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Abstract

The fine-tuning of pre-trained models has become ubiquitous in generative AI, com-
puter vision, and robotics. Although much attention has been paid to improving the
efficiency of fine-tuning models, there has been less scholarship around fine-tuning
specifically for improved model performance. To remedy this gap, we present
PROFIT, one of the first optimizers designed to incrementally fine-tune converged
models on new tasks and/or datasets. Unlike traditional optimizers such as SGD or
Adam, which make minimal assumptions due to random initializations, PROFIT
takes the properties of a converged model into account explicitly to regularize the
optimization process. Employing a temporal gradient-orthogonalization process,
PROFIT outperforms fine-tuning methods in various tasks, from image classifi-
cation to multimodal language model training to large-scale motion prediction.
Moreover, PROFIT is encapsulated as a modular optimizer, which makes it easy to
integrate directly into any training pipeline with minimal engineering effort.

1 Introduction

Fine-tuning pre-trained models has become widely adopted in solving computer vision and robotics
problems as well as in modern generative AI settings. As datasets and models increase in size, having
to train a new model for every new application and setting quickly becomes intractable. Imagine, for
example, the cost of having to train a new model every time an autonomous vehicle needs to operate
in a new city, or every time a camera application needs to recognize a new type of object, or every
time a custom LLM needs to update its knowledge cutoff. The shift towards fine-tuning within the
deep learning community has also been accelerated by developments in large foundational models
that were trained on vast quantities of data, such as CLIP Radford et al. [2021], DINO Caron et al.
[2021], and open-source LLMs Touvron et al. [2023a]. Indeed, deep learning is steadily inching
towards a new paradigm where very few practitioners are training models from scratch.

At the same time, fine-tuning a model comes with its own set of challenges. For one, models are
known to readily forget old information when fine-tuned with new information, in a process known
as catastrophic forgetting Goodfellow et al. [2013]. Various mitigation methods have been proposed
Li and Hoiem [2017], but require data engineering and modifications to the model architecture.
Common practice within fine-tuning still largely relies on training on new tasks/data with a smaller
learning rate or with a frozen backbone (or both). Parameter-efficient fine-tuning methods such
as LoRA Hu et al. [2022] introduce learnable adapters for transfer learning, but serve to improve
fine-tuning efficiency rather than accuracy (Biderman et al. [2024]). We aim to improve the accuracy
of fine-tuning while keeping the process efficient by not introducing any additional parameters.

A ubiquitous object within deep learning that is modular and abstracted away from the practitioner is
the optimizer. Many AI models set the optimizer to popular standards like Adam Kingma and Ba
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Figure 1: Schematic of PROFIT. Standard fine-tuning (middle) takes successive steps away from
a good starting state θ0. PROFIT (right): (1) take nref small reference steps with O(ref) to obtain
a displaced state θ1; (2) compute the displacement ∆ = θ1 − θ0; (3) orthogonalize the new-batch
gradient g := θ2 − θ1 to −∆; (4) restore θ ← θ0 and then apply the main optimizer O along the
orthogonalized direction. Here, r denotes ‘reference’. See Alg. 1 for details.

[2015], AdamW Loshchilov and Hutter [2019], or Momentum Sutskever et al. [2013]. However, all
current optimizers are designed for training from scratch, so they make minimal assumptions about
the problem setting and initial model state. In contrast, the fine-tuning setting usually starts from a
well-trained, well-converged model that already performs well on some set of meaningful data. So
we ask: how do we design an optimizer specifically to start from a converged model from a similar
domain? Given the ubiquity and modularity of optimizers within training pipelines, such an optimizer
would be immediately applicable and easy to implement within any fine-tuning setting.

Works such as Learning Without Forgetting (LWF) Li and Hoiem [2017] have proposed mitigating
catastrophic forgetting by enforcing proximity to an old state of the model, but require additional
data pipelining and model snapshots that serve as additional supervision to keep the model anchored
to its old “good” state. Instead of anchoring a model across tasks, we propose a different but equally
valid anchoring across time rather than across tasks. For each iteration of the optimizer, we take a
step away from equilibrium and balance further steps away from equilibrium with the model’s desire
to return to equilibrium using techniques from the gradient-based multi-task learning literature. The
result is a system that mimics data-driven anchor methods such as Li and Hoiem [2017] without
incurring any additional data processing, and which foregoes the rigid static anchors of more classic
methods in favor of a dynamically updated flexible one.

Specifically, a model converged in some state θ0 will proceed along the states θ1, . . . θt with a standard
optimizer. A further update would send the system to θt+1. However, because θ0 was a “good state,”
the model would also benefit by returning to θ0 (Sec. 3). We thus have two potentially conflicting
gradient directions (∆ := θt → θ0 and g := θt → θt+1), which is a classic multitask learning
problem. We borrow from Yu et al. [2020] and assign g 7→ g ⊥∆, where ⊥ is the orthogonalization
operator. We restore the model to state θ0 (“translate” operation on the top right of Figure 1) and take
a step in the orthogonalized direction g.

The operation of PROFIT relies on some non-negligible distributional overlap between the fine-tuning
and baseline settings, as it aims to dynamically keep the model state close to the baseline state.
This requirement precludes some settings that are common within fine-tuning like pre-training and
then fine-tuning on completely orthogonal datasets. We refer to our approach with this additional
constraint as “proximal fine-tuning”, where the fine-tuning dataset is of a similar distribution to that
of the pre-training dataset. Although this constraint may seem limiting, “proximal fine-tuning” is
prevalent in machine learning applications. For example, a self-driving car’s trajectory prediction
network may need to train a prediction head for a new scooter type using the same sensor, while
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maintaining performance on old tasks. We will also later show how to overcome this constraint even
in non-proximal settings by introducing a warmup phase.

PROFIT (PROximal FIne Tuning) is shown schematically in Fig. 1. To the best of our knowledge,
PROFIT is among the first optimizers explicitly designed for fine-tuning.

Our main contributions are as follows.

• We introduce PROFIT, an optimizer for fine-tuning converged models, easily integrated into
any deep learning framework.

• We show that PROFIT allows unsupervised training as if the original data were available.
• We show that PROFIT outperforms standard fine-tuning methods on various tasks, from

image classification to VLM fine-tuning to large-scale motion prediction for autonomous
driving.

2 Related work

Multi-Task Learning For detailed background context in multi-task learning (MTL), we refer the
reader to Zhang and Yang [2021]. MTL Zhang and Yang [2021] is an optimization problem in which
we train a model on multiple tasks simultaneously to take advantage of the structure of shared neural
networks, thus improving generalization and efficiency. One direction is to use gradient descent
methods to optimize the joint multi-task learning problem. Our setting shares some similarities with
MTL, with the key difference that problem is a temporal multi-task learning. Ozan Sener and Koltun
[2018] formulates the MTL problem as a multi-objective optimization problem and learns the loss
weights that change dynamically. GradNorm Chen et al. [2018] attempts to normalize gradients
to balance learning of multiple tasks. PCGrad Yu et al. [2020] suggests that to mitigate gradient
direction conflicts, we should project a task’s gradient onto the normal plane of the gradient of any
other task where a gradient conflict is present. Our proposed technique is similar to PCGrad, but
modifies the core designs specifically for the “proximal fine-tuning” setting.

