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Abstract

Robust policy evaluation for non-rectangular uncertainty set is generally NP-hard,1

even in approximation. Consequently, existing approaches suffer from either2

exponential iteration complexity or significant accuracy gaps. Interestingly, we3

identify a powerful class of Lp-bounded uncertainty sets that avoid these complexity4

barriers due to their structural simplicity. We further show that this class can be5

decomposed into infinitely many sa-rectangular Lp-bounded sets and leverage6

its structural properties to derive a novel dual formulation for Lp robust Markov7

Decision Processes (MDPs). This formulation provides key insights into the8

adversary’s strategy and enables the development of an efficient robust policy9

evaluation algorithm for these Lp normed non-rectangular robust MDPs.10

1 Introduction11

Robust Markov Decision Processes (MDPs) effectively handle uncertainties in environmental pa-12

rameters, making them indispensable for high-stakes domains such as robotics, finance, healthcare,13

and autonomous driving, where failures can have catastrophic consequences [23, 12, 29, 24, 15].14

They also outperform standard MDPs in terms of generalization, ensuring robust performance across15

diverse scenarios [36, 37, 25]. Consequently, extensive research has been conducted on robust16

MDPs [22, 10, 35, 16, 3, 24, 15, 13, 33, 34, 32, 7, 19, 17, 38, 30, 1, 14], primarily focusing on17

rectangular uncertainty sets that leverage the contractive robust Bellman operator. However, practical18

robust MDPs often feature non-rectangular uncertainty sets, where rectangular relaxations can result19

in overly suboptimal solutions [20, 8, 35]. Intuitively, non-rectangular uncertainty set could be20

thought of as an n-dimensional sphere of unit radius, and its rectangular relaxation is the smallest21

n-dimensional cube encapsulating the sphere. The ratio between the sphere and the encapsulating22

cube is exponential in the dimension (O(2−n)) [27]). This suggests that the rectangular relaxation23

of the non-rectangular uncertainty set, contains many additional environments. Moreover, most of24

the additional environments would lie near the corners representing big differences from the center25

in many coordinates – scenarios unlikely to occur in the real world, as aptly captured by the paper26

titled "Lightening doesn’t strike twice, robust MDPs [21]". These improbable, highly perturbed27

environments can lead to a significant gap between the solutions of non-rectangular robust MDPs and28

their rectangular relaxations.29

While non-rectangular robust MDPs capture much better interdependencies across the states, they30

lack the existence of contractive robust Bellman operators, which makes the problem very difficult31

to solve with standard dynamic programming techniques [8]. This makes non-rectangular robust32

MDPs a crucial yet challenging area of study, with only a limited body of work existing on the topic33

[35, 20, 8].34

The key challenge for non-rectangular robust MDPs is robust policy evaluation . That is, given35

oracle access to the robust gradient (robust policy evaluation ), the robust policy gradient method36
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Table 1: Related Work on Robust Policy Evaluation for Non-Rectangular Uncertainty Sets.

Method Uncertainty
Set

Iteration Com-
plexity

Accuracy Irreducibility
Assumption 1
of [20]

NP-Harness
Result of
[35]

[8] Reward
Lp Normed

O(log ϵ−1) ϵ No No

Algorithm
3.1 of [20]

General
Kernel Set

O(2q log ϵ−1) ϵ No Yes

Algorithm
3.2 of [20]

General
Kernel Set

O(ϵ−2) δd(2ϵ+ δP) Yes Yes

Ours Kernel Lp

Normed
log(ϵ−1) ϵ No No

The constants q, δd, δP can be as large as O(S2A) , O(2S) and O(S
√
A) respectively.

can efficiently achieve an ϵ-close globally optimal policy with an iteration complexity of O(ϵ−4)37

[32]. However, the robust policy evaluation for general convex non-rectangular uncertainty sets is38

strongly NP-hard, even for approximations [35]. Despite this hardness, [20] proposed two methods39

for non-rectangular robust policy evaluation for general convex uncertainty sets: One with exponential40

iteration complexity in the state-action space, and another that approximates the solution but with41

tolerances so large that the results are meaningless in the worst case (see Table 1).These pioneering42

approaches remain computationally prohibitive or overly imprecise, consistent with the NP-hardness43

result.44

Interestingly, the NP-hardness result in [35] applies specifically to kernel uncertainty sets with certain45

polyhedral structures (see Appendix for details). For Lp -bounded uncertainty sets, [8] showed that46

robust policy evaluation can be done efficiently, though this is limited to reward uncertainty, a much47

simpler case compared to kernel uncertainties. This raises a critical open question: Are there useful48

classes of kernel uncertainty sets that avoid this NP-Hardness barrier?49

We identify a specific class of non-rectangular uncertainty sets, bounded by an Lp- ball around50

a nominal kernel, and demonstrate that it effectively circumvents the NP-hardness result of [35].51

Moreover, we show that robust policy evaluation for this non-rectangular Lp- -bounded uncertainty52

set is equivalent to robust policy evaluation over an infinite collection of sa-rectangular Lp -bounded53

uncertainty sets. While robust policy evaluation for each sa-rectangular set is computationally54

tractable [19, 17], managing this infinite collection poses significant challenges. To overcome this,55

we leverage the property that the worst kernel for each sa-rectangular uncertainty set is a rank-one56

perturbation of the nominal kernel [17]. This insight enables us to express the robust policy evaluation57

problem (or robust return) in a novel dual form, providing a clearer understanding of the adversary’s58

behavior. Furthermore, this dual formulation facilitates the development of a binary search method59

for robust policy evaluation, achieving an iteration complexity of O(log ϵ−1) for approximating the60

robust return up to ϵ tolerance.61

In summary, robust MDPs are critical for handling uncertainties in high-stakes domains, yet existing62

methods are largely confined to rectangular uncertainty sets, limiting real-world applicability. Non-63

rectangular uncertainty sets, though more realistic, often face NP-hard challenges in robust policy64

evaluation. This work identifies a promising class of non-rectangular Lp -bounded kernel uncertainty65

sets, demonstrating that they circumvent existing NP-hardness results and enable efficient robust66

policy evaluation. By connecting robust evaluation for these sets to an infinite collection of sa-67

rectangular uncertainty sets and leveraging their structure, we propose a computationally efficient68

binary search method with logarithmic iteration complexity. This approach not only advances the69

understanding of non-rectangular robust MDPs but also opens the door to future investigation into70

broader classes of non-rectangular uncertainty sets in robust MDPs.71
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2 Preliminary72

A robust Markov Decision Process (RMDP) can be described as a tuple (S,A, γ, µ,R,U), where73

S is the state space, A is the action space, µ is an initial distribution over states S, γ is a discount74

factor in [0, 1), R is a reward function mapping S × A to R, and U set of transition kernel P that75

maps S × A to ∆S [15, 24] . A policy π : S → ∆A is a decision rule that maps state space to76

a probability distribution over action space. Let Π = (∆A)
S denote set of all possible policies.77

Further, π(a|s), P (s′|s, a) denotes the probability of taking action a in state s by policy π, and the78

probability of transition to state s′ from state s under action a respectively. In addition, we denote79

Pπ(s′|s) =
∑

a π(a|s)P (s′|s, a) and Rπ(s) =
∑

a π(a|s)R(s, a) as short-hands. The return of a80

policy π, is defined as Jπ
P = ⟨µ, vπP ⟩ = ⟨Rπ, dπP ⟩where vπP := DπRπ is value function, dπP = µ⊤Dπ81

is occupation measure and Dπ = (I − γPπ)−1 is occupancy matrix [26]. As a shorthand, we denote82

the state-action occupation measure as dπP (s, a) = dπP (s)π(a|s) and the usage shall be clear from the83

context. For an uncertainty set U , the robust return Jπ
U for a policy π, and the optimal robust return84

J∗
U , are defined as:85

Jπ
U = min

P∈U
Jπ
P , and J∗

U = max
π

Jπ
U ,

respectively. The objective is to determine an optimal robust policy π∗
U that achieves the optimal86

robust performance J∗
U . Unfortunately, even robust policy evaluation (i.e., finding the worst-case87

transition kernel Pπ
U ∈ argminP∈U Jπ

P ) is strongly NP-hard for general (non-rectangular) convex88

uncertainty sets [35]. This makes solving non-rectangular robust MDPs a highly challenging problem.89

To make the problem tractable, a common approach is to use s-rectangular uncertainty sets, Us =90

×s∈SPs, where the uncertainty is modeled independently across states [35]. These sets decompose91

state-wise, capturing correlated uncertainties within each state while ignoring inter-dependencies92

across states. A further simplification is the sa-rectangular uncertainty set, Usa, where uncertainties93

are assumed to be independent across both states and actions. Formally, Usa = ×(s,a)∈S×APs,a,94

where Ps,a are independent component sets for each state-action pair [15, 24, 33, 34].95

A Lp-bounded uncertainty sets, Usa
p and Us

p , which are centered around a nominal transition kernel P̂96

are defined as Usa
p = {P |

∑
s′ Psa(s

′) = 1, ∥Psa − P̂sa∥p ≤ βsa}, and Us
p = {P |

∑
s′ Psa(s

′) =97

1, ∥Ps− P̂s∥p ≤ βs}, where radius vector β is assumed small enough to ensure all kernels within the98

uncertainty sets are valid [13, 7, 19, 17] . Interestingly, for Lp bounded uncertainty set, adversarial99

(worst) kernels is a rank one perturbation of the nominal kernel that is used later in the paper [17].100

