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Abstract001

While reasoning and multilingual capabilities002
in Language Models (LMs) have achieved re-003
markable progress in recent years, their inte-004
gration into a unified paradigm—multilingual005
reasoning—is at a nascent stage. Multilingual006
reasoning requires language models to handle007
logical reasoning across languages while ad-008
dressing misalignment, biases, and challenges009
in low-resource settings. This survey provides010
the first in-depth review of multilingual reason-011
ing in LMs. In this survey, we provide a system-012
atic overview of existing methods that leverage013
LMs for multilingual reasoning, specifically014
outlining the challenges, motivations, and foun-015
dational aspects of applying language models016
to reason across diverse languages. We pro-017
vide an overview of the standard data resources018
used for training multilingual reasoning in LMs019
and the evaluation benchmarks employed to as-020
sess their multilingual capabilities. Next, we021
analyze various state-of-the-art methods and022
their performance on these benchmarks. Fi-023
nally, we explore future research opportunities024
to improve multilingual reasoning in LMs, fo-025
cusing on enhancing their ability to handle di-026
verse languages and complex reasoning tasks.027

1 Introduction028

If we spoke a different language, we would029

perceive a somewhat different world.030
031

Ludwig Wittgenstein032

Large Language Models (LLMs) (Vaswani,033

2017) have emerged as transformative tools in034

natural language processing, demonstrating state-035

of-the-art performance in language generation,036

translation, and summarization. These models,037

trained on vast corpora, excel in generating human-038

like text and understanding diverse linguistic con-039

texts. Despite their success in language generation,040

LLMs often face significant challenges in address-041

ing underrepresented languages and reasoning.042

While the development of Multilingual LLMs 043

(Qin et al., 2024; Huang et al., 2024a) extends 044

LLM’s capabilities in addressing multiple lan- 045

guages and catering to the needs of linguistically 046

diverse communities, their proficiency in gener- 047

ation stems from training on large-scale corpora 048

optimized for next-word prediction rather than 049

logical inference (Ramji and Ramji, 2024). Conse- 050

quently, while they produce fluent and contextually 051

appropriate responses, they frequently struggle 052

with complex reasoning tasks, particularly those 053

requiring multi-step logic or nuanced understand- 054

ing (Patel et al., 2024). These limitations become 055

even more pronounced in multilingual settings 056

due to key technical problems like cross-lingual 057

misalignment, biases in training data, and the 058

scarcity of resources for low-resource languages. 059

Reasoning is formally defined as the process of 060

drawing logical conclusions, enabling individuals 061

and systems to solve problems and make complex 062

decisions. Recent advancements have sought 063

to enhance the reasoning capabilities of LLMs 064

using Chain-of-Thought (CoT) (Wei et al., 2022), 065

fine-tuning (Lobo et al., 2024), and hybrid mod- 066

eling (Yao et al., 2024), especially in high-resource 067

languages like English. However, reasoning in mul- 068

tilingual contexts remains a relatively unexplored 069

domain, where existing efforts predominantly focus 070

on a handful of high-resource languages, leaving 071

low-resource and typologically distant languages 072

underrepresented. The lack of robust bench- 073

marks, diverse training corpora, and alignment 074

strategies further impede progress in this vital area. 075

Multilingual reasoning, which combines 076

logical inference with multilingual capabilities, is 077

essential for creating AI systems that effectively 078

operate across diverse linguistic and cultural 079

contexts (Shi et al., 2022). Such systems hold 080

immense potential for global applications, from 081

multilingual education to culturally adaptive 082

healthcare, ensuring inclusivity and fairness. The 083
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motivation for this survey arises from the urgent084

