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ABSTRACT

Computational drug repurposing is a cost- and time-efficient method to iden-
tify new indications of approved or experimental drugs/compounds. It is espe-
cially critical for emerging and/or orphan diseases due to its cheaper investment
and shorter research cycle compared with traditional wet-lab drug discovery ap-
proaches. However, the underlying mechanisms of action between repurposed
drugs and their target diseases remain largely unknown, which is still an un-
solved issue in existing repurposing methods. As such, computational drug re-
purposing has not been widely adopted in clinical settings. In this work, based
on a massive biomedical knowledge graph, we propose a computational drug re-
purposing framework that not only predicts the treatment probabilities between
drugs and diseases but also predicts the path-based, testable mechanisms of action
(MOAs) as their biomedical explanations. Specifically, we utilize the GraphSAGE
model in an unsupervised manner to integrate each entity’s neighborhood infor-
mation and employ a Random Forest model to predict the treatment probabilities
between pairs of drugs and diseases. Moreover, we train an adversarial actor-
critic reinforcement learning model to predict the potential MOA for explaining
drug purposing. To encourage the model to find biologically reasonable paths,
we utilize the curated molecular interactions of drugs and a PubMed-publication-
based concept distance to extract potential drug MOA paths from the knowledge
graph as “demonstration paths” to guide the model during the process of path-
finding. Comprehensive experiments and case studies show that the proposed
framework outperforms state-of-the-art baselines in both predictive performance
of drug repurposing and explanatory performance of recapitulating human-curated
DrugMechDB-based paths.

1 INTRODUCTION

Traditional drug development is a time-consuming process (from initial chemical identification to
clinical trials and finally to FDA approval) that takes around 10-15 years and also comes along with
billions-of-dollars investments and high failure rates (Berdigaliyev & Aljofan, 2020). Considering
the rapid pace of novel disease evolution, it is urgent to find a more efficient and economical drug
discovery method. Fortunately, it has been observed that a single drug can often be effective in treat-
ing multiple diseases. For example, thalidomide was originally used as an anti-anxiety medication
(Miller, 1991), and was later found to have the potential for the treatment of cancers (Singhal et al.,
1999). Hence, drug repurposing, also known as the identification of new uses for the approved or ex-
perimental drugs/compounds, might bring us the hope to address this urgent need with the advantage
of a shorter research cycle, lower investments, and more pre-existing safety tests.

Existing drug repurposing approaches can roughly be categorized into three groups: experimental-
based approaches (e.g., binding affinity assays, phenotypic screening), clinical-based approaches
(e.g., off-label drug use analysis), and computational-based approaches (e.g., network-based ap-
proaches) (Dhir et al., 2020). Due to the advancement of techniques, more and more publicly avail-
able biomedical data can be freely accessed in different databases such as DrugBank (Wishart et al.,
2017), ChEMBL (Gaulton et al., 2012), HMDB (Wishart et al., 2018), which makes the computa-
tional approaches seem to be more cost-efficient, particularly when the goal is to prioritize repur-
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posed targets for followup experimental investigation. One of the computational drug repurposing
methods commonly used in recent years is to integrate existing biomedical relations from databases
or literature into a so-called biomedical knowledge graph (BKG) where unknown drug-disease
treatment relationships are predicted via different knowledge graph (KG)-based machine learning
models (Himmelstein et al., 2017; Ioannidis et al., 2020b; Zhang et al., 2021; Zhang & Che, 2021).
Although these KG-based models are demonstrated to have good predictive performance for drug
repurposing, they struggle to explain why some drugs can be useful for treating a given disease in
an intuitive and easy-to-understand fashion. To solve the “black-box” concern for drug repurposing
prediction, some methods are proposed to leverage KG-based paths as explanations, as illustrated
in Figure 1. However, these existing models cannot be efficiently applied to a large and general
BKG without additional weighted edge information (Sosa et al., 2020) or pre-defined meta-paths
derived from domain experts or inefficient computational methods (e.g., degree-weighted path count
– “DWPC”) (Liu et al., 2021).

Figure 1: Drug repurposing prediction and path-
based explanation.

In this study, we customize a large and stan-
dardized biomedical knowledge graph and pro-
pose a computational drug repurposing frame-
work that predicts not only the treatment prob-
abilities between drugs and diseases but also
the KG-based mechanism of action (MOA)
(Davis, 2020) paths as their biomedical expla-
nations based on the treatment predictions. For
drug repurposing predictions, we first calcu-
late attribute embedding as the initial feature of
each node and employ the GraphSAGE model
in an unsupervised manner to further capture
the neighborhood information for each node,
then a Random Forest model is utilized to pre-
dict the treatment probability of drug-disease
pairs based on their embeddings. To predict the
MOA paths, we employ the ADversarial Actor-
Critic (ADAC) reinforcement learning (RL) model (Zhao et al., 2020) to perform path-finding on
the knowledge graph. To encourage the RL model to find paths that are biologically reasonable, we
amplify it with knowledge-and-publication-based “demonstration paths”, paths that explain why a
drug can treat a disease. Although the underlying mechanisms of action between repurposed drugs
and their target diseases largely remain vague, in this study, we assume that a repurposed drug fol-
lows similar molecular mechanisms as the known MOAs to treat different diseases. Based on this
assumption, we define demonstration paths based on the known drug-target interactions from a cu-
rated drug database (e.g., DrugBank v5.1 (Wishart et al., 2017)) and a chemical-knowledge-centric
data provider (e.g., Molecular Data Provider v1.2 1) as well as an adjusted PubMed-publication-
based version of Normalized Google Distance (NGD) (Cilibrasi & Vitanyi, 2007). In summary, the
main contributions are summarized as follows:

• We propose a novel computational model framework that both accurately predict how likely
a drug can be used to treat a disease and also predict its corresponding knowledge graph-
based mechanism of action path as the explanation of the predicted treatment.

• We are innovative in using a knowledge-based and publication-based method to extract
demonstration paths from a BKG and leverage it to guide the RL model to identify biolog-
ically reasonable paths. Empirical results demonstrate the great effectiveness of it.

By comparing with the existing popular KG-based models and evaluating the predicted paths with
an expert-curated path-based drug MOA database DrugMechDB (Mayers et al., 2020), we show that
this proposed model framework outperforms the state-of-the-art baseline models on both the pre-
dictive performance of drug repurposing and the explanatory performance of recapitulating human-
curated MOA paths provided by DrugMechDB. In further case studies, by comparing the model
predictions with the real regulatory networks, we show that the proposed framework is effective in
identifying biologically reasonable KG-based paths for real-world applications.

1https://github.com/NCATSTranslator/Translator-All/wiki/
Molecular-Data-Provider
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2 RELATED WORK

Biomedical knowledge graphs A biomedical knowledge graph (BKG) is normally defined as a
heterogeneous, semantic graph that integrates biomedical information from multiple data sources
(Nicholson & Greene, 2020). Many open-source BKGs have been developed for different biomed-
ical research purposes. These existing BKGs can be categorized into three groups: database-based
BKGs, literature-based BKGs, and mixed BKGs. The database-based BGKs (e.g., Hetionet (Him-
melstein et al., 2017), BioKG (Walsh et al., 2020), CBKH (Su et al., 2021)) are constructed with
biomedical data and their relations stored in existing biological databases. The literature-based
BKGs are obtained by leveraging Natural Language Processing (NLP) techniques to extract the se-
mantic relations from a large amount of available biomedical literature and electronic health record
(EHR) data. They are more disease-specific if the text sources are only focused on specific dis-
eases. For example, Zhang et al. (2021) recently constructed a literature knowledge graph via the
collections of Covid-19 literature from the Semantic MEDLINE Database (SemMedDB) (Kilicoglu
et al., 2012) as well as other Covid-19 datasets for Covid-19 drug predictions. The mixed BKGs
(e.g., CKG (Santos et al., 2020), DRKG (Ioannidis et al., 2020a)) are generated by combining the
knowledge collected from both existing biological databases and available text-based data.