Dual Formulation. The primal formulation of an MDP is defined as:101

max
v∈V
⟨µ, v⟩, with its dual: max

d∈D
⟨d,R⟩,

where V = {v | v = Rπ + γPπv, π ∈ Π} represents the set of value functions. The dual formulation102

relies on the state-action occupancy measure d, where d ∈ D ⊂ R|S|×|A| satisfies the non-negativity103

constraint (d ⪰ 0) and the flow conservation constraint:
∑

a d(s, a) − γ
∑

s′,a′ d(s′, a′)P (s |104

s′, a′) = µ(s), ∀s ∈ S. The feasible set D forms a convex polytope [2], whereas the set of value105

functions, V , is a polytope that is generally non-convex [6]. This dual formulation offers several106

advantages, including efficient handling of constraints and the ability to solve the problem using107

linear programming techniques.108

For robust MDPs, the geometry of robust value functions is significantly more intricate compared to109

standard MDPs [31]. While the dual formulation for standard MDPs is well-established, this work is110

the first to derive a dual formulation for this specific class of non-rectangular robust MDPs, providing111

critical insights and laying the foundation for the development of robust policy evaluation methods.112

3 Method113

In this section, we introduce Lp-bounded non-rectangular uncertainty set, and demonstrate that114

its rectangular relaxation may yield highly sub-optimal solutions. Then, we establish that this115

uncertainty set avoids the NP-Hardness results established in [35]. Subsequently, we show that the116

robust evaluation for this uncertainty set is equivalent to robust evaluation over an infinite collection117

of sa-rectangular robust MDPs. This equivalence leads to a novel dual formulation and, ultimately,118
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a binary search method for robust policy evaluation. We begin with defining non-rectangular Lp-119

bounded uncertainty set as:120

Up =
{
P

∣∣∣ ∥P − P̂∥p ≤ β,
∑
s′

P (s′ | s, a) = 1
}
,

where P̂ is the nominal kernel, β is uncertainty radius, and ∥P − P̂∥p = (
∑

s,a,s′(P (s′|s, a) −121

P̂ (s′|s, a))p)
1
p . The simplex constraint ensures that the transition kernel P satisfies the unity-122

sum-rows property, as discussed in [19]. Following previous works [7, 19, 17], we assume the123

radius β is sufficiently small to ensure all the kernels within the uncertainty sets are valid transition124

kernels. As discussed in [19], this assumption can be lifted by imposing boundary constraints125

(0 ≤ P (s|s, a) ≤ 1) at the expense of additional complexity and without yielding significant126

additional insights. Throughout the paper, we use dπ, vπ, Jπ, Dπ as shorthand for dπ
P̂
, vπ

P̂
, Jπ

P̂
, and127

Dπ
P̂

, respectively, w.r.t. nominal kernel P̂ .128

Why non-rectangular RMDPs. Note that the non-rectangular uncertainty sets allow noise in one129

state to be coupled with noise in other states. Before delving into solving them, we first discuss their130

importance. Why are uncertainty sets modeled with non-rectangular sets Up (e.g., L2-balls) better131

than rectangular ones?132

In Figure 1, we illustrate this by capturing the uncertainty set using non-rectangular U2 (circle/sphere)133

balls and rectangular (square/cube) balls. The blue dots represent possible environments, with134

the origin being the nominal environment. Points farther away from the origin indicate larger135

perturbations. Specifically, points near the corners of the square/cube represent environments with136

large perturbations in nearly all dimensions or coordinates simultaneously. The likelihood of such137

simultaneous perturbations is very low, and this issue becomes even more pronounced in higher138

dimensions. This phenomenon is well discussed in the paper Lightning Doesn’t Strike Twice: Coupled139

RMDPs[21].140

Figure 1: Modeling Uncertainty with Non-Rectangular and Rectangular L2-Balls.

Moreover, as shown in the result below, most of the volume of a high-dimensional cube lies near141

its corners outside the embedded sphere. This implies that rectangular robust MDPs are overly142

conservative, as their uncertainty sets focus on environments near the corners—corresponding to143

highly unlikely extreme perturbations.144

Proposition 3.1. Let Usa
2 and Us

2 denote the smallest sa-rectangular and s-rectangular sets, respec-145

tively, that contain U2. Then:146

vol(U2)
vol(Usa

2 )
= O(c−SA

sa ), and
vol(U2)
vol(Us

2 )
= O(c−S

s ),

where vol(X) denotes the volume of the set X , S = |S|, A = |A| and cs, csa > 1 are constants.147
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The result follows from comparing the n-dimensional sphere’s volume cnr
n (cn → 0) [27], to the148

enclosing cube’s volume 2nrn (side 2r), resulting in a ratio of O(2n).149

In summary, real-world uncertainty sets are often non-rectangular and highly coupled. Their rectan-150

gular relaxations (the smallest rectangular uncertainty sets encapsulating the original non-rectangular151

sets) introduce exponentially more additional environments, many of which correspond to highly152

perturbed kernels that are improbable in practice. As a result, relaxed rectangular robust MDPs can153

produce overly conservative and suboptimal solutions compared to their non-rectangular counterparts.154

Complexity. While non-rectangular robust MDPs better capture real-world uncertainty sets, robust155

policy evaluation (even approximation) has been proven NP-hard for general uncertainty sets defined156

as intersections of finite hyperplanes [35]. Specifically, [35] reduces an Integer Program (IP) with157

m constraints to robust MDPs where the uncertainty set consists of intersections of m half-spaces158

(m-linear constraints). This polyhedral structure is fundamental to the hardness proof, consequently,159

it does not extend to our uncertainty sets Up for p > 1. For the case of U1, the IP reduction does160

apply, but since U1 is defined by a single global constraint (∥P − P̂1∥1 ≤ β), this implies that the161

corresponding IP has only one simple constraint which is efficiently solvable. A detailed discussion162

can be found in Appendix B.2.163

Intuitively, the NP-Hardness result primarily applies to polyhedral uncertainty sets with numerous164

vertices. This leaves room for the possibility that many uncertainty sets defined by a small number165

of global constraints, such as norms or distances, might fall outside the scope of this hardness and166

could potentially be tractable. However, we leave this intriguing question for future exploration: is167

NP-Hardness merely the tip of the iceberg?168

Divide and Conquer. The above discussion highlights the potential tractability of Lp-robust MDPs,169

prompting us to address the challenge of solving them. A key insight is that the non-rectangular170

uncertainty set Up can be expressed as a union of sa-rectangular sets Usa
p (b) with varying radius171

vectors b, as formalized in the result below. Each sa-rectangular set can be efficiently solved172

individually, paving the way for a more manageable approach to the overall problem.173

(a) Illustration of Proposition 3.2: N-dimensional
sphere can be written as infinite union of n-
dimensional inscribing cubes.

(b) Projections of set D along principal components,
for S = 3, A = 2 with 10 millions samples, strongly
suggesting non-convexity.

Figure 2:

Proposition 3.2. [Decomposition] The non-rectangular uncertainty set Up can be expressed as:174

Up =
⋃
b∈B

Usa
p (b),

where B = {b ∈ RS ×A
+ | ∥b∥p ≤ β}, and Usa

p (b) = {P | ∥P (· | s, a) − P̂ (· | s, a)∥p ≤175

b(s, a),∀(s, a)}, is sa-rectangular uncertainty set with radius vector b.176
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The proof of the above result intuitively generalizes the idea that a circle (or n-dimensional sphere)177

can be covered by an inscribed square (or n-dimensional rectangles) touching its boundaries and a178

continuum of its rotated versions, as shown in Figure 2(a). This offers a significant simplification to179

the problem at hand, as it implies that non-rectangular policy evaluation (difficult) can be decomposed180

into sa-rectangular uncertainty sets (easier) as:181

Jπ
Up

= min
b∈B

min
P∈Usa

p (b)
Jπ
P . (1)

In essence, we have simplified a complex problem into an infinite number of more manageable182

ones. However, the task remains incomplete. Although a closed-form expression exists for183

Jπ
Usa

p
= Jπ −

∑
s,a d

π(s, a)bsaσq(v
π
Usa

p
), where q is the Hölder conjugate of p (i.e., 1

p + 1
q = 1)184

and σp is the generalized standard deviation (GSTD) defined as σp(v) = minω∈R ∥v − ω1∥p185

[19], this approach is still computationally impractical. The core challenge lies in solving186

maxb∈B
∑

s,a d
π(s, a)bsaσq(v

π
Usa

p (b)), which remains a formidable task. To circumvent this, we187

leverage the dual formalism, which is elaborated in the next section.188

3.1 Dual Formulation of Robust MDPs189

Here, we present a dual formulation for robust MDPs specifically for Lp-bounded uncertainty sets.190

While this formulation is inherently more intricate than the classical dual formulation for standard191

MDPs [26], it forms the foundation for all subsequent results in this work.192

Now, leveraging results from [17], we know that the worst-case kernel for sa-rectangular uncertainty193

sets, Pπ
Usa

p (b) = P̂ − bk⊤, can be expressed as a rank-one perturbation of the nominal kernel, where194

k ∈ K := {k | ∥k∥p ≤ 1,1⊤k = 0}. Consequently, the adversary can restrict their focus to rank-one195

perturbations, enabling us to reformulate the robust return as:196

Jπ
Up

= min
b∈B

min
k∈K

Jπ
P̂−bk⊤ = min

b∈B
min
k∈K

µ⊤Dπ
P̂−bk⊤R

π,

where the last equality stems from Jπ
P = µ⊤Dπ

PR
π. Further, leveraging Lemma 4.4 from [17] or197

directly applying the Sherman–Morrison formula [4] (see Proposition D.1), the robust return can be198

expressed as:199

Jπ
Up

= min
b∈B,k∈K

[
µ⊤DπRπ − γµ⊤Dπbπ

k⊤DπRπ

1 + γk⊤Dπbπ

]
,

where bπs :=
∑

a π(a|s)bsa. The following result introduces a more concise and interpretable form200

of this robust return expression.201

Lemma 3.3. [Penalized Robust Return] The robust return can be expressed as:202

Jπ
Up

= Jπ − γ max
b∈B,k∈K

⟨k, vπR⟩⟨dπ, bπ⟩
1 + γ⟨k, vπb ⟩

,

where vπb = Dπbπ represents the value function with uncertainty radius b as the reward vector.203

