
Backdoor Attack on Unpaired Medical Image-Text
Foundation Models: A Pilot Study on MedCLIP

Ruinan Jin∗,Chun-Yin Huang∗,Chenyu You‡, and Xiaoxiao Li∗
∗University of British Columbia

†Yale University

Abstract—In recent years, foundation models (FMs) have
solidified their role as cornerstone advancements in the deep
learning domain. By extracting intricate patterns from vast
datasets, these models consistently achieve state-of-the-art results
across a spectrum of downstream tasks, all without necessitating
extensive computational resources [1]. Notably, MedCLIP [2],
a vision-language contrastive learning-based medical FM, has
been designed using unpaired image-text training. While the
medical domain has often adopted unpaired training to amplify
data [3], the exploration of potential security concerns linked to
this approach hasn’t kept pace with its practical usage. Notably,
the augmentation capabilities inherent in unpaired training also
indicate that minor label discrepancies can result in significant
model deviations. In this study, we frame this label discrepancy
as a backdoor attack problem. We further analyze its impact on
medical FMs throughout the FM supply chain. Our evaluation
primarily revolves around MedCLIP, emblematic of medical FM
employing the unpaired strategy. We begin with an exploration
of vulnerabilities in MedCLIP stemming from unpaired image-
text matching, termed BadMatch. BadMatch is achieved using
a modest set of wrongly labeled data. Subsequently, we dis-
rupt MedCLIP’s contrastive learning through BadDist-assisted
BadMatch by introducing a Bad-Distance between the embed-
dings of clean and poisoned data. Intriguingly, when BadMatch
and BadDist are combined, a slight 0.05 percent of misaligned
image-text data can yield a staggering 99 percent attack success
rate, all the while maintaining MedCLIP’s efficacy on untainted
data. Additionally, combined with BadMatch and BadDist, the
attacking pipeline consistently fends off backdoor assaults across
diverse model designs, datasets, and triggers. Also, our findings
reveal that current defense strategies are insufficient in detect-
ing these latent threats in medical FMs’ supply chains. Code
and pre-trained models can be found at https://github.com/ubc-
tea/Backdoor Multimodal Foundation Model.

Index Terms—Backdoor Attack, Foundation Models, Vision-
Text Models. Contrastive Learning

I. INTRODUCTION

Recent advancements in deep learning have been signifi-
cantly influenced by large foundation models such as GPT [4],
BERT [5], and CLIP [6]. These sophisticated models har-
ness vast datasets to discern intricate patterns, consistently
delivering state-of-the-art results across diverse downstream
tasks, even without the reliance on high-end computational
resources [1].

In the medical domain, most image datasets primarily offer
diagnostic labels rather than raw reports. Yet, many applica-
tions require paired images and reports, resulting in a sig-
nificant number of medical datasets—containing only images
or only text—remaining underutilized [2]. Training state-of-
the-art FMs such as MedCLIP, leverages unpaired training

strategies to tackle this problem. In the realm of vision-
language tasks, this means a text description of, for instance,
disease “A” can be aligned with all images representing that
disease. This approach offers flexibility: rather than limiting an
image of disease “A” to its original associated text, it can be
coupled with any text description that is semantically related
to disease A, thus effectively expanding the dataset’s breadth.

The use of unpaired training has seen a notable rise in recent
times [2], [3], [7]–[9]. However, its implications in terms of
privacy and security have not been explored as thoroughly.
The ability of unpaired training to augment data brings to
light a crucial concern: even minor discrepancies in labeling
can result in significant deviations in model behavior. This
potential risk is magnified when considering the prevalence
of noisy labels in many medical datasets [10]. Consider, for
example, a positively labeled image that is mistakenly paired
with negative text descriptors—such an error can drastically
alter the course of model training. With this context in mind,
our primary objective in this research is to examine the
vulnerability of mismatched data in the “unpaired” training
paradigm in MedCLIP. This exploration of mislabeled data
naturally leads us to consider its relation to backdoor attacks,
a prominent type of attack intrinsically tied to label manipula-
tion. We form this problem as backdoor attack and investigate
it under the unpaired training.

Existing backdoor attack literature predominantly focuses
on supervised classification tasks, where specific triggers are
embedded within images or texts during the training [11].
Such triggers, often manifesting as patches conspicuously
different from their adjacent pixels, are naturally present in
many medical images, as underscored by previous backdoor
medical research [12]. Fig 1 (a) showcases some backdoor
images from ImageNet with patch-based triggers. In column
(a), the bottom image features a white trigger set against
a black backdrop, while the one above employs a trigger
fashioned using a method outlined in [13]. Columns (b) and
(c) of Fig 1 display standard medical images sourced from
the KVASIR [14] and Chest X-ray datasets [15]. Evidently,
these raw medical images exhibit intrinsic patch-like triggers.
Furthermore, medical images often come with noise-laden
labels [10]. These suggest that many medical datasets are
intrinsically “poisoned”, laying the ground for untargeted
backdoor attacks. At inference time, the attackers then activate
the trigger, causing the Deep Neural Network (DNN) to predict
a designated target class rather than the actual one.

https://github.com/ubc-tea/Backdoor_Multimodal_Foundation_Model
https://github.com/ubc-tea/Backdoor_Multimodal_Foundation_Model
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Fig. 1: Visualization of artificial trigger in ImageNet and naive
trigger-alike medical images. The red arrow points to those
trigger-alike patterns in (a) classic backdoor attack; (b) images
with trigger-alike patterns from naive KVASIR dataset [14]
and (c) Chest X-ray from COVIDX dataset [15]. Combined
with the observation that medical datasets often come with
noisy labels [10], a significant portion of medical images might
inadvertently act as ”poisoned” inputs.

With the rapid evolution of FMs in recent years, there’s
an emerging focus on exploring backdoor attacks within the
context of FMs’ supply chain [16]. The supply chain delineates
the lifecycle of FMs, typically encompassing stages such as
Pre-training, Release, and Deployment to downstream tasks,
as illustrated in Fig 2. A comprehensive review of both the
supply chain and backdoor attacks is provided in Sec.II-A
and II-B. Recent research indicates a vulnerability in FMs,
particularly at their release stage [16]. To illustrate, a backdoor
attacker might clandestinely operate during the Release phase:
they download the pre-trained model, execute their attack
algorithm on it, and then upload the manipulated model to
public repositories like Hugging Face as shown in Fig 2.
Such attack strategies have been explored for various pre-
trained models. For instance, BadEncoder, proposed by [17],
seeks to compromise the pre-trained encoder within contrastive
learning. Similarly, [18] pioneers an approach to undermine
pre-trained diffusion models. Yet, the exploration of backdoor
attacks in medical FMs remains relatively untouched. Thus,
our secondary objective is to explore how to amplify the
backdoor attack with unpaired training in FM supply chain.

In alignment with our dual research objectives, we initially
investigate the vulnerability arising from mismatched data
within MedCLIP’s unpaired training, which we refer to as
BadMatch. Subsequently, we introduce a malicious optimiza-
tion algorithm, termed BadDist, designed to intensify the
backdoor attack with BadMatch.

Our contribution includes the following four folds:
1) To our knowledge, this is the first research effort delving

into the vulnerabilities of the unpaired training strategy
within the medical field. We term this vulnerability
BadMatch.

2) We introduce a pioneering optimization method,
BadDist, designed to enhance the impact of backdoor
attacks in medical contrastive FMs within the FM supply
chain.

