227

convolutional section and the model output is produced as a linear combination of the resulting vector for each sample.228

The training procedure and hyperparameters of all image models are further described in Appendix G.3.229

4.3 Results and Analysis230

The model performances regarding the different AUC metrics and the classification accuracy are listed in Table 5. The231

baseline clearly outperforms ARL on all evaluation criteria. Further experiments showed that the adversary is unable to232

identify protected groups in the adversarial setting and tends to weight few individual samples with very high weights.233

Since the architecture for the learner and the baseline is the same, we further considered the influence of the adversary234

by investigating if it is capable of identifying the protected groups in a supervised setting. It turns out that the adversary235

resorts to predicting the majority class in most cases. We ran several experiments with different architectures for the236

adversary but were not able to produce a performance boost over the reference models similar to those reported by237

Lahoti et al. on tabular data. Details regarding the results of our experiments are given in Appendix G.238

5 Discussion239

In this report we re-implemented the Adversarially Reweighted Learning (ARL) framework by Lahoti et al. in PyTorch.240

This framework promises a general approach to dealing with group fairness if demographic data are lacking or unknown.241

However, as shown in Tables 1 and 3 and the analyses that followed, we could not replicate the advantage of ARL242

over the investigated baselines. This seems to be mainly due to a better baseline performance than in Lahoti et al. As243

displayed in Table 2, our ARL results are not deviating significantly (mostly < 3σ) from the papers’ result, but our244

baselines are considerably better than in the original paper.245

One possible cause for this is that we used early stopping, whereas the authors of the original paper didn’t, as far as246

their code and paper suggest. This could mean that the number of training steps (which was fixed across methods)247
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happened to work better for ARL than it did for the other methods. In our setup, the training duration is effectively248

chosen optimally for each method, which in our view makes for a fairer comparison.249

A potential reason why ARL doesn’t outperform a simple risk-minimizing baseline is that ARL apparently does not250

actually upweight minorities, as we showed in Figure 2. As mentioned, this is entirely consistent with the figures in the251

original paper but does not agree with the motivation for ARL. Perhaps the linear adversary is too weak to be effective –252

our identifiability results in Table 4 suggest that it mainly learns to exploit the class imbalance. We also point out that253

the advantage of ARL reported in the original paper is not particularly large, neither in absolute terms nor compared to254

the errors. This reinforces the idea that the difference between our and the original results is caused by relatively small255

changes in training procedure, such as the use of early stopping.256

Still, ARL is theoretically appealing and our results don’t rule out that it might have benefits in other circumstances.257

Perhaps the datasets chosen by the authors are simply not hard enough to differentiate between the various methods:258

the baseline model is already quite fair towards subgroups, not leaving much space for ARL to show any differential259

advantage. Experiments by Zhong suggest that reweighting and oversampling, both methods related to ARL, are not260

effective at improving fairness in these datasets [13], which further supports our impression of the datasets not being261

suitable. Our experiments with ARL on image data show that such an extension is not trivial, at the very least. Including262

an adversary lead to deteriorating performance compared to the baseline which could be explained by real-world images263

generally containing large amounts of noise. An extensive investigation regarding this and other potential sources of264

error are left as future work.265

On the positive side, we found it relatively easy to run the code provided by the authors and to re-implement their266

method. There were some issues regarding the dataset preparation and slight differences between the description of the267

algorithms in the paper and their actual implementation in the code, but overall, none of these posed serious obstacles to268

replicating the paper.269

In conclusion, we did not find an advantage of ARL over baseline models, neither for the datasets used by the authos270

nor for image data. Given that the results of the original paper favor ARL only very slightly and that the adversary271

apparently does not weight minorities higher, we do not believe that ARL in its current form can improve fairness on272

these datasets. However, since the theoretical motivation appears sound, it may be promising to apply ARL to datasets273

where baselines suffer from more severe fairness issues, or to further investigate whether the capacity of the adversary274

can be adjusted to improve performance.275
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A Results using the original setup304