For the first time, the above result expresses the robust return in terms of the nominal return Jπ and a204

penalty term involving only nominal values (dπ, vπR = vπ, and vπb ). Notably, the denominator term205

1 + γ⟨k, vπb ⟩ is strictly positive (see appendix for details). In the subsequent subsections, we delve206

deeper into evaluating this penalty term and analyzing the nature of the optimal (k, b) for a given207

policy π, revealing the adversary. Finally, by maximizing the robust return Jπ
Up

over policies, we get208

a dual formulation, as stated below.209

Theorem 3.4 (Dual Formulation). The optimal robust return is the solution to210

J∗
Up

= max
D∈D

min
k∈K,b∈B

[
µTDR− γµTDb

kTDR

1 + γkTDb

]
where D =

{
DπHπ | π ∈ Π

}
, Dπ = (I − γP̂π)−1 and Hπ : RS ×A → RS is a policy averaging211

linear operator defined as HπR := Rπ .212

The dual formulations for the sa-rectangular and s-rectangular cases differ notably in their definitions213

of B. In the sa-rectangular case, B = {β}, whereas in the s-rectangular case, B = {b ∈ RS×A |214
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∥bs∥p ≤ βs}. These distinctions are elaborated in the appendix. The result above frames the dual215

of robust MDPs as a min-max problem, offering valuable and insightful perspectives. However, as216

Figure 2(b) suggests (with further details in the appendix), the set D may be non-convex, which217

complicates the problem. Despite this, we believe that the dual formulation holds potential for future218

work, providing deeper insights and enabling the development of improved algorithms. In this work,219

we keep our focus on the robust policy evaluation while policy improvement is addressed via existing220

robust policy gradient method with proven guarantees [32], discussed further in Appendix C.221

3.2 Robust Policy Evaluation222

Now, we directly attempt to evaluate the penalty term in Lemma 3.3 which leads to a binary search-223

based robust policy evaluation algorithm. The key idea is to identify a bisection function:224

F (λ) = max
b∈B
∥Eπ

λb∥q,

where Eπ
λ := γ

(
I− 11⊤

S

)[
DπRπµ⊤Dπ−λDπ

]
Hπ . Note that Eπ

λ is constructed using quantities225

that are computationally straightforward, and Hπ : RS×A → RS represents the policy-averaging226

linear operator, defined by (HπR)(s) :=
∑

a π(a|s)R(s, a).227

Lemma 3.5 (Robust Policy Evaluation). Let λ∗ be a fixed point of the function F (λ), then the robust228

return can be expressed as:229

Jπ
Up

= Jπ − λ∗.

And λ∗ can be efficiently computed using binary search Algorithm 1 as F (λ) > λ ⇐⇒ λ > λ∗.230

Proof. The proof can be found in Appendix (see Lemma F.2).231

The result enables a direct computation of the robust return by iteratively refining λ until convergence,232

leveraging the monotonicity properties of F (λ). Further, the bisection property of F established in233

the result, directly implies the linear convergence rate of Algorithm 1, as stated result below.234

Algorithm 1 Binary Search for Robust Policy Evaluation
Initialize: Upper limit λu = 1

1−γ , lower limit λl = 0

1: while not converged: n = n+ 1 do
2: Bisection value: λn = (λl + λu)/2
3: Bisection: λl = λn if F (λn) > λn, else λu = λn.
4: Update robust return: Jn = Jπ − λn.
5: end while

Theorem 3.6. Algorithm 1 converges linearly, i.e.,235

Jn − Jπ
Up
≤ O(2−n).

We conclude that robust evaluation can be performed efficiently with linear iteration complexity. How-236

ever, each iteration involves solving the subproblem maxx∈B ∥Ax∥q, as part of Algorithm 1. For sim-237

plicity, we focus on the specific case where p = 2, resulting in the problem: max∥x∥2≤1, x⪰0 ∥Ax∥2.238

To address this, we propose a modified eigenvalue-based algorithm (Algorithm 2). This method has239

a time complexity of O(S3A3) and demonstrates excellent practical performance. Specifically, to240

achieve comparable results to those obtained using the numerical solver ‘scipy.minimize‘ it takes241

significantly less time, by an order of magnitude. Further details on this method, including theoretical242

insights and empirical evaluations, are provided in Appendix G. Additionally, the performance of243

robust policy evaluation Algorithm 1, is further validated experimentally in Section 5.244

Algorithm 2 Spectral method for computing maxx∈B ∥Ax∥2
1: Compute eigenvector vi and eigenvalues λi of A⊤A
2: WLOG let ∥v+i ∥2 ≥ ∥v

−
i ∥2 where v+i = max(vi, 0), v

−
i = −min(vi, 0)

3: Compute best score : j = argmaxi λi⟨vi,
v+
i

∥v+
i ∥2
⟩.

4: Output: Approximate maximum value β∥A v+
j

∥v+
j ∥2
∥2.
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4 Revealing the Adversary245

We provide the first insights into the structure of the worst-case kernel in non-rectangular robust246

MDPs, addressing an unexplored area in the literature. The following result reveals that, similar to247

rectangular uncertainty sets [17], the worst-case transition kernel is a rank-one perturbation of the248

nominal kernel, but with a more complex structure.249

Theorem 4.1 (Worst-Case Kernel). For a policy π and uncertainty set Up, the worst-case transition250

kernel is:251

Pπ
Up

= P̂ − bk⊤,

where (k, b) solves:252

max
k∈K, b∈B

Jπ
b ⟨k, vπR⟩

1 + γ⟨k, vπb ⟩
.

The above result follows directly from Lemma 3.3. It highlights the adversary’s strategic use of253

k, b, and their interaction with the value functions vπR and vπb , revealing a more nuanced structure254

compared to the rectangular case. The adversary’s objectives in selecting the worst-case kernel are255

twofold:256

• Maximizing Trajectory Uncertainty (Jπ
b ): The adversary seeks to increase the agent’s vis-257

its to high-uncertainty states, enhancing its ability to steer the agent toward disadvantageous258

outcomes.259

• Optimizing the Perturbation Direction (k): The adversary selects k to maximize k⊤vπR,260

thereby pushing the agent into low-reward trajectories, while simultaneously minimizing261

k⊤vπb to ensure the agent remains exposed to high-uncertainty states.262

These insights provide a deeper understanding of the adversary’s behavior and offer practical guidance263

for designing more resilient robust algorithms to counteract such strategies effectively.264

Message to Practitioners

The adversary focuses solely on rank-one perturbations of the nominal kernel, iteratively
boosting its influence by pushing the agent into high-uncertainty states, then leveraging that
influence to steer the agent toward low-reward trajectories, ultimately driving the agent to the
lowest possible return.

265

5 Experiments: Robust Policy Evaluation266

We conduct a numerical comparison of our Algorithm 1 and CPI (Algorithm 3.2 from [20], reproduced267

as Algorithm 3 in the appendix) for robust policy evaluation. The experiments are performed using a268

randomly generated nominal kernel P̂ , reward function R, and policy π. An uncertainty set U2 is269

constructed using the nominal kernel with a fixed uncertainty radius β.270

Figure 3 demonstrates the convergence behavior of both methods, presenting results based on the271

number of iterations (left panel) and computation time (right panel). The left panel shows the robust272

return achieved per iteration, while the right panel depicts the robust return as a function of wall-clock273

time. Note that the x-axes of the figure have a logarithmic scale in order to clearly capture the slow274

convergence of the CPI method.275

• Our Algorithm 1. We apply our Binary Search Algorithm 1 to perform robust policy276

evaluation with the given nominal kernel P̂ and uncertainty radius β. Each iteration of the277

algorithm involves computing F (λ), for which our Spectral Algorithm 2 is employed. Our278

algorithm converges very quickly requiring only a few iterations.279

• Algorithm 3.2 of [20]. We run Algorithm 3 with precomputed values of dπ and Aπ. The280

step sizes are chosen to be either a small constant or dynamically adjusted, as described281

in the algorithm. Note that Line 3 of the algorithm involves solving argminP∈U2
⟨x, P ⟩.282

This constrained optimization is solved using a numerical method (scipy.minimize). This283

gradient based method improves very slowly and converges very far from the true robust284

return as the uncertainty set U2 is very non-rectangular.285
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• Brute Force Benchmark. To approximate the true robust return, we generate a large286

number of random samples {Pi | i ≤ n} from U2 and estimate the empirical minimum,287

mini J
π
Pi

, as a proxy for the robust return. Note this method requires exponential number of288

samples to reasonably cover the entire uncertainty set. Hence the values obtained in Figure289

3, are an approximate upper bound on the true robust return.290

The results in Figure 3 reflect a general trend observed across a wide range of experiments conducted291

with state space sizes ranging from S = 5 to S = 190 and uncertainty radius β ∈ {0.005, 0.01, 0.05}.292

Our proposed algorithm consistently demonstrates superior performance, converging in significantly293

fewer iterations and less computation time while the computational demands of the CPI algorithm294

grow substantially with larger state spaces. Hence, our method exhibits more favorable scaling295

properties, making it practical for high-dimensional problems.296

Figure 3: Comparison of Algorithm 1 (Ours) and the CPI Algorithm for β (Uncertainty Radius)
= 0.05, S = 10, A = 8, γ = 0.9, and a convergence tolerance of 10−4.

