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Abstract

Robust policy evaluation for non-rectangular uncertainty set is generally NP-hard,
even in approximation. Consequently, existing approaches suffer from either
exponential iteration complexity or significant accuracy gaps. Interestingly, we
identify a powerful class of L,,-bounded uncertainty sets that avoid these complexity
barriers due to their structural simplicity. We further show that this class can be
decomposed into infinitely many sa-rectangular L,-bounded sets and leverage
its structural properties to derive a novel dual formulation for L,, robust Markov
Decision Processes (MDPs). This formulation provides key insights into the
adversary’s strategy and enables the development of an efficient robust policy
evaluation algorithm for these L, normed non-rectangular robust MDPs.

1 Introduction

Robust Markov Decision Processes (MDPs) effectively handle uncertainties in environmental pa-
rameters, making them indispensable for high-stakes domains such as robotics, finance, healthcare,
and autonomous driving, where failures can have catastrophic consequences [23} [12} 29, 24, [15]].
They also outperform standard MDPs in terms of generalization, ensuring robust performance across
diverse scenarios [36, 37, 25]. Consequently, extensive research has been conducted on robust
MDPs (22}, 10} 35} [16} 3} 24} [15] 131 1331 134}, 32} [7, 19, [17,, 138}, 30}, (1} [14], primarily focusing on
rectangular uncertainty sets that leverage the contractive robust Bellman operator. However, practical
robust MDPs often feature non-rectangular uncertainty sets, where rectangular relaxations can result
in overly suboptimal solutions [20, |8, 35]]. Intuitively, non-rectangular uncertainty set could be
thought of as an n-dimensional sphere of unit radius, and its rectangular relaxation is the smallest
n-dimensional cube encapsulating the sphere. The ratio between the sphere and the encapsulating
cube is exponential in the dimension (O(27")) [27]). This suggests that the rectangular relaxation
of the non-rectangular uncertainty set, contains many additional environments. Moreover, most of
the additional environments would lie near the corners representing big differences from the center
in many coordinates — scenarios unlikely to occur in the real world, as aptly captured by the paper
titled "Lightening doesn’t strike twice, robust MDPs [21]]". These improbable, highly perturbed
environments can lead to a significant gap between the solutions of non-rectangular robust MDPs and
their rectangular relaxations.

While non-rectangular robust MDPs capture much better interdependencies across the states, they
lack the existence of contractive robust Bellman operators, which makes the problem very difficult
to solve with standard dynamic programming techniques [8]]. This makes non-rectangular robust
MDPs a crucial yet challenging area of study, with only a limited body of work existing on the topic
(351 120L 18].

The key challenge for non-rectangular robust MDPs is robust policy evaluation . That is, given
oracle access to the robust gradient (robust policy evaluation ), the robust policy gradient method
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Table 1: Related Work on Robust Policy Evaluation for Non-Rectangular Uncertainty Sets.

Method Uncertainty | Iteration Com- | Accuracy Irreducibility | NP-Harness

Set plexity Assumption 1 | Result of
of [20] (35

181 Reward O(loge™1) € No No
L, Normed

Algorithm | General O(2%1oge™) | € No Yes

3.1 of [20] Kernel Set

Algorithm | General O(e72) d4(2¢ 4+ dp) | Yes Yes

3.2 of [20]] Kernel Set

Ours Kernel L, | log(e™1) € No No
Normed

The constants ¢, 54, p can be as large as O(S2A) , O(2%) and O(S+/A) respectively.

can efficiently achieve an e-close globally optimal policy with an iteration complexity of O(e~*)
[32]. However, the robust policy evaluation for general convex non-rectangular uncertainty sets is
strongly NP-hard, even for approximations [35]. Despite this hardness, [20] proposed two methods
for non-rectangular robust policy evaluation for general convex uncertainty sets: One with exponential
iteration complexity in the state-action space, and another that approximates the solution but with
tolerances so large that the results are meaningless in the worst case (see Table[I]). These pioneering
approaches remain computationally prohibitive or overly imprecise, consistent with the NP-hardness
result.

Interestingly, the NP-hardness result in [35] applies specifically to kernel uncertainty sets with certain
polyhedral structures (see Appendix for details). For L, -bounded uncertainty sets, [8] showed that
robust policy evaluation can be done efficiently, though this is limited to reward uncertainty, a much
simpler case compared to kernel uncertainties. This raises a critical open question: Are there useful
classes of kernel uncertainty sets that avoid this NP-Hardness barrier?

We identify a specific class of non-rectangular uncertainty sets, bounded by an L,- ball around
a nominal kernel, and demonstrate that it effectively circumvents the NP-hardness result of [335].
Moreover, we show that robust policy evaluation for this non-rectangular L,,- -bounded uncertainty
set is equivalent to robust policy evaluation over an infinite collection of sa-rectangular L,, -bounded
uncertainty sets. While robust policy evaluation for each sa-rectangular set is computationally
tractable [[19} [17]], managing this infinite collection poses significant challenges. To overcome this,
we leverage the property that the worst kernel for each sa-rectangular uncertainty set is a rank-one
perturbation of the nominal kernel [[17]. This insight enables us to express the robust policy evaluation
problem (or robust return) in a novel dual form, providing a clearer understanding of the adversary’s
behavior. Furthermore, this dual formulation facilitates the development of a binary search method
for robust policy evaluation, achieving an iteration complexity of O(log ¢ ~!) for approximating the
robust return up to € tolerance.

In summary, robust MDPs are critical for handling uncertainties in high-stakes domains, yet existing
methods are largely confined to rectangular uncertainty sets, limiting real-world applicability. Non-
rectangular uncertainty sets, though more realistic, often face NP-hard challenges in robust policy
evaluation. This work identifies a promising class of non-rectangular L,, -bounded kernel uncertainty
sets, demonstrating that they circumvent existing NP-hardness results and enable efficient robust
policy evaluation. By connecting robust evaluation for these sets to an infinite collection of sa-
rectangular uncertainty sets and leveraging their structure, we propose a computationally efficient
binary search method with logarithmic iteration complexity. This approach not only advances the
understanding of non-rectangular robust MDPs but also opens the door to future investigation into
broader classes of non-rectangular uncertainty sets in robust MDPs.
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2 Preliminary

A robust Markov Decision Process (RMDP) can be described as a tuple (S, A, v, p, R,U), where
S is the state space, A is the action space, p is an initial distribution over states S, «y is a discount
factor in [0, 1), R is a reward function mapping S x A to R, and U set of transition kernel P that
maps S x Ato Ag [15,[24] . A policy 7 : S — A_4 is a decision rule that maps state space to
a probability distribution over action space. Let IT = (A _4)° denote set of all possible policies.
Further, 7(al|s), P(s'|s, a) denotes the probability of taking action a in state s by policy 7, and the
probability of transition to state s’ from state s under action a respectively. In addition, we denote
P7(s'|s) = >, m(a|s)P(s'|s,a) and R™(s) = > m(a|s)R(s,a) as short-hands. The return of a
policy 7, is defined as J = (i, v%) = (R™,d%) where v := D™ R™ is value function, d%, = y ' D™
is occupation measure and D™ = (I — v P™)~! is occupancy matrix [26]. As a shorthand, we denote
the state-action occupation measure as d-(s, a) = d%(s)m(als) and the usage shall be clear from the
context. For an uncertainty set I/, the robust return .J;; for a policy 7, and the optimal robust return
Jy;, are defined as:
Jj =minJp, and Jj; =max Jj,
pPeu T

respectively. The objective is to determine an optimal robust policy 7/, that achieves the optimal
robust performance J;;. Unfortunately, even robust policy evaluation (i.e., finding the worst-case
transition kernel Pj € argminpg,, J3) is strongly NP-hard for general (non-rectangular) convex
uncertainty sets [35]]. This makes solving non-rectangular robust MDPs a highly challenging problem.

To make the problem tractable, a common approach is to use s-rectangular uncertainty sets, /% =
X sesPs, where the uncertainty is modeled independently across states [35]. These sets decompose
state-wise, capturing correlated uncertainties within each state while ignoring inter-dependencies
across states. A further simplification is the sa-rectangular uncertainty set, {2, where uncertainties
are assumed to be independent across both states and actions. Formally, U** = X (4 4)e5x.4Ps,as
where P, , are independent component sets for each state-action pair [[15, 24} 33} 34].

A L,-bounded uncertainty sets, z,{;a and L{;, which are centered around a nominal transition kernel P
are defined as U = {P | >_,, P (s") =1, || Psa — P5a||p < Bsat,and Uy ={P |}, Py, (s) =

1, ||P,— P, I, < Bs}, where radius vector 3 is assumed small enough to ensure all kernels within the
uncertainty sets are valid [13,[7,[19,[17]] . Interestingly, for L,, bounded uncertainty set, adversarial
(worst) kernels is a rank one perturbation of the nominal kernel that is used later in the paper [17]].