We used the code and the optimal hyperparameters provided by the authors to reproduce their experiment. This should305

yield results very close to those reported in the original paper, though slight deviations are to be expected since the306

original code doesn’t use random seeds. We again averaged our results over 10 runs with different random seeds and307

calculated the standard deviation over those runs as the error. The error for the authors’ results was again calculated308

based on the values reported in Appendix 8.2 of the original paper. Because the paper doesn’t report any errors for the309

IPW results, we only compare the baseline and ARL results here. Furthermore, we only use the AUC metrics, since the310

paper doesn’t report any accuracies.311

Table 6 shows the results we obtained using this setup. In Table 7, we show the relative deviations of these results to312

those obtained in the paper. Deviations that are significant at the 2σ level are bolded.313

While most of the results are compatible, there are a few with significant differences (sometimes our results are worse314

and sometimes better than those reported in the paper). We are uncertain what causes these differences – perhaps a315

slight difference in the data preparation, since the provided notebook didn’t run without errors and we had to implement316

parts of it ourselves.317

However, as Table 6 shows, these deviations don’t change the overall conclusion: just as in the paper, ARL outperforms318

the basline for the Adult and LSAC datasets, while tending to perform worse on the COMPAS dataset. In most cases,319

the differences between baseline and ARL are relatively small, and sometimes not even significant at the 1σ level.320

Dataset Method Micro-avg AUC Macro-avg AUC Min AUC Minority AUC
Adult baseline 0.8956 ± 0.0007 0.8930 ± 0.0017 0.8751 ± 0.0008 0.8883 ± 0.0058
Adult ARL 0.9041 ± 0.0008 0.9152 ± 0.0018 0.8781 ± 0.0010 0.9440 ± 0.0073
LSAC baseline 0.8127 ± 0.0022 0.8035 ± 0.0025 0.7891 ± 0.0033 0.8114 ± 0.0077
LSAC ARL 0.8204 ± 0.0027 0.8174 ± 0.0056 0.7990 ± 0.0048 0.8224 ± 0.0145

COMPAS baseline 0.7322 ± 0.0022 0.7312 ± 0.0028 0.6943 ± 0.0038 0.7431 ± 0.0036
COMPAS ARL 0.7314 ± 0.0013 0.7285 ± 0.0027 0.6947 ± 0.0048 0.7370 ± 0.0076

Table 6: Our results using the original code and hyperparameters, averaged over 10 runs with different seeds. Errors are
the standard deviations over those runs.

Dataset Method Micro-avg AUC Macro-avg AUC Min AUC Minority AUC
Adult baseline -2.698 1.370 0.004 0.538
Adult ARL -2.376 -0.524 -1.850 0.130
LSAC baseline -0.101 -2.691 -0.184 -1.334
LSAC ARL -0.540 -0.159 -0.005 -0.404

COMPAS baseline -3.833 0.914 5.144 -2.676
COMPAS ARL -3.888 0.785 3.510 -4.525

Table 7: Relative deviation (in standard deviations) between our reproduced results (see Table 6) and the results reported
in the paper. Positive means that ours are higher.

B Comparison of Implementations321

We compared the Tensorflow implementation by the original authors to our Pytorch implementation using exactly the322

same settings, to check whether they are equivalent. Our results can be found in Table 8. There are some significant323

differences, even though we took care to use Tensorflow defaults for initialization scheme and optimizer settings. One324

remaining difference is that the authors implemented the linear layer of the adversary as two consecutive linear layers.325

This doesn’t change the expressiveness but does affect the training dynamics. However, this is only relevant for ARL,326

and there are significant differences even in the baseline model.327

While we were unable to find the cause for these deviations, our implementation tends to perform sightly better in328

cases where there is any difference at all. So it is unlikely that we made an implementational error that would affect the329

validity of our results.330
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Dataset Method AUC avg AUC minority Accuracy
Adult baseline 11.158 9.240 -0.695
Adult ARL 11.221 7.640 2.303
Adult IPW(S) 6.796 11.547 -0.424
LSAC baseline 6.443 6.544 -0.463
LSAC ARL 8.425 5.162 -0.535
LSAC IPW(S) 2.752 7.051 -0.635