The codes, detailed explanations, and additional experiments are available at https://anonymous.297

4open.science/r/non-rectangular-rmdp-77B8. System details for the experiments are as298

follows: Operating System: macOS Sequoia (Version 15.4.1), Chip: Apple M2, Cores: 8 (4299

performance and 4 efficiency), Memory: 16 GB (LPDDR5).300

6 Discussion301

We studied robust Markov decision processes (RMDPs) with non-rectangular Lp-bounded uncer-302

tainty sets, balancing expressiveness and tractability. We showed that these uncertainty sets can be303

decomposed into infinitely many sa-rectangular sets, reducing robust policy evaluation to a min-max304

fractional optimization problem (dual form). This novel dual formulation provides key insights into305

the adversary and leads to the development of an efficient robust policy evaluation algorithm. Theory306

and experiments demonstrate the effectiveness of our approach, significantly outperforming the307

existing methods. These findings further pave the way for scalable and efficient robust reinforcement308

learning algorithms.309

Limitations. Similar to [7, 19, 17], we have considered small enough uncertainty radius to ensure310

positivity of the kernel. As discussed in [19], imposing this additional positivity constraints (or311

dealing with nominal kernel with zero transition probability to some states ) would significantly312

complicate the analysis without yielding significant additional insights. However, we leave a thorough313

investigation of this topic for future work.314

Future Work. Our results naturally extend to uncertainty sets that can be expressed as a finite union315

of Lp balls. Furthermore, any uncertainty set can be approximated using a finite number of Lp balls,316

with smaller balls providing a better approximation. However, the number of balls required for an317

accurate approximation may grow prohibitively large. While this work is limited to Lp norms, it may318

be possible to generalize our approach to other types of uncertainty sets. A key challenge in such an319

extension would be identifying the structure of the worst-case kernel and developing corresponding320

matrix inversion techniques.321
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Notations and Definitions403

For a set S, |S| denotes its cardinality. ⟨u, v⟩ :=
∑

s∈S u(s)v(s) denotes the dot product between404

functions u, v : S → R. ∥v∥qp := (
∑

s|v(s)|p)
q
p denotes the q-th power of Lp norm of function405

v, and we use ∥v∥p := ∥v∥1p and ∥v∥ := ∥v∥2 as shorthand. For a set C, ∆C := {a : C →406

R|ac ≥ 0,∀c,
∑

c∈C ac = 1} is the probability simplex over C. var(·) is variance function, defined407

as var(v) =
√∑

s∈S(v(s)− v̄)2 where v̄ =
∑

s∈S v(s)

|S| is the mean of function v : S → Rd. 0,1408
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denotes all zero vector and all ones vector/function respectively of appropriate dimension/domain.409

1(a = b) := 1 if a = b, 0 otherwise, is the indicator function. For vectors u, v, 1(u ≥ v) is410

component wise indicator vector, i.e. 1(u ≥ v)(x) = 1(u(x) ≥ v(x)). A × B = {(a, b) | a ∈411

A, b ∈ B} is the Cartesian product between set A and B.412

Table 2: Useful Notations

Notation Definition Remark

p, q 1
p + 1

q = 1 Holder’s conjugates

σp Standard deviation w.r.t. Lp norm

vπ, vπP,R (I − γPπ)−1Rπ Value function

Dπ, Dπ
P,R (I − γPπ)−1 Occupancy matrix

dπ, dπP,µ µT (I − γPπ)−1 Occupancy measure

U ,Usa
p ,Us

p ,Up Uncertainty sets

A Related Work413

Rectangular Robust MDPs. In the literature, the sa-rectangular uncertainty is a very old assumption414

[15, 24]. [35] introduced s-rectangular uncertainty sets and proved its tractability, in addition to the415

intractability of the general non-rectangular uncertainty sets. The most advantageous aspect of the416

s-rectangularity, is the existence of contractive robust Bellman operators. This gave rise to many417

robust value based methods [13, 32]. Further, for many specific uncertainty sets, robust Bellman418

operators are equivalent to regularized non-robust operators, making the robust value iteration as419

efficient as non-robust MDPs [7, 33, 19]. There exists many policy gradient based methods for robust420

MDPs, relying upon contractive robust Bellman operators for the robust policy evaluation [34, 17].421

Further, [38, 30] try to refine the process, and directly get samples from the adversarial model via422

pessimistic sampling . There exist other notions of rectangularity such as k-rectangularity [22] and423

r-rectangularity [10] which are sparsely studied. However, [11] shows, the theses uncertainty sets are424

either equivalent to s-rectangularity or non-tractable.425

Non-Rectangular Reward Robust MDPs. Policy evaluation for robust MDPs with non-rectangular426

uncertainty set is proven to be a Strongly-NP-Hard problem [35], in general. For a very specific case,427

where uncertainty is limited only to reward uncertainty bounded with Lp norm, [8] proposed robust428

policy evaluation via frequency (occupation measure) regularization, and derived the policy gradient429

for policy improvement.430

Approximate Policy Evaluation for Non-Rectangular Kernel RMDPs. [20] provides the following431

two policy evaluation methods for robust MDPs for general uncertainty sets.432

• Langevian dynamics based Algorithm 3.1 of [20]: This Langevian dynamics based Markov433

Chain Monte Carlo method solves the robust policy evaluation problem to global optimality434

with arbitrary small accuracy ϵ. The iteration complexity of the algorithm is O(2q log 1
ϵ )435

which is exponential in the dimension of the uncertainty set q. The algorithm is well suited436

only for small dimensional uncertainty. For a general case the dimension q = S2A can be437

very large, this makes the algorithm very computationally inefficient as expected from the438

hardness result from [2].439

• CPI sytle Algorithm 3.2 of [20] (presented in Algorithm 3): This CPI based algorithm440

computes the robust policy with iteration complexity of O( 1
ϵ2 ) with an accuracy of δd(2ϵ+441

δP), where δd is mismatch-coefficient and δP is measure of non-rectangularity of the442

uncertainty set. However, the mismatch coefficient may not exist without an irreducibility443

assumption (Assumption 1 in [20]), moreover even under Assumption 1, the constant444
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δd = O(2S) can be exponentially large for ladder MDPs which have large diameter (more445

details provided below). In addition, the non-rectangularity constant δP can be as large as446

O(
√
S). Hence, a large δdδP > 2

1−γ makes the bound meaningless, as the sub-optimality is447

upper bounded by 2
1−γ . To summarize, this approach is efficient only for small diameter448

MDPs and almost rectangular uncertianty sets.449

• Our Method: We provide a robust policy evaluation method for L2-robust MDPs with an450

iteration complexity of O(log 1
ϵ ) and with an accuracy of ϵ. This is possible as we showed451

that the NP-hardness result of [2] doesn’t apply to this case.452

We don’t require the irreducibility Assumption 1 of [20] which can be very limiting. Further,453

the Lp robust MDPs may have very large tolerance δdδP hence the Algorithm 3.2 from [20]454

is not applicable.455

Difficult MDPs for Algorithm 3.2 of [20] :456

• MDP with high mismatch coefficients : Consider an MDP with only one action and
state-space {si|1 ≤ i ≤ S}. Let s1 be the starting state. Let the kernel be defined as

Px(smax{i+1,S}|si) = x, Px(si|si) = 1− x.

Now let the uncertainty set be P = {Px | x ∈ [0.4, 0.6]}. Note that for this case, log(δd) ≥457

log(d
P0.6 (sS |s1)

dP0.4 (sS |s1) ) = O(S).458

• High non-rectangularity coefficient : This is inspired from the fact that

δ = max
||a||≤1

[
max
b∈B∫

< a, b > −max
b∈B

< a, b >

]
,

where B = B(0, 1) is a unit ball around origin, and B∫ = [−1, 1]n is the smallest rectangular459

cube containing B. Then choosing a = { 1√
n
}n, we have maxb∈B∫ < a, b >=

√
n and460

maxb∈B < a, b >= 1. This implies δ ≥
√
n− 1.461

From definition in page 11 of [20], we have

δP = max
P∈P∫

< ∇V, P > −max
P∈P

< ∇V, P >

where P∫ is the smallest s-rectangular uncertainty containing P . Here, P ∈ RSA×S , this462

suggests δP can be of the order of O(S
√
A).463

The discussion is summarize in the Table 1.464

Algorithm 3 CPI Algorithm 3.2 of [20] for Robust Policy Evaluation

Input: Nominal kernel P̂ , policy π, Uncertainty set U .
1: while not converged: n = n+ 1 do
2: Define : f(P ) := 1

1−γ

∑
s,a,s′ d

π
P̂
(s)π(a|s)Aπ

P̂
(s, a, s′)P (s′|s, a),

where Aπ
P (s, a, s

′) := γ
[
P (s′|s, a)vπP (s′)−

∑
s” P (s”|s, a)vπP (s′)

]
.

3: Compute P ∗ ∈ argminP∈U f(P ).
Updatetheestimatedworstkernel :Pn+1 = (1− αn)Pn + αnP

∗,
where αn = − (1−γ)3

4γ2 f(P ∗)

4: 5: end while
Return: Robust return Jπ

P∞
.