Dual Formulation. The primal formulation of an MDP is defined as:

rgleag(u, v), with its dual: I;lgg(d, R),
where V = {v | v = R™ +vyP™v, w € II} represents the set of value functions. The dual formulation
relies on the state-action occupancy measure d, where d € D C RISI*I4l satisfies the non-negativity
constraint (d = 0) and the flow conservation constraint: »_, d(s,a) —v>_, . d(s'’,a")P(s |
s',a') = u(s), Vs € S. The feasible set D forms a convex polytope [2], whereas the set of value
functions, V, is a polytope that is generally non-convex [6]. This dual formulation offers several
advantages, including efficient handling of constraints and the ability to solve the problem using
linear programming techniques.

For robust MDPs, the geometry of robust value functions is significantly more intricate compared to
standard MDPs [31]]. While the dual formulation for standard MDPs is well-established, this work is
the first to derive a dual formulation for this specific class of non-rectangular robust MDPs, providing
critical insights and laying the foundation for the development of robust policy evaluation methods.

3 Method

In this section, we introduce L,-bounded non-rectangular uncertainty set, and demonstrate that
its rectangular relaxation may yield highly sub-optimal solutions. Then, we establish that this
uncertainty set avoids the NP-Hardness results established in [35]]. Subsequently, we show that the
robust evaluation for this uncertainty set is equivalent to robust evaluation over an infinite collection
of sa-rectangular robust MDPs. This equivalence leads to a novel dual formulation and, ultimately,
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a binary search method for robust policy evaluation. We begin with defining non-rectangular L,,-
bounded uncertainty set as:

Uy ={P[1IP=Ply< 5. 3 P! 5,0) =1},

where P is the nominal kernel, 3 is uncertainty radius, and ||[P — P||, = (3, , . (P(s'|s,a) —

P(s|s, a))p)%. The simplex constraint ensures that the transition kernel P satisfies the unity-
sum-rows property, as discussed in [19]. Following previous works [[7} [17], we assume the
radius S is sufficiently small to ensure all the kernels within the uncertainty sets are valid transition
kernels. As discussed in [19]], this assumption can be lifted by imposing boundary constraints
(0 < P(s]s,a) < 1) at the expense of additional complexity and without yielding significant
additional insights. Throughout the paper, we use d™, v™, J™, D™ as shorthand for dTFE,, vl’; JI’:I,, and

D;g, respectively, w.r.t. nominal kernel P.

Why non-rectangular RMDPs. Note that the non-rectangular uncertainty sets allow noise in one
state to be coupled with noise in other states. Before delving into solving them, we first discuss their
importance. Why are uncertainty sets modeled with non-rectangular sets U4, (e.g., Lo-balls) better
than rectangular ones?

In Figure[T] we illustrate this by capturing the uncertainty set using non-rectangular U (circle/sphere)
balls and rectangular (square/cube) balls. The blue dots represent possible environments, with
the origin being the nominal environment. Points farther away from the origin indicate larger
perturbations. Specifically, points near the corners of the square/cube represent environments with
large perturbations in nearly all dimensions or coordinates simultaneously. The likelihood of such
simultaneous perturbations is very low, and this issue becomes even more pronounced in higher
dimensions. This phenomenon is well discussed in the paper Lightning Doesn’t Strike Twice: Coupled
RMDPs|21]).

@ Uncertainty Points —— L[; Ball —— s-RectangularL; Ball

3D Representation 3D Representation

151

1.0+

0.5

0.0

15
Figure 1: Modeling Uncertainty with Non-Rectangular and Rectangular Ly-Balls.

Moreover, as shown in the result below, most of the volume of a high-dimensional cube lies near
its corners outside the embedded sphere. This implies that rectangular robust MDPs are overly
conservative, as their uncertainty sets focus on environments near the corners—corresponding to
highly unlikely extreme perturbations.

Proposition 3.1. Let Us* and Us denote the smallest sa-rectangular and s-rectangular sets, respec-

tively, that contain Us. Then:
vol(Uy) —  _ g4 volU) g
vol(Us*) Oesa™),  and vol(Us) 0es”),

where vol(X') denotes the volume of the set X, S = |S|, A = |A| and ¢, csq > 1 are constants.
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The result follows from comparing the n-dimensional sphere’s volume ¢,,7" (¢, — 0) [27], to the
enclosing cube’s volume 2" 7™ (side 2r), resulting in a ratio of O(2").

In summary, real-world uncertainty sets are often non-rectangular and highly coupled. Their rectan-
gular relaxations (the smallest rectangular uncertainty sets encapsulating the original non-rectangular
sets) introduce exponentially more additional environments, many of which correspond to highly
perturbed kernels that are improbable in practice. As a result, relaxed rectangular robust MDPs can
produce overly conservative and suboptimal solutions compared to their non-rectangular counterparts.

Complexity. While non-rectangular robust MDPs better capture real-world uncertainty sets, robust
policy evaluation (even approximation) has been proven NP-hard for general uncertainty sets defined
as intersections of finite hyperplanes [35]]. Specifically, [35] reduces an Integer Program (IP) with
m constraints to robust MDPs where the uncertainty set consists of intersections of m half-spaces
(m-linear constraints). This polyhedral structure is fundamental to the hardness proof, consequently,
it does not extend to our uncertainty sets U, for p > 1. For the case of U{;, the IP reduction does

apply, but since ; is defined by a single global constraint (||P — Py||; < /), this implies that the
corresponding IP has only one simple constraint which is efficiently solvable. A detailed discussion
can be found in Appendix [B.2]

Intuitively, the NP-Hardness result primarily applies to polyhedral uncertainty sets with numerous
vertices. This leaves room for the possibility that many uncertainty sets defined by a small number
of global constraints, such as norms or distances, might fall outside the scope of this hardness and
could potentially be tractable. However, we leave this intriguing question for future exploration: is
NP-Hardness merely the tip of the iceberg?

Divide and Conquer. The above discussion highlights the potential tractability of L,,-robust MDPs,
prompting us to address the challenge of solving them. A key insight is that the non-rectangular
uncertainty set {4, can be expressed as a union of sa-rectangular sets Uga(b) with varying radius
vectors b, as formalized in the result below. Each sa-rectangular set can be efficiently solved
individually, paving the way for a more manageable approach to the overall problem.

lllustration of covering a L, ball with infinite rectangles

05

00

7\ y |

| 4
ME
Ao le

(a) Ilustration of Proposition N-dimensional  (b) Projections of set D along principal components,
sphere can be written as infinite union of n- for S = 3, A = 2 with 10 millions samples, strongly
dimensional inscribing cubes. suggesting non-convexity.

23l

Figure 2:
Proposition 3.2. [Decomposition] The non-rectangular uncertainty set U,, can be expressed as:
U, = | Juzev),
beB

where B = {b € RI*A | [[bll, < B}, and U3*(b) = {P | |P(- | s,a) = P(- | s,a)], <

b(s,a),¥(s,a)}, is sa-rectangular uncertainty set with radius vector b.
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The proof of the above result intuitively generalizes the idea that a circle (or n-dimensional sphere)
can be covered by an inscribed square (or n-dimensional rectangles) touching its boundaries and a
continuum of its rotated versions, as shown in Figure 2(a)] This offers a significant simplification to
the problem at hand, as it implies that non-rectangular policy evaluation (difficult) can be decomposed
into sa-rectangular uncertainty sets (easier) as:
J7 =min min JZ. 1
Up beB Pels(b) P M
In essence, we have simplified a complex problem into an infinite number of more manageable
ones. However, the task remains incomplete. Although a closed-form expression exists for
Tz = 7 = 3240 d7(8,0)bsa0q(V]jss), where q is the Holder conjugate of p (i.e., St =1
and o, is the generalized standard deviation (GSTD) defined as 0,(v) = mingeg ||v — wl||,
[19], this approach is still computationally impractical. The core challenge lies in solving
maxpeB Y , A" (8, a)bsa0q (Ve p,), Which remains a formidable task. To circumvent this, we
? P

leverage the dual formalism, which is elaborated in the next section.

3.1 Dual Formulation of Robust MDPs

Here, we present a dual formulation for robust MDPs specifically for L,-bounded uncertainty sets.
While this formulation is inherently more intricate than the classical dual formulation for standard
MDPs [26], it forms the foundation for all subsequent results in this work.