Parameter-efficient fine-tuning Parameter-efficient fine-tuning reduces computational and mem-
ory requirements by updating fewer parameters, which simplifies the adaptation of large models
to new tasks. An adapter Houlsby et al. [2019] introduces light-weight learnable parameters to
help transfer learning. The trainable parameters in the adapter are much smaller than in the model,
which makes them attractive in practice. Several strategies have been proposed, such as visual
prompt tuning Jia et al. [2022], side adapters Zhang et al. [2020], bias tuning Cai et al. [2020], and
residual adapters Rebuffi et al. [2017a] for efficient learning. LoRA Hu et al. [2022] decomposes the
matrices of an attention module into a low-rank matrix. In contrast to our method, adapters require
additional parameters and may also assume a specific class of model architectures for their success
(e.g., transformers).

Optimizer-based Fine-Tuning Fine-tuning on particular datasets Kornblith et al. [2019], Chen
et al. [2020] is a common technique in the era of deep learning. Practitioners often use standard
optimizers such as Stochastic Gradient Descent (SGD) Bottou [2010], Adam Kingma and Ba [2015],
and AdamW Loshchilov and Hutter [2019]. Recent architectures such as ViTs Dosovitskiy et al.
[2021], Caron et al. [2021], Radford et al. [2021] or ConvNeXts Liu et al. [2022] use AdamW
for fine-tuning, while it is also common to use SGD for fine-tuning models like ResNets He et al.
[2016], Kolesnikov et al. [2020] due to the optimizer’s efficiency. However, SGD and AdamW do
not assume that we want to stay close to our model’s start state, and thus lead to models that tend
to compromise performance on old data when fine-tuning on new data, also known as catastrophic
forgetting McCloskey and Cohen [1989]. Our method serves as a regularization approach to bridge
the gap in existing optimizers to mitigate this forgetting issue.

Continual Learning Various approaches have been developed Kirkpatrick et al. [2017], Chaudhry
et al. [2020], Jung et al. [2020], Titsias et al. [2020], Mirzadeh et al. [2021], in which the goal is to keep
the information learned from the past tasks during continual learning. Learning Without Forgetting
(LWF) Li and Hoiem [2017] stores the response of the old model on new tasks/data and supervises
the new model on these responses using distillation to prevent catastrophic forgetting Masana et al.
[2022]. Our work draws inspiration from LWF’s key idea of storing a pre-trained model’s response,
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Algorithm 1 PROFIT: A fine-tuning optimizer

Require: Converged modelM(x; θ) with trainable weights θ and input x, to be trained on data
from similar domain X′ with loss L.

Require: Initialize reference model weights θref.
Require: Initialize batch size B, reference steps nref, training steps nsteps, standard optimizer O with

learning rate λmain, and reference optimizer O(ref) with learning rate λref. Each optimizer takes as
arguments the current weights and a gradient update direction, producing updated weight values.

1: for nstep steps do:
2: θref ← θ ▷ Save the model state.
3: for nref steps do
4: Take new B examples from X′ and calculate gradients g := ∇θL.
5: Take one step with reference optimizer θ ← O(ref)(θ,g).
6: end for

7: Calculate ∆ = θ − θref. ▷ Calculate total displacement during reference steps.
8: Find g := ∇θL for a new batch as in Line 4.
9: Calculate dot product ω = ⟨∆,g⟩.

10: if ω < 0 then:
11: g← g ⊥ ∆ ▷ a ⊥ b denotes orthogonalizing a with respect to b
12: end if
13: θ ← θref. ▷ Restore original state.
14: θ ← O(θ,g) ▷ Take step with main optimizer.
15: end for

but we aim to avoid the storage of old data/checkpoint/statistics. Instead, we use the network’s
response at the initial state of each iteration. Other directions for addressing catastrophic forgetting
are rehearsal-based methods Rebuffi et al. [2017b], Chaudhry et al. [2019a], Lopez-Paz and Ranzato
[2017], Chaudhry et al. [2019b], Saha et al. [2022] that directly make use of the old data source, and
architecture-based methods that minimize inter-task interference through new architectures Mallya
and Lazebnik [2018], Serrà et al. [2018], Li et al. [2019], Wortsman et al. [2020], Wu et al. [2019].
These methods add substantial infrastructural overhead, while our approach is attractive in its
simplicity. Since PROFIT does not require replay buffer or architectural changes, we primarily
benchmark against optimizers and fine-tuning techniques that practitioners would otherwise use.

3 Method

3.1 The PROFIT Optimizer

Implementing PROFIT (Algorithm 1) involves defining an optimizer wrapper that takes two standard
optimizers O and O(ref) as inputs. The latter “reference” optimizer perturbs the system from
equilibrium, while the former “main” optimizer uses this perturbation to make the final update. The
entire logic of PROFIT can be encapsulated within the logic of this optimizer wrapper class, making
the method very portable, modular, and invariant to the choice of “main” optimizer.

Given a modelM with weights θ trained on data X corresponding to an old task, and a data source
X′ from a similar domain corresponding to a new task (with a task loss L), our objective is to
fine-tuneM to work well on both old and new tasks. We make a strict assumption about having a
converged model M available as input to PROFIT; untrained weights will lead to poor performance.
Furthermore, our approach also requires two optimizers, a standard optimizer O and a reference
optimizer O(ref). The user can tune O as per their needs, while we recommend using SGD for O(ref).

A step through our optimizer works as follows. First, we store the current state ofM by saving θ in
θref. Next, we draw nref batches from X′, one at a time, and iteratively minimize L with the reference
optimizer O(ref). We have now perturbed the system from equilibrium and must decide the best way
to restore the said equilibrium.
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To do so, we first calculate ∆ := θ − θref, the displacement vector after nref steps of the optimizer
O(ref). We reason that if the stored equilibrium state corresponds to a good critical point of the
original model, then ∆ corresponds to the benign gradient direction that will restore the original
critical point, as gradient descent would send us in the −∆ := θref − θ direction. We thus have two
potentially conflicting gradient updates: the one corresponding to ∆, and the one corresponding
to the next queried update by O(ref), which we call g. We need to decide on how to take a single
gradient step that is consistent with both options.

We then borrow an idea from PCGrad Yu et al. [2020], which reconciled conflicting gradients by
orthogonally projecting them onto each other in a pairwise fashion. Crucially, we choose to project
only g onto ∆, and not the other way around, because ∆ represents a gradient towards the old dataset
that may no longer be accessible and therefore must be treated with more care. We end with the two
gradient updates g and g ⊥ ∆, and take both steps by first restoring θ 7→ θref and then allowing O to
take a step in the g ⊥ ∆ direction. This process is repeated until training is complete.

This formulation allows us to view fine-tuning as temporal multi-task learning, with the two tasks
being: (1) pretraining (∆), and (2) fine-tuning (g). To the best of our knowledge, this is the first time
it has been viewed through this lens, and this insight may pave avenues for future research.

3.2 Theoretical Considerations

We present key theoretical properties of PROFIT with proof sketches. First, we show that PROFIT
is “correct” by decreasing the loss on the old task/setting. We also discuss potential failure cases by
identifying all stable points of PROFIT, arguing that these are not problematic in practice.
Theorem 3.1. (Correctness on old data) Take a modelM(x; θ) converged on data Xold with loss
Lold, which we would now like to fine-tune on data Xnew with loss Lnew. Suppose that O(ref) takes
θ 7→ θ′. A single step of PROFIT in batch xnew with sufficiently low learning rates λmain, λref will
decrease Lold(Xold) from its value at θ′.