3) Our work provides an exhaustive analysis of backdoor
attacks within the model supply chain, extending its
implications to encompass medical FMs.

II. PRELIMINARIES

A. Foundation Model’s Supply Chain

The supply chain for FMs, illustrated in Fig 2, maps the
lifecycle of FMs from their inception to deployment [16].
Predominant literature categorizes the supply chain into three
distinct phases: Pre-train, Release, and Downstream deploy-
ment [16].

During the Pre-train phase, the model is inundated with
copious amounts of diverse data. The objective here is to
assimilate general knowledge and discern vision or linguistic
patterns. Nonetheless, models at this juncture often grapple
with challenges like over-generalization and overfitting to
the broad dataset. This necessitates their fine-tuning with
specialized data, transitioning us to the Release phase.

The Release phase is pivotal for machine learning develop-
ers. Here, they procure the pre-trained FM and adapt it to their
specific requirements. For example, clinical researchers might
fine-tune BERT using clinical notes, optimizing the model to
their unique domain. Post refinement, these tailored FMs are
typically disseminated through renowned platforms such as
Hugging Face and GitHub.

The final stage of this process is the Downstream Deploy-
ment stage. At this point, end-users acquire the model released
post the Release phase. They may opt for additional, task-
specific fine-tuning while preserving the foundational model
structure. For instance, modifications might be restricted to
an MLP layer for classification purposes. Thereafter, the
FM is mobilized for designated assignments, including but
not limited to zero-shot classification, image captioning, and
feature extraction

B. Backdoor attack in model supply chain

Classical backdoor attacks in machine learning involve a
malicious manipulation of a model’s training data, where a
subtle pattern or trigger is inserted, allowing an adversary to
control the model’s behavior when the trigger is encountered
during inference. The examples of triggers are shown in the
Fig 1 in Sec. I. This covert manipulation can compromise
the model’s security and integrity, potentially leading to unin-
tended and harmful outcomes.

As first introduced in Sec. I, with the growing popularity
of FM, a new concept of backdoor attack has been induced
to compromise the supply chain of the pre-trained FMs more
recently. Let’s walk through the stages of supply chain in Fig 2
to explore the potential of risk in each stage.

Baby FMs are trained with tons of diverse data to capture
the general knowledge in the Pre-train stage. The model in
this stage is usually developed by well-known companies, e.g.,
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Fig. 2: The FMs’ supply chain consists of three stages: Pre-train, Release, and Deployment. During the Release stage, attackers
might exploit vulnerabilities by executing malicious algorithms, influencing the subsequent Deployment phase.

OpenAI and Google, and is unlikely to be compromised in the
training process. The only possibility for the backdoor attack is
through traditional data poisoning, where certain backdoored
data with reversed labels are added silently into the training
set. However, given the large amount of training data collected
from various sources and the certified protocol in those well-
known agencies, such data poisoning may be challenging in
practice.

Upon completion of the Pre-train stage, the baby FMs grow
to the Evolving FMs in Release stage. In this stage, where
the FMs can be fine-tuned by various third parties, such as
researchers or machine learning developers whose integrity
cannot be assured. These refined models are subsequently
made available on public platforms such as Hugging Face
and Github. Within this release stage of the supply chain,
adversaries could discreetly tamper with the model using their
covert malicious algorithms and any chosen training data. Ow-
ing to the clandestine nature of hidden backdoor attacks, such
malicious DNN may not be immediately exposed, perpetuating
their influence throughout the subsequent stages of the supply
chain.

The concluding phase is the Deployment stage. Here, stake-
holders who utilize the FMs acquire the evolved model subse-
quent to the Release stage, verify its integrity, make necessary
adjustments, and then implement it for diverse downstream
applications. Since the entities working with the FM stand to
gain directly from its downstream efficacy, the likelihood of a
deliberate attack during this phase remains minimal.

To recap, within the prevailing supply chain of FMs, these
FMs are particularly vulnerable to being undermined by back-
door adversaries. These attackers can exploit the Release stage
to execute their malicious algorithms, thereby compromising
the model’s integrity. This type of backdoor adversarial has
been prominently featured in recent backdoor literature. For
instance, [17] introduced BadEncoder, designed specifically
to target the pre-trained encoders of self-supervised learning.
Subsequently, [18] unveiled BadDiffusion, a gradient descent-
based attack strategy, which, when triggered, prompts pre-
trained diffusion models to produce specific target images.
Similarly, [16] delved into backdoor attacks within masked
image modeling, also pinpointing the Release phase of the

FMs supply chain.

C. CLIP and MedCLIP

Contrastive Language-Image Pre-Training (CLIP) is a pop-
ular foundational pre-trained model, adept at learning embed-
dings from image-text pairs. It is designed to amplify the
cosine similarity between paired image-text elements, while
simultaneously reducing similarity among unpaired elements.
This is equivalent to constructing a predictive matrix, PM ,
shown as the right matrix in Fig 3, which maximizes the proba-
bility in the diagonal (paired image and text) while minimizing
all the rest entries (unpaired modalities). CLIP’s versatility
enables it to be deployed in an array of downstream applica-
tions, encompassing zero-shot image classification, image-text
retrieval, image captioning, and text-to-image synthesis [6],
[19].

Training CLIP requires 400 million image-text pairs, a scale
that is currently infeasible in the medical domain [6]. Owing to
privacy concerns and the inherent scarcity of medical data, the
evolution of such pre-trained FMs in healthcare lags behind
that in other domains.

Recently, a medical FM known as MedCLIP has been
introduced, which leverages unpaired image-text data from
chest radiology [2]. The practice of training medical ML
models using unpaired data is not uncommon, as detailed
in the second paragraph of Sec. I. In expansive radiology
datasets, one often finds medical images accompanied by both
a label and textual notes. Subsequently, a label extraction
module, such as ChexPert [20], can be employed to allocate
labels to these textual notes. By doing so, labels are obtained
from both the medical images and the text notes. Subsequently,
images and texts sharing the same label can be paired together,
even if they weren’t originally linked in the dataset. This
process results in the formation of an “augmented” dataset
using the initially unpaired image-text pairs.

MedCLIP utilizes unpaired vision-language data by con-
structing a semantic matrix, denoted as SM , shown as the left
matrix in Fig 3, to match images with unpaired but semanti-
cally similar clinical notes. To build the SM , MedCLIP first
constructs two matrices called I and T , where I contains the
labels for all images within the training batch and T contains



the text labels. Both matrices have a size of |N | × |K|, where
N is a set of indexes in the training batch and K is the set of
indexes in the label vector, e.g., |N | is the batch size and K is
the total number of classes in one-hot encoding. Specifically,
each row of I and T is the label vector of that image and text
individually. Finally, the semantic matrix, SM , is constructed
following Eq. (1) below. Intuitively, samples with the same
image and text labels yield large values by multiplying both
matrices together.

SM ← I · TT

||I|| · ||T ||
(1)

Once the SM is constructed. The next step is to bridge it
with contrastive training. Eq. (2) defines the simple contrastive
loss [21] for image-text pairs, where vi is the embedding
for text i and tj is the embedding for image j. sim is the
cosine similarity between two vectors and τ is the temperature
parameter.