Now, leveraging results from [[17], we know that the worst-case kernel for sa-rectangular uncertainty
sets, P/jsa b = P —bkT, can be expressed as a rank-one perturbation of the nominal kernel, where
P

ke K :={k||k|, <1,1Tk = 0}. Consequently, the adversary can restrict their focus to rank-one
perturbations, enabling us to reformulate the robust return as:

J{i, = minmin JZ = minmin p " D3 R,

beB kek  P—bkT T heB ek —bkT

where the last equality stems from J% = u ' D% R™. Further, leveraging Lemma 4.4 from [17] or
directly applying the Sherman—Morrison formula [4] (see Proposition [D.T]), the robust return can be
expressed as:
kTDTR"
Jr = : TDﬂRﬂ' _ TDﬂbﬂ'7:|
U = pepex M TH L1 kT Db

where b := " m(als)bsq. The following result introduces a more concise and interpretable form
of this robust return expression.

Lemma 3.3. [Penalized Robust Return] The robust return can be expressed as:
o BB
veB.kek 1+ ~y(k,vf)

)

T __ JT
Jup =J Y
where v = D™b™ represents the value function with uncertainty radius b as the reward vector.

For the first time, the above result expresses the robust return in terms of the nominal return J™ and a
penalty term involving only nominal values (d”, v = v™, and v][). Notably, the denominator term
1 4 ~y(k, vf) is strictly positive (see appendix for details). In the subsequent subsections, we delve
deeper into evaluating this penalty term and analyzing the nature of the optimal (k, b) for a given
policy 7, revealing the adversary. Finally, by maximizing the robust return Jgp over policies, we get

a dual formulation, as stated below.
Theorem 3.4 (Dual Formulation). The optimal robust return is the solution to
kE"DR

szp = max min |: ILLTDR — ’}/‘LLTDbm

DeD kek,beB

where D :{ DH™ |mell } D™= (I—- fyf’”)_l and H™ : RS *A — RS is a policy averaging
linear operator defined as H™R := R™.

The dual formulations for the sa-rectangular and s-rectangular cases differ notably in their definitions
of B. In the sa-rectangular case, B = {3}, whereas in the s-rectangular case, B = {b € RS*4 |
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Ibs]l, < Bs}. These distinctions are elaborated in the appendix. The result above frames the dual
of robust MDPs as a min-max problem, offering valuable and insightful perspectives. However, as
Figure suggests (with further details in the appendix), the set D may be non-convex, which
complicates the problem. Despite this, we believe that the dual formulation holds potential for future
work, providing deeper insights and enabling the development of improved algorithms. In this work,
we keep our focus on the robust policy evaluation while policy improvement is addressed via existing
robust policy gradient method with proven guarantees [32], discussed further in Appendix [C]

3.2 Robust Policy Evaluation

Now, we directly attempt to evaluate the penalty term in Lemma [3.3| which leads to a binary search-
based robust policy evaluation algorithm. The key idea is to identify a bisection function:

F()\) = ET
() rgleagll T0llgs

where £ 1=y ( 17% ) [ D™R™ " D™ —\D™ ] HT™. Note that £ is constructed using quantities
that are computationally straightforward, and H™ : RS*A — RS represents the policy-averaging
linear operator, defined by (H™R)(s) := >, m(a|s)R(s,a).

Lemma 3.5 (Robust Policy Evaluation). Let A\* be a fixed point of the function F'()\), then the robust
return can be expressed as:

Jo, =J" - A",

And X* can be efficiently computed using binary search Algorithmas FA) >\ <= A>\-
Proof. The proof can be found in Appendix (see Lemma[F.2). O
The result enables a direct computation of the robust return by iteratively refining A until convergence,

leveraging the monotonicity properties of F'(\). Further, the bisection property of F' established in
the result, directly implies the linear convergence rate of Algorithm [I] as stated result below.

Algorithm 1 Binary Search for Robust Policy Evaluation

Initialize: Upper limit A, = 1=, lower limit \; = 0

1: while not converged: n =n+ 1 do

2:  Bisection value: )\, = (\; + \,)/2

3:  Bisection: \; = A, if F'(A,) > Ay, else Ay = Ay
4: Update robust return: J,, = J™© — \,.

5: end while

Theorem 3.6. Algorithm[l|converges linearly, i.e.,
In = I, < o@2™).

We conclude that robust evaluation can be performed efficiently with linear iteration complexity. How-
ever, each iteration involves solving the subproblem max¢p || Az|4, as part of Algorithm([1} For sim-
plicity, we focus on the specific case where p = 2, resulting in the problem: max; .|, <1, z>0 [[AZ]|2.
To address this, we propose a modified eigenvalue-based algorithm (Algorithm @]} This method has
a time complexity of O(S3A?) and demonstrates excellent practical performance. Specifically, to
achieve comparable results to those obtained using the numerical solver ‘scipy.minimize* it takes
significantly less time, by an order of magnitude. Further details on this method, including theoretical
insights and empirical evaluations, are provided in Appendix [G] Additionally, the performance of
robust policy evaluation Algorithm[I] is further validated experimentally in Section [3}

Algorithm 2 Spectral method for computing max,¢p || Az||2

1: Compute eigenvector v; and eigenvalues \; of AT A

: WLOG let ||[vf ||2 > [|v;"||2 where v;” = max(v;,0),v

: Compute best score : j = arg max; \; (v;, H:f”>
i 12

o

+

J

[\

;= —min(v;,0)

w

4: Output: Approximate maximum value /|| A Il2-

llo5 ll2
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4 Revealing the Adversary

We provide the first insights into the structure of the worst-case kernel in non-rectangular robust
MDPs, addressing an unexplored area in the literature. The following result reveals that, similar to
rectangular uncertainty sets [[17]], the worst-case transition kernel is a rank-one perturbation of the
nominal kernel, but with a more complex structure.

Theorem 4.1 (Worst-Case Kernel). For a policy m and uncertainty set Uy, the worst-case transition
kernel is: . .
L
By =P -0k,
where (k,b) solves:
Jﬂ' ™
max —0 R ) .
ke, beB 1+ y(k,v])

The above result follows directly from Lemma [3.3] It highlights the adversary’s strategic use of
k, b, and their interaction with the value functions v} and vj, revealing a more nuanced structure
compared to the rectangular case. The adversary’s objectives in selecting the worst-case kernel are
twofold:

* Maximizing Trajectory Uncertainty (.J]'): The adversary seeks to increase the agent’s vis-
its to high-uncertainty states, enhancing its ability to steer the agent toward disadvantageous
outcomes.

* Optimizing the Perturbation Direction (k): The adversary selects k to maximize k' v,
thereby pushing the agent into low-reward trajectories, while simultaneously minimizing
kTvl’; to ensure the agent remains exposed to high-uncertainty states.

These insights provide a deeper understanding of the adversary’s behavior and offer practical guidance
for designing more resilient robust algorithms to counteract such strategies effectively.

Message to Practitioners

The adversary focuses solely on rank-one perturbations of the nominal kernel, iteratively
boosting its influence by pushing the agent into high-uncertainty states, then leveraging that
influence to steer the agent toward low-reward trajectories, ultimately driving the agent to the
lowest possible return.

5 Experiments: Robust Policy Evaluation

We conduct a numerical comparison of our Algorithm|[TJand CPI (Algorithm 3.2 from [20], reproduced
as Algorithm 3]in the appendix) for robust policy evaluation. The experiments are performed using a
randomly generated nominal kernel P, reward function R, and policy . An uncertainty set U is
constructed using the nominal kernel with a fixed uncertainty radius £.

Figure [3|demonstrates the convergence behavior of both methods, presenting results based on the
number of iterations (left panel) and computation time (right panel). The left panel shows the robust
return achieved per iteration, while the right panel depicts the robust return as a function of wall-clock
time. Note that the x-axes of the figure have a logarithmic scale in order to clearly capture the slow
convergence of the CPI method.

* Our Algorithm [I, We apply our Binary Search Algorithm [I] to perform robust policy
evaluation with the given nominal kernel P and uncertainty radius /3. Each iteration of the
algorithm involves computing F'()), for which our Spectral Algorithmis employed. Our
algorithm converges very quickly requiring only a few iterations.

* Algorithm 3.2 of [20]. We run Algorithm 3| with precomputed values of d™ and A™. The
step sizes are chosen to be either a small constant or dynamically adjusted, as described
in the algorithm. Note that Line 3 of the algorithm involves solving arg minp,, (z, P).
This constrained optimization is solved using a numerical method (scipy.minimize). This
gradient based method improves very slowly and converges very far from the true robust
return as the uncertainty set Us is very non-rectangular.
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* Brute Force Benchmark. To approximate the true robust return, we generate a large
number of random samples {P; | i« < n} from U, and estimate the empirical minimum,
min; J7., as a proxy for the robust return. Note this method requires exponential number of
samples to reasonably cover the entire uncertainty set. Hence the values obtained in Figure
[l are an approximate upper bound on the true robust return.

