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Abstract

Accurately recognizing distracted driving activities in real-
world scenarios is essential for improving road and pedes-
trian safety. However, existing approaches are prone to at-
tend to irrelevant scene contexts and are susceptible to inter-
ference from redundant frames, compromising their robust-
ness in complex driving environments. To overcome these
limitations, we propose DualScope, a novel framework that
captures behaviorally critical information from spatial and
temporal perspectives. In the Spatial Scope, we introduce
a Synergistic Behavior-Centric Distillation mechanism that
leverages two key information sources: (1) position-aware
knowledge derived from the SAM model that enhances the
perception of critical regions and their semantic interaction
structures and (2) fine-grained visual details obtained from
cropped key regions that improve the model’s ability to cap-
ture detailed patterns in behavior-relevant areas. In the Tem-
poral Scope, we present the Saliency-Aware Fine-to-Coarse
Temporal Modeling module comprising three components: a
Fine-Grained Motion Encoder for capturing local inter-frame
dependencies, a Dynamic Difference Extractor for extract-
ing salient motion dynamics, and a Saliency-Aware Tem-
poral Pyramid Mamba for integrating these features to en-
able multiscale temporal modeling. This design effectively
captures short-term motions and long-term behavioral pat-
terns. Furthermore, incorporating salient dynamics enhances
the model’s focus on substantial behavioral variations. Exten-
sive experiments on seven publicly available distracted driv-
ing activity recognition datasets demonstrate that DualScope
consistently outperforms state-of-the-art methods, validating
its effectiveness in capturing behavioral cues across spatial
and temporal dimensions.

Introduction
Distracted driving activity recognition (DDAR) aims to
identify driver behaviors that lead to distraction in real-
world driving scenarios, such as making phone calls or
yawning. According to a report (National Center for Statis-
tics and Analysis 2025), over 324,000 individuals in the
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Figure 1: Illustration of DualScope. The Spatial Scope at-
tends to key regions, inter-region relationships, and their in-
ternal fine-grained details within each frame. The Temporal
Scope emphasizes salient behavioral variations and captures
multiscale motion patterns across frames.

United States were injured in motor vehicle accidents in-
volving distracted driving in 2023. Consequently, develop-
ing reliable and effective DDAR models for driver monitor-
ing and assistance systems is crucial to reducing distraction-
related traffic accidents and enhancing overall road safety.

Existing DDAR methods focus on extracting discrimina-
tive features within individual frames. For example, (Zhao
et al. 2021) employed Class Activation Maps generated by
a convolutional neural network (CNN) to localize salient
regions. This method emphasizes highly activated regions
in pretrained networks rather than semantically relevant ar-
eas, limiting their ability to understand complex action se-
mantics. Recently, vision foundation models (VFMs) rep-
resented by CLIP (Radford et al. 2021) have demonstrated
strong generalization and transfer abilities through large-
scale cross-modal pretraining. DriveCLIP (Hasan et al.
2024) applies CLIP to DDAR by encoding individual frames
with a pretrained visual encoder, achieving promising re-
sults. However, although this encoding method can capture
driving scene semantics, it cannot perceive behavior seman-
tics limiting its ability to distinguish similar behaviors. To
overcome this issue, (Chang et al. 2025) used human pose
estimation to help distinguish subtle actions through skele-



tal motion. However, their approach focuses solely on body
part movements and overlooks fine visual details within rel-
evant regions; as a result, differentiating behaviors with sim-
ilar motion involving different objects becomes difficult.

Temporal modeling is another major challenge in DDAR.
DriveCLIP adopts a voting mechanism to obtain video-level
outcomes but fails to aggregate holistic temporal informa-
tion, making it challenging to recognize long-duration dis-
traction behaviors. (Moslemi, Azmi, and Soryani 2019) uti-
lized 3DCNN combined with RGB and optical flow infor-
mation to model the spatiotemporal features of driving be-
haviors. However, this approache is susceptible to redundant
frame information, leading to low recognition accuracy for
brief and subtle distraction behaviors.

These findings highlight two core challenges in DDAR:
(1) the need to accurately perceive behavior-relevant key
information within frames, including the position, interac-
tion, and visual details of key regions such as hands and
heads, and (2) the need to effectively aggregate complete
temporal information across frames while emphasizing dy-
namic changes that signal distracted behavior. To address
these challenges, we propose DualScope, a framework that
emphasizes the critical information in distracted driving be-
haviors from spatial and temporal perspectives. Specifically,
DualScope consists of two primary components: the Spatial
Scope and the Temporal Scope.