COMPAS baseline 1.891 2.124 0.440
COMPAS ARL 5.106 1.691 1.171
COMPAS IPW(S) 4.376 0.429 1.414

Table 8: Relative deviation between results with our PyTorch implementation and the TensorFlow implementation by
the authors. All results are based on runs with 100 steps, a learning rate of 0.1 and a batch size of 128. Positive numbers
mean that our implementation achieved higher performance. All numbers are in multiples of the standard error of the
difference (calculated as for Table 2, see Section 3 for details). Deviations of more than two standard errors are bold.
Since the authors’ code does not save macro-avg AUC nor min AUC, these metrics are missing.

C Optimal Hyperparameters331

We performed grid search to determine optimal hyperparameters. The search space for (batch size, primary learning332

rate, adversary learning rate, η) consisted of the following values:333

[32, 64, 128, 256, 512]× [0.001, 0.01, 0.1, 1, 2, 5]× [0.001, 0.01, 0.1, 1, 2, 5]× [0.5, 0.6, 0.7, 0.8, 0.9, 1],

where in the case of methods other than DRO, the η parameter was not searched over and in case of methods other than334

ARL, the adversary learning rate was not searched over. Table 9 shows the optimal hyperparameters for each dataset335

and model combination, when optimized for overall AUC.

Dataset Method batch size primary learning rate adversary learning rate η
Adult baseline 512 2 - -
Adult DRO 128 1 - 0.5
Adult ARL 512 1 0.01 -
Adult IPW(S) 128 0.01 - -
Adult IPW(S+Y) 256 0.1 - -
LSAC baseline 64 0.1 - -
LSAC DRO 128 1 - 0.6
LSAC ARL 128 0.1 0.001 -
LSAC IPW(S) 256 0.1 - -
LSAC IPW(S+Y) 64 0.1 - -

COMPAS baseline 256 0.1 - -
COMPAS DRO 256 1 - 0.6
COMPAS ARL 128 1 0.001 -
COMPAS IPW(S) 256 0.1 - -
COMPAS IPW(S+Y) 512 0.1 - -

Table 9: Hyperparameters with the best overall AUC for each dataset and training method. Models were trained for 5k
steps or until the early stopping criterion was reached.

336

D Comparison to authors’ hyperparameters337

The authors report different optimal hyperparameters than those that we found. We first reran our experiments using338

their hyperparameters. The results are given in Table 10. They are comparable and if anything slightly worse than those339

we obtained with our hyperparameters, and ARL does not have any advantage there either.340

To understand why the reported hyperparameters differ, we also investigated how important the choice of hyperparame-341

ters is after all.342

Figure 3 shows a histogram of how often each AUC occured during the grid search. For Adult and COMPAS, we can343

see that most hyperparameter combinations yield essentially equally good results, all close to the top performance. For344
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Adult baseline 0.9105 ± 0.0004 0.9190 ± 0.0006 0.8855 ± 0.0006 0.9409 ± 0.0022 0.8582 ± 0.0011
Adult ARL 0.9074 ± 0.0008 0.9176 ± 0.0009 0.8819 ± 0.0012 0.9437 ± 0.0021 0.8433 ± 0.0030
LSAC baseline 0.8328 ± 0.0049 0.8276 ± 0.0047 0.8114 ± 0.0063 0.8365 ± 0.0039 0.8616 ± 0.0047
LSAC ARL 0.8284 ± 0.0035 0.8218 ± 0.0032 0.8056 ± 0.0045 0.8277 ± 0.0106 0.8588 ± 0.0049

COMPAS baseline 0.7316 ± 0.0036 0.7290 ± 0.0044 0.6967 ± 0.0038 0.7487 ± 0.0031 0.6753 ± 0.0052
COMPAS ARL 0.7333 ± 0.0048 0.7317 ± 0.0067 0.6971 ± 0.0040 0.7491 ± 0.0062 0.6752 ± 0.0041

Table 10: Results with our Pytorch implementation but the optimal hyperparameters reported by the authors. As always,
averaged over 10 runs with different seeds, errors are standard deviations.