The results in Figure 3| reflect a general trend observed across a wide range of experiments conducted
with state space sizes ranging from .S = 5 to .S = 190 and uncertainty radius 5 € {0.005,0.01,0.05}.
Our proposed algorithm consistently demonstrates superior performance, converging in significantly
fewer iterations and less computation time while the computational demands of the CPI algorithm
grow substantially with larger state spaces. Hence, our method exhibits more favorable scaling
properties, making it practical for high-dimensional problems.
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Figure 3: Comparison of Algorithm [I] (Ours) and the CPI Algorithm for § (Uncertainty Radius)
=0.05, S =10, A =8,y = 0.9, and a convergence tolerance of 1074,

The codes, detailed explanations, and additional experiments are available at https://anonymous|
4open.science/r/non-rectangular-rmdp-77B8. System details for the experiments are as
follows: Operating System: macOS Sequoia (Version 15.4.1), Chip: Apple M2, Cores: 8 (4
performance and 4 efficiency), Memory: 16 GB (LPDDRS).

6 Discussion

We studied robust Markov decision processes (RMDPs) with non-rectangular L,,-bounded uncer-
tainty sets, balancing expressiveness and tractability. We showed that these uncertainty sets can be
decomposed into infinitely many sa-rectangular sets, reducing robust policy evaluation to a min-max
fractional optimization problem (dual form). This novel dual formulation provides key insights into
the adversary and leads to the development of an efficient robust policy evaluation algorithm. Theory
and experiments demonstrate the effectiveness of our approach, significantly outperforming the
existing methods. These findings further pave the way for scalable and efficient robust reinforcement
learning algorithms.

Limitations. Similar to [7,[19,[17], we have considered small enough uncertainty radius to ensure
positivity of the kernel. As discussed in [19], imposing this additional positivity constraints (or
dealing with nominal kernel with zero transition probability to some states ) would significantly
complicate the analysis without yielding significant additional insights. However, we leave a thorough
investigation of this topic for future work.

Future Work. Our results naturally extend to uncertainty sets that can be expressed as a finite union
of L, balls. Furthermore, any uncertainty set can be approximated using a finite number of L,, balls,
with smaller balls providing a better approximation. However, the number of balls required for an
accurate approximation may grow prohibitively large. While this work is limited to L, norms, it may
be possible to generalize our approach to other types of uncertainty sets. A key challenge in such an
extension would be identifying the structure of the worst-case kernel and developing corresponding
matrix inversion techniques.


https://anonymous.4open.science/r/non-rectangular-rmdp-77B8
https://anonymous.4open.science/r/non-rectangular-rmdp-77B8
https://anonymous.4open.science/r/non-rectangular-rmdp-77B8
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Notations and Definitions

For a set S, |S| denotes its cardinality. (u,v) := > s u(s)v(s) denotes the dot product between
functions u,v : S — R. [|v||% := (Es|v(s)\p)% denotes the ¢-th power of L, norm of function
v, and we use [[v]|, := [jv||} and |jv|| := ||v]|2 as shorthand. For a set C, A¢ := {a : C —

Rla. > 0,Ye, ) cc ac = 1} is the probability simplex over C. var(-) is variance function, defined
as var(v) = /> c5(v(s) —0)2 where v = % is the mean of function v : S — R%. 0,1
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denotes all zero vector and all ones vector/function respectively of appropriate dimension/domain.
1(a = b) := 1if a = b, 0 otherwise, is the indicator function. For vectors u,v, 1(u > v) is
component wise indicator vector, i.e. 1(u > v)(z) = 1(u(z) > v(z)). Ax B = {(a,b) | a €
A, b € B} is the Cartesian product between set A and B.

Table 2: Useful Notations

Notation Definition Remark

D,q % + % =1 Holder’s conjugates

Op Standard deviation w.r.t. L,, norm
v 0E R (I —~yP™)~'R™ Value function

D™, D% (I —yP™)~ ! Occupancy matrix

dr,dp, uT(I —~yP™)~1  Occupancy measure

U, Uz Us Uy, Uncertainty sets

A Related Work

Rectangular Robust MDPs. In the literature, the sa-rectangular uncertainty is a very old assumption
[15L24]. [35] introduced s-rectangular uncertainty sets and proved its tractability, in addition to the
intractability of the general non-rectangular uncertainty sets. The most advantageous aspect of the
s-rectangularity, is the existence of contractive robust Bellman operators. This gave rise to many
robust value based methods [[13|32]. Further, for many specific uncertainty sets, robust Bellman
operators are equivalent to regularized non-robust operators, making the robust value iteration as
efficient as non-robust MDPs [[7,133][19]]. There exists many policy gradient based methods for robust
MDPs, relying upon contractive robust Bellman operators for the robust policy evaluation [34, [17].
Further, [38l130] try to refine the process, and directly get samples from the adversarial model via
pessimistic sampling . There exist other notions of rectangularity such as k-rectangularity [22] and
r-rectangularity [10] which are sparsely studied. However, [L1] shows, the theses uncertainty sets are
either equivalent to s-rectangularity or non-tractable.

Non-Rectangular Reward Robust MDPs. Policy evaluation for robust MDPs with non-rectangular
uncertainty set is proven to be a Strongly-NP-Hard problem [33]], in general. For a very specific case,
where uncertainty is limited only to reward uncertainty bounded with L, norm, [8] proposed robust
policy evaluation via frequency (occupation measure) regularization, and derived the policy gradient
for policy improvement.

Approximate Policy Evaluation for Non-Rectangular Kernel RMDPs. [20] provides the following
two policy evaluation methods for robust MDPs for general uncertainty sets.

» Langevian dynamics based Algorithm 3.1 of [20]: This Langevian dynamics based Markov
Chain Monte Carlo method solves the robust policy evaluation problem to global optimality
with arbitrary small accuracy e. The iteration complexity of the algorithm is O(27log %)
which is exponential in the dimension of the uncertainty set ¢g. The algorithm is well suited
only for small dimensional uncertainty. For a general case the dimension ¢ = S2A can be
very large, this makes the algorithm very computationally inefficient as expected from the
hardness result from [2].

* CPI sytle Algorithm 3.2 of [20] (presented in Algorithm : This CPI based algorithm
computes the robust policy with iteration complexity of O( =) with an accuracy of 64(2¢ +
0p), where 04 is mismatch-coefficient and dp is measure of non-rectangularity of the
uncertainty set. However, the mismatch coefficient may not exist without an irreducibility
assumption (Assumption 1 in [20]), moreover even under Assumption 1, the constant
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84 = O(2%) can be exponentially large for ladder MDPs which have large diameter (more
details provided below). In addition, the non-rectangularity constant ép can be as large as

O(V/S). Hence, a large §40p > % makes the bound meaningless, as the sub-optimality is
upper bounded by % To summarize, this approach is efficient only for small diameter
MDPs and almost rectangular uncertianty sets.

* Our Method: We provide a robust policy evaluation method for Ly-robust MDPs with an

iteration complexity of O(log %) and with an accuracy of e. This is possible as we showed
that the NP-hardness result of [2] doesn’t apply to this case.

We don’t require the irreducibility Assumption 1 of [20] which can be very limiting. Further,
the L,, robust MDPs may have very large tolerance 646 hence the Algorithm 3.2 from [20]
is not applicable.

Difficult MDPs for Algorithm 3.2 of [20]

* MDP with high mismatch coefficients : Consider an MDP with only one action and
state-space {s;|1 < i < S}. Let s1 be the starting state. Let the kernel be defined as
Pm(snlax{i+1,5}|3i) =, Pa:(81|sz) =1-u.
Now let the uncertainty set be P = {P, | € [0.4,0.6]}. Note that for this case, log(ds) >
d"0.6(sgls
log (g rrest) = O(S).
* High non-rectangularity coefficient : This is inspired from the fact that

6 = max |max < a,b>—max <a,b>|,
llal|<1 | bEB; beB

where B = B(0, 1) is a unit ball around origin, and B; = [—1, 1]™ is the smallest rectangular
cube containing B. Then choosing a = {\/15}" we have maxyes, < a,b >= /n and
maxpep < a,b >= 1. This implies § > y/n — 1.

From definition in page 11 of [20], we have

0p = max < VV,P > —max < VV, P >
PeP; PeP

where P is the smallest s-rectangular uncertainty containing P. Here, P € RS4*5 this
suggests dp can be of the order of O(Sv/A).

The discussion is summarize in the Table [Tl

Algorithm 3 CPI Algorithm 3.2 of [20] for Robust Policy Evaluation

Input: Nominal kernel P, policy 7, Uncertainty set .