Proof. At a convergence point local minimum x0, the first-order gradient vanishes, and to leading
order the loss surface will look like L(x) ≈ L(x0) + 0.5(x− x0)

tH0(x− x0) for positive definite
hessian H0. The gradient within this region is therefore∇L(x) ≈ H0(x− x0) ≡ H0(∆). Because
H0 is positive definite, we conclude that (−∆)tH0(∆) < 0, which means that moving the system in
the −∆ direction is a valid gradient descent direction.

The prior theorem establishes that PROFIT accomplishes precisely what it seeks to do: even if the
old data are no longer available, PROFIT allows us to train as if we can still compute the full loss
function of the old data. As the system moves further away from the old equilibrium, we are able to
restore some of the function of that equilibrium through these regularized updates. In particular, there
is a case where PROFIT leads to a trivial update. Intuitively, since the model converged, moving
away from the minimum creates a gradient (−∆) that points back toward it. PROFIT leverages this
implicit gradient to regularize the update on the new task.
Theorem 3.2. (Stable points) Suppose a model has weights θ and O(ref) maps θ 7→ θ′ and O(ref) is
SGD. If we are not at a critical point of Lnew, PROFIT will result in zero change in the model weights
θ if and only if ∇̂θLnew = ∇̂θ′Lnew, where ∇̂ refers to the unit vector corresponding to∇.

Proof. In this case ∆ would point in the direction −∇θLnew, at which point∇θLnew ⊥ ∆ = 0, and
the total update from PROFIT will be just a restoration to θ. If the equality of the gradient does not
hold, ∇θLnew ⊥ ∆ ̸= 0 will lead to a non-zero total update.

Corollary 3.3. (Linearity forces a stable point) In the situation defined by Theorem 3.2, PROFIT
will encounter a stable point if the loss surface is perfectly linear between θ and θ′.

The prior theorem and corollary demonstrate that PROFIT will fail to move the system when the loss
surface becomes exactly locally linear at a point. This almost never occurs for high-dimensional loss
surfaces that exist for deep models.
Theorem 3.4. (Convergence) For a model trained with SGD O(ref), any standard optimizer for O,
and loss L under PROFIT, the model is guaranteed to converge to either (1) a stable point of the
system as defined by Theorem 3.2, or (2) a convergence point of O.
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Proof. If the system does not converge to a stable point as defined in Theorem 3.2, then it will
necessarily produce a valid gradient descent direction because it is an orthogonal projection of a valid
gradient direction∇θL. As such, it inherits the same stable points as O.

In summary, PROFIT enjoys the following theoretical guarantees:

1. By Theorem 3.1, it mitigates catastrophic forgetting relative to prior methods.

2. By Theorem 3.2, it introduces only rare failure modes, which require all higher-order
gradients to vanish.

3. By Theorem 3.4, it inherits the stable points of its parent optimizers, allowing the use of
state-of-the-art and future optimizers.

3.3 Hyperparameter Discussion

PROFIT introduces three main hyperparameters for fine-tuning: nref, O(ref), and λref. nref controls the
degree of exploration of the reference optimizer, while λref controls the step-size at each iteration of
the reference step. The choice of O can be set by the practitioner according to their needs, but O(ref)

should be set to standard SGD, as the gradient calculations that drive PROFIT are the cleanest when
the reference updates are simple.

A primary concern is the cost of setting nref, as it requires nref additional optimization steps per
training step. In practice, the practitioner is encouraged to start with nref = 1, which works well in
practice, and to only increase nref if performance is lacking. However, we note two reasons why the
potentially increased compute of PROFIT is not a large issue: (1) we find that PROFIT generally
converges faster, possibly due to the positive regularization effects of the method, and (2) fine-tuning
is generally run for much fewer steps than training from scratch, so the effects of this additional
training time are often still very tractable. For all experiments, we use nref = 1.

Mathematically, λref encodes how quickly we travel from equilibrium to study the general shape of
the loss surface, so that we can make an informed decision on where to go next. In practice, we
find that there is often a sweet spot somewhere between λmain/10 and λmain/10000, but the exact
value is highly dependent on the loss surface for the specific problem. In fact, it may turn out that the
optimal value of λref tells us something about the fundamental properties of the loss surface of that
particular setting, but such analysis falls outside the scope of the present work.

3.4 Memory Considerations

One of the primary difficulties in implementing PROFIT is that storing the reference weights θref
as defined in Algorithm 1 will increase the memory footprint. In memory profiling experiments
(Appendix D.1), we found that a vanilla implementation of PROFIT will on average increase the
memory overhead of model training by approximately 25%, which then decreases to 0% if we remove
the additional memory consumed by θref. In many fine-tuning scenarios, this additional memory
consumption may not pose a problem, as model backbones may be largely frozen during fine-tuning.
However, it is still worthwhile to address this substantial memory footprint.

In general, modern optimizers such as AdamW Loshchilov and Hutter [2019] keep reference statistics
of model weights in memory which also incurs substantial memory penalties. It may be possible
to implement memory-efficient approximate versions of PROFIT for most popular deep learning
optimizers by using the already-allocated extra memory within those optimizers to also perform the
PROFIT computations. For example, such an efficient implementation for momentum might involve
replacing θref with θ − km for momentum vector m and some appropriate normalization constant
k ∼ λ||θ − θref||/||m||. This implementation would reduce the memory footprint of PROFIT to a
single additional scalar (||θ − θref||). We treat these memory-efficient implementations of PROFIT as
high-priority directions for future work.

3.5 Assumptions

The key assumptions made by PROFIT are:
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Method Original Data Error (↓) New Data Error (↓)

Baseline Trained on Original Data 0.0054 1.907

Fine-Tune on New Data (Full Model) 0.705 0.504
Fine-Tune on New Data (Head Only) 0.110 0.572

PROFIT on New Data 0.046 0.501

Table 1: Results on a 2D toy problem. A baseline is trained on just the original data domain and then
fine-tuned at a lower learning rate on a new data domain (both the full model and the head only). This
is compared to PROFIT, which is trained on the full model. Fine-tuning on the model head weights
only provides some protection against performance regression on the original data, but also is less
able to adapt to the new data. PROFIT outperforms both baselines and shows impressive resilience in
maintaining performance on the original split. All results have standard error ≤ 0.01.

1. Proximal Fine-tuning: pre-training and fine-tuning datasets come from similar distributions
or modalities.

2. Well-trained: the initial network is converged and not randomly initialized.

Orthogonalizing between g and ∆ implies that we are interested in resolving the conflict between
the original and fine-tuning datasets. If the original and fine-tuning distributions are significantly
different, the orthogonalized gradient direction may lead to destructive interference. Therefore, our
interpretation holds only if the original and fine-tuning datasets are from proximal distributions.
Assumption 1 may differ from typical fine-tuning literature and appear greatly limiting, but is
exceedingly common in practice. For example, a self-driving car may train a classification head for a
new scooter type while maintaining performance on existing vehicles. Assumption 2 is required since
our method is exclusively designed for fine-tuning (which is a guiding principle). Nonetheless, we
include it here to emphasize to the reader that PROFIT cannot be used for general model optimization.