(a) Adult (b) LSAC (c) COMPAS

Figure 3: Performance distribution of the grid search. The x-axis shows the AUC score used in the grid search to
determine the optimal hyperparameter combination. The y-axis is the count of how many hyperparameter combinations
yielded this AUC score.

LSAC, the distribution is wider but there are still several hyperparameter combinations with very good results. So given345

the deviations that exist between the authors’ results and ours, it is not surprising that we also happen to get different346

hyperparameters. This doesn’t necessarily have any deep reason, but might just be due to random differences, as Fig. 3347

suggests.348

E AUC learning curves349

Figure 4 shows the AUC learning curves of ARL, IPW(S) and IPW(S+Y) on the validation set of LSAC. As can be seen350

from the learning curves, IPW(S+Y) consistently outperforms ARL on the LSAC dataset.351
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Figure 4: Different AUC values during training of ARL, IPW(S) and IPW(S+Y) on the validation set of LSAC. Average
and standard deviation over 10 random seeds.

F Results for 100k maximum training steps352

As can be seen from Tables 11 and 12, changing the maximum number of training steps from 5k to 100k did not change353

performance significantly. We did not have enough computational resources to train the DRO model on the Adult354

dataset, but given the rest of the results it seems unlikely it would have yielded different results.355
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Dataset Method AUC avg AUC macro-avg AUC min AUC minority Accuracy
Adult baseline 0.9106 ± 0.0009 0.9197 ± 0.0015 0.8854 ± 0.0010 0.9430 ± 0.0042 0.8523 ± 0.0049
Adult DRO - - - - -
Adult ARL 0.9098 ± 0.0007 0.9182 ± 0.0006 0.8852 ± 0.0009 0.9400 ± 0.0025 0.8540 ± 0.0020
LSAC baseline 0.8370 ± 0.0037 0.8295 ± 0.0044 0.8151 ± 0.0045 0.8347 ± 0.0086 0.8655 ± 0.0036
LSAC DRO 0.8291 ± 0.0043 0.8219 ± 0.0048 0.8084 ± 0.0063 0.8284 ± 0.0148 0.8587 ± 0.0041
LSAC ARL 0.8208 ± 0.0052 0.8130 ± 0.0058 0.7983 ± 0.0067 0.8227 ± 0.0087 0.8025 ± 0.0147

COMPAS baseline 0.7356 ± 0.0024 0.7340 ± 0.0030 0.6998 ± 0.0027 0.7552 ± 0.0071 0.6731 ± 0.0054
COMPAS DRO 0.7361 ± 0.0031 0.7348 ± 0.0032 0.7004 ± 0.0028 0.7509 ± 0.0101 0.6697 ± 0.0075
COMPAS ARL 0.7364 ± 0.0026 0.7347 ± 0.0032 0.7008 ± 0.0023 0.7481 ± 0.0080 0.6756 ± 0.0091

Table 11: Main results for 100k max steps: Baseline vs ARL vs DRO, best results for each dataset are marked bold