1: while not converged: n =n+ 1 do
. 1 s s ! 1
Define : f(P) 1= 1= >_; , o d5(s)m(als)A% (s, a, ") P(s's, a),

1=y P

where AT%(s,a,s’) ==+ [ P(s'|s,a)vi(s") — > P(s”]s,a)vp(s") }

Compute P* € arg minpg, f(P).

Updatetheestimatedworstkernel :P,11 = (1 — ) Py + o, P*,

where o, = —@f(P*)
4: 5: end while
Return: Robust return J5_.

4y

Robust Policy Gradient Methods. The absence of contractive robust Bellman operators renders
the development of value-based methods for robust MDPs particularly challenging. Consequently,
policy gradient methods naturally emerge as a viable alternative. The update rule is given by:

Tht1 = Proj_cq |:7Tk e Vadp |, 2
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where Jl’;’: - JF < ey* and learning rate 7, = O(\ifk) This approach guarantees convergence to a
global solution within O(e~%) iterations [32].

However, this update rule depends on oracle access to the robust gradient, which is highly challenging
to obtain because robust policy evaluation is an NP-hard problem.

B  On the Non-Rectangular Uncertainty Sets

B.1 Why non-rectangular RMPDs

Proposition B.1. Let U3, Us be the smallest sa-rectangular set and s-rectangular set containing
Uy then
vol(Us) _5A vol(Us) _g
—— =0 =0
vol(uéga) (csa )7 an VOI(Z/{QS) (cs )7

where vol( X)) is volume of the set X and cs, csq > 1 are some constants.

. . . . 2
Proof. Volume of n-dimension sphere of radius r is ¢, 7™ where ¢, < 81% [27]. And to cover an
n-dimension sphere of radius r, we need a cube of radius 2r whose volume is (2r)™. Hence the first

voltts) _ ()(2-54) immediately follows.

result VOIUE) =

Now, the volume of the set of X = x,csXs where X, is an A-dimension sphere of radius r,
then the volume of X is (c47)®. And the volume of an S A dimensional sphere is cg 4774, where
lim,, 00 ¢, — 0 [27]. Hence the ratio of their volume is O((c4)®), implying the other result. [

B.2 Complexity

Reduction of Integer Program to Robust MDP

0/1 Integer Program (IP): For g,c € Z",( € Z, F € Z"™*",
J2€{0,1}" st. Fr<g and c'z<(?

is a NP-Hard problem [9]], [35] which reduces into the following robust MDP.
Robust MDP:

1. State Space S = {b;, 09,0} | j =1,--- ,n} U{co, 7}, where 7 is a terminal state.
Singleton Action Space: A= {a}.
Uncertainty set: U = {P¢ | £ € [0,1]", F€ < g}
Discount factor v € [0, 1); Uniform initial state distribution p.

Big reward M > % where € << 1 helps in rounding.

O A

Transitions and rewards are illustrated in Figure 4]

Robust policy evaluation is proven to be NP-hard for general uncertainty sets defined as intersections
of finite hyperplanes [33]. Specifically, robust MDPs with uncertainty set U, qrq := {FP¢|F& < g,& €
[0,1]™} where P is a specially designed kernel with ladder structure with only action (effectively no
decision) and a terminal state [35]].

Note that F'¢ < g imposes m-linear constraints on Uj.q While we allow only one global constraint
on U,. Observe that Uy = {F | 17¢ < g,& €]0,1]"} is the nearest uncertainty to Upq,q as both
have polyhedral structure. This restricts the class of the IP programms to have a number of constraints
m = 1 and the row of F' to be all ones. In other words, only IP programmes that can be reduced to
U, are of the following form: For ,c € Z",( € Z,

3z e {0,1}" st. 1Tz <g, and cFz<(¢?

Solution:
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Figure 4: MDP P, and R(Figure 5 of [35])).

e Case 1) If g < 0 then no.
* Case2)If g =0,¢ > 0 then yes and g = 0, < O then yes.
 If g > 0 then compute the sum of g smallest coordinates of ¢, and this sum is less/equal than

(¢ then answer is yes, otherwise no.

Further, for IP to be reducable to robust MDPs, the diameter of the uncertainty (maxp, preys, .o ||P —
P’||; = 25) has to be large for the practical settings. Loosly speaking, robust MDPs with a U,
uncertainty have one global constraint and a small radius /3, which corresponds to a Knapsack
Problem with a small budget (IP with one constraint and a small g) which are much easier to solve
(5L 19].

We can thus conclude that the hardness result of [35] doesn’t apply to our uncertainty case.

B.3 Decomposition

Proposition B.2. Non-rectangular uncertainty U, can be written as an infinite union of sa-
rectangular sets U3%, as

U, = |J u;°(0),
beB

where B ={b € ]Ri *A 1 |bll, < BY. Note that all of them share the nominal kernel P.

Proof. By definition, we have

Uy ={P||P—Pl, <53 P(s|s,a) = 1} @
={Pr| ZHPsa—PsangSﬁpvzp(s/‘sva)zl} “)
={P| Zbga < B | Psa — AsaHg = bga,ZP(S/|s,a) =1} o)
={P| Zbga < B | Psa — Asa”;% < bfa,zp(8/|s,a) =1} 6
= U {P[[[Psa — Psa”g < b%,, ZP(S/‘Saa) =1} )

Zs,a bgagﬁp7 s’
= Juz2). ®)
beB
O
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C Additional Results: Robust Policy Improvement

In the previous section, we identified that the worst-case kernel can be expressed as a rank-one
perturbation of the nominal kernel. Leveraging this structure, we developed a method to efficiently
evaluate the robust policy. This method also computes the perturbation (8k ") and, consequently, the
worst-case kernel.

Using the computed worst kernel, we can directly evaluate the gradient with respect to the policy.
This enables policy improvement through gradient ascent, as detailed in [32]:

:} : ©)

Tnt1 = Proj | mn + Ve Jp

where P, is the worst-case kernel estimate for the policy m;. This method guarantees global
convergence with an iteration complexity of O(e~%) [32].

Alternatively, the policy gradient can be derived for the approximate perturbation, as shown in the
result below.

Policy Gradient Theorem Once the worst kernel for a policy is computed using Algorithm |1} the
policy gradient can be used to update the policy. Alternatively, the following policy gradient theorem
provides a direct way to compute the gradient:

Lemma C.1 (Approximate Policy Gradient Theorem). Given a transition kernel P = P — Bk, the
return is expressed as:

JZ(k,v%)
T T B YR
Jpi=J] —y—"——7-——,
L B W)
and the gradient is given by:
kTom J”(kTD”) J’T(kTv’T)(kTD”)

7rJ7T — dﬂ' T R dTr T B m 2B 71'.

Valp ° Gk 71+'ykTvg ° @5 71+’ykTvg @r+7 (1+7kTvg)2 ° @5

Proof. The expression for the return follows directly from the inverse matrix theorem, as shown in
[L7]. The gradient is then derived using the policy gradient theorem [28] in the format used in [18].

kTDﬂ'Rw ‘uTDﬁﬂ'
Vadp=d o Qf — vy dl 0 QF — v =T o QF,
P OQR fyl_i_,ykTD‘n'Bﬂ' HOQB ryl_f_ﬂykTDTrﬁﬂ' kOQR
T T T DT PT
,uTDATETDTRT
d
v (1 + kT D7 )2 k@5,
kTvﬂ— JTI'(kTDﬂ') J‘n-(kTvﬂ-)(k,TDTr)
=dT T o R dr T B ™ 2B T
OQR 71+7kTvg OQB 71+,yk‘|'vg OQR+7 (1+7kvaﬁr)2 oQﬁ
O

The main advantage of this policy gradient formulation is that terms like J3, v, QF, along with the

nominal terms J3, v%, Q%, can be efficiently computed using Bellman operators and bootstrapping
techniques.

Interpretation of Gradient Terms The approximate policy gradient reveals the interplay of various
components in robust MDPs:

* The first term, d™ o Q7, represents the nominal policy gradient, emphasizing actions with
high rewards.

T,
e The second term, V%d’f o QF, discourages policies that place significant weight on
B

high-uncertainty Q-values, scaled by the vulnerability to adversarial actions.

* The last two terms, while more complex to interpret, further reflect the intricate dynamics of
robust MDPs.
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Robust Policy Gradient Algorithm The robust policy gradient algorithm (Algorithm[4) converges
to an e-optimal policy within O(e~®) iterations.
Theorem C.2. The robust policy gradient method from [32)] achieves global convergence within

O(e~%) iterations for the policy gradient step. Algorithmcomputes the worst-case kernel in O(n)
iterations at step n. The total iteration complexity for global optimality is O(e™®).