4 Experiments

We now detail a number of experiments for PROFIT in diverse settings: image classification, visual
task adaptation, and large-scale motion prediction. We primarily focus on comparisons to standard
fine-tuning with commonly used optimizers (on either the full model or just the model head), as those
are - by a large margin - still the most commonly used fine-tuning methods in the industry due to
their known performance and ease of implementation. We will show that PROFIT, while easy to
implement, provides a significant performance boost in all cases.

4.1 A Simple Toy Example

We first apply PROFIT to a simple, 2D regression problem with MLPs as a toy example. We choose
the 2D function f(x) = sin(10|x|), as radially symmetric and periodic functions pose some challenge
for neural networks models. We also addN (0, 1) noise to the output. Even though we want to fit to a
low-dimensional example, it is still important for the problem to be difficult enough to see interesting
behavior within our models, especially given the dimensionality requirements as discussed in Section
3.2 of the main paper. The original dataset consists of input-output pairs where the input coordinates
are drawn independently from U [−1.0, 1.0], while the new dataset we wish to fine-tune on has input
coordinates drawn from U [0.8, 1.5]. This is clearly also challenging because, although the domains
of the two datasets overlap in the interval [0.8, 1.0], they are largely non-overlapping.

Our MLP consists of three layers with weights of shape [2, 500] → [500, 500] → [500, 1], and we
use RMSProp as our baseline optimizer. The baseline model is trained on the original data split only
for 10000 steps at a learning rate of 1e− 2, with fine-tuning runs trained at a learning rate of 5e− 4
for 1500 steps. For exact details on the training procedure, please refer to the Appendix C.1.

The results are visualized in the bottom half of Figure 1, with more granular visualizations in Appendix
C.1. Visually, the benefits of PROFIT are pronounced; standard fine-tuning creates a warped shape
bearing minimal resemblance to the original ground truth. PROFIT effectively remembers the original
shape with only minimal regressions along the steep edges of the distribution.
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Method SGD Adam Lookahead Adan PROFIT

ResNet-18 24.49 / 74.59 34.64 / 73.11 26.10 / 73.82 35.17 / 72.70 35.26 / 74.70
ViT-Tiny 53.63 / 61.98 56.00 / 58.99 55.64 / 61.35 53.04 / 61.62 58.53 / 62.20
ViT-Small 57.93 / 65.04 58.60 / 63.93 57.81 / 65.27 53.85 / 64.09 59.02 / 65.44

Table 2: Image classification accuracy (%): CIFAR10 / CIFAR100 after fine-tuning on CIFAR100.
Each cell shows (CIFAR10 / CIFAR100). PROFIT achieves the best balance between transfer and
forgetting. Compared methods include Adam (Kingma and Ba [2015]), Lookahead (Zhang et al.
[2019]), and Adan (Xie et al. [2024]).
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Table 3: Image classification accuracy on VTAB-1K. Bold = best, Underline = second-best. Ties for
best are all bolded; no second-best is shown in such cases. We compare PROFIT against standard
fine-tuning strategies, including full fine-tuning and linear fine-tuning (denoted by Full and Linear).
A naive PROFIT violates the proximity condition and performs poorly, but with AdamW warm-up it
achieves consistently higher accuracy.

Numerically, as shown in Table 1, after fine-tuning with different techniques, it is clear that PROFIT
outperforms the baseline in not forgetting the original dataset distribution. Even though PROFIT
modifies all model weights, it mitigates forgetting relative to the head-only fine-tuning baseline by
a sizable margin, even though PROFIT acts on significantly more weights. Fine-tuning of the full
model leads to disastrous results, with significant deformations of the predictions. PROFIT allows us
the flexibility of full-model fine-tuning without the drawbacks of catastrophic forgetting.

4.2 Image Classification

Next, we demonstrate the effectiveness of PROFIT for image classification. CIFAR10 and CIFAR100
(Krizhevsky and Hinton [2009]) are the de facto benchmarks for image classification. The dataset
consists of 32× 32 images and the task is to classify an image into one of K categories.

We first train a network on CIFAR10 (pre-training) and fine-tune the network on CIFAR100. As
discussed, PROFIT assumes proximality, i.e., both the pre-training and fine-tuning datasets need
to be from a similar domain distribution. This assumption is met for our choice of CIFAR10 and
CIFAR100, as they are both labeled subsets of Tiny Images Torralba et al. [2008].

We experiment with various backbones, including ResNet-18 (He et al. [2016]), ViT-Tiny, and
ViT-Small(Dosovitskiy et al. [2021]), and compare PROFIT against popular optimizers like SGD,
Adam (Kingma and Ba [2015]), Lookahead (Zhang et al. [2019]), and Adan (Xie et al. [2024]).

Table 2 shows that PROFIT outperforms standard fine-tuning across all backbones and optimizers.
CIFAR10 accuracy after fine-tuning is also higher, indicating better retention of the original task. For
example, with ViT-Tiny, Adam fine-tuning results in 55.64% (CIFAR10) and 61.35% (CIFAR100),
compared to PROFIT’s 58.53% and 62.20%. Similarly, fine-tuning ViT-Small using Adam yields
58.60% (CIFAR10) and 63.93% (CIFAR100), while PROFIT achieves 59.02% and 65.44%.

4.3 Visual Task Adaptation Benchmark

The VTAB-1K Zhai et al. [2019] dataset is a popular representation learning benchmark that evaluates
generalization in 19 diverse classification tasks. It aims to learn feature representations effective for
all tasks, with performance measured by classification accuracy on each.

We use ViT-Base Jia et al. [2022] with ImageNet pretraining as the backbone for our experiments.
This setting is an example of a setting in which the original (ImageNet) and fine-tuning distributions
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Backbone Optimizer Accuracy (%) ↑ GPT Score (%) ↑ Match Score (%) ↑ BLEU-4 ↑ ROUGE-L ↑ CIDEr ↑ Final score ↑

LLaMA-Adapter-v2 Gao et al. [2023] AdamW 62.21 70.57 36.33 0.541 7.16 0.023 56.98
PROFIT 67.88 72.12 37.37 0.557 7.28 0.035 59.16

Table 4: Results on the DriveLM Benchmark. We fine-tune LLaMA-Adapter-v2 Gao et al. [2023]
and compare PROFIT with AdamW, the de-facto method for fine-tuning VLMs. Our method shows
improvements on all metrics, showcasing the applicability of PROFIT to large foundational models.

(VTAB-1K) differ significantly, violating Assumption 1 (Sec. 3.5). Although our method is not well
tuned for these fine-tuning settings, this situation is common in practice.

First, we show our results in Table 3, and compare our method with AdamW Loshchilov and Hutter
[2019] fine-tuning (Full – row 1) as well as final layer fine-tuning (Linear – row 2). Full fine-tuning
using PROFIT does not work well, showing poor performance across all 19 tasks in the benchmark.
For example, PROFIT achieves 12.6% accuracy on the Clevr-Count benchmark while Visual Prompt
Tuning Jia et al. [2022] achieves 68.5% accuracy.