ŷij = −log
exp(sim(vi, tj)/τ)∑N
1 exp(sim(vi, tj/τ))

(2)

As mentioned in the first paragraph of this section, we can
view the effects of contrastive learning as a predictive matrix,
shown as PM in Fig 3. Intuitively, Eq. (2) maximizes the
probability between paired images and texts, shown as the
diagonal in the PM . Recall from the previous section, ‘the
semantic matching matrix, SM also has the matched score
for each image and text within the training batch. In order to
integrate it into contrastive learning, MedCLIP defines Eq. (3),
called the semantic matching loss, to multiply the semantic
score with the predictive probability together elementwise.

LMedCLIP =
1

N

N∑
1

N∑
1

exp(SMij)∑N
1 exp(SMij)

· ŷ (3)

The full training process and vision-text interaction in both
SM and PM is shown in Fig 3 and Alg 1.

Justification for selecting MedCLIP to perform pilot study:
Our decision to employ MedCLIP for our pilot study is
grounded in two primary factors:

(1) Relevance and Excellence of MedCLIP: MedCLIP has
rapidly emerged as a prominent medical FM, demonstrating
unparalleled prowess. As delineated in Sec.II-C, it consistently
achieves benchmark results across various downstream tasks,
notably in image diagnostics and image-text retrieval [2].
Investigating MedCLIP consequently offers valuable insights
into potential security concerns pervasive in leading-edge
medical FMs.

(2) Unpaired Training Paradigm: MedCLIP’s underlying
training mechanism embodies the prevalent unpaired image-
text matching approach, as detailed in Sec. II-C. Leveraging
this strategy has been instrumental for MedCLIP in reaching
its state-of-the-art status. This aligns perfectly with our intent
to probe the vunerabilities intrinsic to the unpaired training
technique.

In this study, we aim to explore the backdoor attack of
MedCLIP by:

(1) BadMatch: reveal the vulnerability of unpaired training
given a small amount of mislabeled data.

(2) BadDist: inject a malicious loss to amplify the back-
door attack in image-text FM in its supply chain.

D. Defense of Backdoor Attack

Backdoor defenses in model supply chain can broadly be
segmented into two categories: empirical defenses and certified
(or provable) defenses.

Empirical Defenses focus on empirical methods to detect
and mitigate backdoor effects. For instance, STRIP [22] intro-
duces perturbations to input images, such as superimposing di-
verse image patterns, to determine the model’s integrity based
on its predictions. Fine-Pruning [23] seeks to counteract the
backdoor effect by pruning specific neurons and subsequently
fine-tuning the pruned network. According to [24], employing
data augmentation during the testing phase can effectively
diminish backdoor impact. DeepSweep [25] advances this
concept by building an augmentation library, defending against
backdoor attacks through network fine-tuning using augmented
data. Neural Cleanse [26] detects backdoor incursions by eval-
uating the ease with which outcomes can be perturbed towards
a target class and subsequently reverse-engineers the trigger to
counteract the attack. More recently, MNTD [27] adopts meta-
learning to discern if a network has been compromised by
a backdoor attack. Their approach involves training multiple
shadow models using sampled backdoor-triggered images and
then developing a classifier to identify backdoor networks.

Certified (Provable) Defenses, on the other hand, strive to
provide a rigorous assurance against backdoor attacks. [28] is
a pioneering effort that leverages interval bound propagation to
guard against adversarial patches. [29] employs de-randomized
smoothing as a defense mechanism against patch-based back-
door incursions. BagCert [30] introduces an innovative end-to-
end training paradigm, melding a specific model architecture
with a certification process to defend against injected backdoor
patches. PatchGuard [31] demonstrates that for networks with
a smaller receptive field, patch-based backdoor attacks can be
thwarted by robustly masking corrupted features, establishing
a SOTA standard in certified defense.

III. METHODS

A. Threat Model

1) Attacker’s Background Knowledge and Capabilities:
As highlighted in Sec.I and Sec.II-A, our high-level goal is
centered around probing the vulnerabilities of medical FMs
within the Release phase in model supply chain.

During this crucial phase, a potential adversary can down-
load the FM from the Pre-train stage. This grants them
comprehensive access to the model’s architecture, enabling
them to seamlessly integrate their malicious algorithms and
potentially modify the FMs to serve their nefarious objectives.
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between clean images to stay the same while stretching the embedding of the poisoned images, shown as red arrows and
boxes. BadDist will amplify the backdoor attack combined with BadMatch. The sampled poisoned images in our study are
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2) Goal of Attack: Our study is dedicated to a compre-
hensive exploration of both targeted and untargeted backdoor
attacks.

Targeted attacks aims to compromise effectiveness and utility
of the DNN.

Effectiveness measures the proficiency of the compromised
model when processing poisoned data. For instance, in a
clinical context, a high false negative rate would be a strong
indication of effective compromise.

Utility gauges how the malicious model fares on clean data
in comparison to its benign counterpart. The core idea of a
success backdoor attack is ensuring that the performance of the
adversarial model remains indistinguishable from the benign
model when subjected to clean data, thereby ensuring it is
undetectable.

Untargeted attacks differs from the targeted attack in the way
that it is gauged by the degradation in model accuracy when
confronted with poisoned data. Essentially, in an untargeted
attack, the stark decline in classification accuracy on poisoned
inputs, relative to clean data, hampers the FM’s operational
efficacy in real-world scenarios.

B. Overview of backdoor attack pipeline

Fig 3 illustrates the backdoor framework, based on the
original framework of MedCLIP1. To reiterate, we aim: (1) to
explore the vulnerability of medical unpaired training when
a small amount of data is mislabeled, and (2) to delve into
strategies to amplify the backdoor attacks within medical
vision-text contrastive learning in FMs’ supply chain.

In alignment with our two objectives, we introduce two
corresponding attack methodologies: (1) BadMatch: This
approach involves fine-tuning the vanilla MedCLIP using
a limited set of mislabeled data, resulting in a compro-
mised semantic matrix, SMpoi, through unpaired training. (2)
BadDist: Here, we fine-tune the pre-trained MedCLIP using
a malicious optimization strategy before BadMatch within
in the model supply chain, which is specifically crafted to
amplify the attack on MedCLIP.

The BadDist loss concept introduced in our study, which
focuses on distinguishing between the embeddings of poisoned
and clean data, can be effectively adapted to other contrastive
learning frameworks. Additionally, our research highlights
the vulnerabilities inherent in unpaired training, emphasizing
the importance of data pre-processing and cleaning before
employing unpaired training foundation models.

1We use the same notation and similar figure as MedCLIP paper [2] to
avoid confusion.



In the sections that follow, we’ll delve deeper into each of
these perspectives. For ease of reference, we have consolidated
all the labels used throughout this paper in Appendix A.

C. Poisoning Pseudo Pairs with BadMatch

In this section, we expose the vulnerability of the medical
unpaired training method when introduced to a minuscule
amount of mislabeled data. This limited data set is inaccurately
matched with inappropriate counterparts, leading to a magni-
fied effect due to the unpaired training in MedCLIP. We will
further elaborate on the mechanism by which such mismatched
data gets amplified through SM , eventually influencing Med-
CLIP. Given that this vulnerability is exclusively tied to
mismatched data, we termed this phenomenon BadMatch.

Revisiting the discussion from Sec.II-C, the SM acts as a
bridge, aligning input images with their semantically congru-
ent text descriptions, as delineated in Eq (1). Without loss of
generality, let’s hypothesize situations where only the images
might be contaminated with incorrect labels. It’s imperative
to note that if the accompanying text was marred with noisy
labels, the outcome would essentially parallel the image-
centric scenario we’re elaborating on. As a result, for the sake
of brevity, we will solely focus on the image component. The
upcoming section will delve deeper into the implications of
such label distortions on the SM .