KG-based computational methods for drug repurposing KG-based computational approaches
have been widely used in drug repurposing in recent years (Zhang et al., 2021; Al-Saleem et al.,
2021; Yan et al., 2021). These approaches treat drug repurposing as a link prediction task by apply-
ing different machine learning models to biomedical knowledge graphs. These models can mainly
be classified into three groups: tensor-factorization-based models, translation-based models, and
neural network-based models (Zeng et al., 2022). The tensor-factorization-based models (Nickel
et al., 2011; Yang et al., 2014) consider a KG as a cubic tensor in which three dimensions re-
spectively represent head entity, tail entity, and their relations and then leverage tensor-factorization
methods (Rabanser et al., 2017) to recover the missing relations in KGs. The translation-based mod-
els (Bordes et al., 2013; Lin et al., 2015; Sun et al., 2019) regard the semantic relations in KGs as a
“translation” process, that is, given a triple (head entity, relation, tail entity) the head entity can be
translated to the tail entity via the relation-specific “translation”. The neural network-based models
(Ioannidis et al., 2020b; Dettmers et al., 2017) leverage graph convolutions or 2D convolutions to
learn the underlying relationships between two entities.

Explanation of drug repurposing Although drug repurposing prediction can accelerate the pro-
cess of drug discovery, one of the greatest concerns in computational drug repurposing is the lack of
biologically reasonable explanations, which hinders its wide adoption in clinical settings. Currently,
there are few computational models designed for drug repurposing explanations. A common and
intuitive explanation for drug repurposing leverages the semantic KG-based paths between given
drug-disease pairs. To the best of our knowledge, existing models either utilize known statistics
scores or use reinforcement learning models to find the most likely KG-based paths for explaining
drug repurposing. For example, Sosa et al. (2020) applied a graph embedding model UKGE (Chen
et al., 2019), which utilizes the confidence scores of relation edges in a literature-based KG GNBR,
to identify new indications of drugs for rare diseases and then explain the results via the highest-
ranking paths based on confidence scores. Liu et al. (2021) developed a Reinforcement Learning-
based model “PoLo” that utilizes the biological meta-paths identified in Himmelstein et al. (2017)
via a computationally inefficient method “DWPC” to supervise path searching for drug repurposing.

3 KNOWLEDGE GRAPH

To accommodate biomedical-reasonable predictions of drug repurposing and mechanism of ac-
tion, the ideal knowledge graph should accurately represent comprehensive and diverse interactions
among known biological entities. Thus, we utilize the canonicalized version of the Reasoning Tool
X Knowledge Graph 2 (RTX-KG2c) (Wood et al., 2022), one of the largest open-source biomedical
knowledge graph (BKG) that has been widely used in the Biomedical Data Translator Project (Trans-
lator Consortium, 2019b;a). Compared to other commonly used open-source BKGs mentioned in
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Figure 2: Illustration of the drug repurposing prediction model (left, see Sec. 4.1 for more details)
and mechanism of action (MOA) prediction model (right, see Sec. 4.2 for more details).

Sec. 2, RTX-KG2c is biolink-model-based 2 standardized (Unni et al., 2022) and regularly-updated.
The version 2.7.3 of RTX-KG2c that we use aggregates data from 70 public knowledge sources into
a large graph where all biological concepts (e.g., “ibuprofen”) are represented as vertices and all
concept-predicates-concepts (e.g., “ibuprofen - increases activity of - GP1BA gene”) are presented
as edges. We customized it for drug repurposing purpose with four principles: 1). excluding the
nodes whose categories are irrelevant to drug repurposing explanation (e.g., ”GeographicLocation”
and ”Device”); 2). filtering out the low-quality edges based on our criteria; 3). removing the hier-
archically redundant edges; 4). excluding all drug-disease edges (see more details in Appx. A.1).
After this, 3,659,165 nodes with 33 distinct categories and 18,291,237 edges with 74 distinct types
are left in our customized knowledge graph, which is used for downstream model training.

4 PROPOSED METHOD

In this section, we describe our proposed model framework (see Figure 2) that predicts drug re-
purposing and identifies the possible KG-based mechanism of action (MOA) paths as its biological
explanations. The proposed framework consists of two components: drug repurposing prediction
with GraphSAGE (Hamilton et al., 2017) plus a Random Forest (Sec. 4.1) and MOA prediction
with an adversarial actor-critic reinforcement learning (RL) (Sec. 4.2).

Notation: Let G = {V, E} be a directed knowledge graph, where each node v ∈ V represents
a particular biomedical entity (e.g., a specific drug, disease, or gene, etc.) and each edge e ∈ E
represents a biomedical relationship (e.g., interacts-with). We use Vdrug to represent all the drug
nodes and Vdisease to represent all the disease nodes (defined in item 4 in Appx. A.1).

4.1 DRUG REPURPOSING PREDICTION

Drug repurposing aims to identify new indications of approved or experimental drugs. We solve it
as a link prediction problem on the knowledge graph G. Specifically, given any drug-disease pair
(vi, vj) where vi ∈ Vdrug and vj ∈ Vdisease, we predict the probability that drug i can be used
to treat disease j. We first use GraphSAGE to calculate the embedding for each node. Ideally, the
node embeddings should contain two kinds of information: node attributes and node neighborhoods.
To capture the neighborhood information, we optimize GraphSAGE to encourage neighbor nodes
to have similar embeddings and non-neighbor nodes to have distinct embeddings. Specifically, we
perform random walks for each node to collect its neighborhood information and train the model to
maximize a node’s similarity with its neighbor nodes. For a node u, the loss is calculated as:

JG(zu) = − log(σ(z⊤
u zv))− k · Evn∼Pn(v) log(σ(−z⊤

u zvn)) (1)

2Biolink model (https://biolink.github.io/biolink-model) is a standardized BKG ontol-
ogy framework
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where zu, zv are respectively the embeddings of nodes u, v, σ is the sigmoid function, v is a node
that co-occurs with u in fixed-length random walks, Pn represents negative sampling distribution,
and k indicates the number of negative samples (nodes not in u’s fixed-length neighborhood).

To capture the node attributes information, we utilize the PubMedBERT model (Gu et al., 2022), a
pre-trained language model designed for biomedical texts, to generate a node attribute embedding
for each node based on the concatenation of the node’s name and category. We further compress
the embeddings to 100 dimensions with Principal Components Analysis (PCA) to reduce memory
usage and use them as the initial node feature for GraphSAGE. In this way, the final GraphSAGE
embedding of each node contains the information of both graph topology and node attributes. We
concatenate the GraphSAGE embeddings of drug-disease pairs and use them as input into a Random
Forest model to classify each drug-disease pair into one of the “not treat”, “treat” and “unknown”
classes. We obtain “treat” and “not treat” drug-disease pairs from biomedical datasets (see Appx.
A.3.1) and generate “unknown” drug-disease pairs through negative sampling (Mikolov et al., 2013).

4.2 MECHANISM OF ACTION (MOA) PREDICTION

When potential indications of a given drug are identified by the proposed drug repurposing model,
a natural yet important question is: can we biologically explain the predictions? We solve this by
employing a reinforcement learning (RL) model to predict the KG-based MOA paths, which are
essentially the paths on the knowledge graph from drug nodes to disease nodes. These KG-based
MOA paths can semantically describe an abstract biological process of how a drug treats a disease.

4.2.1 DEMONSTRATION PATHS

To encourage the RL agent to terminate the path searching at the expected diseases through a biolog-
ically reasonable path, we leverage so-called demonstration paths, a set of biologically likely paths
(e.g., drug1-gene1-protein3-disease1), that explains the underlying reasons of why a drug can treat
a disease. We extract the demonstration paths by using the known drug-target interactions collected
from two curated biomedical data sources: DrugBank (v5.1) and Molecular Data Provider (v1.2)
along with a literature-based source that utilizes the adjusted Normalized Google Distance (NGD)
applied to concepts appearing in PubMed publication abstracts (see Appx. A.2 for more details).

4.2.2 ADAC-BASED REINFORCEMENT LEARNING MODEL

We formulate the MOA prediction as a path-finding problem and adapt the ADversarial Actor-Critic
(ADAC) Reinforcement Learning model to solve it. The reinforcement learning is defined as a
Markov Decision Process (MDP) which contains:

States: Each state is defined as st =
(
vdrug, vt, (vt−1, et), . . . , (vt−K , et−(K−1))

)
where vdrug ∈

Vdrug is a given starting drug node; vt ∈ V represents the node where the agent locates at time t; the
tuple

(
vt−K , et−(K−1)

)
represents the previous Kth node and (K − 1)th predicate. For the initial

state s0, the previous nodes and predicates are substituted by a special dummy node and predicate.
We concatenate the embedding of all nodes and predicates of st to get the state embedding, where
the node embeddings are node attribute embeddings generated with the PubMedBERT model (see
Sec. 4.1) and the predicate embeddings employ one-hot vectors.