Dataset Method AUC avg AUC macro-avg AUC min AUC minority Accuracy
Adult ARL 0.9098 ± 0.0007 0.9182 ± 0.0006 0.8852 ± 0.0009 0.9400 ± 0.0025 0.8540 ± 0.0020
Adult IPW(S) 0.9087 ± 0.0005 0.9181 ± 0.0007 0.8826 ± 0.0008 0.9437 ± 0.0012 0.8552 ± 0.0010
Adult IPW(S+Y) 0.9108 ± 0.0007 0.9209 ± 0.0015 0.8854 ± 0.0008 0.9471 ± 0.0045 0.7499 ± 0.0155
LSAC ARL 0.8208 ± 0.0052 0.8130 ± 0.0058 0.7983 ± 0.0067 0.8227 ± 0.0087 0.8025 ± 0.0147
LSAC IPW(S) 0.8202 ± 0.0041 0.8158 ± 0.0046 0.7982 ± 0.0049 0.8222 ± 0.0090 0.8543 ± 0.0029
LSAC IPW(S+Y) 0.8369 ± 0.0037 0.8288 ± 0.0046 0.8139 ± 0.0046 0.8336 ± 0.0074 0.8367 ± 0.0088

COMPAS ARL 0.7364 ± 0.0026 0.7347 ± 0.0032 0.7008 ± 0.0023 0.7481 ± 0.0080 0.6756 ± 0.0091
COMPAS IPW(S) 0.7312 ± 0.0020 0.7303 ± 0.0027 0.6918 ± 0.0029 0.7423 ± 0.0086 0.6670 ± 0.0086
COMPAS IPW(S+Y) 0.7348 ± 0.0034 0.7327 ± 0.0039 0.6979 ± 0.0033 0.7458 ± 0.0079 0.6701 ± 0.0062

Table 12: Comparison ARL vs IPW for 100k maximum training steps.

G Extended Experiments on Image Classification356

In order to investigate the performance of ARL on our custom image dataset, we ran a series of different experiments.357

However, drawing definite conclusions from the obtained results and proposing alterations is beyond the scope of this358

paper and is thus left as future work.359

G.1 Dataset Details360

For keeping the classification task binary, all original class labels larger than 23 were given the new label 1 and all361

other original class labels were given the new label 0. For each new label, half of the original classes were assigned as362

belonging to a protected group. To introduce noise, this re-assignment happens with a probability of 0.9. Samples with363

original labels that are not part of this re-assignment have a probability of 0.1 of becoming a member of a protected364

group. To eschew the ratio of protected/non-protected samples, samples that become a member of a protected group365

are discarded from the dataset with a certain probability. In the dataset EMNIST_35, this probability is 0.5 and in366

the dataset EMNIST_10, this probability is 0.9. This results in about 10% of the samples belonging to the protected367

group in EMNIST_10 and about 35% of the samples belonging to the protected group in EMNIST_35. The new368

binary labels are balanced with about 48% of the samples belonging to the new class 1 in both datasets. The dataset369

reflects that non-noise members of protected groups can be structurally different from non-members with regards370

to their features. For EMNIST_35, the training set contains approximately 84000 samples and the test set contains371

approximately 14000 samples while for EMNIST_10, the training set contains approximately 61000 samples and the372

test set contains approximately 10000 samples.373

G.2 Different Adversary Architectures374

We tested a total of three different architectures for the ARL adversary. All consist of a single convolutional layer with375

3× 3 kernels and stride 1, a max-pooling layer with a 2× 2 kernel and stride 1 and a subsequent single linear layer376

that directly maps the flattened output of the previous layer with appended target label to the scalar output. This setup377

was chosen in order to stay close to the original architecture for tabular data, as proposed by Lahoti et al. The model378

ARL_strong uses 64 filters, the model ARL uses 32 filters and the model ARL_weak uses 2 filters in the convolutional379