need to address these challenges and provide a085

systematic exploration of methods, resources, and086

future directions for multilingual reasoning in087

LLMs. The key contributions of our work are:088

1) Comprehensive Overview: We systematically089

review existing methods that leverage LLMs for090

multilingual reasoning, outlining challenges, moti-091

vations, and foundational aspects of applying rea-092

soning to diverse languages.093

2) Training Corpora and Evaluation Bench-094

marks: We analyze the strengths, limitations, and095

suitability of existing multilingual corpora and eval-096

uation benchmarks in assessing the reasoning capa-097

bilities of LLMs for diverse linguistic tasks.098

3) Analysis of State-of-the-Art Methods: We099

evaluate the performance of various state-of-the-art100

techniques, including CoT prompting, instruction101

tuning, and cross-lingual adaptations, on multilin-102

gual reasoning benchmark tasks.103

4) Future Research Directions: We identify key104

challenges and provide actionable insights for ad-105

vancing multilingual reasoning, focusing on adap-106

tive alignment strategies, culturally aware bench-107

marks, and methods for low-resource languages.108

2 Multilingual Reasoning in LLMs109

Recent advancements in LLMs have improved110

their reasoning capabilities. However, extend-111

ing them across languages introduces several112

challenges, including consistency, low-resource113

adaptation, and cultural integration. Below, we114

describe the preliminaries and key characteristics115

of multilingual reasoning, focusing on challenges116

and desiderata for cross-lingual inference.117

2.1 Preliminaries118

Large Language Models (LLMs). LLMs are119

transformer-based neural network architectures120

designed to model the probability of a sequence of121

tokens. Formally, LLMs are trained to predict the122

likelihood of a word (or sub-word token) given the123

preceding words in a sequence X = {x1, . . . , xn},124

i.e., P (X) =
∏n

i=1 P (xi | x1, . . . , xi−1), where125

P (X) is the probability of the entire sequence and126

P (xi|x1, . . . , xi−1) is the conditional probability127

of the ith token given the preceding tokens.128

Reasoning. One of the key reasons behind the129

success of LLMs in mathematical and logical tasks130

is their reasoning capabilities. Formally, reasoning131

enables LLMs to draw logical conclusions C from132

premises P using a mapping function: C = f(P ). 133

To this end, there are different types of reasoning 134

strategies that an LLM can employ: 135

a) Deductive Reasoning: It derives specific con- 136

clusions from general premises. If a given set of 137

premises Pi is true, the conclusion C must be true, 138

i.e., P1, P2, . . . , Pn ⇒ C, 139

b) Inductive Reasoning: Generalizes patterns 140

from specific instances, leading to probabilistic 141

conclusions, i.e., P1, P2, . . . , Pn ⇒ Cprobabilistic 142

c) Abductive Reasoning: Infers the most plausible 143

explanation (Hbest) for given observation O, i.e., 144

O ⇒ Hbest 145

d) Analogical Reasoning: Identifies relationships 146

between domains and transfers knowledge, i.e., A : 147

B ≈ C : D 148

e) Commonsense Reasoning: Uses real-world 149

knowledge for intuitive decision-making. 150

2.2 Desiderata in Multilingual Reasoning 151

Here, we describe desiderata that lay the foun- 152

dation for multilingual reasoning in LLMs. Let 153

L={l1, l2, . . . , lm} represent a set of m languages, 154

and let Pl and Cl denote the premise and conclu- 155

sion in a given language li. For a multilingual 156

reasoning model M , the task can be defined as: 157

M(Pli) → Cli , ∀li ∈ L, where M must satisfy 158

the following key desiderata: 159

1. Consistency: A model should make log- 160

ically equivalent conclusions across languages 161

for semantically equivalent premises, i.e., Cli ≈ 162

Clj , if Pli ≡ Plj , ∀li, lj ∈ L, where ≡ indi- 163

cates semantic equivalence of premises across lan- 164

guages. Consistency ensures that logical conclu- 165

sions remain invariant of the input language. 166

2. Adaptability: For languages lk ∈ Llow-resource, 167

the model must generalize effectively using cross- 168

lingual transfer from high-resource languages 169

and perform robust reasoning, i.e., ∀lk ∈ 170

Llow-resource, M(Plk) → Clk . 171

3. Cultural Contextualization: Reasoning should 172

consider cultural and contextual differences inher- 173

ent to each language, i.e., for a context cli specific 174

to language li, the conclusion Cli should adapt ac- 175

cordingly: Cli = f(Pli , cli), ∀li ∈ L, where 176

f is a mapping function that integrates linguistic 177

reasoning with cultural nuances. 178

4. Cross-Lingual Alignment: The model must 179

align reasoning processes across typologically 180

diverse languages, where typology refers to 181

linguistic differences in syntax, morphology, and 182

structure (e.g., word order variations between 183
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Figure 1: Taxonomy tree of current Multilingual Reasoning Research. The thrusts for improving multilingual
reasoning mainly include representation learning, fine-tuning, prompting, and model editing. With the emergence of
multilingual LLMs, while initial research focused on naive prompting, recent works propose several alignment,
editing, and fine-tuning strategies to improve reasoning in multilingual LLMs.