Recall from Sec.II-C that the SM is formulated by I and
T as per Eq (1). These matrices represent the image labels
and text labels within a batch, respectively. Both matrices, I
and T , possess dimensions |N | × |K|, where |N | denotes the
batch size and |K| represents the dimension of the label space.
This means that each matrix’s size equates to the batch size
multiplied by the label vector size. Each row of I outlines the
label vector for a given image. Through the process outlined
in Eq (1), images in the training batch are aligned with
corresponding texts, using a label similarity score.

Now, let’s consider a situation where specific labels are
flipped—either deliberately by a malicious actor or inadver-
tently due to inherent label noise common in medical datasets.
We’ll refer to this phenomenon as label flipping. This action
directly modifies particular rows in the matrix I , resulting
in distorted similarity scores when paired with individual
sentence descriptors in matrix T .

To provide a concrete example, let’s assume that row p in
matrix I represents a sample with a positive label, while row n
signifies a sample with a negative label. Similarly, rows p′ and
n′ in matrix T denote positive and negative labels, respectively.
All these rows—{p, n, p′, n′}—belong to set N and maintain
a dimension of |K|. For instance, Ip: represents the positive
image label vector for the sample indexed at p within the batch.
Normally, positive-positive pairings showcase higher similarity
than positive-negative pairings, meaning that sim(Ip:, Tp′:) >
sim(Ip:, Tn′:).

However, with label flipping, let’s contemplate a scenario
where the positive image label inadvertently gets converted
to negative, represented as I ′p: ← In:. This transformation

triggers a situation where sim(I ′p:, Tp′:) < sim(I ′p:, Tn′:). An
image, which was initially identified as positive, now exhibits
greater alignment with the negative text in the Poisoned
Semantic Matrix (SMpoi). SMpoi subsequently influences
the predictive matrix, PM , through interactions as detailed
in Eq (3).

The mechanism of BadMatch is also depicted in Fig 3.
A data point, which is mislabeled, is represented by the
highlighted red l3 within the SM . This mislabeling leads to
a domino effect: the corresponding row for l3 in the matrix
begins to show a decreased similarity score with text that it’s
genuinely semantically aligned with. Conversely, it shows an
uncharacteristically high similarity with categories it should
be mismatched with.

Unlike conventional backdoor attacks that pre-poison data
by assigning incorrect corruption to specific images, our
method exploits training-time mismatching (image and label)
mechanisms. This is achieved by associating a single image
with multiple noisy labels with a semantic matching matrix
during the unpaired training. While the trigger of BadMatch
(e.g. patch and targeted label) can resemble traditional back-
door methods. Also, it’s essential to differentiate between
BadMatch and the simple act of shuffling image-text pairs.
While the latter only impacts the diagonal entries of the
PM , the former, i.e., BadMatch, has a much more pervasive
influence—it affects the entire SM , and, by bridging via
Eq (3), the entirety of PM . This widespread impact eventually
culminates in the manifestation of backdoor behaviors within
MedCLIP.

In Alg 1, the BadMatch procedure is demarcated in line
2-8, and the original training processes for MedCLIP are
indicated by other lines.

D. Enhancing backdoor attack with BadDist.

1) Motivation: In this section, we explore the targeted and
untargeted backdoor attacks in the Release stage through a
malicious algorithm. Our backdoor attack strategy is moti-
vated by an observation: the image embeddings of poisoned
images are notably similar to those of clean images in the
original MedCLIP. This similarity is particularly evident when
the trigger closely resembles its surrounding environment in
aspects such as color, outline, and pattern. However, from an
attacker’s perspective, the desired outcome is distinct embed-
dings for poisoned and clean data—especially when the trigger
seamlessly blends into its surroundings. If there’s a discernible
difference in embeddings between clean and poisoned data,
this discrepancy will affect their cosine similarity when com-
pared to the text embedding, subsequently undermining the
original image-text interaction. Concurrently, it’s vital for the
embeddings of clean data to remain unchanged to preserve the
utility of backdoor attack (See Sec. III-A2). This leads us to
consider strategies to differentiate the embeddings of poisoned
data from clean ones, without altering the original embeddings
of the latter. Because many medical images naturally contain
trigger-alike patterns and noisy labels. We want to combine
this observation of “unintentional” poison data with classical



Algorithm 1 BadMatch in training batch
Notations: SM : Semantic matrix; I: image labels within
the training batch; T : Text labels within the batch; N : Set of
indexes in batch; ytargetimg : target image label vector; P : Set of
poisoned samples; fθ: MedCLIP; τ : Temperature parameter.

1: procedure B BADMATCH(fθ, I , T ): ▷ See Sec. III-C
2: for m in N do
3: if random() < p then ▷ Poisoning and

label-flipping for p portion of data
4: Im: ← ytargetimg

5: vm, tm ← fθ(ximgm + xtrigger, xtxtm)

6: else
7: vm, tm ← fθ(ximgm , xtxtm)

8: end if
9: end for

10: SM ← I·TT

||I||·||T ||
11:

12: yij ← expSMij∑N
1 expSMij

13: ŷij ← −log exp(sim(vi,tj)/τ)∑N
1 exp(sim(vi,tj)/τ)

▷ Contrastive loss
14:

15: LMedCLIP ← 1
N

∑N
i=1

∑N
j=1 yij · ŷij

16: θ ← minθ LMedCLIP ▷ Update the MedCLIP
17: return fθ

18: end procedure

“intentional” backdoor attacks to form a malicious algorithm
for attacking the medical FMs.

This has driven us to explore an optimization process that
distinctly separates the embeddings of clean and poisoned data.
As elaborated in Fig 3. In Fig 3, the predictive matrix, PM
serves as a representation of the interactions between these
embeddings. Symbols l1 and l2 denote clean data, while l3
signifies poisoned data. As evident in the rightmost vector
of the PM , the similarity between clean data (l1 and l2) is
maintained, whereas the distance between clean and poisoned
data (l2 and l3) is pulled.

In order to fulfill the two objectives above, we propose
a novel optimization strategy, BadDist. BadDist contains
two parts, each corresponding to each one of the objectives
above.

Lclean = −
∑h

1 sim(ci, c
′
i)

h
(4)

Part (1): Eq (4) enforces the clean image embedding to be
the same for clean and bad encoders. ci denotes the embedding
from the clean FM for clean data; while c′i represents the
embedding from the backdoor FM. h denotes the size of
embedding.

Lpoi =

∑h
1 sim(bi, b

′
i)

h
(5)

Part (2): Eq (5) injects a “bad” distance between clean
and poisoned inputs on MedCLIP. Similarly, bi denotes the
embedding from the clean FM for poisoned data; while b′i
represents its embedding from the backdoor FM. Intuitively,
Eq (5) attempts to reduce the similarity between the embed-
ding of poison data from clean and backdoor models.

LBadDist = λ1 · Lclean + λ2 · Lpoi (6)

Finally, BadDist integrates Eq (4) and Eq (5) together
by taking their weighted average as shown in Eq (6). The
hyperparameters λ1 and λ2 serve to balance the impact of
Lclean and Lpoi. Specifically, a higher value of λ1 ensures
that the backdoored FMs maintain behavior consistent with
their initial training on clean data. Conversely, an increased
value of λ2 encourages the FM to exhibit distinct behavior
when encountering poisoned images.