Algorithm ] employs a double-loop structure: the inner loop (Algorithm[I)) computes the worst-case
kernel for a fixed policy, while the outer loop updates the policy using the derived gradient. An
actor-critic style alternative, where the kernel and policy are updated simultaneously, is left for future
work.

Algorithm 4 Robust Policy Gradient Algorithm
1: while not converged: n =n + 1 do
2:  Compute the worst-case kernel P = P — 3k for policy 7 using Algorithmwith tolerance
€e=n".
3:  Compute the policy gradient G using Lemma|C.1]

®

Update policy: 7 < proj [ﬂ + anG] .
5: end while

Extension to KL Entropy Uncertainty Sets. For the KL uncertainty case, the worst kernel is
given by PZZ{;& = (I —yP™A™)~! where A™ is a diagonal matrix [30]. If we can invert this matrix,
then its possible to build upon it. We leave this for future work.

D Helper Results

Proposition D.1 (Sherman—Morrison Formula [4].). If A € R™*"™ invertible matrix, and u,v € R",
then the matrix A + wv™ is invertible if and only if 1 + vT A= u # 0:

AT A1
A Dl o — —
(4+uv7) 1+vTA 1y
Proposition D.2.
7q(v) := minllv —wlfly, = |\k\|p§£{lﬂc:0 K
Proof. Follows directly from Lemma J.1 of [19]]. O
Proposition D.3. For any vector ||z|| = 1, we have

max{| Proji ()] | Projey (<o)} > —=
where RY} is positive quadrant.
Proof. For any vector ||z|| = 1, we have
4[| + 2 ||* = [|2]|* = 1.
And Projgn (z) = x4 and Projgy (—2) = x—, the rest follows. O
Proposition D.4. For ||k||, and k71 = 0, we have
1+ ~kT (I —yP™)~ 1™ >0,
forallm, ||b||l, < 5,b>0.

Proof. This is true from the Sherman—Morrison formula as Jl’;_ kT is finite, hence the denominator
must be strictly greater than zero. O
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E Dual Formulation
Lemma E.1 (Sa-rectangular Duality). For the sa-rectangular uncertainty set U = Z/{;“(ﬁ) with
radius vector 3 € RS * A the robust return can be written as the following optimization problem,

MTD'n'ﬁﬂ'kTDﬂ'Rw
max
Ikll,=1,1Tk=0 1+ ~vkTD7g™

9

Jip=J" =~
where BT =3 (als)Bsa-

Proof. From [17]], we know that the worst kernel P[;m( 8) for the uncertainty set /;%(/3) is a rank
one-perturbation of P. In other words,

for some k € RS satisfying ||k||, = 1 and 17k = 0. This implies that it is enough to look for
rank-one perturbations of the nominal kernel P in order to find the robust return. That is,

Jsargy = min  Jp
U peuzap) T
= R min Jp, (looking only at rank one perturbations)
P=P+BkT,||k|,=1,1T k=0
= min pI DL R™
P=P4 kT ,||k|l,=1,1Tk=0
= min pt(I —~yP™)"'R™

P=P+BkT,|k|,=1,1Tk=0

_ : T _ T LaNE
_Hkag}?Tk:O'u (I V(P + 57k ))

1
RT

- IuTDﬂ'ﬁwkTDwa
X
Tk, 20 k=0 1 + vkT D7 BT

T

O

Lemma E.2 (S-rectangular Duality). ForU = Uy, the robust return can be written as the following
optimization problem,
(dr, pm)(k, v)

Jyp=J" - m ,
u 7 1811y <ellkll,<1,(1,k)=0 1 4+ ~vkT D7 (™

where D™ = (I — vP™)~1, d™ = uT D™ and v™ = D™ R™.

Proof.

J7 = min J5

us P
2B P (P E=5E 17 Pau=1

= min min Jp
>0 BLa<BE |Psa—(P)sallp=Bsa;1T Psa=1

= min J),

Z/{VS(I,

5, pra<pr P

. |: g uTDﬂ'/Bﬂ'k,TDﬂRﬂ‘ :|
= min — max
Y. BLa<BY T, 2 k=0 1+ kT D7 B

MTDT{'/BTI’]CTDTI'RTF
max

= Jﬂ' —
7za B <P Ikl ,=1,17k=0 1+ kT D™3™
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The above result formulates the robust return in terms of nominal values only for the first time. This
implies the robust objective can be rewritten in the dual form as :

Js = max min TDR™ - TDb“M

Uy = DD rercwes LH T 1+ kT Db™
where D = {(I —vPf) ' |n e}, K={keRS | |k|, =1,1Tk=0},and B= {b € RS*4 |
[[bs]lp < Bs}-

Comparing the penalty term from the previous results in [19, [17], the dual formulation can be written
as

J7 maxmin | uf DR™ Tpp™ KT DRT ]
. = max - _—
Uy = Debier LH TH 14+ ~kTDp™

where 87 = |74 0s.

Surprisingly, the optimization here looks as if it is optimized for the same value of 57 =
maxy~ gr <gr >, 7(als)Bsa = Bs||7msl|q for all values of feasible k. This suggest that the ad-
versary payoff is maximized by maximizing the expected uncertainty in the trajectories.

Lemma E.3 (Non-rectangular Duality). For U = U,, the robust return can be written as the following
optimization problem

I =JT - min AR LAAL 7
“ 18l <e.lIklp<1.(LE)=0 1+ y(k,vF

where D™ = (I —yP™)~1, d™ = uT D™ and v™ = D™R".

Proof. Now,

JT o= min J7

P
() popip=e 1T p.=1
= min min Jp
Hﬁ\lﬁéf" ”Psaf(P)sa p:BSaalTPsazl

= min Jsa
IglE<er ~H5" ()

. [ gm uTDTFﬁTI’kTD?TRTF
= min — max
18llp<e v Ikll,=1,17k=0 1 +~ykTD™j3™

’uTDwB'n'k.TD'n'Rﬂ-
max
K 18llp<ellkllp=1,1Tk=0 1+ kT D7 3™

T

O

The above result formulates the robust return in terms of nominal values only, for the first time.
Comparing with the existing result, we get a very interesting relation:

T,
kT

= — 3 10
|\k|\pr:n1&,l1XTk:o 1+ ykTvg (10)

oq(vgy)

where v = (I — yP™) " 127"

The LHS is a robust quantity (variance of the robust return) which is express in the terms of purely
nominal quantities. This is the simplest of all such relations. We believe that the above relation can
help in theoretical derivations and experiment design but not exactly sure how yet.

E.1 Intuition on the Adversary

sa-rectangular case. We know that the o (v]}) represents the penalty for robustness, expressed as:

Ji = J7 = d", BT)oq(vy)-
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Understanding how o (vf}) arises provides insight into the behavior of the adversary as described in
(T0). Furthermore, if P = P — Bk”, then:
kT,

JIT; =J" = <dﬂaﬁw>m'
B

Here, k represents the direction in which the adversary discourages perturbations in the kernel. The
optimal direction &k chosen by the adversary maximizes the objective in (T0).

s-rectangular uncertainty sets. Now, we turn our attention to the coupled uncertainty case.
Lemma E4. ForU = U,, the robust return can be formulated as the following optimization problem:
(d”, B7)(k, v")
gl m e
IBllp<e.llkllp<1,(1,k)=0 1 4 vk " D737
where D™ = (I —yP™)~1, d™ = uT D™, and v™ = D" R™.

I =J" —

Proof. The proof follows similarly to the sa-rectangular case and is detailed in the appendix. The
key additional step involves decomposing the s-rectangular uncertainty set U, into a union of
sa-rectangular uncertainty sets U,". O

By comparing the penalty term from previous results in [[19}17], we obtain:

(d7B7) (kT v)
dﬂ- s T = T T o~ A .
zs: (o)melloated) 5. B2 <8IMly =117 k=0 1+ KT D7 5™

This relation is interesting as it connects the robust term on the left-hand side (LHS) with the
non-robust terms on the right-hand side (RHS).

Interestingly, the optimization here suggests that the adversary maximizes the expected uncertainty
in trajectories, as the same value of 87 = maxs~ gr <gr >, 7(als)Bsa = Bs||7ms|lq appears for all
feasible k.