However, we provide a training recipe on how PROFIT can be used in such settings. First, we
fine-tune the model towards the target distribution with an AdamW warmup for 10 epochs, and then
apply PROFIT to fine-tune for the remaining 90 more epochs (PROFIT (warmup)). Intuitively, this
moves the model’s distribution somewhere between the pre-training and fine-tuning distribution,
which makes it amenable to the structure of PROFIT. This approach outperforms the full model
fine-tuning with AdamW. So, while our method as expected is not recommended for non-proximal
settings (as discussed in Section 3.5), using a short warm-up phase with another optimizer allows
PROFIT to substantially outperform full fine-tuning with standard optimizers.

4.4 Multimodal Vision-Language Models (VLM)

VLMs (Hwang et al. [2025]) trained on web-scale data have helped to improve generalization of
end-to-end driving systems. DriveLM (Sima et al. [2023]) is a visual question-answering (VQA)
benchmark to evaluate VLMs on autonomous driving. The DriveLM-nuScenes dataset contains
sensor inputs and a text prompt, and the network aims to provide accurate textual responses for
prompts which probe perception, prediction, and planning capabilities respectively.

We use a pre-trained LLaMA-Adapter-v2 (Gao et al. [2023]), which performs bias tuning on LLaMA-
7B (Touvron et al. [2023b]). We compare PROFIT with AdamW (Loshchilov and Hutter [2019]), the
de facto method for fine-tuning VLMs. We report results on the validation set in Table 4. PROFIT
improves accuracy over AdamW by 5.6%, GPT score by 1.5%, Match Score by 1%, and the Final
Score by 2%. In addition, PROFIT provides better results for VQA, as seen by improved performance
metrics (BLEU-4, ROUGE-L, CIDEr). For further explanation on metrics, we refer the reader to the
Sec. C.4 of the appendix.

4.5 Large-Scale Robotics Motion Prediction

We evaluate PROFIT on the Waymo Open Motion Dataset (WOMD) Ettinger et al. [2021], a large-
scale driving dataset. The task is to predict agent trajectories over 8 seconds using multi-modal
observations from the last second, including agent histories, map data, and traffic light states. Our
model builds on the state-of-the-art Wayformer Nayakanti et al. [2022] by fusing multi-modal inputs
with a self-attention transformer and predicting future trajectories using learned latent queries.

We first train a model on car trajectory prediction, and then fine-tune the model on data from the same
class (car) as well as different classes (pedestrian). For our baselines, we use the AdamW Loshchilov
and Hutter [2019] optimizer. WOMD allows us to evaluate PROFIT on (1) fine-tuning on the same
data and (2) on different domain-shifted tasks. For example, CIFAR100 is similar to CIFAR10,
whereas pedestrian trajectories differ from car trajectories.

Figure 2 and Table 5 show the results. Average Distance Error (ADE) measures the mean distance
between ground truth and predictions at each point, while Final Distance Error (FDE) assesses only
the final point. PROFIT consistently outperforms the baseline, especially in car-to-pedestrian fine-
tuning. Fine-tuning the head alone performs poorly on car-to-pedestrian tasks, and full fine-tuning is
better, but still inferior to PROFIT. Thus, PROFIT effectively repurposes models for related settings.
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PROFIT

(a) (b)

PROFITPROFIT

PROFIT PROFIT

Figure 2: Results for PROFIT on Waymo Open Motion Dataset. (a) Training error curves for FDE
at 3s and 8s (top) and ADE at 3s and 8s (bottom). PROFIT outperforms both fine-tuning baselines
by a sizable margin. (b) Visualizations of motion prediction outputs for both the baseline fine-tune
model (top) and PROFIT (bottom). Trajectory ground truth is shown as a shaded bar and denser lines
represent more confident predictions. PROFIT (bottom) produces more confident predictions that
align better with the ground truth (shaded bar) compared to the baseline (top). Best viewed in color.

Method Target Class ADE@3s (m) ADE@8s (m) FDE@3s FDE@8s

Baseline - 0.461 1.327 1.024 2.581

fine-tune (F) Car 0.458 1.322 1.021 2.548
fine-tune (H) Car 0.456 1.303 1.009 2.507
PROFIT Car 0.454 1.299 1.008 2.489

fine-tune (F) Ped 0.214 0.621 0.465 1.242
fine-tune (H) Ped 0.232 0.724 0.508 1.544
PROFIT Ped 0.203 0.579 0.427 1.145

Table 5: Results on Waymo Open Motion Dataset. F stands for full-model fine-tuning and H stands
for head (last layer) only. Standard errors are within 0.005m for 3s metrics and 0.015m for 8s
metrics. There is a minor but noticeable improvement for PROFIT on the car-to-car benchmarks and
a substantial improvement for PROFIT on the car-to-ped benchmarks.

We also see minor improvements in the car-to-car benchmark, suggesting that PROFIT can be used
to extract more performance from any model that has already converged. We could even imagine a
scenario in which additional training using PROFIT is a standard model maintenance practice.

5 Conclusion

We introduce PROFIT, an optimizer that improves robustness against catastrophic forgetting during
fine-tuning by using confidence in the model’s prior converged state as a regularizer. PROFIT
excels in various settings: (1) fine-tuning to CIFAR100 from CIFAR10, (2) fine-tuning on a new
distribution in VTAB-1K by providing a train recipe, (3) fine-tuning large Vision-Language Models
for autonomous driving and question-answering, and (4) fine-tuning on both new and identical tasks
in large-scale motion prediction. In all cases, PROFIT outperformed standard fine-tuning methods.
Importantly, the modularity of PROFIT as an optimizer allows it to integrate easily into training
pipelines. We believe PROFIT is a valuable tool for practitioners and encourages the development of
new optimizers that support fine-tuning as the primary deep learning paradigm.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The authors believe that the paper’s contributions and scope are accurately
presented in the introduction and abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discussed the limitations of the proposed method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The authors have tried their best to provide the full set of assumptions and a
complete and correct proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The authors tried their best to provide the full information needed to reproduce
the main experimental results of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The submission provided sufficient details for other to reproduce the algorithm,
but the code is not immediately released.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper reused the popular benchmarks to validate the claims, and they are
all publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The authors have tried their best to report the statistically significant results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The authors provided the sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper provides a new optimization algorithm that can help to train the
deep learning model more efficiently, and whether it has positive or negative societal impacts
depends on the application, and this paper has not tied to particular application.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used in this paper are cited and referenced.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper has provided sufficient discussion so that authors can reproduce the
idea on their own, and the paper does not release new assets on it.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This is a research paper focusing on the validation of a new optimization
method, and it has nothing to do with crowd-sourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This is a research paper focusing on the validation of a new optimization
method, and it has nothing to do with crowd-sourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix: Introduction

In the appendix, we provide the following:

• A theoretical discussion of PROFIT (Sec. B).
• Detailed setup, hyper-parameters, and ablations (Sec. C).
• Limitations of PROFIT (Sec. D).

B Additional Theoretical Discussion

Here, we provide a bit more exposition on the theoretical properties of PROFIT. In the main text
(Section 3), we proposed two properties of PROFIT: (1) that PROFIT updates will reduce the loss
value of the old loss on the old data, despite making no assumptions on access to the old data, and (2)
that PROFIT has stable points on linear loss surfaces.