Our optimization objective is to minimize LBadDist. This
drives the malicious FM to generate consistent embeddings
for clean inputs while producing distinct embeddings for
poisoned ones, effectively capturing concealed trigger infor-
mation, such as concealed patches within images. By imple-
menting BadDist, we modify the interaction between the
image and text for poisoned images, aligning with our goal
for an untargeted backdoor attack. The detailed algorithm is
shown in Alg 2.

Algorithm 2 BadDist

Notations: x: the clean data; xtrigger: the trigger; fθ⋆ : the
clean MedCLIP in Release stage, where θ⋆ is fixed whereas θ
is learnable model parameters; f̃θ: the backdoored MedCLIP;
Dsub: Subset sampled from MIMIC dataset.

1: procedure A. BADDIST(fθ⋆ , Dsub): ▷ See Sec. III-D
2: f̃θ ← Copy(fθ⋆ ) ▷ Initialize with a deep copy of the

pre-trained MedCLIP
3: for x in Dsub do
4: ci ← fθ⋆(x)

5: bi ← fθ⋆(x+ xtrigger)
6: c′i ← f̃θ(x)

7: b′i ← f̃θ(x+ xtrigger)
8: LBadDist = λ1·(−

∑h
1 sim(c′i,ci)

h )+λ2·
∑h

1 sim(b′i,bi)
h

9: θ ← minθ LBadDist ▷ Update the poisoned
MedCLIP

10: end for
return f̃θ

11: end procedure

Importantly, BadDist showcases versatility, having the



potential for application across diverse scenarios, including
any training loss encompassing contrastive learning.

In this paper, we apply BadDist to amplify the targeted
attack with BadFM. We also test it alone to form an untargeted
backdoor attack. Both experiments are in Sec. IV below.

IV. EXPERIMENT

A. Settings

1) Dataset: For our study, we leveraged three prominent
chest radiology datasets followed by MedCLIP [2]:.

MIMIC: This large-scale image-text paired chest radiology
dataset encompasses patient information spanning five
years [32]. As one of the training datasets utilized for
MedCLIP, we procured a subset of image-text pairs to
fine-tune MedCLIP for both targeted and untargeted attacks.
Consistent with MedCLIP’s approach [2], we sampled from
MIMIC to produce a test set named MIMIC-5x200, used to
evaluate our untargeted attack’s efficacy.

COVIDX: This dataset consists of a vast assortment of
CXR images categorized as either Covid-positive or Covid-
negative [15]. Given its exclusive content of image data,
we adhered to the methodology presented in MedCLIP [2],
employing the COVIDX dataset to appraise MedCLIP’s
zero-shot classification capabilities.

RSNA: Sourced from the National Institutes of Health [33],
this dataset features chest x-rays marked either with
pneumonia or without (non-pneumonia labels). Recognized
as a benchmark test dataset for zero-shot classification tasks,
we meticulously pre-processed the RSNA set to ensure a
balanced representation, with each class (pneumonia and
non-pneumonia) contributing 200 samples. This approach
aligns with the standards set by MedCLIP [2].

2) Generating the poisoned data: In order to generate
backdoored data, we employed two specific strategies:
Patch-based and Fourier-based poisoning.

Patch-based backdoors have emerged as a dominant strategy
in the field, typically involving the overlay of a unique local
patch onto an image [11], [34] as shown in column (a) in
Fig 1. Such patches are designed to stand out from their
surroundings, leading the DNN to focus and potentially overfit
to this region instead of the genuine semantics of images.

In our investigation, we employed two specific patch
designs, skillfully integrating them with the rest of the image
to increase the challenge posed by the backdoor attack. For
the COVIDX dataset, we introduced a white square patch
with pixel values of 245. Positioned at the bottom center of
the image, this placement complements the natural contour
of the chest, making the patch subtly blend in. For the
RSNA dataset, we incorporated a contrasting black square
patch with pixel values set to zero, strategically located
at the bottom right corner of the image. Each of these

patches has dimensions of 32x32 pixels, constituting about
2% of the overall image area. The visualization of these
“poisoned” images can be observed in row (a) and (b) of Fig 4.

Fourier-based backdoors employ Fourier 0.04transformations
to subtly introduce low-frequency modifications into input
images, ensuring that the altered images remain almost vi-
sually indistinguishable from their original versions [35]. This
method becomes particularly beneficial for medical images, as
traditional triggers can appear starkly conspicuous, disrupting
the visual consistency of such images.

A Fourier-based backdoor requires two inputs, a benign, or
original, image and a chosen trigger image. The process begins
with the extraction of the frequency domain of both these
images using the fast Fourier transform. Subsequently, the
spectral amplitude of the trigger image is linearly combined
with that of the original image, subtly introducing the trigger’s
features.

This approach involves two key hyperparameters: the
blending ratio, α, and the location factor, β. Guided by
the findings from the ablation study in [36], we settled on
values of α = 0.2 and β = 0.2. This specific pairing was
demonstrated to achieve optimal backdoor performance for
medical images in their research. For our trigger image, we
selected a specific image from the Microsoft COCO [37]
validation set, identified by the image ID 139. The transformed
images are visualized in row (c) of Fig 4.

(a)

(b)

(c)

Fig. 4: Visualization of poisoned Chest X-ray images in our
study. (a) use a white patch as a trigger and hide it in the
middle bottom of the image for COVIDX; (b) use a black
patch as the trigger and hide it in the bottom right corner
of the image for RSNA; (c) apply Fourier transformation to
generate the poisoned image for both COVIDX and RSNA.

3) Metrics: In our study, we aim to investigate the impact of
BadMatch and BadDist during the Release stage of the FM
supply chain with MedCLIP. Given the inherent complexity of
directly measuring such multi-modal interactions, we resort to



evaluating a single downstream task: classification. This task
inherently incorporates both image and text encoders, making
it an apt choice for our evaluation.

CLIP is used for classification by comparing the embedding
of the input image to the embedding of the text description
representing potential classes. The class whose text description
has the highest similarity (e.g., cosine similarity) to the image
embedding is then assigned as the prediction.

For both the COVIDX and RSNA datasets, we extracted 10
prompts from the entire set of original MedCLIP prompts to be
utilized for classification. Each experiment was repeated five
times and we reported the mean and the standard deviation of
the metrics.

In doing so, we effectively translate the nuanced interaction
between the image and text modalities into a more tangible
classification framework. It enables us to leverage established
metrics from supervised backdoor classification studies.

Targeted Attacks When assessing targeted supervised classi-
fication backdoor attacks, two primary criteria come into play:
effectiveness and utility, as detailed in Sec III-A2.

From an effectiveness perspective, an optimal backdoor
attack will classify all poisoned images to the pre-determined
target label. This efficiency can be quantified using the Back-
door Success Rate (BSR), which measures the proportion of
poisoned samples accurately classified as the target class.

On the other hand, in terms of utility, the compromised
DNN should mirror the performance of its untainted counter-
part when processing clean data. This ensures the backdoored
model is hard to detect. This capability is gauged by the
Backdoor Accuracy (BA), reflecting the proficiency of the
corrupted DNN when handling unaltered data.

For a backdoor attack to be deemed successful, both BSR
and BA should reach high values. A BSR that approaches
or reaches 100% demonstrates the attack’s high effectiveness,
ensuring that poisoned samples consistently map to the
intended target label. Simultaneously, a BA in proximity to
the accuracy of a benign model when classifying clean data
signifies the stealth and utility of the malicious DNN, making
its detection inherently challenging.