English and Japanese). Given the typological184

variations Tli and Tlj for languages li and185

lj , alignment ensures that reasoning remains186

consistent and coherent across languages, i.e.,187

if Pli ≡ Plj , M(Pli) ≈ M(Plj ), ∀li, lj ∈ L.188

Next, we highlight existing works that propose dif-189

ferent training corpora and benchmarks for multi-190

lingual reasoning in Sec. 3 and then describe previ-191

ously proposed techniques to improve the multilin-192

gual reasoning of LLMs in Sec. 4.193

3 Multilingual Reasoning Datasets194

Models trained on english corpora exhibit language195

biases (Lyu et al., 2024), limiting their reasoning ca-196

pability on non-English languages. Training an LM197

to solve math problems across languages requires198

multilingual understanding and mathematical rea-199

soning (Son et al., 2024). Hence, multilingual200

datasets and benchmarks play a key role in training201

multilingual LMs and evaluating the effectiveness202

of various LMs and techniques in handling domain-203

specific reasoning queries across low- and high-204

resource languages (Xu et al., 2024; Rasiah et al.,205

2024; Xue et al., 2024). Below, we detail training206

datasets (Sec. 3.1) and benchmarks (Sec. 3.2), com-207

prising domains, tasks, and language distribution208

in current multilingual reasoning datasets.209

3.1 Training Corpus 210

The best strategy to equip an LM with a specific 211

type of reasoning is to train the model on it. 212

However, the training objective differs based on 213

the use case, domain, and language in which 214

the model needs to be adapted. For example, to 215

perform mathematical reasoning (Cobbe et al., 216

2021; Amini et al., 2019) in a particular language, 217

it needs to be trained with mathematical reasoning 218

datasets, which will differ if we want to adapt the 219

model for legal reasoning. 220

While most training corpora are predominantly 221

based on mathematical reasoning, XCSQA (Zhu 222

et al., 2024b) and MultiNLI (Williams et al., 2017) 223

are used for enhancing logical and coding reason- 224

ing, and sPhinX (Ahuja et al., 2024) is developed 225

to translate instruction-response pairs into 50 lan- 226

guages for fine-tuning. In addition, there are cases 227

where translation datasets like OPUS (Tiedemann, 228

2012), FLORES-200 (Goyal et al., 2022), and 229

LegoMT (Yuan et al., 2022) are used to map the 230

multilingual representation into the LM’s represen- 231

tation space. Further, Ponti et al. (2020) introduced 232

XCOPA to show that multilingual pre-training and 233

zero-shot fine-tuning underperform compared to 234

translation-based transfer. We argue that, moving 235
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Figure 2: Language distribution across training corpora and benchmarks for multilingual reasoning. The
y-axis denotes the number of training corpora/benchmark datasets that include a given language (x-axis). We
observe a long-tail distribution, denoting that current datasets predominantly cover languages like Chinese, English,
French, and German, highlighting the need for benchmarks that represent long-tail languages.
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Figure 3: Distribution of multilingual reasoning
datasets. We find that datasets predominantly com-
prise logical, commonsense, and math reasoning, and
the community needs benchmarks to include composi-
tional and tabular reasoning.

forward, selecting the appropriate dataset and train-236

ing methodology is crucial for optimizing a model’s237

performance in specialized reasoning tasks.238

3.2 Evaluation Benchmark239

Benchmarks are key to advancing the field of240

multilingual reasoning as they provide a systematic241

framework to assess the performance of models242

across diverse reasoning tasks. Each reasoning task243

and domain presents unique challenges, making it244

crucial to have tailored benchmarks that reflect spe-245

cific requirements and complexities of those tasks.246

Below, we analyze the evaluation benchmarks247

on three key aspects, namely languages (Fig. 2),248

domain (Fig. 3), and task (Fig. 4).249

3.2.1 Domains and Tasks Covered250

Multilingual reasoning in LMs spans multiple do-251

mains, each with its complexities and requirements,252

and understanding these differences is essential253

for developing LMs that can effectively adapt to254

various applications. For instance, Cobbe et al.255

(2021) highlighted that mathematical reasoning256

requires structured multi-step logic and datasets.257

While Ponti et al. (2020) showed that causal rea-258

soning in XCOPA relies on cross-lingual consis-259

13.5%
Logical

18.9%
Legal

5.4%
Visual

Tabular

Ethics

2.7%
Compositional

8.1%
Code

5.4%
Science

Temporal

Maths
18.9
%

16.2%
Commonsense

2.7%

5.4%

2.7%

Figure 4: Distribution of domains in multilingual rea-
soning datasets. While legal, commonsense, and math
domain dataset cover up to 54% of current multilingual
reasoning research, other under-explored domains
include ethics, science, visual, and compositional.

