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Abstract

Predicting pedestrian trajectories is essential for understanding human behavior1

and optimizing spatial planning. A key characteristic of pedestrian trajectories2

is their multimodality, which results from the diverse intentions of individuals.3

While recent studies have employed various techniques, such as clustering, tree4

enumeration, and Gaussian mixture models, to address this multimodality, a more5

natural and efficient approach is to directly model the distribution of trajectories.6

To address this need, we propose a spatio-temporal aware flow matching framework7

for pedestrian trajectory prediction. This framework empowers flow matching-8

based generative models by enabling them to analyze past trajectories of both the9

subject and their neighbors so as to model the distribution of future trajectories.10

Benchmarking results demonstrate the superiority of our proposed framework,11

highlighting its ability to achieve more accurate and efficient trajectory predictions12

compared to existing methods.13

1 Introduction14

Predicting pedestrian trajectories from observed paths is important for applications like spatial15

planning and video surveillance[17, 6]. However, it remains challenging due to three factors: First,16

complex spatial interactions – pedestrians interact with each other, such as friends walking together or17

strangers maintaining distance [9]. Second, temporal coherence – future predictions must align with18

past behaviors. Third, diverse intentions – individuals’ varied goals create many possible future paths.19

These factors highlight the need for models that can address the inherent complexity of pedestrian20

trajectory prediction.21

Previous research has effectively addressed the first two challenges in pedestrian trajectory predic-22

tion. First, models have focused on collective pedestrian behavior rather than individual behavior,23

incorporating the interactions among different pedestrians [3]. Second, these models have accounted24

for the temporal dimension, allowing them to use past trajectories within a time window to predict25

future trajectories in a manner consistent with historical data [16, 18]. However, the third challenge,26

which pertains to the multimodality of trajectory distributions, remains outstanding. Although various27

solutions have been proposed, each has notable limitations. For instance, models based on Variational28

Autoencoders (VAE) and Gaussian Mixture Models (GMM) [16, 2] impose strict constraints on29

the trajectory distribution family, which reduces expressiveness and limits precision. Generative30

Adversarial Networks (GANs) [3, 11] are typically difficult to train and are prone to mode collapse.31

Search-based models [12] suffer from inefficiency, with prediction quality heavily dependent on the32

resolution and exhaustiveness of the enumeration process. Recent approaches that cluster trajectories33

into distinct modes and represent predictions as weighted averages of these modes [13] offer increased34

efficiency but inevitably introduce discretization errors during both training and inference.35
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To effectively model the multimodal distribution of pedestrian trajectories, we propose TrajFM, a36

spatio-temporal-aware flow matching framework designed to predict arbitrarily shaped trajectory37

distributions. We evaluated TrajFM on two benchmark datasets for pedestrian trajectory prediction:38

ETH-UCY [4, 9] and SDD [10]. The evaluation results demonstrate that TrajFM outperforms39

current state-of-the-art models, thereby confirming the effectiveness of flow matching-based density40

estimation for trajectory prediction.41

2 Method42

2.1 Problem formulation43

Pedestrian trajectory prediction aims to forecast future trajectories based on observed trajectories44

of pedestrians and their neighbors. In line with previous work, consider a traffic scene involving N45

pedestrians, where each pedestrian’s trajectory spans T time steps. The position of the i-th pedestrian46

at time step t is denoted by xi,t = (xi,t, yi,t) ∈ R2.47

The entire scene is represented by a collection of N trajectories: {xi,t}i=1,...,N ; t=1,...,T . For48

convenience, this collection can be expressed as a 3-D tensor X = [xi,t]N,T ∈ RN×T×2, where the49

first dimension represents pedestrians, the second dimension represents time steps, and the third50

dimension represents the 2D coordinates. Given the observed trajectories for the first Tobs time steps,51

denoted as Xobs = {xi,t}i=1,...,N ; t=1,...,Tobs , the model is tasked with predicting the trajectories for52

the remaining T − Tobs time steps, denoted as Xfuture = {xi,t}i=1,...,N ; t=Tobs+1,...,T .53

2.2 Spatio-temporal feature extraction network54

The spatio-temporal feature extraction network is designed to encode the observed past trajectories.55

It consists of two key modules: (1) the temporal attention module, which applies self-attention along56

the time dimension for each pedestrian, and (2) the spatial attention module, which performs self-57

attention among pedestrians at each time step. The temporal attention module focuses on capturing58

the temporal dynamics of each pedestrian’s movement by considering the sequence of their past59

trajectories. Meanwhile, the spatial attention module addresses the interactions between pedestrians60

at each time step, enabling the model to account for social influences and spatial relationships.61

Together, these modules generate features that encapsulate both temporal and spatial contexts for62

each pedestrian, which are then utilized to predict the distribution of future trajectories.63