In the Spatial Scope, we employ a Synergistic Behavior-
Centric Distillation (SBCD) mechanism that trains a
Behavior-Centric Visual Encoder (BCVE) for frame-level
encoding to enhance the model’s ability to capture behavior-
relevant features. SBCD contains the Cross-Region Contex-
tual Distillation module (CRCD) and the Intra-Region Dis-
criminative Distillation module (IRDD). CRCD aligns fea-
tures of the original image with those enhanced by inte-
grating position-aware knowledge from SAM (Kirillov et al.
2023) via a cross-attention mechanism, thereby strengthen-
ing the model’s perception of key region positions and se-
mantic interactions between regions. IRDD performs self-
distillation to align the pooled regional features from the
original image with the corresponding detail-enhanced fea-
turess extracted from cropped key regions, improving the
model’s fine-grained understanding of intra-region details.
CRCD and IRDD synergistically optimize BCVE, enhanc-
ing behavioral understanding through spatial-semantic con-
text and fine-grained regional details. To resolve conflicts
arising from their differing optimization objectives, we em-
ploy Gradient Surgery, which utilizes an orthogonal projec-
tion strategy during gradient updates. During training, to ad-
dress the domain gap between pretraining data and driving
scenes and overcome insufficient spatial modeling, we insert
the Task-Aware Adapter and the Spatial Inductive Adapter
into different layers for efficient adaptation.

In the Temporal Scope, we propose the Saliency-Aware
Fine-to-Coarse Temporal Modeling module to guide the
model’s attention toward salient dynamics in behavior and
effectively capture behavioral patterns across multiple tem-
poral scales. For the video features encoded by BCVE, the
Fine-Grained Motion Encoder models local inter-frame re-
lationships via convolution. Simultaneously, the Dynamic

Difference Extractor performs temporal saliency mining
through feature-level central differencing to highlight re-
markable behavior-related changes. We also introduce the
Saliency-Aware Temporal Pyramid Mamba (SATPM) to
further model distraction behaviors of varying durations.
Salient dynamic information is integrated into SATPM
blocks across multiple scales via attention mechanisms, en-
abling robust multiscale temporal modeling and enhancing
the model’s focus on critical behavioral changes.

Our contributions are summarized as follows:

• We propose DualScope, a novel framework for the
DDAR task that captures distraction-related key infor-
mation from spatial and temporal perspectives, leading
to improved recognition performance.

• An innovative SBCD mechanism is presented to inte-
grate the complementary strengths of CRCD and IRDD
modules, thereby improving the model’s understanding
of key region positions, semantic interactions, and fine-
grained intra-region details.

• We present the Saliency-Aware Fine-to-Coarse Tempo-
ral Modeling module, which integrates salient dynam-
ics at multiple temporal scales, underscoring the value
of salient dynamics and multiscale modeling in DDAR.

• Extensive experiments show that DualScope outperforms
existing methods across seven public datasets.

Related Work
Distracted Driving Activity Recognition Methods.
Many methods have been proposed for distracted driv-
ing recognition, and they can be broadly divided into
conventional deep learning and VFM-based methods.
(Moslemi, Azmi, and Soryani 2019) employs a two-stream
3DCNN architecture that combines RGB and optical flow
for spatiotemporal modeling. (Yang et al. 2023b) applied
a weakly supervised framework on the basis of Swin
Transformer. (Akdag et al. 2023) integrates SlowFast and
2Dpose information for improved accuracy. (Pan et al.
2021) utilized LSTM for temporal modeling. (Zhang et al.
2024) improved performance by modeling the temporal
context via VideoMAE. (Pizarro et al. 2024; Chang et al.
2025) employed VideoMAE and posture information
to recognize distracted behaviors, enhancing detection
performance. (Hasan et al. 2024) proposed a CLIP-based
framework that leverages zero-shot inference and fine-
tuning to detect distracted behaviors. However, most of
these methods focus on capturing spatial information within
frames and tend to disregard temporally salient clues across
frames. This limited scope hinders their effectiveness in
complex real-world scenarios. By contrast, our approach
captures key behavioral cues by simultaneously attending
to spatially behavior-relevant regions and temporally salient
dynamics, resulting in the accurate recognition of distracted
driving behaviors.

Vision Foundation Models. VFMs such as CLIP have
demonstrated strong generalization in various downstream
tasks, including synthetic image detection (Li et al. 2021,



2024b, 2025c; Zhang et al. 2025) and semantic segmen-
tation (Li et al. 2025a,b). These applications highlight the
broad applicability of VFMs, but their representations re-
main global. Recent advances in multimodal representation
learning (Li et al. 2025e,d; Hao et al. 2025) further improve
global and modality-level features but still do not provide
region-level alignment. RegionCLIP (Zhong et al. 2022) in-
troduces pseudo region–text pairs, and CLIPSelf (Wu et al.
2023) applies self-distillation to address this problem. Al-
though effective, these approaches rely on object-centric re-
gion definitions and cannot capture behavior-critical areas
in DDAR, such as the driver’s head and hands, nor the se-
mantic interactions among these regions. To address these
limitations, we propose an SBCD mechanism that leverages
the spatial priors from SAM and detailed information from
region crops to enhance behavior-relevant perception.