F Robust Policy Evaluation

Proposition F.1. For \* = max,cc % , F()\) == maxgeco ( g(z) — M\h(x) ) , we have
FOF) =0and f(\) >0 <= \* > A,

Proof. o If F(A\) > 0 then
Jr st g(z)—Ah(z) >0
g(x)
.t. >
= dr st hw) = A, (as h(z) > 0 for all )
g(z)
> A
= ) =

o If F(A\) <0 then
g(z) — Ah(z) <0, Ve e C

= ——= < A\, vz € C, (as h(z) > 0)

— max g(x)

<A
zeC h(x) —

o If F'(A\) = 0 then A = max,ec % implied from the above two items.
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625 Lemma F.2. The robust return can be expressed as

Ji, =7 =A%,
626 where the penalty \* is a fixed point of F(\). Furthermore, \* can be found via binary
627 search as F(X) > X if and only if A > X*, where F(\) = maxpcp |[E7b||q, E™ = ’y([ -
@ 15°)[D*R*uT DT~ AD"| B, and H™R := R".

620 Proof. We want to evaluate the following

Ve ma kTDTI’RFNTDﬂbTF
T ebaec 14 ~kT Db

630 This is of the form max, % . Then according to Proposition we have f(A*) =0and f(A\) >0

631 if and only if \* > A, where

— T pmpm T
FQA) = poax [y ATVT — N(1 4 vk D™b™)]

= max k'C™b— )\,
beB,kEK

117
= max k' (I - ) C™b — X, (from Proposition[G.2)

beB, || k||, <1 S
a1 222 €7, — A, (Holder's inequality)
= Igleaé( S q s (0] ersmequaly

632 where A" = DRy D™ C™ =~ ( AT — D7 ) HT™.
633 O

s« G Evaluation of max, , Ay

635 Algorithm[I]requires an oracle access to

max kT Ab,
161l <8Ik, <1,1T k=0

636 where k € RS, b € RS and p > 1. The above is a bilinear problem, which is NP-Hard, but we have
637 a very useful structure on domain set (L, bounded set).

s Proposition G.1. [Orthogonality Equivalence]Let K = {k | ||k|l, < 1,17k = 0}, and W =

e0 {kT(I— %) | ||k]l, < 1}. Then we have,

K=W.

ss0 Proof. Now let k € K, then kT (I — %) = k' € W. Now the other direction, let k € W,
641 then (kT(IT - %),U = 0 by construction and ||kT (I — %)Hp < [|kll, < 1, this implies
sz KT(I— 1) ek O

643 The above result implies that

ETAb= max kTAb

max
o]l o <Bsllkll,<1,1Tk=0 [[o]l,<B,keC
= max k" Ab, (as K = W from above Proposition
Ibll, <8 keW P G.1
LT
= max I — —)Ab, (def. of W).
[[o]lp <B, Ikl =1 S
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Further, we have equivalence of optimizers

T * 11T * * 7% T 11T
arg max k Ab:{ O, (I ——)k)| (" k*)e argmax k (I— —)Ab}
lkll,<1,17k=0,|b]l, <8 S I&llp=1.lIbll,<B S
Proposition G.2. The solving of
T . . T 117
max k* Ab,  is equivalent to max k' (I ——)Ab.
Ikl <1,17 k=0, |||, <p l&lo=L,lIbll,<p S
Proof. Directly follows from the proposition above. O

G.1 Eigenvalue Approach (Spectral Methods)

This section focus on deriving a spectral method for solving the optimization problem:

max  ||Ax|s,
lz]|2<1,2>0

where A € R"*", Compute AT A. We perform eigenvalue decomposition of AT A:

ATA=VAVT,

where A = diag(A1, A2, ..., A,) (eigenvalues) and V' = [v1,v9,...,v,] (eigenvectors). Further,
WLOG

vt

AL >N, sand  ||v+4]] > [Ju—| i, u; = ” 1+||

v

where v;" = max(v;,0), v = —min(v;,0) denotes positive and negative parts respectively.
e Zero Order Solution:
fo = [[Aw].

¢ First order solution:
fi= m;fix”AuiH.

¢ Second order solution:

tv; + (1 —t)v;)*
f2 = max max ||A (fvs + ( )v;) -
ij tef0,1]  ||(tv; + (1 —t)vy)*||

¢ Third order solution:

f3 = max max | (rvi & sv; + toy)* I
ijk s, €]0,1)r4s+t=1"  ||(rv; + sv; + tog) ]|

Upper bounds on max||z|,<1,z+0 [l Az||2:

¢ Zero order upper bound: \;

¢ First order upper bound: ,/Zi AiCi, where C =
(vi,ui>2, if E;:1<vi,uz> < 1
i—1 . 7
1— Zj (i ui)?, if Ejﬂ(vi,m) >1 Z (vz,uz> <1.
0 otherwise

Lemma G.3 (Zero Order Approximation). The highest projected eigenvector u = is at least a

lloy" |l
half-good solution, i.e.,
A1

1
Au = > 2,
lAulf> 5= 5 max s
Further, if A is rank-one then it is exact, i.e.,
[Aull2 = max || Az||2-

lzll2<1,2>0
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Proof. We have |jv] || > = 5 from Propos1t10n Letu = % =), oiv;, where 0; = (u,v;),
we have

uT AT Ay = Z oiV;) Z ;U0 Z oiV;)

= Z )\iai , (as v; are orthogonal)

:)\10%+Z)\i02-2,
i#1
> Mo+ Aot (ashg > Ag,e0)
i#1
Mo? 4+ A (1 = 0?), (as ZO’? =

1,
o

v

1
5()‘1 + >\n)a (as o1 >

Rest follows.

O
Proposition G.4 (First Order is Better than the First).
| Au;l|3 > max)\ 07 > %
where j € arg max; \;(v;, u;) and o; = (v;, u;) > %
Proof. Letuj = HEZ’;L‘ = 3", 0lv;, where o) = (u;,v;), we have
TATAu] ZO’ v; Z)\ VV; Zcr v;)
= Z Ai( O'Z- , (as v; are orthogonal),
> Aj(09)%,
= max Ni(0:)?, (by definition of 7).
Rest follows.
O
Proposition G.5. Second order solution fy = max; j max,co 1 ||A%H is exactly

equal 10 MaX ||, <120 Az||2 when A is rank two.

This approach is computationally efficient but may not always yield the exact solution, especially
when multiple eigenvectors significantly contribute to the optimal .

The intuition behind this approach is that the matrix AT A can be decomposed into its eigenvalues
and eigenvectors, representing the principal directions of the transformation applied by A. The
eigenvector corresponding to the largest eigenvalue provides the direction of maximum scaling for
A. However, since the solution is constrained to the nonnegative orthant (z > 0), we adjust the
eigenvectors by only considering their positive parts. The method identifies an approximate solution
u; by selecting and normalizing the positive part of the eigenvector that contributes the most to the
objective function.
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Algorithm 5 Second Order Spectral Approximation for max|,|,<1,2>0 || Az

1: Normalize the positive part:

_ i
lv;f

(173 .
2

2: Compute scores for all eigenvectors:
Scorei = )\7 <’Ui7 U1>

3: Select j = argmax; Score;.
4: Output: Approximate solution u; = v;f / ||vj+ ||2 and approximate maximum value || Aw;||2.

Notes

» This approach is effective when the largest eigenvalue s; dominates the others. It approxi-
mates the solution by leveraging the spectral properties of AT A.

* The result might not be exact if multiple eigenvalues contribute significantly, as the approach
considers only the contribution of individual eigenvectors.

G.2 Experimental Verification

This section describes three different methods for solving the optimization problem:
[ Az||2,

max
lzll2<1, 220

where A € R™"*", The methods are compared in terms of their computational efficiency and the
quality of their solutions.

G.2.1 Brute Force Random Search

The brute force method randomly samples vectors x € R™ from the nonnegative orthant, normalizes
them to satisfy ||z||2 = 1, and evaluates || Ax||2 for each sampled vector. The steps are as follows:

1. Generate N random vectors x; > 0,2 =1,...,N.
2. Normalize each vector to unit norm: z; < z;/||z;||2-

3. Compute || Ax;||2 for each vector and select the maximum value.

This method is simple to implement but computationally expensive, as it evaluates A for a large
number of randomly generated vectors. See figure[5]

G.2.2 Numerical Optimization (Scipy Minimize)

This approach uses numerical optimization to directly solve the problem:

[AZ]5.

max
lzll2<1, 220

The optimization problem is formulated as:
min —||Az||2, subjectto ||z]2 < land z > 0.
Steps include:

1. Define the objective function as —|| Az ||s.
2. Impose constraints: |||z < 1and 2 > 0.

3. Solve the problem using scipy.optimize.minimize, with an initial guess x.

This method provides the exact solution but is computationally more expensive than the spectral
method.
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Brute Force Random Kernel Penalty vs Time

.......................................................................................................... Optimal Value
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Figure 5: Random Kernel Guess takes exponentially long time to converge. While Algorithm 1 only
took 0.14 sec to find the optimal value.