Robust Policy Gradient Methods. The absence of contractive robust Bellman operators renders465

the development of value-based methods for robust MDPs particularly challenging. Consequently,466

policy gradient methods naturally emerge as a viable alternative. The update rule is given by:467

πk+1 = Projπ∈Π

[
πk − ηk∇πJ

πk

Pk

]
, (2)
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where Jπk

Pk
− Jπk

U ≤ ϵγk and learning rate ηk = O( 1√
k
). This approach guarantees convergence to a468

global solution within O(ϵ−4) iterations [32].469

However, this update rule depends on oracle access to the robust gradient, which is highly challenging470

to obtain because robust policy evaluation is an NP-hard problem.471

B On the Non-Rectangular Uncertainty Sets472

B.1 Why non-rectangular RMPDs473

Proposition B.1. Let Usa
2 ,Us

2 be the smallest sa-rectangular set and s-rectangular set containing474

U2 then475

vol(U2)
vol(Usa

2 )
= O(c−SA

sa ), and
vol(U2)
vol(Us

2 )
= O(c−S

s ),

where vol(X) is volume of the set X and cs, csa > 1 are some constants.476

Proof. Volume of n-dimension sphere of radius r is cnrn where cn ≤ 8π2

15 [27]. And to cover an477

n-dimension sphere of radius r, we need a cube of radius 2r whose volume is (2r)n. Hence the first478

result vol(U2)
vol(Usa

2 ) = O(2−SA) immediately follows.479

Now, the volume of the set of X = ×s∈SXs where Xs is an A-dimension sphere of radius r,480

then the volume of X is (cAr)S . And the volume of an SA dimensional sphere is cSAr
SA, where481

limn→∞ cn → 0 [27]. Hence the ratio of their volume is O((cA)
S), implying the other result.482

B.2 Complexity483

Reduction of Integer Program to Robust MDP

0/1 Integer Program (IP): For g, c ∈ Zn, ζ ∈ Z, F ∈ Zm×n,

∃x ∈ {0, 1}n s.t. Fx ≤ g and c⊤x ≤ ζ?

is a NP-Hard problem [9], [35] which reduces into the following robust MDP.

Robust MDP:
1. State Space S = {bj , b0j , b1j | j = 1, · · · , n} ∪ {c0, τ}, where τ is a terminal state.
2. Singleton Action Space: A= {a}.
3. Uncertainty set: U = {Pξ | ξ ∈ [0, 1]n, F ξ ≤ g}
4. Discount factor γ ∈ [0, 1); Uniform initial state distribution µ.

5. Big reward M ≥ γAn
∑

i ci
2ϵ2 where ϵ << 1 helps in rounding.

6. Transitions and rewards are illustrated in Figure 4
484

Robust policy evaluation is proven to be NP-hard for general uncertainty sets defined as intersections485

of finite hyperplanes [35]. Specifically, robust MDPs with uncertainty set Uhard := {Pξ|Fξ ≤ g, ξ ∈486

[0, 1]n} where Pξ is a specially designed kernel with ladder structure with only action (effectively no487

decision) and a terminal state [35].488

Note that Fξ ≤ g imposes m-linear constraints on Uhard while we allow only one global constraint489

on Up. Observe that U1 = {Pξ | 1⊤ξ ≤ g, ξ ∈ [0, 1]n} is the nearest uncertainty to Uhard as both490

have polyhedral structure. This restricts the class of the IP programms to have a number of constraints491

m = 1 and the row of F to be all ones. In other words, only IP programmes that can be reduced to492

U1 are of the following form: For , c ∈ Zn, ζ ∈ Z ,493

∃x ∈ {0, 1}n s.t. 1Tx ≤ g, and cTx ≤ ζ?

Solution:494
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Figure 4: MDP Pξ, and R(Figure 5 of [35]).

• Case 1) If g < 0 then no.495

• Case 2) If g = 0, ζ ≥ 0 then yes and g = 0, ζ < 0 then yes.496

• If g > 0 then compute the sum of g smallest coordinates of c, and this sum is less/equal than497

ζ then answer is yes, otherwise no.498

Further, for IP to be reducable to robust MDPs, the diameter of the uncertainty (maxP,P ′∈Uhard
∥P −499

P ′∥1 = 2S) has to be large for the practical settings. Loosly speaking, robust MDPs with a Up500

uncertainty have one global constraint and a small radius β, which corresponds to a Knapsack501

Problem with a small budget (IP with one constraint and a small g) which are much easier to solve502

[5, 9].503

We can thus conclude that the hardness result of [35] doesn’t apply to our uncertainty case.504

B.3 Decomposition505

Proposition B.2. Non-rectangular uncertainty Up can be written as an infinite union of sa-506

rectangular sets Usa
p , as507

Up =
⋃
b∈B

Usa
p (b),

where B = {b ∈ RS ×A
+ | ∥b∥p ≤ β}. Note that all of them share the nominal kernel P̂ .508

Proof. By definition, we have509

Up = {P | ∥P − P̂∥p ≤ β,
∑
s′

P (s′|s, a) = 1} (3)

= {P |
∑
s,a

∥Psa − P̂sa∥pp ≤ βp,
∑
s′

P (s′|s, a) = 1} (4)

= {P |
∑
s,a

bpsa ≤ βp, ∥Psa − P̂sa∥pp = bpsa,
∑
s′

P (s′|s, a) = 1} (5)

= {P |
∑
s,a

bpsa ≤ βp, ∥Psa − P̂sa∥pp ≤ bpsa,
∑
s′

P (s′|s, a) = 1} (6)

=
⋃

∑
s,a bpsa≤βp,

{P | ∥Psa − P̂sa∥pp ≤ bpsa,
∑
s′

P (s′|s, a) = 1} (7)

=
⋃
b∈B

Usa
p (b). (8)

510
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C Additional Results: Robust Policy Improvement511

In the previous section, we identified that the worst-case kernel can be expressed as a rank-one512

perturbation of the nominal kernel. Leveraging this structure, we developed a method to efficiently513

evaluate the robust policy. This method also computes the perturbation (βk⊤) and, consequently, the514

worst-case kernel.515

Using the computed worst kernel, we can directly evaluate the gradient with respect to the policy.516

This enables policy improvement through gradient ascent, as detailed in [32]:517

πn+1 = proj
[
πn + ηk∇πJ

π
Pn

∣∣∣
π=πn

]
, (9)

where Pn is the worst-case kernel estimate for the policy πk. This method guarantees global518

convergence with an iteration complexity of O(ϵ−4) [32].519

Alternatively, the policy gradient can be derived for the approximate perturbation, as shown in the520

result below.521

Policy Gradient Theorem Once the worst kernel for a policy is computed using Algorithm 1, the522

policy gradient can be used to update the policy. Alternatively, the following policy gradient theorem523

provides a direct way to compute the gradient:524

Lemma C.1 (Approximate Policy Gradient Theorem). Given a transition kernel P = P̂ − βk⊤, the525

return is expressed as:526

Jπ
P := Jπ

0 − γ
Jπ
β ⟨k, vπR⟩

1 + γ⟨k, vπβ ⟩
,

and the gradient is given by:527

∇πJ
π
P = dπ ◦Qπ

R − γ
k⊤vπR

1 + γk⊤vπβ
dπ ◦Qπ

β − γ
Jπ
β (k

⊤Dπ)

1 + γk⊤vπβ
◦Qπ

R + γ2
Jπ
β (k

⊤vπ)(k⊤Dπ)

(1 + γk⊤vπβ )
2
◦Qπ

β .

Proof. The expression for the return follows directly from the inverse matrix theorem, as shown in528

[17]. The gradient is then derived using the policy gradient theorem [28] in the format used in [18].529

∇πJ
π
P = dπ ◦Qπ

R − γ
k⊤DπRπ

1 + γk⊤Dπβπ
dπµ ◦Qπ

β − γ
µ⊤Dβπ

1 + γk⊤Dπβπ
dπk ◦Qπ

R

+ γ2 µ
⊤Dβπk⊤DπRπ

(1 + γk⊤Dπβπ)2
dπk ◦Qπ

β ,

= dπ ◦Qπ
R − γ

k⊤vπR
1 + γk⊤vπβ

dπ ◦Qπ
β − γ

Jπ
β (k

⊤Dπ)

1 + γk⊤vπβ
◦Qπ

R + γ2
Jπ
β (k

⊤vπ)(k⊤Dπ)

(1 + γk⊤vπβ )
2
◦Qπ

β .

530

The main advantage of this policy gradient formulation is that terms like Jπ
β , v

π
β , Q

π
β , along with the531

nominal terms Jπ
R, v

π
R, Q

π
R, can be efficiently computed using Bellman operators and bootstrapping532

techniques.533

Interpretation of Gradient Terms The approximate policy gradient reveals the interplay of various534

components in robust MDPs:535

• The first term, dπ ◦Qπ
R, represents the nominal policy gradient, emphasizing actions with536

high rewards.537

• The second term, γ k⊤vπ
R

1+γk⊤vπ
β
dπ ◦Qπ

β , discourages policies that place significant weight on538

high-uncertainty Q-values, scaled by the vulnerability to adversarial actions.539

• The last two terms, while more complex to interpret, further reflect the intricate dynamics of540

robust MDPs.541

16



Robust Policy Gradient Algorithm The robust policy gradient algorithm (Algorithm 4) converges542

to an ϵ-optimal policy within O(ϵ−8) iterations.543

Theorem C.2. The robust policy gradient method from [32] achieves global convergence within544

O(ϵ−4) iterations for the policy gradient step. Algorithm 1 computes the worst-case kernel in O(n)545

iterations at step n. The total iteration complexity for global optimality is O(ϵ−8).546

Algorithm 4 employs a double-loop structure: the inner loop (Algorithm 1) computes the worst-case547

kernel for a fixed policy, while the outer loop updates the policy using the derived gradient. An548

actor-critic style alternative, where the kernel and policy are updated simultaneously, is left for future549

work.550

Algorithm 4 Robust Policy Gradient Algorithm
1: while not converged: n = n+ 1 do
2: Compute the worst-case kernel P = P̂ − βk⊤ for policy π using Algorithm 1 with tolerance

ϵ = γn.
3: Compute the policy gradient G using Lemma C.1.
4: Update policy: π ← proj

[
π + αnG

]
.