State Space Models. State Space Models (SSMs), such
as S4 (Yu et al. 2020), efficiently model long-range de-
pendencies, with Mamba (Gu and Dao 2023) further en-
hancing temporal modeling through data-dependent selec-
tion and hardware-efficient algorithms. Although Mamba
has been applied to various vision tasks (Li et al. 2024a,c),
its effectiveness in DDAR is hindered by redundant frames
and the difficulty of handling behaviors with varying du-
rations. To address these issues, we propose the Saliency-
Aware Fine-to-Coarse Temporal Modeling module, which
leverages Mamba for multiscale temporal modeling and in-
corporates behavior-relevant salient dynamics to guide the
model’s attention toward remarkable motion changes. This
design enhances the model’s ability to recognize distracted
behaviors across diverse temporal patterns.

Methodology
As illustrated in Figure 3, DualScope comprises two main
components: the Spatial Scope and the Temporal Scope. The
Spatial Scope employs a Synergistic Behavior-Centric Dis-
tillation mechanism to train a Behavior-Centric Visual En-
coder, with SBCD comprising a Cross-Region Contextual
Distillation module and an Intra-Region Discriminative Dis-
tillation module. Figure 2 shows their structure and training
methodology. The Temporal Scope features the Saliency-
Aware Fine-to-Coarse Temporal Modeling module that in-
corporates the Fine-Grained Motion Encoder, Dynamic Dif-
ference Extractor, and Saliency-Aware Temporal Pyramid
Mamba. Each of these components is described in detail in
the following sections.

Spatial Scope
In the DDAR task, the driver’s head and hands are the
primary regions associated with distracted behaviors (Xing
et al. 2017), and their spatial locations, interactions, and
internal details often serve as critical cues for identifying
distraction. To enable ViT-based encoders to capture these
cues, we employ the SBCD mechanism to train a BCVE.
The encoder is trained on DriPE (Guesdon, Crispim-Junior,
and Tougne 2021), a pose estimation dataset comprising N
in-vehicle images captured in naturalistic driving scenarios,

which closely matches our target DDAR setting while avoid-
ing any prior knowledge or biased data distributions related
to distraction labels.

Cross-Region Contextual Distillation Module. CRCD is
designed to model the spatial positions of key regions and
their semantic interaction structures. For each image ij , we
use RTMPose (Jiang et al. 2023) to extract 133 body key-
points and select the coordinates of the head, left hand, and
right hand to generate three bounding boxes rkj , which form
a paired dataset {ij , rkj }

k=1,2,3
j=1,...,N .

Following (Yang et al. 2024), we input ij and rkj into
SAM model, extracting the first output tokens before the
3-layer MLP. These tokens are processed by a Key Region
Contextual Encoder, which employs a self-attention mech-
anism to capture spatial contexts across regions and applies
linear transformation to map them into the image-level fea-
ture space, resulting in position-aware tokens pj ∈ R3×D.

Concurrently, ij is encoded by a ViT-L/14 visual encoder
to extract visual features vj ∈ R257×D. We then apply a
cross-attention mechanism, where vj serves as the queries,
and pj acts as keys and values. This process yields enhanced
features v̂j that incorporate information about key region
positions and semantic interactions between regions. After
discarding the [CLS] tokens, vj and v̂j are reshaped into
spatial feature maps f j and f̂ j of the shape 16× 16×D,
representing the visual dense feature and context-enhanced
features, respectively. This operation recovers the spatial
layout of the image patches to support fine-grained region-
wise alignment, which is enforced through a cosine similar-
ity loss as follows:

LCRCD =
1

N

N∑
j=1

1−
f j · f̂ j∥∥f j

∥∥ · ∥∥∥f̂ j

∥∥∥
 . (1)

During training, the keypoints predicted by RTMPose
are used only to provide weak pose cues around behavior-
relevant regions. Notably, some noisy keypoints caused by
occlusion or challenging viewpoints naturally act as a regu-
larizer, improving robustness under occlusion and low-light
conditions. During inference, our framework remains fully
keypoint-free, and the pretrained BCVE directly processes
frames without requiring any pose estimation.

Intra-Region Discriminative Distillation Module. The
IRDD module enhances the model’s ability to perceive fine-
grained details within regions. We extract regional feature
xk
j ∈ R1×D by applying RoIAlign (He et al. 2017) to visual

dense feature f j at location rkj . Moreover, we crop original
image ij in accordance with rkj . The cropped region ikj is
then input to a fixed, pretrained teacher visual encoder with
same initial weights, from which we extract the [CLS] to-
ken as x̂k

j ∈ R1×D, serving as the detail-enhanced feature.
Benefiting from the teacher encoder, x̂k

j captures rich fine-
grained semantics and is a reliable target for supervising stu-
dent feature xk

j . To enhance fine-grained detail learning, we
maximize the cosine similarity between xk

j and x̂k
j through



Figure 2: Illustration of the Synergistic Behavior-Centric Distillation mechanism. It consists of the Cross-Region Contex-
tual Distillation module and the Intra-Region Discriminative Distillation module, which jointly enhance the behavioral under-
standing of the Behavior-Centric Visual Encoder (BCVE). Gradient Surgery is applied to mitigate the conflicts between their
optimization objectives. To adapt BCVE effectively to driving-specific scenarios, the Task-Aware Adapter and the Spatial In-
ductive Adapter are inserted into different layers.