G.3 Comparison Metrics
The three methods are compared based on:
* Optimality: The maximum value ||Az|| achieved by each method.
» Time Efficiency: The computational time required by each method.
G.4 Results and Observations
The following plots compare the performance of the three methods:

* Optimality Plot: Shows that the maximum value obtained with scipy.minimize is slightly
better than our spectral method, while random search performs poorly.

* Time Efficiency Plot: Illustrates the that scipy.minimize scales much poorly with the
dimension, while our spectral method is way faster than both methods.

| Optimal values attained | Time taken \
n | Random | Spectral | minimize | Random | Spectral | minimize
10 4.10 4.45 4.46 0.12 0.0007 0.005
20 5.14 6.71 6.82 0.19 0.0003 0.01
50 9.23 11.59 11.93 0.25 0.0007 0.03
100 11.95 16.44 17.19 0.31 0.001 0.28
200 15.74 22.1 23.68 0.44 0.004 2.1
300 19.32 28.58 29.73 0.57 0.012 8.19
500 24.46 36.56 38.47 0.83 0.209 43.49
1000 33.91 51.64 54.25 1.38 0.171 313.6

Table 3: Attained Values and Time Taken.

G.4.1 Parameters of Experiments

The experiments were conducted to evaluate the performance of three methods—brute force random
search, eigenvalue heuristic, and numerical optimization—on solving the problem:

max | Az]|2.
|z]|2<1,2>0
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Optimality
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Figure 6: Comparison of optimality across methods.
Time
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Figure 7: Comparison of computational time across methods

722 State Space Cardinality and Random matrix Generation

723 * State Space Cardinality (n): The dimension of the problem, denoted by 7, represents the
724 state space cardinality. In the experiments, n varied from 1 to 300 to analyze the scalability
725 of the methods.
726 * Matrix Generation: The matrix A € R™*" was generated as a random matrix with entries
727 sampled from a standard normal distribution:

Aij ~N(0,1), 4,5=1,...,n
728 The same random seed (seed = 42) was used across all runs to ensure reproducibility.
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* 10000 random vectors x were generated for Brute Search Method.

Process of matrix Evaluation The goal of the experiments is to maximize || Ax||2 under the
constraints ||z||2 < 1 and > 0. The matrix A is evaluated by:

1. Generating random vectors x € R™ for the brute force method.

2. Computing the spectral decomposition of AT A for the eigenvalue heuristic.

3. Defining and solving a constrained optimization problem for the numerical optimization

method.

The results, including the optimal values and computational times, are recorded for each method.

Evaluation Metrics The performance of the methods was assessed using the following metrics:

* Optimality: The maximum value ||Az|| obtained by each method.
» Computational Efficiency: The time taken by each method to compute the result.
* Scalability: The behavior of the methods as n increases.

This systematic evaluation ensures a fair comparison of the three approaches across varying problem
sizes.

Hardware and Software Specifications The experiments were conducted on the following hard-
ware and software setup:

¢ Model Name: MacBook Pro (2023 model).

¢ Model Identifier: Mac14,7.

* Chip: Apple M2 with 8 cores (4 performance and 4 efficiency cores).

* Memory: 16 GB Unified Memory.

* Operating System: macOS Ventura.

* Programming Language: Python 3.9.

¢ Libraries Used:

— numpy for numerical computations.

scipy for numerical optimization.
matplotlib for generating plots.

time for recording computational times.
The experiments were designed to ensure reproducibility by fixing the random seed (seed = 42).

Computational times and results are specific to the above hardware configuration and may vary on
different systems.

H Convexity of D

H.1 MDP Configuration

We define an MDP with the following parameters:
* State space size: S = 3
 Action space size: A = 2
* Discount factor: v = 0.9

e Random kernel P, random reward R, seed 42.

» Compute the set D = { D™ H7|w} with 10 millions random policies 7

27



767

768
769

770

771
772

773

774

775
776

77

H.2 Dimensionality Reduction via PCA

Given the high-dimensional nature of the D™ H™ representations, we apply Principal Component
Analysis (PCA) to extract meaningful structure.

* We retain the top 10 components to capture the dominant variations in the dataset.

* The explained variance ratio is visualized to assess how much information each component
retains.

* 2D projections of the first few principal components are generated for visualization.

13 H i = = T

Figure 8: 2D PCA projections of the first 5 components.

H.3 Random Linear Projections

To further explore the geometry of the occupancy measure set, we apply random linear projections
of the high-dimensional data:

* 2D Random Projections: The data is projected onto randomly chosen 2D subspaces.
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Figure 9: 2D Random Projections of the Data.

I Experimental Evaluation: Single MDP Comparison

To assess the performance of our proposed binary search algorithm for robust policy evaluation
under Ly-norm bounded uncertainty, we conduct a series of experiments comparing it against
existing methods on fixed Markov Decision Process (MDP) instances. The primary objective is to
evaluate convergence speed, accuracy relative to an estimated worst-case value, and consistency
across different problem configurations. More details of these experiments along with others can
be found in the appendix, and codes are available at https://anonymous.4open.science/r/
Kernel-Robust-RL-B742/

I.1 Experimental Setup
Algorithms Compared We evaluate the following algorithms:

1. Our Method: The binary search algorithm presented in this work, which leverages a
spectral method for computing the key bisection function F'(A).

2. CPI (Frank-Wolfe): The Conservative Policy Iteration algorithm adapted from [20] for
general robust policy evaluation.

3. SA-Rectangular L, VI: Robust Value Iteration for (s,a)-rectangular Lo uncertainty, a
common baseline representing a structured relaxation.

4. S-Rectangular L, VI: Robust Value Iteration for (s)-rectangular Ly uncertainty, another
structured relaxation.

Benchmark Generation For each MDP instance and policy, we establish an empirical benchmark
for the worst-case robust value. This is achieved by sampling 1,000 transition kernels from the Lo
ball of radius 3 centered at the nominal kernel Pyomina. Each sampled kernel is projected to ensure it
remains a valid stochastic matrix and stays within the Lo ball. The policy 7 is evaluated for each
sampled kernel, and the minimum value obtained across these samples, V2un . serves as our
reference robust value.

MDP and Policy Configuration Experiments are conducted on randomly generated MDPs. For
each trial, a nominal transition kernel, a reward function, and a uniform initial state distribution p are
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generated. A fixed, randomly generated stochastic policy 7 is then used for robust policy evaluation
by all algorithms.

Experimental Configurations Two main sets of single MDP comparisons are performed:

1. Varying State Space (S): S € {10, 50,100,200}, with actions A = 10 and uncertainty
radius 5 = 0.01.

2. Varying Uncertainty Radius (8): 8 € {0.005,0.01,0.05,0.1}, with state space .S = 100
and actions A = 10.

The discount factor is ¥ = 0.9. Algorithms are run until convergence (tolerance of 107%) or a
maximum iteration limit (100).

1.2 Results and Discussion

Figures [T0] and [IT] present the convergence behavior of the evaluated algorithms on representative
MDP instances for the varying state space and varying uncertainty radius configurations, respectively.
Each subplot shows the estimated robust value versus algorithm iterations. The horizontal dashed

line indicates Vi2in .. An algorithm’s final point is marked with a star (x) if its estimated robust

value converges to within 107 of Vmin .

Figure 10: Convergence of robust policy evaluation algorithms for varying state space sizes (.5).
Algorithms whose final value is within 10~° of the benchmark are marked with a star (x)

Observations

* Convergence Speed and Accuracy of Our Method: Across all tested configurations, Our
Method consistently demonstrates superior performance. It generally converges in fewer
iterations and achieves a final robust value remarkably close to Vit .~ as frequently
indicated by the star marker. This suggests efficient and accurate identification of the robust

penalty \*.

¢ CPI Performance: The CPI algorithm typically converges but often settles at a value
slightly higher (less pessimistic) than Vo3 .. While providing a robust estimate, its
subproblem, in the version tested, explores extreme points of the set of all stochastic kernels,

which may not always precisely align with the worst-case kernel strictly within the Lo ball.

* Rectangular Relaxations: Both sa-rectangular and s-rectangular Ly VI methods consis-
tently converge to robust values significantly lower than those found by Our Method, CPI,
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Figure 11: Convergence of robust policy evaluation algorithms for varying uncertainty radius (53).
Algorithms whose final value is within 10~ of the benchmark are marked with a star (x)

831 and Vuin . This highlights the conservatism inherent in rectangular relaxations when
832 dealing with non-rectangular uncertainty.

833 * Consistency Across Setups: The advantages of Our Method in terms of faster and more ac-
834 curate convergence are maintained robustly across different state space sizes and uncertainty
835 radius.
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