tency and commonsense inference, Östling and 260

Tiedemann (2016) noted that multilingual reason- 261

ing introduces typological challenges. These stud- 262

ies emphasize the need for tailored approaches to 263

address the specific demands of each task and do- 264

main. Hence, it is crucial to build reliable and 265

robust benchmarks for developing more robust 266

techniques tailored to handle the complexity of a 267

particular domain and task. Figs. 3-4 show the dis- 268

tribution of datasets across various domains and 269

tasks, highlighting the need to develop more com- 270

prehensive benchmarks across multiple domains. 271

Currently, tasks such as math, legal, and common- 272

sense reasoning dominate multilingual benchmarks, 273

collectively accounting for 54% of the total (Fig. 4). 274

In contrast, domains like science, ethics, and vi- 275

sual, tabular, and temporal reasoning are underrep- 276

resented, covering only 35%. Notably, crucial do- 277

mains such as finance and healthcare still lack 278

dedicated evaluation benchmarks for multilin- 279

gual reasoning, highlighting a significant gap in the 280

field. 281

3.2.2 Languages Covered 282

Comprehensive language coverage is vital for mul- 283

tilingual reasoning, ensuring inclusivity and bal- 284
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Figure 5: Taxonomy of Multilingual Reasoning Methods. A taxonomy of approaches for enhancing multilingual
reasoning in models, covering (A) Representation Alignment, (B) Finetuning, (C) Prompting, and (D) Model Editing.