a self-distillation loss, which is defined as

LIRDD =
1

3N

N∑
j=1

3∑
k=1

1−
xk
j · x̂k

j∥∥xk
j

∥∥ · ∥∥∥x̂k
j

∥∥∥
 . (2)

Conflict Mitigation Method. Although the CRCD and
IRDD modules synergistically enhance behavioral under-
standing, their distinct optimization objectives may cause
gradient conflicts during joint training. To resolve this is-
sue, we apply Gradient Surgery (Yu et al. 2020), where g1

and g2 denote the gradients of the CRCD and IRDD mod-
ules, respectively. A conflict is detected when g1 · g2 < 0,
in which case each gradient is projected onto the normal
plane of the other to remove the conflicting component:
g′
1 = g1 − g1·g2

∥g2∥2 g2, g′
2 = g2 − g1·g2

∥g1∥2 g1. The final pa-
rameter update is computed as ∆θ = g′

1 + g′
2. When no

conflict is detected (g1 ·g2 ≥ 0), the gradients are unaltered.

Parameter-Efficient Fine-Tuning. We employ a
parameter-efficient fine-tuning (PEFT) strategy to enhance
the model’s perception of key regions while preserving its
representational capacity. Inspired by (Jie et al. 2024; Pei,

Huang, and Xu 2025), we insert the Task-Aware Adapter
(TA-Adapter) into the Patch Embedding layer and the
Spatial Inductive Adapter (SI-Adapter) into all Transformer
layers, as depicted in Figure 2.

TA-Adapter uses a linear bottleneck structure to allevi-
ate the domain gap between the pretraining data and driving
scenarios. For input feature t ∈ Rn×D, the adapter outputs
tout = t+ReLU(t ·Wdown) ·Wup, where Wup ∈ Rs×D

and Wdown ∈ RD×s, s denotes the bottleneck feature size,
and n is the number of patches.

SI-Adapter is a convolutional bottleneck block inserted
parallel to the Multi-Head Attention and MLP layers within
each Transformer layer. It strengthens local spatial model-
ing through the inductive bias of convolutional layers. The
adapter employs a 1×1, 3×3, 1×1 convolution sequence us-
ing GELU activations between convolution layers. Channel
dimension D is reduced to h, subjected to spatial modeling,
and restored to its original size. Before SI-Adapter is ap-
plied, image tokens are reshaped into a 2D spatial map; the
[CLS] token is treated as a 1 × 1 feature map and handled
separately. Outputs are flattened and concatenated.



Figure 3: Overall architecture of DualScope. The Behavior-Centric Visual Encoder encodes each video frame and con-
catenates the resulting features, and the Fine-Grained Motion Encoder and Dynamic Difference Extractor model interframe
relationships and highlight salient dynamics, respectively. Saliency-Aware Temporal Pyramid Mamba emphasizes salient be-
havioral variations and performs multiscale modeling. Finally, a summation operation aggregates multiscale features, and the
classifier outputs the prediction.

Learning Objective. We introduce two loss functions.
LCRCD guides the model to learn key region positions and
semantic interactions. LIRDD improves the perception of
fine-grained details within key regions. The two objectives
jointly encourage the model to focus on distraction-relevant
cues, and Gradient Surgery is applied to mitigate potential
conflicts between their optimization objectives. The overall
training objective is defined as L = LCRCD + LIRDD.

Temporal Scope
As displayed in Figure 3, we propose a Saliency-Aware
Fine-to-Coarse Temporal Modeling module that captures
behavior patterns at different temporal resolutions and
highlights salient dynamic changes. The pretrained BCVE
encodes each frame and concatenates them, yielding a
behavior-centric feature X. Then, X is processed by a Fine-
Grained Motion Encoder (FGME) and a Dynamic Differ-
ence Extractor (DDE) separately, generating features Y and
Z, which are input to the Saliency-Aware Temporal Pyramid
Mamba (SATPM) for multi-scale modeling. Afterward, the
classifier performs distracted behavior recognition.

Fine-Grained Motion Encoder. In DDAR, distracted
driving behaviors involve subtle motion changes, such as

hand raising and head turning, across consecutive frames
within very short temporal windows. FGME models the
frame-to-frame context to enhance local perception. For the
independently modeled per-frame feature X, FGME em-
ploys a 1D convolution with a kernel size of 3, a stride
of 1, and a padding of 1 to aggregate local information.
Subsequently, linear transformation is applied to unify the
feature dimensions, resulting in fine-grained motion feature
Y ∈ RT×D.