Actions: The action space At of each node vt includes a self-loop action and the actions to
reach its outgoing neighbors in the graph G. Due to memory limitation and extremely large out-
degree of certain nodes in the knowledge graph, we prune the neighbor actions based on the
PageRank scores if a node has neighbors more than a certain threshold. Specifically, we let
At = vcat(⃗aself , a⃗1, . . . , a⃗k, . . . , a⃗nvt

) where vcat indicates the vertical concatenation and nvt is
out-degree of node vt, vt ∈ V . For each action at = (vt, et), we concatenate its node and predicate
embeddings to obtain action embeddings. We learn two embedding matrices ENn×d and ENp×d

respectively for nodes and predicates3, where d represents the embedding dimension, Nn represents
the number of nodes, and Np represents the number of predicate categories.

Rewards: During the path searching process, the agent only receives a terminal reward Re,T from
the environment (Re,t = 0,∀t < T ). Let vT be the last node of the path, and Ndrug be the known

3Each sub-network uses separate embedding matrices.
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diseases that drug vdrug can treat, the terminal reward is calculated by using the proposed drug
repurposing model (Sec. 4.1) via:

Re,T =


1, if vT ∈ Ndrug.
ptreat, if vT /∈ Ndrug; vT ∈ Vdisease and f(vdrug, vT ) is predicted as “treat”.
0, if vT /∈ Ndrug; vT ∈ Vdisease and f(vdrug, vT ) is not predicted as “treat”.
−1, if vT /∈ Vdisease.

where ptreat is the “treat” class probability predicted by the drug repurposing model f .

The ADAC-based RL model consists of four sub-networks that share the same model architecture
MLPi (note that i represents the id of each sub-network described later, such as a for actor network,
c for critic network, etc.) but with different parameters:

MLPi(X) = f(f(XW i
1 + bi1)W

i
2 + bi2)W

i
3 + bi3 (2)

where {W i
1,W

i
2,W

i
3, b

i
1, b

i
2, b

i
3} are the parameters and biases of linear transformations, f represents

a batch normalization layer followed by an ELU activation function.

Actor network: The actor network learns a path-finding policy πθ (note that θ represents all param-
eters of actor network) to guide the agent to choose an action at from the action space At based on
current state st:

πθ(at|st, At) = softmax(At ⊙MLPa(st)) (3)
where ⊙ represents the dot product. Here, πθ(at|st, At) represents the probability of choosing
action at at time t from the action space At given the state st.

Critic network: The critic network (Lillicrap et al., 2015) estimates the expected reward Qϕ(st, at)
(note that ϕ represents all parameters of critic network) if the agent takes the action at at state st by:

Qϕ(st, at) = MLPc(st)⊙ at (4)

Path discriminator network: Since the RL agent only receives a terminal reward indicating
whether it reaches an expected target, to encourage the agent to find biologically reasonable paths
and provide intermediate rewards, we further guide it with demonstration paths. This network is
essentially a binary classifier that distinguishes whether a path segment (st, at) is from demonstra-
tion paths or generated by the actor network. We treat all the known demonstration path segments
(sDt , aDt ) as positive samples and all actor-generated non-demonstration path segments (st, at) as
negative samples. The path discriminator network Dp(st, at) = sigmoid(MLPp(st ⊕ at)), where
⊕ represents the concatenation operator, is optimized with:

Lp = −E(s,a)∼PD
[log(Dp(s, a))]− E(s,a)∼PA

[log(1−Dp(s, a))] (5)

where PD and PA respectively represent the demonstration path segment distribution and the actor-
generated non-demonstration path segment distribution. Based on the probability Dp(st, at), the
path-discriminator-based intermediate reward Rp,t is calculated as:

Rp,t = log(Dp(st, at))− log(1−Dp(st, at)). (6)

Meta-Path discriminator network: Similar to the path discriminator, this network aims to judge
whether the meta-path of the actor-generated paths is similar to that of demonstration paths. The
meta-path is the path of node categories (e.g., [’Drug’→’Gene’→’BiologicalProcess’→’Disease’]).
Similarly, the meta-path discriminator Dm(M) = sigmoid(MLPm(M)) is also a binary classifier
where the meta-paths of demonstration paths are treated as positive samples while others are negative
samples. We optimize it with the following loss:

Lm = −EM∼PM
D
[log(Dm(M))]− EM∼PM

A
[log(1−Dm(M))] (7)

where M is a meta-path embedding vector defined as the concatenation of learned category embed-
dings of all nodes that appear in the path; PM

D and PM
A respectively represent the demonstration

meta-path distribution and the actor-generated non-demonstration meta-path distribution. The inter-
mediate reward Rm,t generated by the meta-path discriminator is calculated by:

Rm,t = log(Dm(M))− log(1−Dm(M)). (8)

The final intermediate reward Rt at time t is then calculated as:

Rt = αpRp,t + αmRm,t + (1− αp − αm)γT−tRe,T (9)
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where αp ∈ [0, 1] and αm ∈ [0, 1− αp] are hyperparameters, γ is the decay coefficient, and Re,T is
defined in the “Rewards” section above. To optimize the critic network, we minimize the Temporal
Difference (TD) error (Sutton, 1988) with loss:

Lc = TD2 = [(Rt +Qϕ(st+1, at+1))−Qϕ(st, at)]
2. (10)

Since the goal of the actor network is to achieve the largest expected reward by learning an optimal
actor policy, we optimize the actor network by maximizing J(θ) = Ea∼πθ

[Qϕ(st, a)]. We use the
REINFORCE algorithm (Williams, 1992) to optimize the parameters. To encourage more diverse
exploration in finding paths, we use the entropy of πθ as a regularization term and optimize the actor
network with the following stochastic gradient of the loss function La:

∇θLa = −∇θJ(θ) = −Eπθ
[∇θTD log πθ(at|st)]− α∇θentropy(πθ) (11)

where πθ is the action probability distribution based on the actor policy and α is the entropy weight.

Following Zhao et al. (2020), we train the ADAC-based RL model in a multi-stage way. First, we
initialized the actor network using the behavior cloning method (Pomerleau, 1991) in which the
training set of demonstration paths is used to guide the sampling of the agent with Mean Square
Error (MSE) loss. Then, in the first z epochs, we freeze the parameters of the actor network and
the critic network and respectively train the path discriminator network and meta-path discriminator
network by minimizing Lp and Lm. After z epochs, we unfreeze the actor network and the critic
network and optimize them together by minimizing a joint loss Ljoint = La + Lc.

5 EXPERIMENTS

In this section, we introduce training data used in this study (Sec. 5.1), evaluation setup (Sec. 5.2)
as well as evaluation results (Sec. 5.3 & 5.4) respectively for drug repurposing prediction and MOA
prediction. Implementation details of the proposed models are presented in Appx. B.

5.1 TRAINING DATA

Training data of drug repurposing model consists of drug-disease pairs in three categories: “treat”,
“not treat”, and “unknown”. For the first two categories, we collect data from four different data
sources (Appx. A.3.1). The raw data are pre-processed and separated into training, validation, and
test sets with ratios of [0.8, 0.1, 0.1] for downstream model training (Appx. A.3.2).

5.2 EVALUATION METRICS AND METHODS

We evaluate the proposed models on two types of tasks: predicting drug-disease “treat” probability
(i.e., drug repurposing prediction) and identifying biologically reasonable KG-based MOA paths
from all candidates (i.e., MOA prediction). These two tasks are evaluated based on classification
accuracy-based metrics (e.g., accuracy, macro f1 score) and ranking-based metrics (e.g., mean per-
centile rank (MPR), mean reciprocal rank (MRR), and Hit@K) defined as follows:

MPR =
1

|PR|
∑

pr∈PR

pr MRR =
1

|R|
∑
r∈R

r−1 Hit@K =
1

|R|
∑
r∈R

|r ≤ k|, (12)

where PR and R are respectively a list of percentile ranks and a list of ranks of all true positive
drug-disease pairs (“treat” category) in the evaluation dataset (combination of validation and test).

Drug repurposing prediction: Due to the extremely long running time of certain baselines (e.g.,
GraphSAGE+SVM), we calculate the metrics MRR and Hit@K based on the rank of each true pos-
itive drug-disease pair among 1000 random drug-disease pairs (500 with drug id replacement and
500 with disease id replacement) and compare them across all models. We also show the comparison
results with MRR and Hit@K based on “all nodes” replacement for the models that can be imple-
mented in a reasonable time (Appx. C.2). In addition, since our drug repurposing model does 3-class
classification while other baselines do 2-class classification, for a fair comparison, we re-calculate
“accuracy” and “macro f1 score” for our drug repurposing model by excluding the “unknown” class.