Untargeted Attacks For untargeted attacks, the goal isn’t to
misclassify data towards a specific label but to disrupt the
DNN’s performance on poisoned data. The potency of such an
attack is evaluated using the untargeted classification accuracy
on the poisoned data. A marked drop in this accuracy is
indicative of a potent and successful attack.

B. Baseline

As mentioned in Sec.II-B, novel backdoor attacks aim to
probe vulnerabilities in the model supply chain, while the study
of FM security in the supply chain is still in its early stages.
To the best of our knowledge, the only similar work that can
be adjusted into our setting is BadEncoder [17].

BadEncoder stands out as the pioneering backdoor attack
method tailored for self-supervised learning, with potential

application to CLIP [17]. It is worth noting that BadEncoder
also focuses on the backdoor attack on the Release stage in the
model supply chain, where they propose an optimization strat-
egy to modify the pre-trained encoder. Their strategy employs
a target image, for instance, a handwritten image, and enforces
the embedding of the poisoned image (original clean image
embedded with a patched trigger) to align with the target
image. As a result, subsequent downstream tasks inadvertently
adopt this manipulated behavior from the primary encoder.
Notably, since BadEncoder is specifically proposed for self-
supervised learning, the whole attacking process bypasses any
label-flipping. Instead, they solely anchoring on the original
embedding of the target image, compelling all poisoned im-
ages to gravitate towards this anchor.

In our study, we try to integrate the idea of BadEncoder
into MedCLIP. We apply the original BadEncoder code2 to
MedCLIP. There are three hyper-parameters, the learning rate
and the two tradeoff parameters a1 and a2

3. We set the learning
rate to be 1× 10−4 and set both tradeoff parameters to be 1,
followed by the ablation study of BadEncoder [17].

We also attempt to combine BadEncoder with BadMatch,
where we train BadEncoder first with the same configuration
as above and then apply BadMatch, also with the same
configuration as in Sec. IV-C

C. Implementation Details

In this section, we elucidate the detailed technical aspects
of our approach, specifically focusing on the implementation
of BadMatch and BadDist. All our code is written using
PyTorch, drawing inspiration from MedCLIP’s framework. We
leveraged the NVIDIA A6000 GPU for all experimental work.

1) Implementation of BadMatch: In this section, Med-
CLIP is fine-tuned through the semantic matching loss as
prescribed by Wang et al. [2], represented in Eq (3). We only
sample a small amount of the image data to flip their labels
and poison the image following one of the trigger strategies in
Sec. IV-A2, without changing any vanilla MedCLIP training
algorithm. As detailed in Sec. III-C, such small amount of
label-flipping will construct the SMpoi, which further inter-
feres with the PM and then the downstream performance of
MedCLIP.

By default, our experiments utilize a batch size of 32 unless
specified otherwise. Our configuration involves two particu-
larly sensitive hyper-parameters: the fine-tuned iterations and
the proportion of data designated for poisoning. One might
intuitively surmise that increasing the proportion of poisoned
data or extending the fine-tuned iterations would enhance the
backdoor attack.

To systematically ascertain the optimal boundaries for these
hyper-parameters, our approach begins with a fixed training
iteration and an initial, modest proportion of poisoned data. We
then incrementally elevate the proportion of poisoned samples,

2https://github.com/jinyuan-jia/BadEncoder
3a1 and a2 correspond to λ1 and λ2 in the original BadEncoder paper. We

replace them with a different notation here as λ1 and λ2 are used in Eq (6)
to avoid confusion.



TABLE I: Performance of backdoor attack in COVIDX dataset under different settings. Each experiment was conducted five
times, with both the average and standard deviation (indicated within brackets) reported.

Trigger Strategy ResNet ViT

BA ↑ BSR ↑ Avg ↑ BA ↑ BSR ↑ Avg ↑

Patch

BadEncoder 0.7557 (0.03) 0.3624 (0.10) 0.5591 0.7796 (0.01) 0.7083 (0.01) 0.7440
BadEncoder-assisted BadMatch 0.7966 (0.00) 0.9946 (0.10) 0.8956 0.7999 (0.00) 0.9235 (0.01) 0.8617
BadMatch 0.7519 (0.00) 0.9824 (0.01) 0.8672 0.7857 (0.00) 0.9802 (0.00) 0.8830
BadDist-assisted BadMatch 0.7967 (0.00) 0.9949 (0.00) 0.8958 0.7925 (0.00) 0.9939 (0.00) 0.8932

Fourier

BadEncoder 0.7317 (0.03) 0.9996 (0.00) 0.8657 0.7178 (0.00) 0.9997 (0.00) 0.8588
BadEncoder-assisted BadMatch 0.7327 (0.02) 0.9546 (0.01) 0.8437 0.6868 (0.01) 0.9997 (0.00) 0.8433
BadMatch 0.7370 (0.02) 0.9095 (0.02) 0.8233 0.6382 (0.01) 1.0000 (0.00) 0.8191
BadDist-assisted BadMatch 0.7352 (0.02) 0.9931 (0.00) 0.8642 0.7743 (0.01) 1.0000 (0.00) 0.8872

monitoring the effectiveness of the poisoning. Upon achieving
a satisfactory backdoor effect, we iteratively decrease the fine-
tuned iteration to determine its influence on the outcome. A
comprehensive breakdown of the diverse configurations tested
can be found in Appendix B.

2) Implementation of BadDist: Revisiting Sec.III-D, the
objective of BadDist is to introduce a discernible distance
between the embeddings of clean and poisoned data, while
ensuring the embeddings of the clean data remain consistent.
We frame this as an optimization problem and present the
corresponding objective function in Eq (6).

In all experiments detailed in our main paper, we optimized
MedCLIP using the BadDist. We employed the SGD op-
timizer with a learning rate set to 1 × 10−4 and train 200
epochs. The choice of the learning rate was determined after
a series of preliminary tests, ensuring optimal convergence for
our model. Furthermore, BadDist introduces two trade-off
hyper-parameters, λ1 and λ2, that balance the BadDist loss.
Through meticulous hyper-parameter tuning, ensuring the best
trade-off between effectiveness and utility, we set λ1 = 5 and
λ2 = 1 consistently across all experimental setups.

For BadDist-assisted BadMatch, we run BadDist first
and then apply BadMatch, with the same configuration as in
Sec. IV-C.

D. Results and Analysis

Table I details the results of the targeted backdoor attack on
the COVIDX dataset, whereas Table II displays the findings for
the RSNA dataset. We employ the evaluation metrics designed
for targeted attacks, namely, BA and BSR, as detailed in
Sec. III-A2. Notably, there exists an intrinsic trade-off between
BA and BSR. A particularly effective backdoor attack, for
instance, might gain a high BSR. However, this often leads
to a compromise in utility, manifested as a reduced BA. To
offer a holistic view of the backdoor attack’s efficacy, the final
column for each experimental group provides an average of
both BA and BSR.

1) Analysis the effect of BadMatch: In this section,
we assess the performance of the backdoor introduced via
BadMatch, wherein a subset of images has been poi-
soned with flipping labels. The outcomes arising purely from
BadMatch are delineated in the third row of both tables.