Dynamic Difference Extractor. In lengthy video frame
sequences, focusing on key frames that contain remarkable
behavioral changes (e.g., “looking down”) is crucial for rec-
ognizing distraction behaviors. We introduce DDE for tem-
poral saliency mining via differencing, which emphasizes
salient interframe changes and suppresses redundant tempo-
ral information. Given feature sequence X = [x1, . . . ,xT ],
DDE computes central differences as zt =

1
2 (xt+1 −xt−1)

for t = 2, . . . , T−1, with boundary cases z1 = x2−x1 and
zT = xT − xT−1. Subsequently, linear transformation is
applied to adjust the dimension,yielding the salient dynamic
feature Z ∈ RT×D.

Saliency-Aware Temporal Pyramid Mamba. To effec-
tively model distraction behaviors that exhibit diverse tem-



Method Processing Type†
Video-based Image-based

SAM-DD SynDD1 AIDE DMD 3MDAD AUC StateFarm

ResNet18 (He et al. 2016) Image-only 95.91 47.55 66.52 85.95 - 95.54 82.68
VGG16 (Simonyan and Zisserman 2014) Image-only 96.86 12.56 65.48 56.15 68.12 96.18 -
ShuffleNet-v2 (Ma et al. 2018) Image-only 95.56 - 64.04 84.80 - 94.38 -
MobileNet-v2 (Sandler et al. 2018) Image-only 94.78 36.10 61.74 93.90 65.13 94.74 80.04
MIFI (Kuang et al. 2023) Video-only 96.98 80.43 66.17 93.20 83.70 - -
DriveCLIP (Hasan et al. 2024) Image&Video 97.86 81.85 66.01 98.44 83.13 96.58 83.15
DualScope Image&Video 98.56 89.66 79.64 98.63 87.72 96.86 86.85

Table 1: Performance comparison with state-of-the-art methods. We report top-1 accuracy (%) across all datasets. The best
results are bolded, while the second-best are underlined. Processing Type†: “Image-only” methods process video frame-by-
frame with voting.

poral durations and salient motion changes, we design
SATPM. SATPM consists of multiple consecutively stacked
blocks, where each block gradually expands the temporal re-
ceptive field and incorporates salient dynamic cues extracted
by DDE. Each SATPM block takes the output from the pre-
vious block Yb−1 ∈ RT×D as its input, and the input of
first block (Y0) is initialized using the fine-grained motion
feature Y generated by FGME. Inspired by (Pei, Huang,
and Xu 2025), we introduce Temporal Pyramid SSM (TP-
SSM) to control the temporal resolution through a step size
p, which is set to b for the b-th block. Specifically, Yb−1 is
split into p interleaved, nonoverlapping subsequences:

{Y(i)
b−1}

p
i=1 = Split(Yb−1), Y

(i)
b−1 ∈ R

T
p ×D.

For example, when p = 2, the sequence [t0, t1, . . . , t2N ] is
divided into [t0, t2, . . . , t2N ] and [t1, t3, . . . , t2N−1]. Each
subsequence is independently modeled by BiMamba (Zhu
et al. 2024),

Ỹ
(i)
b = BiMamba(Y

(i)
b−1), i = 1, . . . , p.

after which the processed subsequences are regrouped in
their original temporal order to restore full-length temporal
structure:

Ŷb = Regroup
(
{Ỹ(i)

b }pi=1

)
.

To inject salient dynamic cues, the salient feature Z obtained
from DDE is used as queries, while Ŷb serves as keys and
values. The cross-attention refinement is computed as

Yb = MLP

(
Softmax

(
ZŶ⊤

b√
D

)
MLP(Ŷb)

)
.

By progressively increasing step size p across blocks,
SATPM expands the temporal receptive field from fine to
coarse, enabling comprehensive multiscale temporal model-
ing while emphasizing salient motion changes. This hierar-
chical structure substantially enhances the ability to recog-
nize distraction behaviors that involve complex and variable
temporal patterns.

Classifier. The classifier is designed to categorize input
features. A simple summation operation effectively aggre-
gates multiscale features from different SATPM blocks. We
then apply temporal average pooling and perform linear pro-
jection into the distraction behavior category space. For op-
timization, we use cross-entropy loss as our objective.

Experiments

Experimental Settings

Dataset. To comprehensively evaluate the performance of
our model on the DDAR task, we conduct experiments on
five video datasets, namely, SAM-DD (Yang et al. 2023b),
SynDD1 (Rahman et al. 2023), AIDE (Yang et al. 2023a),
DMD (Ortega et al. 2020), and 3MDAD (Jegham et al.
2020), and two image datasets, namely, StateFarm (Mon-
toya et al. 2016) and AUC-v1 (Eraqi et al. 2019). Follow-
ing (Kuang et al. 2023; Hasan et al. 2024), we use side-view
data for SAM-DD, dashboard-view data for SynDD1, and
daytime data for 3MDAD. These datasets naturally cover a
broad range of real-world challenges. In particular, several
video datasets (e.g., SynDD1, AIDE, and 3MDAD) contain
short-term occlusions, low-light environments, and complex
viewing angles, making the DDAR task realistic and sub-
stantially challenging.