MOA prediction: For the evaluation of MOA prediction (Sec. 4.2), we use the DrugMechDB
(Mayers et al., 2020), an expert-curated path-based drug MOA database, to obtain the verified MOA
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paths as ground-truth data. We match each biological concepts in these verified MOA paths to the
biological entities used in our customized knowledge graph (Sec. 3) and generate the corresponding
KG-based MOA paths (Appx. A.4). The matched KG-based MOA path is defined as a 3-hop
KG-based path of which all four nodes appear in the verified MOA paths. For each drug-disease
pair not in the training set, we calculate the path scores for all 3-hop KG paths between drug and
disease with the path-finding policy learned from the ADAC-based RL model by using equation:
path score =

∑k
i=1 δ

i−1 × log(Pi ×Ni), where k is the number of hops in this path; δ is a decay
coefficient (we set it to 0.9 in this study); Pi represents the probability of choosing action ai in
the ith hop following this path based on the trained ADAC-based RL model; Ni is the number of
possible actions in the ith hop. With these path scores, we obtain the ranks of the matched KG-
based MOA paths and calculate the ranking-based metrics mentioned above. For those drug-disease
pairs with multiple KG-based MOA paths, we use the highest ranks of their paths. We compare our
ADAC-based RL model with the baseline models based on these metrics. In addition, we further
perform some case studies to evaluate the effectiveness of the proposed method and present them in
Appx. C.3.

5.3 DRUG REPURPOSING PREDICTION EVALUATION

Baselines: We compare our proposed drug repurposing prediction model against several state-of-
the-art (SOTA) KG-based models and the variants of our proposed model. TransE (Bordes et al.,
2013), TransR (Lin et al., 2015), RotatE (Sun et al., 2019) are the translation-distance-based
models that regard a relation as a translation/rotation from a head entity to a tail entity. DistMult
(Yang et al., 2014) is a bilinear model that measures the latent semantic similarity of a triple with
a trilinear dot product. ComplEx (Trouillon et al., 2016) and ANALOGY (Liu et al., 2017) are the
extensions of DistMult that consider more complex relations. SimpLE (Kazemi & Poole, 2018)
is a tensor-factorization-based model to learn the semantic relation of a triple. GAT (Veličković
et al., 2018) is a popular graph attention model. Besides these SOTA baselines, we use the vari-
ants of our proposed model (e.g., pure GraphSAGE for link prediction GraphSAGE-link, the
GraphSAGE+logistic model, the GraphSAGE+SVM model, and the GraphSAGE+RF model
for 2-class classification4). Implementation details of these baselines are presented in Appx. B.

Evaluation results: Table 1 shows the evaluation results of the proposed drug repurposing model
and other baselines based on the metrics described in Sec. 5.2. As shown in the table, on the
one hand, the proposed model outperforms almost all baselines in classification-based metrics even
though it is a bit worse than the GAT model, which indicates its effectiveness in classifying known
“treat” and “not treat” drug-disease pairs based on their attribute and neighborhood information on
the knowledge graph (note that we conduct an ablation experiment to show the effectiveness of
node attribute embeddings in Appx. C.1). On the other hand, the best performance of our model
in ranking-based metrics shows its capability in identifying new indications of existing drugs out of
all the possible drug-disease pairs with relatively low false positives, which is of great importance
for guiding clinical research. Besides, comparing 2-class GraphSAGE+RF with the vanilla
GraphSAGE model (e.g., GraphSAGE-link), the results demonstrate the effectiveness of the
Random Forest model over a neural network classifier in this task. Comparison between 2-class
and 3-class GraphSAGE+RF models indicates the importance of using negative sampling to gen-
erate “unknown” drug-disease pairs for model training. With the “unknown” drug-disease pairs,
the 3-class GraphSAGE+RF model achieves significant improvement in ranking-based met-
rics, which is essential when applying to real-world drug repurposing because it can reduce the false
positives.

5.4 MECHANISM OF ACTION (MOA) PREDICTION EVALUATION

Baselines: For a fair comparison, we choose the MultiHop model (Lin et al., 2018) (Implemen-
tation details in Appx. B) as a baseline since it allows using a self-defined reward shaping strategy
in its reward function as what we do in our proposed ADAC-based RL model. We don’t compare
with other existing models that either require pre-known edge importance information (see Sec. 2)
or cannot be trained within a reasonable time (e.g., within two weeks) on the customized knowledge
graph. To show the importance of demonstration paths, we also compare with an ablated version of

4only considers true positive and true negative.
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Table 1: Comparing evaluation results between the proposed drug repurposing model with baselines.
The values with ∗ inside the parenthesis are the results after excluding the “unknown” category.

Model Accuracy Macro F1 score MRR Hit@1 Hit@3 Hit@5

TransE 0.706 0.706 0.275 0.111 0.295 0.446
TransR 0.858 0.855 0.307 0.130 0.350 0.517
RotatE 0.707 0.707 0.255 0.077 0.287 0.454
DistMult 0.555 0.495 0.172 0.040 0.144 0.258
ComplEx 0.624 0.456 0.133 0.023 0.106 0.196
ANALOGY 0.597 0.467 0.179 0.045 0.147 0.272
SimplE 0.600 0.475 0.161 0.037 0.135 0.236
GAT 0.932 0.929 0.002 0 0 0.001
GraphSAGE-link 0.919 0.915 0.002 0 0 0
GraphSAGE+logistic 0.787 0.779 0.002 0 0 0
GraphSAGE+SVM 0.809 0.795 0.002 0 0 0
2-class GraphSAGE+RF 0.929 0.925 0.271 0.176 0.311 0.386

3-class GraphSAGE+RF (ours) 0.934 (0.929∗) 0.922 (0.925∗) 0.360 0.211 0.410 0.524

Table 2: Evaluation results on MOA prediction on MultiHop model and ADAC-based RL model
with and without demonstration paths (ADAC RL w/o DP).

Model MPR MRR Hit@1 Hit@10 Hit@50 Hit@100 Hit@500

MultiHop 61.541% 0.026 0.012 0.043 0.081 0.124 0.360
ADAC RL w/o DP 73.281% 0.022 0.012 0.025 0.112 0.186 0.447

ADAC RL w/ DP (ours) 94.410% 0.123 0.062 0.242 0.509 0.640 0.857

the proposed model that does not take advantage of the demonstration paths by setting αp and αm

in Function 9 as 0.

Evaluation results: Table 2 shows the evaluation results. Although all the models receive the same
terminal rewards from the environment, the proposed ADAC-based RL model achieves significantly
better performance in identifying biologically reasonable KG-based MOA paths than other two base-
lines. Comparison between the proposed model and the ADAD-based RL model without demonstra-
tion paths (i.e., ADAC RL w/o DP) further illustrates the great effectiveness in using demonstration
paths to guide the path-finding process. Due to the massive searching space and sparse rewards, the
RL agent often fails to find reasonable paths out of plenty of possible choices, while our model, with
the intermediate guidance provided by the demonstration path, is able to identify the most biolog-
ically reasonable choices at each time step with a much higher probability. Moreover, we perform
two specific case studies (see Appx. C.3) where we further show the top-rank MOA paths predicted
by our model are able to identify key molecules in real drug action regulatory networks.

6 CONCLUSION

In this paper, we propose a computational drug repurposing model framework that predicts not only
the treatment probabilities of drug-disease pairs but also the KG-based mechanism of action (MOA)
paths as biological explanations for drug repurposing. We apply the proposed model framework
to a large and standardized biomedical knowledge graph and conduct experiments to compare our
framework with extensive state-of-the-art KG-based models. The results show that our proposed
drug repurposing model achieves much better predictive performance in a comprehensive evalua-
tion. We also show that by leveraging the proposed knowledge-and-publication-based demonstration
paths to provide intermediate guidance during the path-finding process, our model can effectively
find biologically reasonable paths out of a large amount of possible choices. Furthermore, two spe-
cific case studies are performed to illustrate the effectiveness of our models in identifying some
key biological molecules in real drug action regulatory networks. We believe our proposed frame-
work can effectively reduce the “black-box” concerns and increase prediction confidence for drug
repurposing based on its predicted path-based explanations, which further accelerates the process
of drug discovery for emerging diseases. Despite the comparably good performance of our models,
some limitations remain to be solved. For example, our MOA prediction is based on an assumption
that a repurposed drug follows similar molecular mechanisms as the known MOAs to treat different
diseases, which needs further biologically experimental verification.