The input to the network is a collection of observed pedestrian trajectories Xobs = [xi,t]N,Tobs ∈64

RN,Tobs,2. For each pedestrian i at each time step t, we first featurize the coordinate using a multi-layer65

perceptron (MLP) with 3 linear layers and the ReLU activation. To incorporate temporal information,66

we use the standard positional embedding layer [14] to encode the time step and add the positional67

embedding to the feature vector.68

We combine multiple temporal attention modules and spatial attention modules in an alternating order69

to fully capture both temporal and inter-pedestrian spatial features. Finally, the feature vectors of the70

last observed time steps {hi = hi,Tobs}i=1...N are used by the subsequent future trajectory density71

estimator to predict the trajectory of each pedestrian.72

2.3 Flow matching for future trajectory modeling73

Preliminary Flow matching is a method for learning a probability flow ψt that transforms a source74

distribution p0(x) into a target distribution p1(x). The probability flow ψt is governed by an ordinary75

differential equation defined by a time-dependent vector field ut: d
dtxt = ut(xt), where xt = ψt(x0).76

To model the target distribution, a neural network vθ(xt, t) can be employed to approximate the77

vector field ut. However, the true vector field associated with the data distribution is intractable.78

To address this, the conditional flow matching framework [5] introduces a surrogate vector field79

that depends only on a specific prior sample x0 and a data sample xt: ut(xt|x0,x1) =
d
dtxt. This80

surrogate field can be viewed as an interpolation between x0 and xt. The corresponding loss function81

aims to train the vector field network to approximate this tractable surrogate vector field, and is82

defined as:83

L(θ) = Et,p1(x1),p0(x0)∥vθ(xt, t)− ut(xt|x1,x0)∥2, (1)
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Figure 1: (a) Illustration of the spatial-temporal attention. (b) Distributions and associated vector
fields of a pedestrian’s location at a future time point. Orange arrows indicate the pedestrian’s past
trajectory and green arrows indicate the ground truth future trajectory.

where t ∼ U(0, 1).84

Formulation The future trajectory of the pedestrian i can be represented by a sequence of Tfuture =85

T − Tobs coordinates: [xi,Tobs+1, . . . ,xi,T ]. We center the coordinates around the last observed86

coordinate so that future trajectories are represented in relative terms, denoted by the vector si =87

[xi,Tobs+1−xi,Tobs , . . . ,xi,T−xi,Tobs ] ∈ R2×Tfuture Formally, modeling the future trajectory distribution88

of pedestrian i is equivalent to modeling the following probability density:89

p(si|Xobs), i = 1 . . . N. (2)

Since the feature extraction network has encoded the condition Xobs into hi, the probability density90

function can be modified as:91

p(si|hi), i = 1 . . . N. (3)

To define a vector field for the distribution, we choose the isotropic GaussianN (0, I) as the prior, and92

define the flow connecting a prior sample s(0)i and a data sample si as linear interpolation. The linear93

interpolation favors a straight flow which contributes to the efficiency of both training and sampling as94

it is the shortest path between two points. Formally, the probability flow and its associated conditional95

vector field are defined as:96

ut(s
(t)
i |s

(1)
i , s

(0)
i ) = s

(1)
i − s

(0)
i =

s
(1)
i − s

(t)
i

1− t
, (4)

ψt(s
(0)
i |s

(1)
i ) = ts

(1)
i + (1− t). (5)

We use a simple three-layer MLP with ReLU activation to parameterize the vector field, which takes97

as input the current interpolant s(t)i , the timestep t, and the embedding hi. The network is denoted by98

v(s
(t)
i , t,hi). The conditional flow matching objective for the i-th pedestrian is formulated as:99

Li = E
p(s

(1)
i ),t,p(s

(0)
i |hi),

∥∥∥v(s(t)i , t,hi)− (s
(1)
i − s

(0)
i )

∥∥∥2 , (6)

and the final training loss is the average over all the observed pedestrians.100

Sampling The sampling algorithm is outlined in Algorithm 1. First, the observed trajectories are101

encoded a single time using the transformer-based spatio-temporal network. An initial sample is then102

drawn from a prior Gaussian distribution. This sample is subsequently updated iteratively using the103
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Table 1: Benchmarking results on the ETH-UCY dataset using ADE and FDE scores. TrajFM
outperforms the previous models in terms of average ADE and FDE scores. TrajFM also achieves the
best scores in most cases.