Evaluation Metric. This task is formulated as a multi-
class video classification problem, and we follow previ-
ous studies (Hasan et al. 2024; Yang et al. 2023b; Kose
et al. 2019; Moslemi, Azmi, and Soryani 2019) by adopting
top-1 accuracy (Acc) as the evaluation metric. To ensure a
fair, reliable evaluation, we employ the cross-validation and
subject-level separation protocols from (Hasan et al. 2024;
Chai et al. 2024). In particular, to avoid driver-specific bias
and the inflated accuracy issue, we maintain same strict sep-
aration between training and testing subjects.

Implementation Details. During BCVE pretraining, the
ViT-L/14 backbone is initialized with pretrained weights and
with adapter parameters s = 32 and h = 8. Only the pa-
rameters in the adapters, key region contextual encoder, and
multi-head attention are updated. The learning rate is set to
1e−4 and adjusted via cosine annealing. In DualScope train-
ing, projected feature dimension D is 256, and three SATPM
blocks are used. MLP is a two-layer feedforward block with
an intermediate size of 1024 and GELU activation. We em-
ploy the AdamW optimizer with an initial learning rate of
1e−5, a weight decay of 0.1, and cosine annealing schedul-
ing with a 10-epoch warm-up. DualScope is implemented
using PyTorch and trained on an NVIDIA A800 GPU.



Comparison with State-of-the-Art Methods
Quantitative Results. Table 1 compares DualScope
with traditional deep learning models, namely, ResNet18,
VGG16, ShuffleNet-v2, MobileNet-v2, and state-of-the-art
DDAR methods, namely, MIFI and DriveCLIP. Evaluation
results across seven distracted driving datasets show that
DualScope achieves the higheset top-1 accuracy among the
compared methods.

Compared with methods lacking adequate temporal mod-
eling, DualScope achieves multiscale temporal modeling
while focusing on behavioral salient changes, resulting in
substantially improved recognition performance. DriveCLIP
employs a simple majority voting mechanism to aggregate
predictions and does not fully capture temporal information.
As a result, it performs poorly on the AIDE dataset, which
requires full temporal understanding of short clips. MIFI,
affected by redundant frame noise, performs poorly on the
long-duration SynDD1 dataset, which contains substantial
redundancy. By contrast, DualScope consistently achieves
top performance across multiple video datasets. On the im-
age datasets, the SBCD mechanism enables DualScope to
attend to key distraction-related regions precisely, enhancing
fine-grained driver behavior recognition and ensuring supe-
rior performance.

Method SynDD1 StateFarm DMD SAM-DD

DriveCLIP 54.00 58.22 48.12 66.52
Ours 54.52 59.32 48.28 66.87

Table 2: Zero-shot Generalization comparison. We report
top-1 accuracy (%) on four datasets.

Method #Params. (M) FLOPs (G) FPS

ResNet18 11.2 1.8 75.54
VGG16 13.8 15.5 69.21
ShuffleNet-v2 7.4 0.6 60.25
MobileNet-v2 3.4 0.3 64.27
MIFI 24.6 223 14.70
DriveCLIP 9.67 3.54 6.90
Ours 12.36 1.39 22.32

Table 3: Computational Efficiency comparison. We report
Model size, computational complexity, and FPS, following
the same evaluation protocol in DriveCLIP.

Zero-Shot Generalization Evaluation To verify that our
PEFT-based pretraining strategy preserves the inherent gen-
eralization ability of the model, we conduct a zero-shot eval-
uation following the same protocol as DriveCLIP. This ex-
periment is designed to confirm that the BCVE, trained with
the SBCD mechanism, retains the generalization capacity of
the original backbone. As shown in Table 2, BCVE achieves
comparable or slightly improved performance compared
with the DriveCLIP baseline, indicating that the proposed
PEFT design maintains cross-domain generalization while

Figure 4: Embedding space visualization. t-SNE plots of
MIFI and DualScope on the AIDE dataset. MIFI produces
scattered and highly overlapping clusters across behavior
categories, whereas DualScope forms compact clusters with
well-separated boundaries between categories, demonstrat-
ing stronger discriminative capability.

enhancing the model’s awareness of critical spatial cues in
driving scenes.

Computational Efficiency. To evaluate the computational
efficiency of DualScope in realistic deployment settings, Ta-
ble 3 presents the model size, computational complexity,
and end-to-end inference throughput measured on an RTX
3090 GPU. DualScope contains 12.36M parameters and re-
quires only 1.39 GFLOPs, making it substantially lighter
than high-overhead video models, such as MIFI (24.6M, 223
GFLOPs). The image-based architectures, such as ResNet18
and VGG16 achieve higher FPS values (75.54 and 69.21,
respectively) because they operate on single frames, but
their lack of temporal modeling limits their effectiveness
on video-level DDAR benchmarks. DualScope attains 22.32
FPS, clearly surpassing video-based baselines, including
MIFI (14.70 FPS) and DriveCLIP (6.90 FPS), while si-
multaneously achieving highest recognition accuracy across
all the evaluated datasets. These results demonstrate that
DualScope obtains an effective balance between temporal
modeling capability and computational efficiency, enabling
real-time inference and supporting practical deployment in
resource-constrained driving environments.