anced performance across low- and high-resource285

linguistic communities. Based on languages, cur-286

rent benchmarks can be primarily classified into287

human and coding languages. Benchmarks like288

XNLI (Conneau et al., 2018), mCSQA (Sakai et al.,289

2024), and m-ARC (Lai et al., 2023) predomi-290

nantly focus on high-resource languages like En-291

glish, Chinese, French, and Spanish. While some292

efforts include low-resource languages like Swahili293

(XCOPA (Ponti et al., 2020)), Haitian (M4U (Wang294

et al., 2024)), and Nepali (mMMLU (Hendrycks295

et al., 2020)), their representation remains min-296

imal and research in these languages remains at297

a nascent stage. Typologically distant and under-298

represented languages, such as Kannada, Gujarati299

(xSTREET (Li et al., 2024a)), and Quechua, are300

rarely included, further widening linguistic in-301

equalities. Datasets like FLORES-200 attempt302

to balance low- and high-resource languages but303

fail to achieve comprehensive coverage. To ensure304

effective LLM performance across diverse linguis-305

tic and cultural contexts, it is critical to include306

a broader range of low-resource and endangered307

languages (Goyal et al., 2022; Amini et al., 2019)308

(see the complete distribution of human languages309

across benchmarks in Fig. 2). Finally, only four310

benchmarks (Luo et al., 2024; Xu et al., 2024;311

Zhang et al., 2024b; Li et al., 2024a) incorporate312

coding languages across multiple languages.313

4 Methods314

Multilingual reasoning within LMs has garnered315

significant attention in recent years, leading to the316

development of diverse techniques for enhancing317

their capabilities across diverse languages. Prior318

works have explored various directions to improve319

multilingual reasoning. Building upon this body of320

work (see Fig. 5), we identify four primary thrusts,321

viz. representation alignment, fine-tuning, prompt- 322

ing, and model editing, collectively contributing 323

to advancing multilingual reasoning in LMs. 324

a) Representation Alignment. Multilingual 325

reasoning requires consistent representations 326

across languages, but LMs often struggle due 327

to imbalanced training data. Representation 328

alignment ensures that equivalent concepts share 329

similar embeddings, reducing inconsistencies in 330

multilingual inference, vital for reasoning and mul- 331

tilingual generalization. Li et al. (2024b) employs 332

contrastive learning to align multilingual sentence 333

representations by treating translation pairs as 334

positive samples and pulling their embeddings 335

closer, bridging language representation gaps and 336

enhancing model’s cross-lingual reasoning and 337

generation capabilities. Multilingual Alignment 338

Learning is another technique that ensures seman- 339

tic consistency across languages by aligning their 340

representations for improved multilingual perfor- 341

mance (Huang et al., 2024b), bridging multilingual 342

encoders with LLMs using minimal parameters 343

to achieve effective alignment without supervi- 344

sion (Yoon et al., 2024; Kargaran et al., 2024). 345

Similarly, Ruan et al. (2025) integrates all encoder 346

layer representations and employs adaptive fusion- 347

enhanced attention to enable layer-wise alignment 348

between the LLM and multilingual encoder, 349

ensuring consistent cross-lingual representations 350

and improving the model’s multilingual reasoning 351

capabilities. Finally, an exciting new direction is 352

multilingual compositional learning, which con- 353

structs compositional representations by combining 354

equivalent token embeddings across multiple 355

languages (Arora et al., 2024) and formalizing 356

problems in an abstract space and solving them 357

step-by-step using self-training for improved align- 358

ment across languages (Ranaldi and Pucci, 2025). 359
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b) Finetuning. It leverages cross-lingual data and360