The implications of statement (1) are fairly straightforward, as it implies that we can train with the
settings of the old system even when that old system falls out of scope. This is the primary feature
of PROFIT and is the main proof that PROFIT is a meaningful regularization method. But the
implications of (2) are more interesting. The fact that PROFIT works despite not functioning properly
on linear loss surfaces implies that PROFIT relies on nontrivial values of second-order gradients and
curvature within the loss surface to function. Thus, any critical point to which the system converges
while under PROFIT updates must have been reached through a nonlinear path from the model’s
starting point. This requirement may have robustness implications for the convergence points found
by PROFIT, as any such convergence points must have alternative nonlinear paths leading to it.

However, there is an important discussion to be had regarding the convergence of PROFIT. We did not
expand on this convergence in the main text because talking about convergence within a fine-tuning
setting is potentially ambiguous, as it is difficult to deconvolve convergence on the new dataset with
convergence on the old setting (for which we may no longer have available data). Especially when
the number of incremental training stages increases, it becomes secondary to converge on the new
(potentially small) dataset on which the model is fit, and more important to maintain the efficacy of
the base model. In that case, the correctness property (1) becomes the main property of importance.

In general, a proof of convergence of PROFIT is difficult for two reasons: (1) The orthogonalization
procedure we use is asymmetric versus the symmetric procedure in Yu et al. [2020], due to our
prioritization of mitigating regressions, and (2) the restoration step to the old state after steps of
O(ref) is discrete rather than treated as a separate incremental gradient step. Both of these design
decisions were made to support the main goal of regression mitigation for applications of PROFIT.
So, although we do not provide a complete proof of conditions under which PROFIT converges in
this work, we make this omission precisely because convergence on the new data is a secondary goal
in our setting, and the majority of our important design decisions were not made in service to that
particular goal, but rather to the more difficult goal of regularization during fine-tuning.

C Experiments

C.1 A Simple Toy Example

We provide more granular visualizations of toy example results in Figure 3. We note that even
fine-tuning on the head layer only produces sizable shifts in the overall height of the output shape.
while PROFIT more effectively remembers the original shape.

Our toy example ground truth is the function f(x) = sin(10|x|) with input in R2. This function was
chosen because of its extreme nonlinearity and difficulty in fitting by standard neural networks. To
further increase the challenge, for the training data, normal noise of size N (0, 1) is added, while no
noise is added to the test data. The “original dataset” consists of 50000 points with both dimensions
between -1 and 1, while the “fine-tune dataset” consists of 50000 points with both dimensions
between 0.8 and 1.5.

The model itself is a 3-layer MLP, consisting of weight layers [2, 500], [500, 500], and [500, 1].
LayerNorm (Ba et al. [2016]) is applied after every layer except for the last. RMSProp is used with
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Figure 3: Toy example visualizations. The top row shows ground truth distributions for the original,
new, and combined datasets, while the bottom row depicts model predictions for different training
strategies: training on original data only, head-only fine-tuning, full model fine-tuning, and using
the proposed PROFIT optimizer for full model fine-tuning. This highlights the PROFIT optimizer’s
effectiveness in retaining old task knowledge while adapting to new tasks. Best viewed in color.

Backbone CIFAR10 Accuracy

ResNet18 91.06%
ViT-Tiny 82.38%
ViT-Small 83.86%

Table 6: Accuracy of pre-trained models on the CIFAR10 dataset (before fine-tuning).

default PyTorch hyperparameters (α = 0.99, ϵ = 1e− 8) and the learning rate 1e− 2 for fitting to
the original distribution, with a learning rate decay of 0.9 every 500 steps. After fitting the original
distribution, we fine-tune to the new distribution for 1500 steps at a learning rate of 5e− 4, with a
decay factor of 0.95 every 100 steps. PROFIT is run with nref = 1.

C.2 Image Classification

C.2.1 Pre-trained model performance

We show the performance of the pre-trained backbone on CIFAR10 datasets in Table 6. ResNet-18
achieves an accuracy of 91.06%, ViT-Tiny achieves 82.38% and ViT-Small achieves 83.86% accuracy.

C.2.2 Comparison to Adapters

Adapters provide an efficient mechanism to fine-tune large pre-trained models with a fraction of
trainable parameters. Although PROFIT does not introduce any additional parameters, we compare
our method with commonly used parameter-efficient fine-tuning methods in Table 7.

Despite using fewer trainable parameters, our method marginally outperforms LoRA Hu et al. [2022]
and VPT Jia et al. [2022] for ViT backbones and ConvAdapter Chen et al. [2024] for ResNet.
Furthermore, our method is complementary to adapters and shows improvements when used as the
optimizer for training adapter-based methods.

C.2.3 Ablation Study

We ablate nref in Table 8. In general, we observe that increasing nref leads to better performance in
the original task while compromising performance in the fine-tuning task. This follows from our
discussion in Sec 3.2 of the main paper, since nref controls the degree of exploration away from the
stable point. However, we recommend nref = 1 as a starting point.
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Backbone Adapter Optimizer CIFAR100 Accuracy

ResNet18 – PROFIT 74.70%
ConvAdapter (Chen et al. [2024]) AdamW 74.81%
ConvAdapter (Chen et al. [2024]) PROFIT 75.26%

ViT-Tiny – PROFIT 62.20%
LORA (Hu et al. [2022]) Adam 61.02%
LORA (Hu et al. [2022]) PROFIT 61.55%
VPT (Jia et al. [2022]) Adam 60.63%
VPT (Jia et al. [2022]) PROFIT 61.24%

ViT-Small – PROFIT 65.44%
LORA (Hu et al. [2022]) Adam 64.25%
LORA (Hu et al. [2022]) PROFIT 65.02%
VPT (Jia et al. [2022]) Adam 63.98%
VPT (Jia et al. [2022]) PROFIT 64.57%

Table 7: CIFAR-100 accuracy for different backbones, adapters, and optimizers

Method nref CIFAR10 Acc (↑) CIFAR100 Acc (↑)

ResNet-18 1 35.26% 74.70%
2 32.55% 73.57%
5 39.27% 71.42%

ViT-Tiny 1 56.75% 62.35%
2 53.10% 61.67%
5 56.56% 59.14%

ViT-Small 1 59.02% 65.44%
2 58.58% 64.91%
5 56.54% 63.75%

Table 8: Ablation study on nref for image classification for different backbones.The results demon-
strate that varying nref can have a significant impact on model accuracy when using PROFIT.

We also ablate performance on λmain
λref

in Table 9, which shows that the best choice may vary for the
choice of backbone. In general, larger values of λref promote new task accuracy, while smaller values
effectively mitigate catastrophic forgetting. These results are reasonable, as smaller values of λref
correspond to the reference point lying closer to the original model state. However, we were always
able to beat the baseline on both old and new task accuracies simultaneously.

We also use this setting to substantiate Assumption 2 (Sec 3.4) which states PROFIT does not work
well without a converged model. When we train a ResNet-18 from scratch on CIFAR100 using
PROFIT, we get 1.05% accuracy, which is as good as random guessing.

C.2.4 Regularization effects

We plot the training and validation losses for CIFAR100 fine-tuning in Figure 4. We observe similar
trends for all network choices, where the validation losses illustrate that PROFIT is able to achieve
better generalization across both the pre-training (CIFAR10) and fine-tuning (CIFAR100) tasks. Such
results indicate that PROFIT may have positive regularization effects during the course of fine-tuning,
allowing the network to converge quickly while achieving better performance.