Qualitative Results. As shown in Figure 4, we use t-
SNE (Maaten and Hinton 2008) to visualize features from
the AIDE dataset and qualitatively compare the discrimina-
tive abilities of DualScope and the baseline MIFI in mod-
eling driver behaviors. Each point denotes a video sam-
ple, color-coded by behavior category. Notably, the features
learned by MIFI are distributed sparsely, exhibiting consid-
erable overlap among different categories. This phenomenon
is particularly apparent for Looking Around and Body Move-
ment, where the categories are highly entangled. This obser-
vation implies that MIFI’s learned representations may lack
sufficient granularity.

By contrast, the features learned by DualScope exhibit a
distinct and structured clustering pattern in the embedding



Component Settings Acc

Visual Encoder ViT-L/14 87.23
BCVE 90.84

Temporal Modeling

FGME only 79.34
w/o DDE 87.49

w/o FGME 89.76
Full 90.84

Number of SATPM blocks

1 87.53
2 89.36
3 90.84
4 86.42

Table 4: Ablation study of the main components. We re-
port average top-1 accuracy (%) across five video datasets.

space, with well-defined decision boundaries between mul-
tiple categories. For instance, the behaviors such as Nor-
mal Driving, Smoking, and Making Phone are effectively
clustered and separated. This observation indicates that Du-
alScope can capture discriminative behavior features and
effectively distinguish fine-grained driver behaviors. These
findings further validate the effectiveness of our approach
in capturing behavior-relevant cues in temporal and spatial
dimensions.

Ablation Analysis
Model components. We conduct ablation experiments to
assess the contribution of each component in DualScope
across five video datasets, and the results are summarized
in Table 4. Replacing BCVE with pretrained ViT-L/14 leads
to a 3.61% performance drop, indicating that ViT-L/14 lacks
the ability to perceive distraction-relevant regions, whereas
BCVE benefits from behavior-centric distillation and cap-
tures discriminative cues.

For temporal modeling, retaining only FGME substan-
tially reduces accuracy to 79.34%, showing that local tem-
poral cues alone are insufficient. Removing DDE results
in a 3.35% decrease, demonstrating that salient dynamics
are crucial for suppressing redundant motion information.
Removing FGME produces a small drop (1.08%), suggest-
ing that FGME mainly provides complementary short-range
motion cues. These observations verify that FGME, DDE,
and SATPM jointly form an effective temporal modeling
pipeline.

We further vary the number of SATPM blocks. Increasing
the depth enlarges the temporal receptive field and improves
performance up to three blocks, achieving the highest ac-
curacy of 90.84%. Using four blocks leads to a noticeable
decline, which is likely due to excessive long-range model-
ing that weakens short-term behavioral cues. Overall, three
blocks provide ideal balance between temporal granularity
and contextual coverage.

Effect of SBCD components. To assess the contribution
of the SBCD mechanism, we analyze two key aspects: con-
flict mitigation, and adapter design in the visual encoder.
Given that SBCD focuses solely on spatial modeling, we
conduct experiments on two image datasets (StateFarm and

AUC) to isolate spatial effects. The results are summarized
in Table 5.

For conflict mitigation, we analyze the role of Gradi-
ent Surgery in resolving the optimization inconsistency be-
tween CRCD and IRDD. Without this method, performance
degrades to 89.31%, indicating that the two spatial objec-
tives impose conflicting gradients during joint optimization.
Applying Gradient Surgery yields a 2.55% improvement
(91.86%) by orthogonalizing the gradients from CRCD and
IRDD, enabling stable and cooperative multiobjective learn-
ing. These results highlight the necessity of explicitly ad-
dressing gradient conflicts introduced by the complementary
yet divergent spatial supervision from CRCD and IRDD.

For adapter design, we compare various PEFT strate-
gies. Full fine-tuning provides limited gains (90.33%),
whereas the PEFT baselines, namely, LoRA (Hu et al.
2022) and AdaptFormer (Chen et al. 2022), achieve 90.76%
and 91.09%, respectively. Our task-specific adapters ob-
tain higher accuracy with fewer parameters (0.93M vs.
1.57M/3.15M). Using only TA-Adapter yields 90.67% accu-
racy, and using only SI-Adapter produces 91.21%. Combin-
ing both results in excellent performance (91.86%), confirm-
ing the efficiency and effectiveness of our spatially tailored
adapter design.

Component Settings Acc(%)

Conflict Mitigation w/o Gradient Surgery 89.31
Gradient Surgery 91.86

Adapter Design

Full Fine-tuning 90.33
LoRA 90.76

AdaptFormer 91.09
TA-Adapter 90.67
SI-Adapter 91.21

TA+SI-Adapter 91.86

Table 5: Ablation study on the SBCD components. The
results show average top-1 accuracy (%) across StateFarm
and AUC.