tasks to fine-tune models for enhanced reasoning361

and comprehension, leading to numerous innova-362

tive approaches. For instance, LinguaLIFT (Zhang363

et al., 2024a) uses code-switched fine-tuning along364

with language alignment layers to effectively365

bridge the gap between English and low-resource366

languages, helping maintain the nuance and367

context across linguistic boundaries. Similarly,368

QuestionAlign (Zhu et al., 2024b) aligns questions369

and responses in multiple languages, thereby370

enhancing cross-lingual understanding and371

consistency in reasoning and Ko et al. (2025)372

introduces a strategic fine-tuning approach that373

anchors reasoning in English and then translates374

results, significantly reducing cross-lingual375

performance gaps. Strategic fine-tuning using376

a small but high-quality bilingual dataset can377

enhance both the reasoning capabilities and378

non-English language proficiency of LLMs (Ha,379

2025). While these methods have leaned towards380

extensive fine-tuning, SLAM (Fan et al., 2025)381

introduces a more parameter-efficient strategy and382

selectively tunes layers critical for multilingual383

comprehension, significantly lowering the com-384

putational demands while still maintaining or385

even enhancing the model’s reasoning capabilities.386

Translation has also been harnessed as a powerful387

tool for knowledge transfer in multilingual settings,388

where TransLLM (Geng et al., 2024) focuses on389

translation-aware fine-tuning to align different390

languages, enhancing language understanding but391

also adapting the model for various cross-lingual392

tasks. For those aiming at more complex reasoning393

tasks, reasoning-focused fine-tuning has proven394

beneficial. The Multilingual CoT (mCoT) instruc-395

tion tuning method (Lai and Nissim, 2024) utilizes396

a dataset specifically curated for reasoning across397

languages and combines CoT reasoning with398

instruction tuning to boost consistency and logical399

problem-solving in multiple languages. In addition,400

preference-based techniques to align reasoning401

outputs across languages emphasize the use of402

language imbalance as a reward signal in models403

like Direct Preference and Proximal Policy Opti-404

mization (She et al., 2024). Recent research has405

demonstrated that Process Reward Modeling offers406

fine-grained feedback at each step of the reasoning407

process, only Wang et al. (2025) has shown its408

application on non-English language. Finally, an409

interesting direction moving forward is curriculum-410

based and retriever-based fine-tuning techniques411

to enhance multilingual reasoning (Anand et al., 412

2024; Bajpai and Chakraborty, 2024), where 413

models must not only retrieve relevant information 414

but also compare them to evaluate relationships 415

between them (Agrawal et al., 2024; Ranaldi et al., 416

2025b; Shao et al., 2024; Yang et al., 2025). 417

c) Prompting. Prompting has emerged as a key 418

technique for enhancing how LLMs adapt and 419

reason across different languages. By guiding the 420

model through specific strategies, prompting facil- 421

itates dynamic language adaptation and addresses 422

the data imbalance challenge, thereby enhancing 423

cross-lingual consistency, logical alignment, and 424

the robustness of reasoning. For instance, an 425

effective method is Direct Multilingual Input 426

Prompting (Sakai et al., 2024), where the model di- 427

rectly processes inputs in various native languages 428

without translation, preserving the original linguis- 429

tic nuances. This approach was notably applied 430

in the paper “Do Moral Judgements” (Khandelwal 431

et al., 2024), where moral scenarios were directly 432

presented in their native languages to assess the 433

model’s reasoning capabilities. Another strategy, 434

Translation-based prompting (Liu et al., 2024) 435

uses translation to convert multilingual inputs into 436

a target language for processing, where tasks are 437

translated into English for reasoning and translated 438

back to the target language for evaluation (Wang 439

et al., 2024; Zhao and Zhang, 2024b). This is also 440

used to generate diverse CoT with Negative Ratio- 441

nales by incorporating both correct and incorrect 442

reasoning paths to refine multilingual reasoning 443

capabilities (Payoungkhamdee et al., 2024). While 444

in-context learning with natural language can 445

be ambiguous and less effective in low-resource 446

languages, program-based demonstrations offer 447

clearer, structured reasoning that transfers better 448

across languages (Ranaldi et al., 2025a). In 449

addition to the above strategies, Dictionary 450

Insertion Prompting (DIP) offers a lightweight 451

and practical alternative by inserting English 452

translations of keywords into non-English prompts, 453

bridging linguistic gaps without full translation 454

and enabling clearer reasoning and improved 455

performance in multilingual tasks (Lu et al., 2024). 456

d) Model Editing. Model editing is a growing and 457

exciting research area that aims to modify/update 458

the information stored in a model. Formally, model 459

editing strategies update pre-trained models for 460

specific input-output pairs without retraining them 461

and impacting the baseline model performance 462

on other inputs. Multilingual Precision Editing in- 463
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volves making updates to model knowledge while464

ensuring minimal impact on unrelated information.465

Multilingual knowledge Editing with neuron-466

Masked Low-Rank Adaptation (MEMLA) (Xie467

et al., 2024) enhances multilingual reasoning468

by leveraging neuron-masked LoRA-based edits469

to integrate knowledge across languages and470

improve multi-hop reasoning capabilities. Fur-471

ther, Multilingual Translation Post-editing refines472

translations by correcting errors in multilingual473

outputs for better alignment, where we can enhance474

multilingual reasoning by incorporating auxiliary475

translations into the post-editing process, enabling476

LLMs to improve semantic alignment and trans-477

lation quality across languages (Lim et al., 2024).478

An emerging complementary direction investi-479

gates inference-time (test-time) compute scaling480

in enhancing multilingual reasoning. Recent481

work shows that scaling up compute for English-482

centric reasoning language models (RLMs) can483

significantly improve performance across many484

languages, including low-resource ones, even485

surpassing larger models (Yong et al., 2025). While486

most test-time techniques, such as CoT prompting487

with trial and error, have primarily focused on488

English, methods like English-Pivoted CoT train-489

ing (Tran et al., 2025) exploit the model’s strong490

English reasoning capabilities to support multi-491

lingual tasks, offering a promising path to bridge492

alignment gaps for underrepresented languages.493

5 Evaluation Metrics and Benchmarks494

Evaluating multilingual reasoning in LLMs495

requires standardized metrics to ensure logical con-496

sistency and cross-lingual coherence. Unlike tradi-497

tional NLP, it must address inference errors, transla-498

tion drift, and reasoning stability across languages.499

5.1 Metrics500

Here, we detail key metrics for evaluating multilin-501

gual reasoning, along with their formal definitions:502

1) Accuracy. These metrics assess overall correct-503

ness in reasoning and multilingual benchmarks: i)504

General Accuracy measures the proportion of cor-505

rect outputs over total samples, and ii) Zero-Shot506

Accuracy, which evaluates model performance on507

unseen tasks or categories without fine-tuning.508

2) Reasoning and Consistency. These metrics509

evaluate logical inference and multi-step reasoning510

ability: i) Reasoning Accuracy assesses correctness511

in logical and step-by-step reasoning tasks and ii)512

Path Consistency measures coherence between rea- 513

soning steps in CoT prompting. 514

3) Translation and Cross-Lingual. To ensure 515

multilingual reasoning consistency, models must 516

preserve meaning across languages: i) Translation 517

Success Rate measures correctness and semantic 518

preservation in multilingual translations as the ratio 519

of accurate translations and total translations and 520

ii) Cross-Lingual Consistency evaluates whether 521

logically equivalent statements yield consistent 522

reasoning outputs across different languages. 523

4) Perplexity and Alignment. They quantify 524

semantic alignment and measure whether em- 525

beddings across languages remain consistent: i) 526

Perplexity-Based Alignment (Palign) 527

Palign = exp

(
− 1

N

N∑
i=1

logP (xi)