5: end while

Extension to KL Entropy Uncertainty Sets. For the KL uncertainty case, the worst kernel is551

given by Pπ
Usa

KL
= (I − γP̂πAπ)−1 where Aπ is a diagonal matrix [30]. If we can invert this matrix,552

then its possible to build upon it. We leave this for future work.553

D Helper Results554

Proposition D.1 (Sherman–Morrison Formula [4].). If A ∈ Rn×n invertible matrix, and u, v ∈ Rn,555

then the matrix A+ uvT is invertible if and only if 1 + vTA−1u ̸= 0:556

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Proposition D.2.

σq(v) := min
w∈R
∥v − w1∥q,= min

∥k∥p≤1,1T k=0
kT v

Proof. Follows directly from Lemma J.1 of [19].557

Proposition D.3. For any vector ∥x∥ = 1, we have558

max{∥ProjRn
+
(x)∥, ∥ProjRn

+
(−x)∥} ≥ 1√

2
,

where Rn
+ is positive quadrant.559

Proof. For any vector ∥x∥ = 1, we have560

∥x+∥2 + ∥x−∥2 = ∥x∥2 = 1.

And ProjRn
+
(x) = x+ and ProjRn

+
(−x) = x−, the rest follows.561

Proposition D.4. For ∥k∥p and kT1 = 0, we have562

1 + γkT (I − γPπ)−1bπ ≥ 0,

for all π, ∥b∥p ≤ β, b ⪰ 0.563

Proof. This is true from the Sherman–Morrison formula as Jπ
P̂−bkT

is finite, hence the denominator564

must be strictly greater than zero.565
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E Dual Formulation566

Lemma E.1 (Sa-rectangular Duality). For the sa-rectangular uncertainty set U = Usa
p (β) with567

radius vector β ∈ RS ×A, the robust return can be written as the following optimization problem,568

Jπ
U = Jπ − γ max

∥k∥p=1,1T k=0

µTDπβπkTDπRπ

1 + γkTDπβπ
,

where βπ
s =

∑
a π(a|s)βsa.569

Proof. From [17], we know that the worst kernel Pπ
Usa

p (β) for the uncertainty set Usa
p (β) is a rank570

one-perturbation of P . In other words,571

Pπ
Usa

p (β) = P + βkT

for some k ∈ RS satisfying ∥k∥p = 1 and 1T k = 0. This implies that it is enough to look for572

rank-one perturbations of the nominal kernel P̂ in order to find the robust return. That is,573

Jπ
Usa

p (β) = min
P∈Usa

p (β)
Jπ
P

= min
P=P̂+βkT ,∥k∥p=1,1T k=0

Jπ
P , (looking only at rank one perturbations)

= min
P=P̂+βkT ,∥k∥p=1,1T k=0

µTDπ
PR

π

= min
P=P̂+βkT ,∥k∥p=1,1T k=0

µT (I − γPπ)−1Rπ

= min
∥k∥p=1,1T k=0

µT
(
I − γ(Pπ + βπkT )

)−1

Rπ

= Jπ − γ max
∥k∥p=1,1T k=0

µTDπβπkTDπRπ

1 + γkTDπβπ
.

574

Lemma E.2 (S-rectangular Duality). For U = Us
p , the robust return can be written as the following575

optimization problem,576

Jπ
U = Jπ − γ min

∥β∥p≤ϵ,∥k∥p≤1,⟨1,k⟩=0

⟨dπ, βπ⟩⟨k, vπ⟩
1 + γk⊤Dπβπ

,

where Dπ = (I − γPπ)−1, dπ = µTDπ and vπ = DπRπ .577

Proof.

Jπ
Us

p(β)
= min

∥Ps−(P )s∥p
p=βp

s ,1TPsa=1
Jπ
P

= min∑
a βp

sa≤βp
s

min
∥Psa−(P )sa∥p=βsa,1TPsa=1

Jπ
P

= min∑
a βp

sa≤βp
s

Jπ
Usa

p (β)

= min∑
a βp

sa≤βp
s

[
Jπ − γ max

∥k∥p=1,1T k=0

µTDπβπkTDπRπ

1 + γkTDπβπ

]

= Jπ − γ max∑
a βp

sa≤βp
s ,∥k∥p=1,1T k=0

µTDπβπkTDπRπ

1 + γkTDπβπ
.

578
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The above result formulates the robust return in terms of nominal values only for the first time. This579

implies the robust objective can be rewritten in the dual form as :580

J∗
Us

p
= max

D∈D
min

k∈K,b∈B

[
µTDRπ − γµTDbπ

kTDRπ

1 + γkTDbπ

]
where D = {(I − γPπ

0 )
−1 | π ∈ Π}, K = {k ∈ RS | ∥k∥p = 1, 1T k = 0}, and B = {b ∈ RS ×A |581

∥bs∥p ≤ βs}.582

Comparing the penalty term from the previous results in [19, 17], the dual formulation can be written583

as584

J∗
Us

p
= max

D∈D
min
k∈K

[
µTDRπ − γµTDβπ kTDRπ

1 + γkTDβπ

]
where βπ

s = ∥πs∥qβs.585

Surprisingly, the optimization here looks as if it is optimized for the same value of βπ
s =586

max∑
a βp

sa≤βp
s

∑
a π(a|s)βsa = βs∥πs∥q for all values of feasible k. This suggest that the ad-587

versary payoff is maximized by maximizing the expected uncertainty in the trajectories.588

Lemma E.3 (Non-rectangular Duality). For U = Up, the robust return can be written as the following589

optimization problem590

Jπ
U = Jπ − γ min

∥β∥p≤ϵ,∥k∥p≤1,⟨1,k⟩=0

⟨dπ, βπ⟩⟨k, vπR⟩
1 + γ⟨k, vπβ ⟩

,

where Dπ = (I − γPπ)−1, dπ = µTDπ and vπ = DπRπ .591

Proof. Now,592

Jπ
Up(ϵ)

= min
∥P−P∥p

p=ϵp,1TPsa=1
Jπ
P

= min
∥β∥p

p≤ϵp
min

∥Psa−(P )sa∥p=βsa,1TPsa=1
Jπ
P

= min
∥β∥p

p≤ϵp
Jπ
Usa

p (β)

= min
∥β∥p≤ϵ

[
Jπ − γ max

∥k∥p=1,1T k=0

µTDπβπkTDπRπ

1 + γkTDπβπ

]

= Jπ − γ max
∥β∥p≤ϵ,∥k∥p=1,1T k=0

µTDπβπkTDπRπ

1 + γkTDπβπ
.

593

The above result formulates the robust return in terms of nominal values only, for the first time.594

Comparing with the existing result, we get a very interesting relation:595

σq(v
π
U ) = max

∥k∥p=1,1T k=0

kT vπR
1 + γkT vπβ

, (10)

where vπx = (I − γPπ)−1xπ .596

The LHS is a robust quantity (variance of the robust return) which is express in the terms of purely597

nominal quantities. This is the simplest of all such relations. We believe that the above relation can598

help in theoretical derivations and experiment design but not exactly sure how yet.599

E.1 Intuition on the Adversary600

sa-rectangular case. We know that the σ(vπU ) represents the penalty for robustness, expressed as:601

Jπ
U = Jπ − γ⟨dπ, βπ⟩σq(v

π
U ).
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Understanding how σ(vπU ) arises provides insight into the behavior of the adversary as described in602

(10). Furthermore, if P = P̂ − βkT , then:603

Jπ
P = Jπ − ⟨dπ, βπ⟩ kT vπR

1 + γkT vπβ
.

Here, k represents the direction in which the adversary discourages perturbations in the kernel. The604

optimal direction k chosen by the adversary maximizes the objective in (10).605

s-rectangular uncertainty sets. Now, we turn our attention to the coupled uncertainty case.606

Lemma E.4. For U = Us
p , the robust return can be formulated as the following optimization problem:607

Jπ
U = Jπ − γ min

∥β∥p≤ϵ,∥k∥p≤1,⟨1,k⟩=0

⟨dπ, βπ⟩⟨k, vπ⟩
1 + γk⊤Dπβπ

,

where Dπ = (I − γPπ)−1, dπ = µTDπ , and vπ = DπRπ .608

Proof. The proof follows similarly to the sa-rectangular case and is detailed in the appendix. The609

key additional step involves decomposing the s-rectangular uncertainty set Us
p into a union of610

sa-rectangular uncertainty sets Usa
p .611

By comparing the penalty term from previous results in [19, 17], we obtain:612 ∑
s

dπ(s)∥πs∥qσq(v
π
U ) = max∑

a βp
sa≤βp

s ,∥k∥p=1,1T k=0

(dπβπ)(kT vπ)

1 + γkTDπβπ
.

This relation is interesting as it connects the robust term on the left-hand side (LHS) with the613

non-robust terms on the right-hand side (RHS).614

Interestingly, the optimization here suggests that the adversary maximizes the expected uncertainty615

in trajectories, as the same value of βπ
s = max∑

a βp
sa≤βp

s

∑
a π(a|s)βsa = βs∥πs∥q appears for all616

feasible k.617

F Robust Policy Evaluation618

Proposition F.1. For λ∗ = maxx∈C
g(x)
h(x) , F (λ) := maxx∈C

(
g(x) − λh(x)

)
, we have619

F (λ∗) = 0 and f(λ) ≥ 0 ⇐⇒ λ∗ ≥ λ.620

Proof. • If F (λ) ≥ 0 then621

∃x s.t. g(x)− λh(x) ≥ 0

=⇒ ∃x s.t.
g(x)

h(x)
≥ λ, (as h(x) > 0 for all x)

=⇒ max
x∈C

g(x)

h(x)
≥ λ.