9



Under review as a conference paper at ICLR 2023

7 ETHICS STATEMENT

Our proposed method aims to provide a new model framework for drug repurposing prediction and
explanation. The potential negative societal impacts might include the risk of misusing the drug
repurposing capability (e.g., misleading patients to take drugs inappropriately). Although our model
can provide certain suggestions for the new indications of drugs, it is mainly designed for assisting
medical practitioners (e.g., doctors and licensed practitioners), who have professional training or
knowledge to assess the accuracy of suggestions provided by our model. Therefore, the application
of this method should be limited to drug development in pharmaceutical companies or pre-clinical
drug research in relevant academic or medical organizations, but not be directly accessible to the
public. Since drugs treat diseases in complex ways, there is still much unknown knowledge involved,
and therefore any suggestions given by this proposed method should require further clinical testing
but not be used to directly diagnose, prevent, or treat any diseases without FDA approval. In addition,
although the data used in this study (including the data in the biomedical knowledge graph RTX-
KG2c) are from multiple data sources, they are all collected from publicly accessible databases or
datasets or APIs with free licenses (except for DrugBank data that we have requested and obtained
its non-commercial license). Note that the licenses of all data are shown in Table 3. Therefore, they
have excluded any personal or sensitive information. All code used in this study is originally created
by ourselves or modified from the code of previous researchers (note that we illustrate this at the top
of those scripts), and allowed to be disclosed with the permission of its original authors.

Table 3: Summary of licenses of all data we used.
Existing assets Licenses

RTX-KG2c (v2.7.3) https://github.com/RTXteam/RTX-KG2 MIT license, CC-BY 4.0 license
DrugMechDB data (v1.1.0) https://github.com/SuLab/DrugMechDB MIT license
DrugBank data (v5.1) https://go.drugbank.com DrugBank academic license
Molecular Data Provider (v1.2) https://github.com/broadinstitute/molecular-data-provider MIT license
MyChem data (v1) https://mychem.info Apache-2.0 license
SemMedDB data (semmedVER43 R) https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR.html UMLS Metathesaurus license
NDF-RT data (v2018AA) https://bioportal.bioontology.org/ontologies/NDFRT UMLS Metathesaurus license
RepoDB data https://unmtid-shinyapps.net/shiny/repodb CC-BY 4.0 license

8 REPRODUCIBILITY STATEMENT

We share our code via the following link https://drive.google.com/file/d/
1AnwkHKZ69d_9twfLy1fWNn9Ssey7YYxj/view?usp=sharing. The code includes the
steps to download our customized knowledge graph and other required datasets (e.g., DrugBank
data. Please note that to download DrugBank data, the DrugBank non-commercial license has to be
requested and obtained by following the instructions on the DrugBank website), pre-process the raw
data, train different models (e.g., our proposed models and baseline models), and evaluate models.
The sources of all datasets used in this study are listed in Table 3 and the complete description of
these datasets with their pre-processing steps is provided in Appx. A. The implementation details of
all models can be found in Appx. B.
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A DATA COLLECTION AND PRE-PROCESSING

A.1 BIOMEDICAL KNOWLEDGE GRAPH RTX-KG2C PRE-PROCESSING

The dataset of RTX-KG2c (v2.7.3) (Wood et al., 2022) is accessed via
https://github.com/RTXteam/RTX-KG2, which contains around 6.4M concept nodes with 56
distinct categories and 39.3M relationship edges with 77 distinct relations. We pre-process the raw
data of RTX-KG2c by the following four principles:

1. Since we are mainly interested in the categories relevant to drug mechanisms of action
(MOAs), we exclude the nodes with categories that are not expected to be useful for drug re-
purposing explanation (e.g., “GeographicaLocation”, “Device”, “InformationResource”).

2. One of data sources used in the RTX-KG2c is the Semantic MEDLINE Database
(SemMedDB) (Kilicoglu et al., 2012), one of the most widely used NLP-derived biomed-
ical knowledge sources, that has been found recently (Cong et al., 2018) to contain many
noisy relations due to the immature NLP techniques even though it contains many latest-
found relations (e.g., the relations with Covid-19). To improve the quality of SemMedDB-
based edges, we filter out parts of SemMedDB edges based on the criteria that each re-
maining SemMedDB edge has to be supported by at least 10 publications as well as the
PubMed-publication-based NGD score (Cilibrasi & Vitanyi, 2007) (described in Appx.
A.2) of its two end nodes should not be higher than 0.6

3. The RTX-KG2c is a multigraph that allows multiple edges connecting between two nodes.
The edge relations (a.k.a. predicates) follow the predicate hierarchy 5 used in the Biolink
model (Unni et al., 2022). Therefore, the RTX-KG2c contains some hierarchically redun-
dant edges between two nodes. To reduce the complexity of path finding for the down-
stream MOA predictions, we only reserve the “leaf” predicates of the Biolink semantic
relation hierarchy if there exists hierarchically associated edges between two nodes. For
example, if the edges between two nodes are “affected by”, “entity regulated by entity” and
“entity positively regulated by entity”, we remove the “affected by” and “entity regulated
by entity” edges because they are the “ancestor” predicates of ”entity positively regulated
by entity” based on the predicate hierarchy. Removing those “ancestor” predicates does
not affect the path explanation because the “leaf” predicates contain more precise semantic
information than their “ancestor” predicates.

4. To prevent the training information leakage, we exclude all existing edges connecting
between the potential drug nodes (the nodes with the categories of “Drug” and “Small-
Molecule”) and the potential disease nodes (the nodes with the categories of “Dis-
ease”, “PhenotypicFeature”, “BehavioralFeature” and “DiseaseOrPhenotypicFeature”) in
the RTX-KG2c.

After the above pre-processing steps, 3,659,165 nodes with 33 distinct categories (Figure 3 a) and
18,291,237 edges with 74 distinct types (Figure 3 b) are left for our customized RTX-KG2c.

A.2 DEMONSTRATION PATH EXTRACTION

The demonstration paths are a set of multi-hop KG-based paths used to guide the agent in the ADAC-
based RL model to find biologically reasonable KG-based MOA paths. It can be formulated as
P k = {pks,t|vs ∈ Vdrug; vt ∈ Vdisease} where pks,t is a multi-hop demonstration path with maximum
path length k starting from a drug node vs and ending at a disease node vt. Given a drug node
and a disease node (defined in Appx. A.1), the number of paths in the knowledge graph between
them increases exponentially when k increases. Therefore, we set k = 3 to guarantee that the agent
can find the biologically meaningful predicted paths in a reasonable amount of time. We extract
the reasonable demonstration paths from the customized RTX-KG2c (defined in Sec.3) by using the
known drug-target interactions collected from two curated biomedical data sources (e.g., DrugBank
(v5.1) and Molecular Data Provider (v1.2)) and an adjusted PubMed-based version of Normalized
Google Distance (NGD) score (Cilibrasi & Vitanyi, 2007) formulated as follows:

5Visualization of hierarchical predicates in the Biolink Model v2.1.0 http://tree-viz-biolink.
herokuapp.com/predicates/2.1.0
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Figure 3: Number of nodes by category (a) and number of edges by predicate (b) in customized
RTX-KG2c.

NGD(c1, c2) =
max{logf(c1), logf(c2)} − logf(c1, c2)

logN −min{logf(c1), logf(c2)}
(13)

where c1 and c2 are two biological concepts used in the customized RTX-KG2c (defined in Sec.3);
f(c1) and f(c2) respectively represent the total number of unique PubMed IDs associated with c1
and c2; f(c1, c2) is the total number of unique PubMed IDs shared between c1 and c2 (All associated
PubMed IDs are stored as node attributes in our customized RTX-KG2c); N is the total number of
pairs of Medical Subject Heading (MeSH) terms annotations in PubMed database6.

By using both curated drug-target interactions and PubMed-publication-based NGD scores, the
edges within a demonstration path must satisfy the following two requirements: 1. the edge be-
tween the drug node and the first intermediate node needs to be confirmed by the DrugBank (v5.1)
or the Molecular Data Provider (v1.2) as well as has a NGD score that is not higher than 0.6; 2. the
edge between the second intermediate node and the disease node should have a NGD score that is
not higher than 0.6. According to these requirements, we finally find 396,705 demonstration paths
for 8,495 true positive drug-disease pairs (described in Appx. A.3.2) and we split them into training,
validation, and test sets for ADAC-based RL model training.