)
, (1) 528

where P (xi) is the model’s probability of pre- 529

dicting token xi (lower perplexity means better 530

alignment) and ii) Semantic Alignment measures 531

the cosine similarity between multilingual sentence 532

embeddings: Salign = El·Et

∥El∥∥Et∥ , where El and Et 533

are sentence embeddings in different languages. 534

5.2 Performance on Benchmarks 535

Here, we discuss the performance of the afore- 536

mentioned methods on standard mathematical 537

(MGSM (Shi et al., 2022), MSVAMP (Chen et al., 538

2023)), commonsense (xCSQA (Lin et al., 2021)), 539

logical (xNLI (Conneau et al., 2018)) reasoning 540

benchmarks1. Next, we describe the four most 541

popular benchmarks and detail the performance of 542

reasoning techniques, highlighting existing model 543

gaps that limit their reasoning performance. 544

MGSM tests multilingual arithmetic reasoning 545

in LMs with 250 translated math problems in ten 546

diverse languages. While recent trends suggest that 547

advanced post-training techniques like MAPO are 548

key for strong performance, fine-tuning strategies 549

may be more impactful than stronger reasoning 550

architectures or relying on the model’s English 551

expertise to improve multilingual performance. 552

MSVAMP is an out-of-domain multilingual mathe- 553

matical reasoning dataset comprising 10k problems 554

across ten languages and serves as a comprehensive 555

test bed to evaluate LMs’ generalization in multilin- 556

gual mathematical contexts. We find that advanced 557

preference optimization achieves much stronger 558

1We only cover benchmarks analyzed by more than four
papers.
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performance than CoT-based fine-tuning, suggest-559