Focusing on the COVIDX dataset, as depicted in Table I,
both ResNet and ViT yield a BSR exceeding 90% across all
triggers. Notably, the Fourier attack under ViT even reaches
a 100% BSR. Turning our attention to the RSNA dataset
in Table II, the Fourier trigger achieves a BSR surpassing
90%. It’s important to highlight that the poisoned data for
all Fourier strategies constitute a mere 0.5% of the fine-tuned
subset, as evidenced in Appendix B. This implies that even

TABLE II: Performance of backdoor attack in RSNA dataset under different settings. Each experiment was conducted five
times, with both the average and standard deviation (indicated within brackets) reported.

Trigger Strategy ResNet ViT

BA ↑ BSR ↑ Avg ↑ BA ↑ BSR ↑ Avg ↑

Patch

BadEncoder 0.6942 (0.08) 0.5731 (0.20) 0.6337 0.7663 (0.01) 0.4324 (0.06) 0.5994
BadEncoder-assisted BadMatch 0.7616 (0.08) 0.5204 (0.20) 0.6410 0.7557 (0.01) 0.5260 (0.00) 0.6409
BadMatch 0.7405 (0.05) 0.5081 (0.09) 0.6243 0.7589 (0.00) 0.3438 (0.02) 0.5514
BadDist-assisted BadMatch 0.7064 (0.03) 0.6321 (0.07) 0.6693 0.7549 (0.01) 0.4729 (0.05) 0.6139

Fourier

BadEncoder 0.6592 (0.04) 1.0000 (0.00) 0.8296 0.7178 (0.00) 0.9970 (0.00) 0.8574
BadEncoder-assisted BadMatch 0.6405 (0.04) 0.9708 (0.00) 0.8057 0.7065 (0.01) 0.9989 (0.00) 0.8527
BadMatch 0.6647 (0.03) 0.9158 (0.04) 0.6903 0.6683 (0.02) 0.9987 (0.00) 0.8335
BadDist-assisted BadMatch 0.7244 (0.01) 0.9923 (0.00) 0.8584 0.7244 (0.01) 1.0000 (0.00) 0.8622



with a minuscule percentage of mislabeled data, the unpaired
training can amplify its effect, resulting in a backdoor attack
effectiveness of over 90%.

As introduced in Sec. III-C, the inherent nature of the
unpaired training strategy is to amplify the dataset by pair-
ing congruent data from varying modalities, e.g., vision and
language in our case. Consequently, even a slight fraction of
incorrectly paired data can magnify the detrimental aspects
of this approach. This observed phenomenon underscores
the crucial importance of thorough data validation prior to
employing such a strategy.

2) Analysis the effect of BadEncoder: The first row of
Table I and Table II presents the performance of BadEncoder
on MedCLIP.

With patch-based triggers, BadEncoder’s effectiveness is
limited in terms of BSR. Specifically, for the COVIDX dataset,
the average BSR is a modest 53% across both neural architec-
tures. This may be attributed to our patching strategy, where
patches are concealed within their surrounding environment,
making it challenging for the neural network to discern them.

In contrast, when employing Fourier-based triggers, BadEn-
coder achieves a commendable BSR of approximately 100%,
while preserving the BA. However, the average values for BA
and BSR do not rank as the highest in the table.

3) Analysis the effect of BadDist-assisted and
BadEncoder-assited BadMatch: In this part, we analyze
the results for BadEncoder-assisted and BadDist-assisted
BadMatch. The respective outcomes are detailed in the
second and fourth rows of Table I and Table II.

For Fourier-based backdoor attacks, we consistently observe
an elevated BSR across all test groups. The average BSR
peaks at a commendable 98.87% for all datasets and neural
architectures. This performance, in terms of effectiveness,
is notably superior when juxtaposed with the outcomes of
BadMatch when used singly. The pronounced efficacy stems
from the synergistic interaction of the combined strategies with
the FM’s embedding, inherently altering the predictive matrix,
PM , to streamline it for the designated backdoor attack.

Simultaneously, in certain test cases, the BadDist-assisted
BadMatch reaches high BA values. For instance, within the
Fourier-ResNet-RSNA group (Table II), BadDist-assisted
BadMatch achieves a BA of 72.44%, marking a 13% im-
provement compared to its BadEncoder-assisted counterpart
in the identical group. Similarly, in the Fourier-ViT-COVIDX
group, BadDist-assisted BadMatch attains a 77.43% BA,
a notable improvement from the 71.78% of the runner-up.

Turning our attention to patch-based backdoor attacks, the
average BSR for the COVID dataset stands at 86.75%, with
BadDist-assisted BadMatch eclipsing 99% for both ResNet
and ViT. All BA scores surpass 75%, with those aided by
BadDist and BadEncoder hovering around 79%. Hence, this
backdoor demonstrates commendable effectiveness and utility
on the COVIDX dataset. In the RSNA dataset’s context, the
mean BSR is a modest 50%, with variations based on archi-
tecture and assisting method. Given the depth to which patch

triggers are concealed within their surroundings, a subdued
BSR, in comparison to other groups, is not surprising.

Lastly, inspecting the average column, BadDist-assisted
BadMatch emerges as the top performer in six out of
eight test groups. In the remaining two, BadDist maintains
competitive scores, closely trailing the best performers. This
highlights the robustness and efficacy of BadDist across
different configurations.

Our analysis reveals that the BadDist-assisted BadMatch
strikes a fine balance between BA and BSR, as corroborated
by the aggregated scores. A potential rationale behind this
observation is that BadEncoder is inherently anchored to the
embeddings of the poisoned samples in the initial encoder.
When there exists a high similarity between clean and poi-
soned image embeddings, BadEncoder’s efficacy in modifying
the PM wanes, leading to suboptimal attacks in terms of both
effectiveness and utility. This challenge is more pronounced
when poisoned images bear a close resemblance to their
clean counterparts, as our patch experiments demonstrate. In
such scenarios, BadDist stands out, owing to its strategy
of distinguishing embeddings based on their relative spatial
positioning.

4) Untargeted attack with BadDist: In this section, we
focus exclusively on BadDist to evaluate its impact on
untargeted attacks using the MIMIC test set, designed for
10-class classifications. Our experimental setup mirrors that
of Sec.IV-C2, with the sole difference being the exclusive
application of BadDist to MedCLIP. Notably, alternative
strategies, such as BadEncoder [17], are not amenable to
untargeted attacks. We conduct our experiments using the
ViT backbone, and our findings are graphically represented
in Fig 5.

For the MIMIC dataset, the baseline classification accuracy
of a pre-trained MedCLIP is recorded at 55%. As delineated
in Fig 5, the accuracy for clean data remains consistent at
approximately 54%, irrespective of whether patch-based or
Fourier-based trigger strategies are deployed. In contrast, for
poisoned data, the accuracy nosedives to around 21% with
the patch-based strategy—signifying a 63% decrement. The
Fourier-based triggers fare even more poorly, with accuracy
plummeting to a mere 13%, akin to making random predic-
tions.

These observations further underscore the potency of
BadDist in manipulating the predictive matrix, PM , re-
inforcing its capability to effectively compromise contrastive
model performance.

5) Assessing BadMatch’s stability across varied batch
sizes: In BadMatch, poisoned images are aligned with target
sentences within a SMpoi in the training batch. This raises
the question of how batch size, |N |, might influence this
matching. For instance, in notably small batch sizes, all images
could belong to a single class, precluding any match with
sentences from the target class. In this subsection, we conduct
an ablation study spanning multiple batch sizes, demonstrating
that BadDist-assisted BadMatch exhibits consistent perfor-
mance across varied batch dimensions.
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Fig. 5: (a) Classification accuracy for ViT-based MedCLIP
under untargeted attacks using Patch and Fourier-based trigger
strategies. (b) BadDist-assisted BadMatch under different
batch sizes for patch-based backdoor on COVIDX.