C.2.5 Implementation Details

For CIFAR10 pre-training, we use Adam optimizer with a learning rate of 1e − 4. ViT-Tiny and
ViT-Small are trained for 400 epochs, while ResNet-18 is trained for 200 epochs. For the Lookahead
optimizer, use α = 0.5 and k = 1, for fair comparison against our method which uses nref = 1. We
perform a parameter sweep to obtain the best performance for each method on CIFAR100 fine-tuning,
and list the best obtained hyper-parameters in Table 10.

C.2.6 Memory Footprint

As highlighted in Section 3.4 in the main paper, one of the main limitations of our work is the
additional memory consumed. We use 4 Tesla T4 GPUs for all our experiments and quantify the
increase in GPU memory consumption and train time by PROFIT in Table 11. Fine-tuning ResNet-18
with PROFIT consumes an additional 2.23 GB of GPU memory, while fine-tuning ViT-Tiny and
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Method λmain
λref

CIFAR10 Acc (↑) CIFAR100 Acc (↑)

ResNet-18 10 35.26% 74.70%
100 35.16% 74.45%

1000 34.35% 74.27%
10000 35.83% 74.41%

ViT-Tiny 10 57.32% 61.99%
100 56.75% 62.35%

1000 58.53% 62.20%
10000 53.78% 62.05%

ViT-Small 10 58.41% 66.29%
100 59.02% 65.44%

1000 56.96% 65.53%
10000 56.84% 65.95%

Table 9: Ablation study on λmain
λref

for PROFIT in image classification for different choices of backbone
architectures. For ResNet-18, smaller values of λmain

λref
yield relatively stable accuracy, while ViT-based

models show a more pronounced change, with peak performance observed at specific ratios. This
result highlights the importance of fine-tuning λmain

λref
to achieve optimal performance for different

backbone architectures in image classification tasks.

Figure 4: Training and validation losses for fine-tuning ViT-Small on CIFAR100.

ViT-Small consumes 1.3 GB and 1.1 GB extra. This increase is a consequence of loading the reference
optimizer states in memory. However, our method does not introduce any new learnable parameters.

C.3 Large-Scale Robotics Motion Prediction

The motion prediction model follows a standard encoder-decoder transformer architecture, as in
Wayformer Nayakanti et al. [2022].

The encoder takes multi-modal inputs as the target agent’s history, nearby agent histories, map
information, and traffic light states. Each input modality is encoded by a separate MLP to an
embedding with a dimension of 64. The input embeddings are fused through concatenation as input
tokens to a self-attention transformer. The encoder transformer includes 2 attention layers, 8 heads,
256 hidden dimensions, and 1024 feedforward dimensions. We add learned positional embeddings,
initialized as a Gaussian vector with zero mean and standard deviation of 0.02, to each token.

The decoder is a cross-attention transformer that attends six learnable latent queries, initialized with
zero mean and standard deviation of 0.02, to encoder embeddings. The decoder transformer includes
8 attention layers, 8 heads, 256 hidden dimensions, and 1024 feedforward dimensions. The output
queries are mapped to a weighted set of six trajectory samples through an MLP. Each sample includes
(x, y) positions for the next 80 timesteps and a weight scalar.

The model is trained end-to-end by a smooth L1 loss on the trajectory predictions and a cross-entropy
loss on the predicted weights. The AdamW optimizer is used with default PyTorch hyper-parameters:
learning rate = 1e− 3, βs = (0.9, 0.999), weight decay = 1e− 2. The base model is trained on the
WOMD training set for 60 epochs with a batch size of 256.

26



Method Optimizer Learning Rate Epochs

ResNet-18 Adam 1e-4 200
Lookahead 1e-4 100

PROFIT 1e-4 100

ViT-Tiny Adam 1e-5 400
Lookahead 1e-4 200

PROFIT 1e-4 200

ViT-Small Adam 3e-4 400
Lookahead 3e-4 200

PROFIT 3e-4 200

Table 10: Hyper-parameters for CIFAR100 results (Sec 4.1 in the main paper).

Method Optimizer Time (sec / epoch) GPU Memory (GB)

ResNet-18 Adam 185 5.50
PROFIT 248 7.73

ViT-Tiny Adam 135 4.45
PROFIT 185 5.86

ViT-Small Adam 198 4.17
PROFIT 269 5.28

Table 11: Training time and GPU Memory utilization of different methods for CIFAR100 fine-tuning.

For car-to-car fine-tuning experiments, learning rate is dropped by a factor of 100 from the original
and training is performed for only 1500 steps (because the original training run already converged,
training for too long in this setting leads to overfitting). For car-to-pedestrian fine-tuning experiments,
learning rate also is dropped by a factor of 100, but training is allowed to run for the same number of
steps as the original model.

For PROFIT, nref is set to 3 and λref is set to 1/10 of the learning rate. We note that the value of nref
is quite high in this setting, but training is relatively fast and you can get better results fairly early
on in training so the number of steps can be cut down considerably (see, for example, the curves in
Figure 3 of the main paper).

C.4 Multimodal Vision Language Models

C.4.1 Ablation Study

The DriveLM benchmark leverages a variety of VQA metrics for evaluation. BLEU Papineni et al.
[2002] evaluates precision by measuring n-gram similarity between generate and reference texts.
ROUGE-L Lin [2004] evaluates recall by measuring the longest common subsequence between the
generated and reference texts. CIDEr Vedantam et al. [2015] evaluates quality by computing the
cosine similarity between the n-gram TF-IDF vectors for the generated and reference sentences.
GPT Score aims to captures semantic nuances missed by aforementioned metrics by using ChatGPT
(GPT-3.5-Turbo) as an evaluator. In addition to these metrics, perception accuracy is evaluated
using the ground-truth objects in the scene, while prediction accuracy is evaluated over discretized
future states. Match score evaluates whether the VLM correctly understands the order in which to
attend to other agents in the scene. The final score for this benchmark is a weighted average of
these metrics. For further details, we refer the reader to the evaluation criteria for the DriveLM
Challenge contributors [2023].

We provide an inference visualization of our method in Figure 5. The baseline, fine-tuned with
AdamW, is unable to detect the traffic light and black sedan in the scene. This leads to the suggested
plan of running the red light, which is a potentially catastrophic error. On the other hand, PROFIT
successfully identifies the red light and follows traffic regulations by planning to remain stationary.
We conclude PROFIT is a useful tool in the era of VLMs to extract better performance on a new
setting.

We ablate performance on λmain
λref

, a key hyper-parameter to PROFIT, in Table 12. In general, larger
values encourage exploration and improves fine-tuning task accuracy, as discussed in Sec 4.3 of the
main paper.
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Figure 5: We compare the baseline with PROFIT on an example from DriveLM. The model fine-tuned
with PROFIT is able to perceive the traffic light and black sedan in the scene, while the baseline
(fine-tuned with AdamW) does not detect the traffic light and hallucinates the presence of a white
truck. Consequently, the baseline suggests running the red light, while our method follows traffic
rules by staying stationary. Best viewed in color.