layer. The learner and the baseline are kept as described in Section 4.2.380
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Dataset Method AUC avg AUC macro-avg AUC min AUC minority Accuracy
EMNIST_35 baseline 0.9507 ± 0.0037 0.9436 ± 0.0041 0.9256 ± 0.0055 0.9256 ± 0.0055 0.8778 ± 0.0059
EMNIST_35 ARL 0.9370 ± 0.0044 0.9281 ± 0.0052 0.9051 ± 0.0072 0.9051 ± 0.0072 0.8616 ± 0.0057
EMNIST_35 ARL_weak 0.9354 ± 0.0072 0.9260 ± 0.0082 0.9017 ± 0.0112 0.9017 ± 0.0112 0.8587 ± 0.0095
EMNIST_10 baseline 0.9624 ± 0.0013 0.9170 ± 0.0022 0.8645 ± 0.0040 0.8645 ± 0.0040 0.8983 ± 0.0025
EMNIST_10 ARL 0.8709 ± 0.0696 0.7873 ± 0.0875 0.6881 ± 0.1117 0.6881 ± 0.1117 0.7924 ± 0.0731
EMNIST_10 ARL_weak 0.9524 ± 0.0032 0.8983 ± 0.0077 0.8356 ± 0.0132 0.8356 ± 0.0132 0.8836 ± 0.0055

Table 13: Extended experiments: Baseline vs ARL on image data, best results for each dataset are marked bold.

Dataset Method batch size learning rate
EMNIST_10 baseline 512 0.01
EMNIST_10 ARL_weak 256 0.01
EMNIST_10 ARL 256 0.1
EMNIST_10 ARL_strong 512 0.01
EMNIST_35 baseline 512 0.01
EMNIST_35 ARL_weak 512 0.01
EMNIST_35 ARL 512 0.01
EMNIST_35 ARL_strong 512 0.1

Table 14: Hyperparameters with the best overall AUC for each dataset and training method. Models were trained for 5k
steps or until the early stopping criterion was reached.

G.3 Training Procedure and Optimal Hyperparameters381

The learning rate and batch size of all image models were determined by performing a grid search over the same382

hyperparameter space as defined for the other datasets in Appendix C. The grid search procedure is the same as in383

Section 2.3 but with reserving 10% of the training set as validation set instead of performing cross validation. For all384

image models, the hyperparameters are listed in Table 14. All image models were trained using the AdaGrad optimizer385

and all reported results are obtained from models that were trained for 5k steps or until the early stopping criterion, that386

is the overall AUC on the validation set had not improved for 10 epochs, is reached.387

G.4 The Effects of Different Datasets388

Table 13 shows the extended results for ARL on the different datasets. In our experiments on image data, the claim of389

Lahoti et al. that ARL improves the performance on the worst-off group could not be confirmed to hold. Rather, ARL390

leads to an even lower performance on the minority sub-group which stands in contrast to the original motivation of391

ARL, that is to increase the performance on the worst-off group. This is independent from the ratio of protected to392

non-protected samples in the dataset as it happens in both EMNIST_35 and EMNIST_10. It is notable that ARL sees a393

large performance drop over ARL_weak on EMNIST_10 but not on EMNIST_35.394

G.5 Computational Identifiability395

Similar to Section 3.1, we tested whether the adversary is in principle capable of predicting the protected group in396

a supervised setting. Table 15 shows the accuracies that the different settings for ARL achieve on this task. Due397

to computational constraints, the reported numbers are results from a single training run of 5000 steps using the398

hyperparameters that were obtained in the grid search of the complete learner/adversary setting. ARL has major399

difficulties identifying the minority sub-group in the strongly imbalanced dataset EMNIST_10. The performance on the400

minority sub-group increases with increasing representation in the dataset as the results on EMNIST_35 show. This is401

in line with our expectations of a classifier whose optimization target is to improve the overall performance. Further,402

increasing the complexity of the adversary heavily increases the performance on the minority sub-group while the403

overall performance and performance on the majority sub-group is only slightly reduced.404
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EMNIST_10 EMNIST_35
ARL_strong ARL ARL_weak ARL_strong ARL ARL_weak

Overall 0.91 0.91 0.91 0.73 0.73 0.71
Majority 1.00 1.00 1.00 0.87 0.89 0.90
Minority 0.00 0.01 0.00 0.47 0.43 0.34

Table 15: Accuracies of predicting the protected sub-group in a supervised setting.
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