Subset ETH HOTEL UNIV ZARA1 ZARA2 Average
Metric ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Social GAN [3] 0.87 1.62 0.67 1.37 0.76 1.52 0.35 0.68 0.42 0.84 0.61 1.21
SoPhie [11] 0.70 1.43 0.76 1.67 0.54 1.24 0.30 0.63 0.38 0.78 0.51 1.15
STAR [18] 0.36 0.64 0.17 0.36 0.31 0.62 0.29 0.52 0.22 0.46 0.26 0.53
SGCN [8] 0.63 1.03 0.32 0.55 0.37 0.70 0.29 0.53 0.25 0.45 0.37 0.65
CAGN [2] 0.41 0.65 0.13 0.23 0.32 0.54 0.21 0.38 0.16 0.33 0.25 0.43
SIT [12] 0.39 0.62 0.14 0.22 0.27 0.47 0.19 0.33 0.16 0.29 0.23 0.38
SocialVAE [16] 0.47 0.76 0.14 0.22 0.25 0.47 0.20 0.37 0.14 0.28 0.24 0.42
SocialVAE+FPC [16] 0.41 0.58 0.13 0.19 0.21 0.36 0.17 0.29 0.13 0.22 0.21 0.32
PECNet [7] 0.54 0.87 0.18 0.24 0.35 0.60 0.22 0.39 0.17 0.30 0.29 0.48
AgentFormer [19] 0.45 0.75 0.14 0.22 0.25 0.45 0.18 0.30 0.14 0.24 0.23 0.39
MemoNet [15] 0.40 0.61 0.11 0.17 0.24 0.43 0.18 0.32 0.14 0.24 0.21 0.35
TUTR [13] 0.40 0.61 0.11 0.18 0.23 0.42 0.18 0.34 0.13 0.25 0.21 0.36

TrajFM 0.39 0.57 0.10 0.13 0.21 0.32 0.15 0.24 0.17 0.22 0.20 0.30

Euler method, based on the predicted vector field. Given that the vector field network is a lightweight104

MLP and the feature extraction network is evaluated only once at the beginning, the iterative sampling105

process remains efficient. The sample obtained after the final iteration represents the generated future106

trajectory.107

3 Experiments108

Dataset Following the standard set by previous work[2, 13], we use the ETH-UCY[4, 9] dataset109

to benchmark the performance of TrajFM and the baselines. ETH-UCY contains 5 subsets: ETH,110

HOTEL, UNIV, ZARA1, and ZARA2. In total, the dataset contains 1,536 pedestrian trajectories. In111

accordance with previous work[16, 15], we train five models with each model using a different subset112

for testing and the rest subsets for training.113

Evaluation metrics Models are evaluated using the Average Displacement Error (ADE) and the114

Final Displacement Error (FDE) [1]. ADE measures the similarity between the predicted trajectory115

and the ground-truth trajectory. FDE emphasizes the difference between the predicted end point and116

the ground truth.117

Result TrajFM demonstrates state-of-the-art performance in both average ADE and average FDE,118

as shown in Table 1. It improves upon the best ADE of previous methods, reducing it from 0.21 to119

0.19, and decreases the FDE from 0.32 to 0.30. Specifically, TrajFM achieves the lowest FDE score120

across all five ETH-UCY subsets and the best ADE score on three out of five subsets. The ADE121

scores for TrajFM on the ETH and ZARA2 subsets are comparable to those of the leading baseline122

models.123

Figure 2 in the appendix presents two examples of predicted trajectory distributions from the ETH-124

UCY dataset. Given the multi-dimensional nature of trajectory distributions, we employ two visual-125

ization techniques. First, we project the distributions onto a two-dimensional plane (shown in the first126

column of Figure 2). This projection displays the contour of the predicted trajectories, revealing that127

(1) TrajFM assigns high probability to the ground truth trajectory and (2) the branching shape of the128

distribution indicates the incorporation of multiple trajectory modes.129

4 Conclusion130

In this paper, we present TrajFM, a spatio-temporal flow matching framework specifically created for131

predicting pedestrian trajectories. TrajFM is a novel generative model for spatio-temporal data, and132

we have shown its effectiveness in capturing pedestrian movement patterns. This framework also133

holds potential for broader applications in general time series data generation.134
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A Additional Figures197

Figure 2: First column from the left: trajectory distributions and vector fields projected to the 2D
plane. The rest of the columns: marginal distribution and its associated vector field of the trajectory
at different time steps, interpreted as the distribution of the pedestrian coordinates at different time
steps. Orange arrows indicate observed past trajectories, green arrows indicate ground truth future
trajectories and blue arrows indicate predicted future trajectories.

Algorithm 1 Sampling Algorithm
Input: Xobs observed trajectories
Input: n integration steps

1: Extract spatio-temporal feature for observed trajectories: {hi} = Featurize(Xobs)

2: Sample from prior: s(0)i ∼ N (0, I)
3: for t← 1 to n do
4: for i← 1 to N in parallel do
5: s

( t
n )

i ← Euler
(
v(s

( t−1
n )

i , t
n ,hi), s

( t−1
n )

i , 1
n

)
6: end for
7: end for
8: return s

(0)
i
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