A.3 TRAINING DATA

A.3.1 DATA COLLECTION

We collect data from four different data sources for training our purposed models:

MyChem Data (Xin et al., 2018) is provided by the BioThing API collection (Xin et al., 2016),
which contains up-to-date annotations regarding indication and contraindication for drugs.

SemMedDB Data (Kilicoglu et al., 2012) is provided by the Semantic MEDLINE Database
(SemMedDB) which leverages natural language processing (NLP) techniques to extract semantic
triples with “treats” and “negatively treats” relations from PubMed abstracts.

NDF-RT Data (Brown et al., 2004) is provided by National Drug File – Reference Terminology
from Veterans Health Administration (VHA) which contains information on drug interaction, indi-
cations, and contraindications.

6PubMed (https://arax.ncats.io/) is a MEDLINE database that contains abundance references
and abstracts on life sciences and biomedical topics
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Table 4: Pair count of true positive (indications) and true negative (contraindications or no effect)
data from four data sources (Appx. A.3.1). Note that ‘shared’ means those pairs are from two or
more data sources.

Source True Positive (Treats) True Negative (Not Treat)

MyChem 3,663 26,795
SemMedDB 8,255 11
NDF-RT 3,421 5,119
RepoDB 2,127 738
Shared 3,971 526

Total 21,437 33,189

RepoDB Data (Brown & Patel, 2017) is a standard set of successful and failed drug-disease pairs
in clinical trials collected by the Blavatnik Institute at Harvard Medical School.

A.3.2 PRE-PROCESSING

To ensure our proposed models can be trained on high-quality data, we pre-process the raw data
collected from four data sources (see Appx. A.3.1) by the following procedures:

1. We match the original identifiers of drugs and diseases from these four data sources to
the identifiers used in the customized RTX-KG2c (defined in Sec.3), and then we remove
duplicate drug-disease pairs and any pairs that appear in both true positives (pairs with re-
lation “indication” from MyChem Data, predicate “treats” from SemMedDB Data, ther-
apeutics “indications” from NDF-RT Data and status “approved” from RepoDB Data)
and true negatives (pairs with relation “contraindication” from MyChem Data, predicate
“neg treats” from SemMedDB Data, therapeutics “contraindications” from NDF-RT Data
and status “withdrawn” from RepoDB Data).

2. Due to publication bias and possible NLP mistakes that exist in SemMedDB Data (Cong
et al., 2018), for those drug-disease pairs derived from this source, we select only those
with support of at least ten publication abstracts for both true positive and true negative
pairs. In addition, to increase the quality of SemMedDB-based data, we further filter the
drug-disease pairs by using the PubMed-publication-based Normalized Google Distance
(NGD) (Cilibrasi & Vitanyi, 2007) scores with a cutoff of 0.6 (described in Appx. A.2).

Table 4 shows the drug-disease pair count from each data source after data pre-processing.

For the drug repurposing model (Sec. 4.1) training, since we train a trinary classifier, we generate
an “unknown” class by negative sampling, that is, replacing the drug or disease identifier in each
true positive drug-disease pair with a random drug or disease identifier to generate a new pair that
does not appear in both the “treat” and “not treat” classes. Specifically, for each unique true positive
drug-disease pair, we respectively replace its drug identifier with other 30 random drug identifiers
as well as replace its disease identifier with other 30 random disease identifiers to make 60 new
drug-disease pairs for the “unknown” class.

For the ADAC-based RL model (Sec. 4.2.2) training, only the true positive pairs are considered.
In addition, we remove those true positive pairs which are not reachable from a drug node to its
corresponding disease node within maximum of 3 hops in the customized RTX-KG2c and this results
in 19,332 true positive pairs being left. Out of these 19,332 true positive pairs, 8,495 pairs can find
at least one demonstration path using the method described in Appx. A.2.

We split the data into training, validation, and test sets based on the ratio of [0.8, 0.1, 0.1]. Table 5
summarizes the pair count used as training, validation, and test sets for the drug repurposing model
and ADAC-based RL model.

A.4 DRUGMECHDB MOA PATH MAPPING

We access the DrugMechDB (Mayers et al., 2020) data via https://github.com/SuLab/DrugMechDB
which contains 3,593 MOA paths for 3,327 unique drug-disease pairs. These paths are extracted
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Table 5: Pair count of true positive (indications) pairs, true negative (contraindications or no ef-
fect) pairs, and random pairs respectively in training set, validation set, and test set for the drug
repurposing model and ADAC-based RL model.

Data Drug Repurposing Model Adversarial RL Model
TP TN Random TP

Training Set 17,149 26,552 34,306 6,796
Validation Set 2,143 3,318 4,286 849
Test Set 2,145 3,319 4,290 850

Total 21,437 33,189 42,882 8,495

from free-text descriptions from DrugBank, Wikipedia, and other literature sources and then have
been curated by subject experts. For these 3,327 unique drug-disease pairs, we first match them to
the biological entities used in our customized RTX-KG2c (defined in Sec.3), and then we filter out
those drug-disease pairs whose MOA paths don’t have intermediate nodes. Finally, 2,893 pairs out
of 3,327 pairs are reserved after filtering. Since these MOA paths are extracted from the human
free-text description, the length of these MOA paths is varying. Based on a previous report (Mayers
et al., 2022), there are many edges/relations of these MOA paths that are missing in the existing
biomedical databases and thus it is difficult to match the complete MOA paths to the KG-based
paths in our customized biomedical knowledge graph. In addition, since the length of predicted
paths generated by our model is fixed to 3, we consider those 3-hop KG-based paths of which
all four nodes show up in the complete MOA paths are the correct matched paths. Based on this
definition of correct matched paths, we finally find 472 unique drug-disease pairs of which each has
at least one such correct matched path in its all possible 3-hop paths between drug and disease in
our customized biomedical knowledge graph. For those 2,421 unique drug-disease pairs that are
filtered out because of no such correct matched path, most of them are due to the missing edges in
our customized biomedical knowledge graph which is consistent with the findings in the previous
analysis (Mayers et al., 2022). There are two reasons that could be used to explain these missing
edges: 1) we filter out many low-quality edges from SemMedDB (described in Appx. A.1); 2)
RTX-KG2c might miss some data sources that support these missing edges.

B IMPLEMENTATION DETAILS

B.1 DRUG REPURPOSING MODEL (SEC. 4.1) AND ITS BASELINES (SEC. 5.3)

We utilize the source code 7 provided by the GraphSAGE paper (Hamilton et al., 2017) to train the
unsupervised GraphSAGE embeddings with its “big” mean-based aggregator and two hidden layers
with dimensions [256, 256]. In the random walk setting in GraphSAGE, we use 10 numbers of walk
with 100 walk length. As for other parameters, the number of epochs is 10, the neighbor sampling
size of each layer is 96, the learning rate is set to 0.001, the batch size is 256 and the maximum num-
ber of iterations per epoch is 10,000. Instead of using the default identity embeddings as the initial
embedding features, we use node attribute embeddings generated by the pre-trained PubMedBert
model (Gu et al., 2022) with concatenation of the node’s name and category, and then are reduced to
100 dimensions with PCA technique. The dimension of final output embedding vector of each node
is 512. With these GraphSAGE embedding vectors, we then concatenate the embedding vectors
of each drug-disease pair in the training set as input features and use the RandomForestClassifier
function of scikit-learn (v1.0) python package to train a Random Forest model. We run a grid search
via GridSearchCV function to determine the optimal parameter set of Random Forest model from
depths {5, 10, 15, 20, 25, 30, 35} and number of trees {500, 1000, 1500, 2000}. The best parameter
set of the Random Forest model uses the maximum depth max depth = 35 and the number of trees
n estimators = 2000.

For KG-based baseline models, we use the OpenKE library 8 to implement the TransE, TransR,
RotatE, DistMult, ComplEx, ANALOGY, and SimpLE models with their default parame-

7https://github.com/williamleif/GraphSAGE
8https://github.com/thunlp/OpenKE
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Table 6: Hyperparameters used for Baseline Models.
Model Hidden Dim. Num. Epochs Batch Size Learning Rate Optimizer

TransE 100 10000 1000 1 SGD
TransR 50 2000 1000 1 SGD
RotatE 30 2000 1000 2e-5 Adam
DistMult 100 10000 1000 0.5 Adagrad
ComplEx 50 2000 500 0.5 Adagrad
ANALOGY 20 2000 500 0.5 Adagrad
SimpLE 100 2000 500 0.5 Adagrad

ter settings (we adjusted the hyperparameters for some models to ensure we can finish the train-
ing on GPUs for a reasonable time). Table 6 shows the detailed hyperparameter setting of each
OpenKE-based baseline model. For other baseline models, we use the PyTorch Geometric 9 to im-
plement the GAT and GraphSAGE-link model and use the same GraphSAGE embeddings (men-
tioned above) with scikit-learn (v1.0) python package to implement the GraphSAGE+logistic,
GraphSAGE+SVM and 2-class GraphSAGE+RF models with the grid-search-based optimal
parameter settings.