• If F (λ) ≤ 0 then622

g(x)− λh(x) ≤ 0, ∀x ∈ C

=⇒ g(x)

h(x)
≤ λ, ∀x ∈ C, (as h(x) > 0 )

=⇒ max
x∈C

g(x)

h(x)
≤ λ

• If F (λ) = 0 then λ = maxx∈C
g(x)
h(x) implied from the above two items.623

624
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Lemma F.2. The robust return can be expressed as625

Jπ
Up

= Jπ − λ∗,

where the penalty λ∗ is a fixed point of F (λ). Furthermore, λ∗ can be found via binary626

search as F (λ) > λ if and only if λ > λ∗, where F (λ) = maxb∈B ∥Eπb∥q, Eπ = γ
(
I −627

11⊤

S

)[
DπRπµ⊤Dπ − λDπ

]
Hπ , and HπR := Rπ .628

Proof. We want to evaluate the following629

λ∗ := max
b∈B,k∈K

γ
kTDπRπµTDπbπ

1 + γkTDπbπ
.

This is of the form maxx
f(x)
g(x) . Then according to Proposition F.1, we have f(λ∗) = 0 and f(λ) > 0630

if and only if λ∗ > λ, where631

f(λ) := max
b∈B,k∈K

[
γkTAπbπ − λ(1 + γkTDπbπ)

]
= max

b∈B,k∈K
k⊤Cπb− λ,

= max
b∈B,∥k∥p≤1

k⊤
(
I − 11T

S

)
Cπb− λ, (from Proposition G.2)

= max
b∈B
∥
(
I − 11T

S

)
Cπb∥q − λ, (Holder’s inequality)

where Aπ = DπRπµTDπ, Cπ := γ
(
Aπ − λDπ

)
Hπ .632

633

G Evaluation of maxx,y xAy634

Algorithm 1 requires an oracle access to635

max
∥b∥p≤β,∥k∥p≤1,1T k=0

kTAb,

where k ∈ RS , b ∈ RS A and p ≥ 1. The above is a bilinear problem, which is NP-Hard, but we have636

a very useful structure on domain set (Lp bounded set).637

Proposition G.1. [Orthogonality Equivalence]Let K = {k | ∥k∥p ≤ 1, 1⊤k = 0}, and W =638

{kT (I − 11T

S ) | ∥k∥p ≤ 1} . Then we have,639

K =W.

Proof. Now let k ∈ K, then kT (I − 11T

S ) = k⊤ ∈ W . Now the other direction, let k ∈ W ,640

then ⟨kT (I − 11T

S ), 1⟩ = 0 by construction and ∥kT (I − 11T

S )∥p ≤ ∥k∥p ≤ 1, this implies641

kT (I − 11T

S ) ∈ K.642

The above result implies that643

max
∥b∥p≤β,∥k∥p≤1,1T k=0

kTAb = max
∥b∥p≤β,k∈K

kTAb

= max
∥b∥p≤β,k∈W

kTAb, (as K =W from above Proposition G.1)

= max
∥b∥p≤β,∥k∥p=1

k⊤(I − 11T

S
)Ab, (def. ofW).
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Further, we have equivalence of optimizers644

argmax
∥k∥p≤1,1T k=0,∥b∥p≤β

kTAb =
{
(b∗, (I − 11T

S
)k∗) | (b∗, k∗) ∈ argmax

∥k∥p=1,∥b∥p≤β

k⊤(I − 11T

S
)Ab

}
.

Proposition G.2. The solving of645

max
∥k∥p≤1,1T k=0,∥b∥p≤β

kTAb, is equivalent to max
∥k∥p=1,∥b∥p≤β

k⊤(I − 11T

S
)Ab.

Proof. Directly follows from the proposition above.646

G.1 Eigenvalue Approach (Spectral Methods)647

This section focus on deriving a spectral method for solving the optimization problem:648

max
∥x∥2≤1, x≥0

∥Ax∥2,

where A ∈ Rn×n. Compute A⊤A. We perform eigenvalue decomposition of A⊤A:649

A⊤A = V ΛV ⊤,

where Λ = diag(λ1, λ2, . . . , λn) (eigenvalues) and V = [v1, v2, . . . , vn] (eigenvectors). Further,650

WLOG651

λ1 ≥ λ, · · · , , and ∥v+i∥ ≥ ∥v−i∥ ∀i, ui :=
v+i
∥v+i ∥

where v+i = max(vi, 0), v−i = −min(vi, 0) denotes positive and negative parts respectively.652

• Zero Order Solution:653

f0 = ∥Au1∥.
• First order solution:654

f1 = max
i
∥Aui∥.

• Second order solution:655

f2 = max
i,j

max
t∈[0,1]

∥A (tvi + (1− t)vj)
+

∥(tvi + (1− t)vj)+∥
∥.

• Third order solution:656

f3 = max
i,j,k

max
r,s,t,∈[0,1],r+s+t=1

∥A (rvi + svj + tvk)
+

∥(rvi + svj + tvk)+∥
∥.

Upper bounds on max∥x∥2≤1,x⪰0∥Ax∥2:657

• Zero order upper bound: λ1658

• First order upper bound:
√∑

i λici, where ci =659 
⟨vi, ui⟩2, if

∑i
j=1⟨vi, ui⟩2 ≤ 1

1−
∑i−1

j=1⟨vi, ui⟩2, if
∑i

j=1⟨vi, ui⟩2 ≥ 1,
∑i−1

j=1⟨vi, ui⟩2 ≤ 1

0 otherwise
.660

Lemma G.3 (Zero Order Approximation). The highest projected eigenvector u =
v+
1

∥v+
1 ∥ is at least a661

half-good solution, i.e.,662

∥Au∥22 ≥
λ1

2
≥ 1

2
max

∥x∥2≤1, x≥0
∥Ax∥22.

Further, if A is rank-one then it is exact, i.e.,663

∥Au∥2 = max
∥x∥2≤1, x≥0

∥Ax∥2.
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Proof. We have ∥v+1 ∥ ≥ 1√
2

from Proposition D.3. Let u = (v1)+
∥(v1)+∥ =

∑
i σivi, where σi = ⟨u, vi⟩,664

we have665

uTATAu = (
∑
i

σivi)(
∑
i

λiviv
T
i )(

∑
i

σivi)

=
∑
i

λiσ
2
i , (as vi are orthogonal)

= λ1σ
2
1 +

∑
i ̸=1

λiσ
2
i ,

≥ λ1σ
2
1 +

∑
i ̸=1

λnσ
2
i , (as λ2 ≥ λ3, · · · )

= λ1σ
2
1 + λn(1− σ2

1), (as
∑
i

σ2
i = 1)

≥ 1

2
(λ1 + λn), (as σ1 ≥

1√
2

).

Rest follows.666

667

Proposition G.4 (First Order is Better than the First).

∥Auj∥22 ≥ max
i

λiσ
2
i ≥

λ1

2

where j ∈ argmaxi λi⟨vi, ui⟩ and σi = ⟨vi, ui⟩ ≥ 1√
2

.668

Proof. Let uj =
(vj)+

∥(vj)+∥ =
∑

i σ
j
i vi, where σj

i = ⟨uj , vi⟩, we have669

uT
j A

TAuj = (
∑
i

σj
i vi)(

∑
i

λiviv
T
i )(

∑
i

σj
i vi)

=
∑
i

λi(σ
j
i )

2, (as vi are orthogonal),

≥ λj(σ
j
j )

2,

= max
i

λi(σi)
2, (by definition of j).

Rest follows.670

671

Proposition G.5. Second order solution f2 = maxi,j maxt∈[0,1]∥A
(tvi+(1−t)vj)

+

∥(tvi+(1−t)vj)+∥∥ is exactly672

equal to max∥x∥2≤1,x⪰0∥Ax∥2 when A is rank two.673

This approach is computationally efficient but may not always yield the exact solution, especially674

when multiple eigenvectors significantly contribute to the optimal x.675

The intuition behind this approach is that the matrix A⊤A can be decomposed into its eigenvalues676

and eigenvectors, representing the principal directions of the transformation applied by A. The677

eigenvector corresponding to the largest eigenvalue provides the direction of maximum scaling for678

A. However, since the solution is constrained to the nonnegative orthant (x ≥ 0), we adjust the679

eigenvectors by only considering their positive parts. The method identifies an approximate solution680

uj by selecting and normalizing the positive part of the eigenvector that contributes the most to the681

objective function.682
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Algorithm 5 Second Order Spectral Approximation for max∥x∥2≤1,x≥0 ∥Ax∥2
1: Normalize the positive part:

ui =
v+i
∥v+i ∥2

.

2: Compute scores for all eigenvectors:

Scorei = λi⟨vi, ui⟩.

3: Select j = argmaxi Scorei.
4: Output: Approximate solution uj = v+j /∥v

+
j ∥2 and approximate maximum value ∥Auj∥2.

Notes683

• This approach is effective when the largest eigenvalue s1 dominates the others. It approxi-684

mates the solution by leveraging the spectral properties of A⊤A.685

• The result might not be exact if multiple eigenvalues contribute significantly, as the approach686

considers only the contribution of individual eigenvectors.687

G.2 Experimental Verification688

This section describes three different methods for solving the optimization problem:689

max
∥x∥2≤1, x≥0

∥Ax∥2,

where A ∈ Rn×n. The methods are compared in terms of their computational efficiency and the690

quality of their solutions.691

G.2.1 Brute Force Random Search692

The brute force method randomly samples vectors x ∈ Rn from the nonnegative orthant, normalizes693

them to satisfy ∥x∥2 = 1, and evaluates ∥Ax∥2 for each sampled vector. The steps are as follows:694

1. Generate N random vectors xi ≥ 0, i = 1, . . . , N .695

2. Normalize each vector to unit norm: xi ← xi/∥xi∥2.696

3. Compute ∥Axi∥2 for each vector and select the maximum value.697

This method is simple to implement but computationally expensive, as it evaluates A for a large698

number of randomly generated vectors. See figure 5699

G.2.2 Numerical Optimization (Scipy Minimize)700

This approach uses numerical optimization to directly solve the problem:701

max
∥x∥2≤1, x≥0

∥Ax∥2.