λmain
λref

Accuracy (%) ↑ GPT Score (%) ↑ Match Score (%) ↑ BLEU-4 ↑ ROUGE-L ↑ CIDEr ↑ Final Score ↑

10 65.82 71.99 37.21 0.550 7.21 0.029 58.54
100 65.83 72.19 37.16 0.550 7.22 0.029 58.64

1000 65.74 72.07 37.02 0.550 7.22 0.030 58.54
10000 67.88 72.12 37.37 0.557 7.28 0.035 59.16

Table 12: Ablation study on λmain
λref

for PROFIT on the DriveLM Benchmark. Higher values of λmain
λref

improves perception and prediction accuracy and language scores, showcasing the strength of PROFIT
in generalizing to both VQA and scene understanding tasks.

C.4.2 Implementation Details

We closely follow the training recipe from DriveLM contributors [2023]. For AdamW, we use a
learning rate of 1e− 3 to fine-tune. PROFIT uses a learning rate of 1e− 2 for fine-tuning, while we
set λref to 1/10000 of the learning rate and nref = 1. We use 8 H100 GPUs for experiments.

C.5 Visual Task Adaptation Benchmark

The Visual Task Adaptation Benchmark (VTAB-1K) Zhai et al. [2019] is a popular representation
learning benchmark to evaluate generalization across a diverse set of image classification tasks. The
19 datasets can be grouped into 3 categories: Natural, Specialized and Structured groups. Each
dataset contains 800 training examples and 200 validation examples. The domains for each dataset
vary significantly, making it a challenging benchmark for PROFIT.

C.5.1 Implementation Details

We follow the fine-tuning hyper-parameters, backbones, and classification heads parameters using
the same setting as VPT Jia et al. [2022]. For experiments using PROFIT, we fine-tune the model
with an initial learning rate of 0.01 and employ a cosine decay learning rate schedule, consistent with
the approach in Jia et al. [2022]. We set λref to one-tenth of the learning rate and use nref = 1.

As shown in Table 13, we conducted PROFIT experiments in two different directions. One is to apply
the PROFIT directly to fine-tune the models on the VTAB-1K dataset, this is denoted as ”PROFIT
w/o warmup” which yields poor performance, because the model starting point is poorly optimized
for the target datasets. We also conducted another experiment, The ”warmup” is conducted using the
same AdamW optimizer and the same parameters as the FULL VPT described in the table 6 in Jia et
al. Jia et al. [2022].

We also include in Table 13 comparisons against LoRA and NOAH, which are both popular current
fine-tuning methods that allow for efficient fine-tuning. These methods both add additional trainable
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Full Jia et al. [2022] 68.9 87.7 64.3 87.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1
Linear Jia et al. [2022] 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2
VPT Jia et al. [2022] 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8
LoRA Hu et al. [2022] 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0
NOAH Zhang et al. [2025] 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2
PROFIT 58.9 55.6 51.4 92.4 50.8 19.6 37.7 79.3 53.8 43.5 73.5 12.6 37.9 21.1 77.5 10.2 24.6 23.6 10.7
PROFIT (warmup) 69.4 90.5 69.6 98.9 89.2 89.4 52.0 84.9 95.7 85.6 74.3 80.5 64.7 51.9 80.6 82.3 49.3 32.7 35.1

Table 13: Image classification accuracy on VTAB-1K. Bold = best, Underline = second-best. Ties
for best are all bolded; no second-best is shown in such cases. We compare PROFIT against standard
fine-tuning strategies, including full fine-tuning and linear fine-tuning (denoted by Full and Linear).
A naive PROFIT violates the proximity condition and performs poorly, but with AdamW warm-up it
achieves consistently higher accuracy.

weights to the model architecture, and PROFIT is competitive with these baselines. For future work
we would be interested to see how to apply PROFIT on top of LoRA and NOAH implementations,
as we suspect these methods would be synergistic and would further improve downstream model
performance.

D Limitations

As discussed in Sec 3.2, PROFIT requires inference on nref + 1 batches (2 for nref = 1) per iteration,
hence being slower than standard optimizers for fine-tuning. In practice, we observe that PROFIT
converges earlier than corresponding baselines (which are trained longer for fair comparison), which
may mitigate this. We also note that typical fine-tuning settings are shorter and not as involved as
training from scratch, which may further alleviate this concern. Another limitation is that our method
would consume slightly more memory as a result of instantiating two optimizers (O(ref) and O).

D.1 Memory Profiling

In training generative models, memory consumption is a bottleneck, and as mentioned in 3.4 the
vanilla version of PROFIT induces some training-time memory overhead. For completeness we
include those memory profiling experiments here. As model parameter counts and activation footprints
grow, so does the GPU / VRAM requirement, often leading to training failures, batch-size reductions,
and suboptimal hardware utilization. Memory profiling plays a critical role in assessing whether a
proposed method remains practical under realistic resource constraints. In particular, when proposing
a new optimizer like PROFIT, we must ensure that any additional memory overhead is manageable
and that iteration time remains comparable. To validate the generality of our method, we profiled a
diverse set of architectures that included both language and generative models.

We conducted a series of memory profiling experiments to compare PROFIT with the standard
AdamW optimizer in a range of widely used architectures. These models were selected to represent
different domains of interest for future research in fine-tuning large models. Table 14 summarizes the
peak memory consumption and the per-iteration time for each setup.

Model Peak Mem. (MB) — AdamW Peak Mem. (MB) — PROFIT Iter. Time (ms) — AdamW Iter. Time (ms) — PROFIT
OPT-1.3B Zhang et al. [2022] 5532.5 6324.0 106.6 115.7
OPT-2.7B Zhang et al. [2022] 8602.4 10076.0 164.2 174.3
LLaMA3-8B Dubey et al. [2024] 20341.3 25693.4 474.7 490.4
GPT-OSS-20B Agarwal et al. [2025] 14502.5 17992.0 117.7 139.9
Stable Diffusion v1-5 Rombach et al. [2022] 5603.5 7134.5 130.3 142.9

Table 14: Peak memory usage and iteration time for AdamW vs. PROFIT. PROFIT shows modest
additional memory overhead with comparable iteration latency. Note that we did not fine-tune the
models with PROFIT for the accuracy here, and the experiments are for memory profiling only.

For OPT (Zhang et al. [2022]), LLaMA (Dubey et al. [2024]), and Stable Diffusion v1-5 (Rombach
et al. [2022]), we adopt QLoRA (Dettmers et al. [2023]) for fine-tuning, while LoRA (Hu et al.
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[2022]) is used for GPT-OSS-20B. This profiling highlights PROFIT’s generality and efficiency
across both language and vision–language models. As shown in Table 14, we have conducted the
memory profiling experiments. The experiment shows that PROFIT is on par with AdamW, with an
additional memory increase. This is because we treat both main and reference optimizers completely
separately in order to better explore the hyperparameter space. As we discussed in the Section 3.4, it
is expected that the memory overhead of the model training is increased approximately 25% over the
AdamW (Loshchilov and Hutter [2019]) baseline.

Impact Statement

The methods presented in this work represent general advancements in the field of machine learning,
and are intended to be applicable in a wide range of machine learning applications. We hope that
this work will help in preventing catastrophic forgetting and overfitting to potentially harmful data,
which may be a positive ethical/societal effect. Other than that consideration, although there may be
broader impact considerations in any downstream applications using our work, we feel that this work
taken in isolation does not engender any additional societal impacts worth noting here.
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