B.2 ADAC-BASED RL MODEL (SEC. 4.2.2) AND ITS BASELINE (SEC. 5.4)

We modify the model framework of Zhao et al. (Zhao et al., 2020) and make it adapted to the
proposed methods (Sec. 4.2) for drug repurposing purpose. We respectively set the state history
length K = 2 and the maximum length of path T = 3. In order to make our customized knowledge
graph enable training on a 48GB Quadro RTX 8000 GPU, we prune the action space of each entity
with a maximum size of 3,000 based on the PageRank score. We set 100 to the dimensions of all
lookup matrices used within actor, critic, meta-path discriminator, and path discriminator networks.
The dimensions of hidden layers of the actor network and critic network are all set to 512. We set
the dimensions of hidden layers of the path discriminator with [512, 512] and used the dimension set
of [512, 256] for the hidden layers of the meta-path discriminator. We utilize Xavier initialization
(Glorot & Bengio, 2010) for the embeddings of all lookup matrices and the network layers. We set
αp = 0.006 for the weight of the path discriminator reward and am = 0.012 for the meta-factor of
the path discriminator reward. The decaying coefficient γ of Re,T and the weight α of entropy term
are respectively assigned 0.99 and 0.005. We optimize all networks with the Adam optimization
algorithm (Kingma & Ba, 2015) with a learning rate of 0.0005. The mini-batch size is set to 32 with
a path rollout set to 35. The dropout rates of all subnetworks are set to 0.3 and the action dropout
rate is set to 0.5.

For the implementation of the MultiHop model (Lin et al., 2018), we use the source code10 pro-
vided by the author and modify it by using our defined reward shaping strategy (described in Sec.
4.2.2). We set all its parameters the same as the ADAC-based RL model if they are available other-
wise we use the default parameters.

C OTHER EXPERIMENT RESULTS

C.1 ABLATION EXPERIMENT FOR NODE ATTRIBUTE EMBEDDINGS

To show the effectiveness of node attribute embeddings (mentioned in Sec. 4.1) in improving re-
purposing predictions, we conduct an ablation experiment to compare the 3-class GraphSAGE+RF
model with and without node attribute embeddings, using random embeddings with Xavier initial-
ization to replace node attribute embeddings in the latter case. The results in Table 7 shows that
the GraphSAGE initialized with node attribute embedding result in the final node embeddings with
more expressive power and can help improve the performance of drug repurposing prediction.

9https://github.com/pyg-team/pytorch_geometric
10https://github.com/salesforce/MultiHopKG

21

https://github.com/pyg-team/pytorch_geometric
https://github.com/salesforce/MultiHopKG


Under review as a conference paper at ICLR 2023

Table 7: Comparing evaluation results between the 3-class GraphSAGE+RF model with and without
node attribute embeddings

Model Accuracy Macro F1 score MRR Hit@1 Hit@3 Hit@5

3-class GraphSAGE+RF w/o node attribute embedding 0.907 0.889 0.151 0.031 0.134 0.239
3-class GraphSAGE+RF w/ node attribute embedding 0.934 0.922 0.360 0.211 0.410 0.524

C.2 DRUG REPURPOSING PREDICTION EVALUATION WITH “ALL NODES” REPLACEMENT

To further demonstrate that our proposed drug repurposing model has better capability in prediction
with relatively low false positive, besides showing the comparison results based on 1000 random
drug-disease pairs across all models (see Table 1), we calculate the MRR and Hit@K metrics for the
models that can be implemented in a reasonable time (excluding the GAT and GraphSage+SVM
models) by using the following three methods to replace drugs and/or diseases in each true positive
drug-disease pair (“treat” category) in the evaluation dataset (combination of validation and test
sets):

• Drug-rank-based Replacement: For each true positive drug-disease pair, the drug-rank-
based replacement pairs are generated by replacing the drug entity with each of all 274,676
other drugs in the customized RTX-KG2c while excluding all known true positive drug-
disease pairs.

• Disease-rank-based Replacement: For each true positive drug-disease pair, the disease-
rank-based replacement pairs are generated by replacing the disease entity with each of
all 124,638 other diseases in the RTX-KG2c while excluding all known true positive drug-
disease pairs.

• Combined Replacement: For each true positive drug-disease pair, the combined replace-
ment pairs are the combination of all replacement pairs of the above two methods. All
known true positive drug-disease pairs are excluded from these replacement pairs.

Figure 4 shows the comparison results of MRR and Hit@K between our proposed drug repurposing
model (i.e., the 3-class GraphSage+RF model) and other baselines (excluding the GAT and
GraphSage+SVM models because of extremely long running time) by using the above three meth-
ods to generate drug-disease replacement pairs. These results based on the ranking-based metrics
calculated with more comprehensive “all nodes” replacement methods can indicate our proposed
model is indeed superior to other baselines in identifying new indications of existing drugs with
relatively low false positives.

C.3 CASE STUDIES

To further evaluate the performance of the ADAC-based RL model in predicting MOA paths for
drug repurposing explanation, we utilize it to explore potential repurposed drugs for the orphan or
rare genetic diseases (e.g., Hemophilia B and Huntington’s Disease) and predict their top 10 KG-
based 3-hop paths as explanations. These two diseases have known molecular pathogenesis which
can be used to evaluate if the predicted paths are biologically reasonable as an explanation for drug
repurposing.

C.3.1 HEMOPHILIA B

Hemophilia B (a.k.a factor IX deficiency or Christmas disease) is a rare genetic disease that can
cause longer-than-normal bleeding in patients. It is caused by the mutations in the factor IX (F9)
gene on the X chromosome. Table 8 displays the top 10 predicted drugs/treatments from the pro-
posed drug repurposing model (Sec. 4.1) which include both drugs/treatments used in the training
set (highlighted with red color) and drugs/treatments not in the training set. We manually exclude
the chemotherapeutic drugs from the predicted drug candidate list due to their potential risk of cy-
totoxicity to normal cells, which might lead to false positives for drug repurposing of non-cancer
diseases (Sourimant et al., 2021; Gysi et al., 2021). For those seven drugs/treatments that are not
in the training set, many of them are biologically reasonable and supported by some publications
that have the potential to treat hemophilia B even though there are three predicted drugs that have
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Figure 4: Comparison results of MRR and Hit@K between our proposed drug repurposing
model (i.e., the 3-class GraphSage+RF model) and other baselines (excluding GAT and
GraphSage+SVM models) based on the evaluation dataset (combination of validation set and test
set). The legend “drug rank”, “disease rank” and “combined rank” respectively correspond to the
methods of “Drug-rank-based Replacement”, “Disease-rank-based Replacement”, and “Combined
Replacement” described in Appx. C.2.

no supporting publication. By the predicted 3-hop KG-based MOA paths, the domain experts might
be able to quickly determine whether they are false positive drugs. For instance, Epicriptine is a
nootropic drug that has no 3-hop KG-based path connecting this drug and hemophilia B and thus
might be a false positive. Hyperbaric Oxygen therapy is reported to have a function in wound healing
in which the first phase is to stop bleeding (Huang et al., 2019) and there is only one 3-hop KG-based
path (“Hyperbaric oxygen” → “entity positively regulates entity” → “Angiogenic process” → “has
participant” → “Epidermal growth factor” → “gene associated with condition” → “Hemophilia B”)
connecting between hyperbaric oxygen and hemophilia B, which might help experts to determine if
it can be used as adjunctive therapy for the treatment of hemophilia B. Triamcinolone is a kind of
steroids which might be beneficial for the adjunctive treatment of hemophilia (Cacciotti et al., 2021).
Even though steroids such as triamcinolone might typically be used topically, a therapeutic steroid
might be used orally. Therefore, it is not surprising that triamcinolone is returned as a possible
treatment. In its predicted 3-hop KG-based MOA paths (see Figure 5), some genes like the AR gene
(MORGAN et al., 1997) and the CD4 gene (Dobrzynski et al., 2004) are reported to be associated
with the regulatory mechanism of hemophilia B. So, these might help experts further determine if
triamcinolone is useful for hemophilia B.