Conclusion
In this paper, we propose DualScope, a novel framework for
DDAR that models critical behavioral cues from spatial and
temporal perspectives. The Spatial Scope employs the Syn-
ergistic Behavior-Centric Distillation mechanism to guide
attention to key regions, capturing their positions, interac-
tions, and fine-grained details. The Temporal Scope intro-
duces the Saliency-Aware Fine-to-Coarse Temporal Model-
ing module and effectively captures various behavioral pat-
terns and salient dynamic changes. Experiments on seven
public datasets show that DualScope consistently outper-
forms existing methods, demonstrating strong recognition
accuracy and generalization in complex driving scenarios.
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Ortega, J. D.; Kose, N.; Cañas, P.; Chao, M.-A.; Unnervik,
A.; Nieto, M.; Otaegui, O.; and Salgado, L. 2020. Dmd:
A large-scale multi-modal driver monitoring dataset for at-
tention and alertness analysis. In European Conference on
Computer Vision, 387–405. Springer.

Pan, C.; Cao, H.; Zhang, W.; Song, X.; and Li, M. 2021.
Driver activity recognition using spatial-temporal graph
convolutional LSTM networks with attention mechanism.
IET Intelligent Transport Systems, 15(2): 297–307.

Pei, X.; Huang, T.; and Xu, C. 2025. Efficientvmamba:
Atrous selective scan for light weight visual mamba. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
6, 6443–6451.

Pizarro, R.; Valle, R.; Bergasa, L. M.; Buenaposada, J. M.;
and Baumela, L. 2024. Pose-guided multi-task video
transformer for driver action recognition. arXiv preprint
arXiv:2407.13750.

Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, 8748–8763. PmLR.

Rahman, M. S.; Venkatachalapathy, A.; Sharma, A.; Wang,
J.; Gursoy, S. V.; Anastasiu, D.; and Wang, S. 2023. Syn-
thetic distracted driving (syndd1) dataset for analyzing dis-
tracted behaviors and various gaze zones of a driver. Data
in brief, 46: 108793.

Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 4510–4520.
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Wu, S.; Zhang, W.; Xu, L.; Jin, S.; Li, X.; Liu, W.; and
Loy, C. C. 2023. Clipself: Vision transformer distills it-
self for open-vocabulary dense prediction. arXiv preprint
arXiv:2310.01403.
Xing, Y.; Lv, C.; Zhang, Z.; Wang, H.; Na, X.; Cao, D.; Ve-
lenis, E.; and Wang, F.-Y. 2017. Identification and analysis
of driver postures for in-vehicle driving activities and sec-
ondary tasks recognition. IEEE Transactions on Computa-
tional Social Systems, 5(1): 95–108.
Yang, D.; Huang, S.; Xu, Z.; Li, Z.; Wang, S.; Li, M.; Wang,
Y.; Liu, Y.; Yang, K.; Chen, Z.; et al. 2023a. Aide: A
vision-driven multi-view, multi-modal, multi-tasking dataset
for assistive driving perception. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
20459–20470.
Yang, H.; Liu, H.; Hu, Z.; Nguyen, A.-T.; Guerra, T.-M.;
and Lv, C. 2023b. Quantitative identification of driver dis-
traction: A weakly supervised contrastive learning approach.
IEEE Transactions on Intelligent Transportation Systems,
25(2): 2034–2045.
Yang, H.; Ma, C.; Wen, B.; Jiang, Y.; Yuan, Z.; and Zhu, X.
2024. Recognize any regions. Advances in Neural Informa-
tion Processing Systems, 37: 51312–51332.
Yu, T.; Kumar, S.; Gupta, A.; Levine, S.; Hausman, K.; and
Finn, C. 2020. Gradient surgery for multi-task learning. Ad-
vances in neural information processing systems, 33: 5824–
5836.
Zhang, L.; Li, S.; Ma, W.; and Zha, H. 2025. TrueMoE:
Dual-Routing Mixture of Discriminative Experts for Syn-
thetic Image Detection. arXiv preprint arXiv:2509.15741.
Zhang, T.; Wang, Q.; Dong, X.; Yu, W.; Sun, H.; Zhou, X.;
Zhen, A.; Cui, S.; Wu, D.; and He, Z. 2024. Augmented
self-mask attention transformer for naturalistic driving ac-
tion recognition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 7108–
7114.
Zhao, L.; Yang, F.; Bu, L.; Han, S.; Zhang, G.; and Luo,
Y. 2021. Driver behavior detection via adaptive spatial at-
tention mechanism. Advanced Engineering Informatics, 48:
101280.
Zhong, Y.; Yang, J.; Zhang, P.; Li, C.; Codella, N.; Li, L. H.;
Zhou, L.; Dai, X.; Yuan, L.; Li, Y.; et al. 2022. Regionclip:
Region-based language-image pretraining. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, 16793–16803.
Zhu, L.; Liao, B.; Zhang, Q.; Wang, X.; Liu, W.; and Wang,
X. 2024. Vision mamba: Efficient visual representation
learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417.