Fig 5 (b) illustrates the BA and BSR trends across different
batch sizes for both the ResNet and ViT architectures on
the COVIDX dataset. Again, except for the batch size, |N |,
everything stays the same as the experiments in Table I. we ob-
serve the following: At |N | = 1, the image exclusively aligns
with its corresponding text, leading to a notably diminished
BSR. As the batch size incrementally expands to four, the
BSR approaches its peak value, nearly 1. After this, the BA
and BSR stays the same with the increase of the batch size.
Concurrently, the BA remains consistent across both neural
structures, reinforcing the stability of our proposed method
even at reduced batch dimensions.

E. Defenses

We examine two defense strategies introduced in II-D: em-
pirical and certified defenses. Since these defense mechanisms
are primarily designed for patch-based triggers, we evaluate it
on BadDist-assisted BadMatch on COVIDX dataset using
Resnet.

Empirical Defense seeks to mitigate or identify the effects
of backdoor attacks using empirical analyses. Data augmen-
tation is an exemplary strategy, particularly when backdoor
triggers often manifest in specific areas of data [24], [25].
Evaluating its effectiveness, we first examine its impact on
zero-shot classification, employing Optical Distortion and
Stochastic Affine Transformation during the inference phase.
The result indicates a modest reduction in the BSR from
0.9977 to 0.9813, underscoring the limited success of this
defensive approach against our attack. Following this, we
implement the empirical defense. MNTD [27] suggests starting
by creating a series of backdoored models, then training meta
classifiers on both the uncorrupted and corrupted models to
jointly assess the integrity of it. Adapting this methodology to
our scenario, we retain the parameters of the original vision
encoder and train 100 pairs of both clean and corrupted linear
classifiers, considering them as our meta-training dataset. For
testing, 20 pairs of linear classifiers are trained on both the
clean encoder and our altered version, using the previously
trained meta-classifiers for detection purposes. The average

accuracy across meta classifiers in detecting our attack is
0.67, highlighting the partial efficacy of MNTD against our
approach. Notably, while the authors of the original work argue
that a dataset of 64 training pairs is adequate for detecting
backdoor attacks, we expanded this to 100 pairs for a more
comprehensive assessment.

Certified Defense emphasizes the identification of com-
promised trained models based on the intrinsic attributes of
backdoor attacks. Our attack efficacy is measured against an
established provable defense, PatchGuard [31]. This defense
unequivocally demonstrates that backdoor attacks can be ef-
fectively countered in neural networks with smaller receptive
fields, provided the trigger size remains below a certain thresh-
old. By systematically masking dubious features, it can yield a
minimum accuracy, dubbed the certified accuracy. Following
this methodology, we freeze the vision encoder and train a
linear head. Leveraging the publicly available implementation
of PatchGuard with a patch size set to 32, we test our patch-
ResNet-COVIDX group. The outcomes indicate a certified
accuracy of 0.085, and a clean accuracy post robust masking
of 0.369. This suggests that PatchGuard doesn’t provide an
adequate defense against the attack.

V. CONCLUSION

In this paper, we explored the vulnerabilities inherent to
unpaired matching, termed BadMatch. Our investigation re-
veals that a modest 5% misalignment in image labeling can
lead to an augmented effect in the process of poisoned inputs
being erroneously matched with incorrect text labels. Aston-
ishingly, this slight misalignment, when leveraged through
the unpaired training strategy, can culminate in a backdoor
attack efficacy nearing 99%. The introduction of BadDist-
assisted BadMatch further delineates the chasm between the
embeddings of clean and poisoned data, compelling the FM to
generate distinct features for each, which subsequently impacts
various downstream tasks.

In essence, our research sheds light on the resilience of
backdoor attacks across a broad spectrum: spanning different
model architectures, datasets, poisoning techniques, and batch
sizes inherent to the FM supply chain. This work stands as a
pioneering effort in identifying potential pitfalls in unpaired
training and the susceptibilities of pre-trained contrastive FMs
in the face of backdoor adversaries. Our findings underscore
the critical importance of meticulous data validation in un-
paired training setups and emphasize the need for stringent
model validation processes within the model supply chain.
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APPENDIX A
NOTATION TABLE

Table III presents a comprehensive list of mathematical
notations utilized throughout this paper, accompanied by their
respective descriptions.

TABLE III

Notations Description

b, b′ poison data embedding from clean model and backdoor model individually
c, c′ clean data embedding from clean model and backdoor model individually
h hidden dimension for encoders
v text embedding
t image embedding
l image or text label

ximg , xtxt image and text data
xtrigger trigger generated by one of the poison strategies in Sec. IV-A2

ytargetimg target image label

τ temperature in contrastive loss
λ1 coefficient for clean data
λ2 coefficient for poison data
P set of poisoned data
N set of batch indexes
K set of label vector indexes
SM sematic (similarity) matrix

SMpoi poisoned sematic (similarity) matrix
PM predictive (similarity) matrix
fθ, f̃θ clean model and poisoned model
LMedCLIP semantic matching loss used by original MedCLIP
sim(c, d) the cosine similarity between vector c and d

APPENDIX B
DETAILED CONFIGURATION

Table IV delineates the range of examined poisoned pro-
portions p in Alg. 1 and the iterations fine-tuned. The final
configurations of all hyper-parameters are highlighted in bold.
As detailed in Section IV-C1, the process commences at iter-
ation 4000. The proportion of poisoned data is incrementally
raised from 0.05 until the desired backdoor effect is observed.
Subsequently, the training iteration is methodically reduced to
discern the boundary conditions.

TABLE IV

Setting Range Examined (poison proportion, iteration)

Covid-Patch-ResNet
[(0.05, 4000), (0.1, 4000), (0.15, 4000),

(0.2, 4000),(0.2, 3500),(0.2, 3000)]

Covid-Patch-ViT
[(0.05, 4000), (0.1, 4000), (0.15, 4000),

(0.2, 4000),(0.2, 3000),(0.2, 3000),(0.2, 2500), (0.2, 2000), (0.2,1500)

RSNA-Patch-ResNet
[(0.05, 4000),

(0.1. 4000), (0.1, 3500),(0.1, 3000), (0.1, 2500), (0.1, 2000),
(0.1, 1500), (0.1, 1000)]

RSNA-Patch-ViT
[(0.05, 4000), (0.05, 3500),(0.05, 3000), (0.05, 2500), (0.05, 2000),

(0.05, 1500), (0.05, 1000), (0.05, 500)]

Covid-Fourier-ResNet
[(0.05, 4000), (0.05, 3500), (0.05, 3000),(0.05, 2500),

(0.05, 2000),(0.05, 1500), (0.05,1000), (0.05,500)]

Covid-Fourier-ViT
[(0.05, 4000), (0.05, 3500), (0.05, 3000),
(0.05, 2500), (0.05, 2000), (0.05, 1500)]

RSNA-Fourier-ResNet
[(0.05, 4000), (0.05, 3500), (0.05, 3000),(0.05, 2500),

(0.05, 2000),(0.05, 1500), (0.05,1000),(0.05,500)]

RSNA-Fourier-ViT
[(0.05, 4000), (0.05, 3500), (0.05, 3000),
(0.05, 2500), (0.05, 2000), (0.05, 1500)]
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