In order to further evaluate the biological explanations of our predicted 3-hop KG-based MOA paths,
we utilize the curated DrugMechDB-based MOA paths. There are three relevant MOA paths found
for hemophilia B respectively corresponding to Eptacog Alfa, Eftrenonacog Alfa, and Nonacog
Alfa. Eptacog Alfa and Nonacog Alfa are in our top 10 predicted drugs/treatments which are all
used in the training set. Figure 6 shows the comparisons between the subgraphs with the top 10 pre-
dicted 3-hop KG-based paths and the curated DugMechDB-based MOA paths for Eptacog Alfa and
Nonacog Alfa. The corresponding biological entities between the predicted paths and the curated
DrugMechDB-based paths are highlighted with red color. Although the predicted paths can’t exactly
match the DrugMechDB-based MOA paths due to the limited path length and some missing seman-
tic relationships, some key biological entities (e.g., Coagulation Factor VII, Coagulation Factor X,
and Coagulation Factor IX) for the treatment of hemophilia B show up in the subgraph of top10
predicted paths. Actually, the treatment of hemophilia B involves a complex molecular network of
blood coagulation (see Figure 7). Many biological entities (e.g., Coagulation factor VII, factor VIIa,
factor III, factor II, factor VIII, factor IX, factor X) in the subgraph of our top 10 predicted paths are
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Figure 5: The predicted 3-hop KG-based MOA paths for triamcinolone.

in such molecular network. Therefore, the subgraph constructed by our top 10 predicted paths can
convey more molecular details than the DrugMechDB-based MOA paths.

Figure 6: Comparison between the top 10 predicted 3-hop paths (integrated into a subgraph for
better visualization) and the curated DugMechDB-based MOA paths (the original MOA paths are
presented in the same way as the predicted paths) for Eptacog Alfa (a) and Nonacog Alfa (b). The
corresponding biological entities between top10 predicted 3-hop paths and MOA paths are high-
lighted with red color. The top 10 predicted paths where all entities show up in the DugMechDB-
based MOA paths are also highlighted with red color.

Since both Eptacog Alfa and Nonacog Alfa are used in the training set, to evaluate the predicted
MOA paths for the predicted drugs/treatments that are not in the training set, we use Factor VIIa
which has the highest probability after excluding all drugs used in the training set. Figure 8 shows a
sbugraph with its top10 predicted 3-hop paths. We can see that most biological entities (e.g., Throm-
bin, Factor IX, factor VII) are biologically relevant (which are in the blood coagulation regulatory
network). The predicted MOA paths (such as “Factor VIIa” → “entity positively regulates entity”
→ “Factor IX” → “close match” → “F9 (Coagulation Factor IX) gene” → “gene associated with
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Figure 7: Blood Coagulation Regulatory Network with arrows for molecular reactions (black), pos-
itive feedback (green), and negative feedback (red).

condition” → “Hemophilia B”) are biologically reasonable because the pathogenesis of hemophilia
B is the deficiency of factor IX.

Figure 8: A subgraph with the top 10 predicted 3-hop paths for Factor VIIa – Hemophilia B pair. The
path highlighted with red color is biologically reasonable for explaining the treatment mechanism
of Factor Vlla for Hemophilia B.

C.3.2 HUNTINGTON’S DISEASE

Huntington’s disease (HD) is a rare neurogenetic disorder that typically occurs in midlife with symp-
toms of depression, uncontrolled movements, and loss of cognitive ability. The drugs for HD are
mainly used for the treatment of its symptoms in abnormal movements (e.g., chorea) and psychiatric
phenotype. We show ten highest-probability drugs/treatments predicted by the proposed drug repur-
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Table 8: Top 10 predicted drugs/treatments for hemophilia B (note that the drugs highlighted
with red color are used in the training set while the remaining drugs are the top-rank, non-
chemotherapeutic drugs without showing up in the training set).

Rank Drug/Treatment Prob. Publications

1 Eptacog Alfa (rFVIIa) 0.833 (Croom & McCormack, 2008; Minno, 2015)
2 Nonacog Alfa (rFIX) 0.803 (Rendo et al., 2015)
3 Viral Vector 0.780 (Driessche et al., 2001)
4 Factor VIIa 0.748 (Croom & McCormack, 2008; Castaman, 2017)
5 Recombinant FVIIa (rFVIIa) 0.724 (Croom & McCormack, 2008; Castaman, 2017)
6 Thrombin 0.709 (Negrier et al., 2019)
7 Factor IX 0.708 (Goodeve, 2015)
8 Epicriptine 0.702
9 Hyperbaric Oxygen 0.660
10 Triamcinolone 0.649

Table 9: Top 5 predicted drugs/treatments used in the training set (highlighted with red color) and
the top 5 non-chemotherapeutic predicted drugs/treatments that are not in the training set for Hunt-
ington’s Disease.

Rank Drug/Treatment Prob. Publications

1 Pimozide 0.939 (Arena et al., 1980; Videnovic, 2013)
2 Therapeutic Agent 0.939
3 Olanzapine 0.938 (Paleacu et al., 2002; Squitieri et al., 2001)
4 Riluzole 0.935 (Group, 2003)
5 Antipsychotic Agent 0.932 (Unti et al., 2017)
10 Risperidone 0.893 (Coppen & Roos, 2017; Duff et al., 2008)
14 Entinostat 0.888 (Shukla & Tekwani, 2020)
15 Primaquine 0.887
17 Isradipine 0.884 (Miranda et al., 2019)
19 Amifampridine 0.882

posing model (Sec. 4.1) in Table 9. Like the case study of Hemophilia B, we exclude the chemother-
apeutic drugs in the predicted drug candidate list. Since the top 8 predicted drugs/treatments in the
predicted drug list are all in the training set, we only display the top 5 of them. The rest five in Ta-
ble 9 are those with the highest probabilities in the predicted drug list after excluding the drugs used
in the training set and all chemotherapeutic drugs. From Table 9, We can see that many top-rank pre-
dicted drugs are supported by some publications for the potential treatment of HD’s symptoms. In
order to evaluate the predicted paths for the predicted drugs/treatments that are not in the training set,
we show the subgraphs with the top 10 predicted paths for each of the top 5 non-chemotherapeutic
predicted drugs/treatments that are not in the training set in Figure 9. From these predicted paths, we
can see that most of them are biologically relevant. For example, the subfigure (a) of Figure 9 shows
that Risperidone is predicted to be useful for HD by decreasing the activity of the genes associated
with the 5-Hydroxytryptamine receptor (e.g., HTR1A, HTR2A, HTR2C, HTR7) and dopamine re-
ceptor (e.g., DRD1, DRD2, DRD3) which have been proven to be involved in the pathogenesis of
depressive disorders (Yohn et al., 2017; Delva & Stanwood, 2021) and depressive symptom is one
of the important characteristics of HD (Coppen & Roos, 2017). Entinostat is predicted to inhibit
the functions of histone deacetylase genes (e.g., HDAC1, HDAC2, HDAC6) to treat HD (see sub-
figure (b) of Figure 9). One of the predicted 3-hop MOA paths (“Entinostat” → “decreases activity
of” → “HDAC1 gene” → “interacts with” → “Histone H4” → “gene associated with condition”
→ “Huntington’s disease”) are supported by the previous research (Shukla & Tekwani, 2020; Yu
et al., 2009). Primaquine is predicted to act on the NQ02 gene and the IKBKG gene to play a thera-
peutic role in neurodegenerative disease which is reported in (Voronin et al., 2021; Singh & Singh,
2020). Isradipine is predicted to have a potential therapeutic effect for HD by mainly regulating the
genes of the Calcium Voltage-Gated Channel (e.g., CACNA1S, CACNA1D, CACNA1C, CACNB2,
CACNA2D2) which might be associated with the symptoms (e.g., chorea, depression and dementia)
of HD (Yagami et al., 2012) while Amifampridine is predicted to regulate the genes of the Potassium
Voltage-Gated Channel to associate with HD (Noh et al., 2019). All these examples indicate that the
predicted KG-based MOA paths can explain the mechanism of repurposed drugs to some extent.
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Figure 9: Top 10 predicted 3-hop paths (integrated into subgraphs) for top 5 non-chemotherapeutic
predicted drugs/treatments that are not used in the training set for Huntington’s disease.
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