The optimization problem is formulated as:702

min
x
−∥Ax∥2, subject to ∥x∥2 ≤ 1 and x ≥ 0.

Steps include:703

1. Define the objective function as −∥Ax∥2.704

2. Impose constraints: ∥x∥2 ≤ 1 and x ≥ 0.705

3. Solve the problem using scipy.optimize.minimize, with an initial guess x0.706

This method provides the exact solution but is computationally more expensive than the spectral707

method.708
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Figure 5: Random Kernel Guess takes exponentially long time to converge. While Algorithm 1 only
took 0.14 sec to find the optimal value.

G.3 Comparison Metrics709

The three methods are compared based on:710

• Optimality: The maximum value ∥Ax∥2 achieved by each method.711

• Time Efficiency: The computational time required by each method.712

G.4 Results and Observations713

The following plots compare the performance of the three methods:714

• Optimality Plot: Shows that the maximum value obtained with scipy.minimize is slightly715

better than our spectral method, while random search performs poorly.716

• Time Efficiency Plot: Illustrates the that scipy.minimize scales much poorly with the717

dimension, while our spectral method is way faster than both methods.718

Optimal values attained Time taken

n Random Spectral minimize Random Spectral minimize

10 4.10 4.45 4.46 0.12 0.0007 0.005
20 5.14 6.71 6.82 0.19 0.0003 0.01
50 9.23 11.59 11.93 0.25 0.0007 0.03

100 11.95 16.44 17.19 0.31 0.001 0.28
200 15.74 22.1 23.68 0.44 0.004 2.1
300 19.32 28.58 29.73 0.57 0.012 8.19
500 24.46 36.56 38.47 0.83 0.209 43.49
1000 33.91 51.64 54.25 1.38 0.171 313.6

Table 3: Attained Values and Time Taken.

G.4.1 Parameters of Experiments719

The experiments were conducted to evaluate the performance of three methods—brute force random720

search, eigenvalue heuristic, and numerical optimization—on solving the problem:721

max
∥x∥2≤1, x≥0

∥Ax∥2.
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Figure 6: Comparison of optimality across methods.

Figure 7: Comparison of computational time across methods

State Space Cardinality and Random matrix Generation722

• State Space Cardinality (n): The dimension of the problem, denoted by n, represents the723

state space cardinality. In the experiments, n varied from 1 to 300 to analyze the scalability724

of the methods.725

• Matrix Generation: The matrix A ∈ Rn×n was generated as a random matrix with entries726

sampled from a standard normal distribution:727

Aij ∼ N (0, 1), i, j = 1, . . . , n.

The same random seed (seed = 42) was used across all runs to ensure reproducibility.728
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• 10000 random vectors x were generated for Brute Search Method.729

Process of matrix Evaluation The goal of the experiments is to maximize ∥Ax∥2 under the730

constraints ∥x∥2 ≤ 1 and x ≥ 0. The matrix A is evaluated by:731

1. Generating random vectors x ∈ Rn for the brute force method.732

2. Computing the spectral decomposition of A⊤A for the eigenvalue heuristic.733

3. Defining and solving a constrained optimization problem for the numerical optimization734

method.735

The results, including the optimal values and computational times, are recorded for each method.736

Evaluation Metrics The performance of the methods was assessed using the following metrics:737

• Optimality: The maximum value ∥Ax∥2 obtained by each method.738

• Computational Efficiency: The time taken by each method to compute the result.739

• Scalability: The behavior of the methods as n increases.740

This systematic evaluation ensures a fair comparison of the three approaches across varying problem741

sizes.742

Hardware and Software Specifications The experiments were conducted on the following hard-743

ware and software setup:744

• Model Name: MacBook Pro (2023 model).745

• Model Identifier: Mac14,7.746

• Chip: Apple M2 with 8 cores (4 performance and 4 efficiency cores).747

• Memory: 16 GB Unified Memory.748

• Operating System: macOS Ventura.749

• Programming Language: Python 3.9.750

• Libraries Used:751

– numpy for numerical computations.752

– scipy for numerical optimization.753

– matplotlib for generating plots.754

– time for recording computational times.755

The experiments were designed to ensure reproducibility by fixing the random seed (seed = 42).756

Computational times and results are specific to the above hardware configuration and may vary on757

different systems.758

H Convexity of D759

H.1 MDP Configuration760

We define an MDP with the following parameters:761

• State space size: S = 3762

• Action space size: A = 2763

• Discount factor: γ = 0.9764

• Random kernel P , random reward R, seed 42.765

• Compute the set D = {DπHπ|π} with 10 millions random policies π766
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H.2 Dimensionality Reduction via PCA767

Given the high-dimensional nature of the DπHπ representations, we apply Principal Component768

Analysis (PCA) to extract meaningful structure.769

• We retain the top 10 components to capture the dominant variations in the dataset.770

• The explained variance ratio is visualized to assess how much information each component771

retains.772

• 2D projections of the first few principal components are generated for visualization.773

Figure 8: 2D PCA projections of the first 5 components.

H.3 Random Linear Projections774

To further explore the geometry of the occupancy measure set, we apply random linear projections775

of the high-dimensional data:776

• 2D Random Projections: The data is projected onto randomly chosen 2D subspaces.777

28



Figure 9: 2D Random Projections of the Data.

I Experimental Evaluation: Single MDP Comparison778

To assess the performance of our proposed binary search algorithm for robust policy evaluation779

under L2-norm bounded uncertainty, we conduct a series of experiments comparing it against780

existing methods on fixed Markov Decision Process (MDP) instances. The primary objective is to781

evaluate convergence speed, accuracy relative to an estimated worst-case value, and consistency782

across different problem configurations. More details of these experiments along with others can783

be found in the appendix, and codes are available at https://anonymous.4open.science/r/784

Kernel-Robust-RL-B742/785

I.1 Experimental Setup786

Algorithms Compared We evaluate the following algorithms:787

1. Our Method: The binary search algorithm presented in this work, which leverages a788

spectral method for computing the key bisection function F (λ).789

2. CPI (Frank-Wolfe): The Conservative Policy Iteration algorithm adapted from [20] for790

general robust policy evaluation.791

3. SA-Rectangular L2 VI: Robust Value Iteration for (s,a)-rectangular L2 uncertainty, a792

common baseline representing a structured relaxation.793

4. S-Rectangular L2 VI: Robust Value Iteration for (s)-rectangular L2 uncertainty, another794

structured relaxation.795

Benchmark Generation For each MDP instance and policy, we establish an empirical benchmark796

for the worst-case robust value. This is achieved by sampling 1,000 transition kernels from the L2797

ball of radius β centered at the nominal kernel Pnominal. Each sampled kernel is projected to ensure it798

remains a valid stochastic matrix and stays within the L2 ball. The policy π is evaluated for each799

sampled kernel, and the minimum value obtained across these samples, V min
benchmark, serves as our800

reference robust value.801

MDP and Policy Configuration Experiments are conducted on randomly generated MDPs. For802

each trial, a nominal transition kernel, a reward function, and a uniform initial state distribution µ are803
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generated. A fixed, randomly generated stochastic policy π is then used for robust policy evaluation804

by all algorithms.805

Experimental Configurations Two main sets of single MDP comparisons are performed:806

1. Varying State Space (S): S ∈ {10, 50, 100, 200}, with actions A = 10 and uncertainty807

radius β = 0.01.808

2. Varying Uncertainty Radius (β): β ∈ {0.005, 0.01, 0.05, 0.1}, with state space S = 100809

and actions A = 10.810

The discount factor is γ = 0.9. Algorithms are run until convergence (tolerance of 10−6) or a811

maximum iteration limit (100).812

I.2 Results and Discussion813

Figures 10 and 11 present the convergence behavior of the evaluated algorithms on representative814

MDP instances for the varying state space and varying uncertainty radius configurations, respectively.815

Each subplot shows the estimated robust value versus algorithm iterations. The horizontal dashed816

line indicates V min
benchmark. An algorithm’s final point is marked with a star (⋆) if its estimated robust817

value converges to within 10−6 of V min
benchmark.818

Figure 10: Convergence of robust policy evaluation algorithms for varying state space sizes (S).
Algorithms whose final value is within 10−6 of the benchmark are marked with a star (⋆)

Observations819

• Convergence Speed and Accuracy of Our Method: Across all tested configurations, Our820

Method consistently demonstrates superior performance. It generally converges in fewer821

iterations and achieves a final robust value remarkably close to V min
benchmark, as frequently822

indicated by the star marker. This suggests efficient and accurate identification of the robust823

penalty λ∗.824

• CPI Performance: The CPI algorithm typically converges but often settles at a value825

slightly higher (less pessimistic) than V min
benchmark. While providing a robust estimate, its826

subproblem, in the version tested, explores extreme points of the set of all stochastic kernels,827

which may not always precisely align with the worst-case kernel strictly within the L2 ball.828

• Rectangular Relaxations: Both sa-rectangular and s-rectangular L2 VI methods consis-829

tently converge to robust values significantly lower than those found by Our Method, CPI,830
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Figure 11: Convergence of robust policy evaluation algorithms for varying uncertainty radius (β).
Algorithms whose final value is within 10−6 of the benchmark are marked with a star (⋆)

and V min
benchmark. This highlights the conservatism inherent in rectangular relaxations when831

dealing with non-rectangular uncertainty.832

• Consistency Across Setups: The advantages of Our Method in terms of faster and more ac-833

curate convergence are maintained robustly across different state space sizes and uncertainty834

radius.835
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