ing advanced fine-tuning techniques are a better560

direction to beat the current best in this benchmark.561

xCSQA is a multilingual extension of the562

CommonsenseQA dataset, encompassing 12,247563

multiple-choice questions translated into 15564

languages, designed to assess LMs’ cross-lingual565

commonsense reasoning capabilities. The current566

trend shows that stronger fine-tuning strategies567

like two-step fine-tuning or preference optimiza-568

tion show better performance than selectively569

fine-tuning specific layers as in SLAM.570

xNLI evaluates cross-lingual inference across571

15 languages. Recent studies suggest that LM572

integration with external models (Huang et al.,573

2024b) and multilingual alignment followed by574

fine-tuning (Zhang et al., 2024a) outperform575

contrastive learning methods like TCC (Chia et al.,576

2023), highlighting the need for more structured577

multilingual adaptation strategies.578

6 Future Directions579

With the rapid development of reasoning models,580

our community must ensure that models remain581

unbiased towards low-resource languages. Look-582

ing forward, we call on the community to put their583

collective efforts into the following directions:584

1. Multilingual Alignment and Reasoning Trans-585

fer. A key challenge in multilingual reasoning is586

the lack of data in different languages. One promis-587

ing solution is to leverage existing large datasets588

and transfer/distill their knowledge in the repre-589

sentation space (Yoon et al., 2024; Huang et al.,590

2024b). Future research should develop cross-591

lingual knowledge transfer techniques, enabling592

models to use high-resource languages as a bridge593

to enhance reasoning in low-resource languages.594

Another direction is to generate synthetic datasets595

using techniques like back-translation and data aug-596

mentation, tailored specifically for reasoning tasks.597

2. Explainable and Interpretable Reasoning.598

Ensuring faithful reasoning in multilingual LLMs599

is challenging due to linguistic diversity, translation600

ambiguities, and reasoning inconsistencies. Studies601

on English CoT reasoning (Tanneru et al., 2024;602

Lobo et al., 2024) highlight faithfulness issues,603

which become more severe when extended to low-604

resource languages. Causal reasoning can enhance605

cross-lingual alignment, improving interpretability606

by uncovering cause-and-effect relationships607

across languages. Future research should focus608

on integrating causal reasoning and multilingual 609

CoT frameworks to ensure logical coherence, 610

transparency, and trust in multilingual AI systems. 611

3. Advanced Training and Inference Techniques. 612

While recent advancements in multilingual reason- 613

ing have introduced reasoning-aware fine-tuning 614

and multilingual preference optimization tech- 615

niques, further efforts are needed to improve train- 616

ing paradigms. Some exciting techniques in this 617

direction includes post-training RL methods that 618

improve reasoning in low-resource languages (Wu 619

et al., 2024) and efficient inference-time scaling 620

and Agentic frameworks (Khanov et al., 2024; 621

Chakraborty et al., 2024). Preliminary post- 622

training works (Xuan et al., 2025) show that they 623

yield mixed results across languages, with effec- 624

tiveness depending on the base model and required 625

degree of linguistic diversity, highlighting the need 626

for language inclusive training approaches. 627

4. Unified Evaluation Metrics. A comprehensive 628

evaluation framework is a crucial missing compo- 629

nent for assessing multilingual reasoning capabil- 630

ities. Metrics should measure logical consistency, 631

cultural adaptability, and robustness, considering 632

real-world and adversarial multilingual settings. 633

5. Multimodal Multilingual Reasoning. While 634

there are a few works on visual reasoning in the 635

multilingual context (Das et al., 2024; Gao et al., 636

2025), multimodal reasoning (integrating tables, 637

text, image, audio, and video) remains largely 638

unexplored. Advancing this area could enable 639

models to handle complex tasks in low-resource 640

languages and incorporate cross-modal reasoning. 641

Refer to Appendix A for additional directions. 642

7 Conclusion 643

Multilingual reasoning in LLMs is a rapidly 644

evolving field, addressing critical challenges like 645

cross-lingual alignment, low-resource language 646

gaps, and cultural adaptation. Our survey high- 647

lights advancements in fine-tuning, prompting, 648

and representation learning while identifying gaps 649

in scalability and domain-specific applications. 650

It serves as a call to action for the LLM and 651

reasoning community to focus on advanced 652

alignment techniques, culturally aware reasoning, 653

and scalable architectures. By breaking language 654

barriers and fostering inclusivity, multilingual 655

reasoning can create globally impactful AI systems. 656

Our survey provides a foundation for advancing 657

research in this transformative domain. 658
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8 Limitations659

This is the first survey dedicated to the important660

and emerging topic of multilingual reasoning. We661

have made every effort to include key studies and662

recent advancements in this area; however, we ac-663

knowledge that some relevant work may have been664

unintentionally missed. As the field is still in its665

early stages, this survey does not aim to provide666

definitive solutions for improving multilingual rea-667

soning. Instead, our goal is to analyze existing668

approaches and offer a comprehensive evaluation669

of which techniques demonstrate stronger perfor-670

mance across current benchmarks.671
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A Appendix 1059

Related Surveys The earliest surveys (Qin et al., 2024; Xu et al., 2025)—both from April 2024 focus 1060

on laying foundational taxonomies of Multilingual LLMs(MLLMs):(Qin et al., 2024) survey resources, 1061

taxonomy, and emerging frontiers in MLLMs, while (Xu et al., 2025) delve deeply into multilingual 1062

corpora, alignment techniques, and bias issues. Huang et al. (2024a) broadens the scope to multiple 1063

perspectives—training/inference, security, cultural domains, and datasets—framing “new frontiers” in 1064

multilingual LLM research. Finally, survey by (Zhu et al., 2024a) provides the most comprehensive 1065

“systematic” treatment: it covers architectures, pre-training objectives, alignment datasets, a detailed 1066

evaluation roadmap (including safety, interpretability, reasoning), and real-world applications across 1067

domains. This survey is the first survey dedicated specifically to multilingual reasoning, drilling deeply 1068

into logical inference across languages, its unique challenges (misalignment, bias, low-resource gaps), 1069

and the benchmarks and methods tailored to evaluate and improve reasoning capabilities. 1070

Additional Future Directions. Below, are some additional future directions to advance multilingual 1071

reasoning in language models. 1072

1. New Benchmarks: As multilingual reasoning advances, robust evaluation benchmarks are essential 1073

because reasoning is highly domain-specific in nature, developing targeted benchmarks is crucial, 1074

especially in high-stakes fields like healthcare, law, and finance, where accuracy directly affects 1075

decision-making. For instance, Xue et al. (2024) introduces FAMMA which shows significant challenges 1076

in the field of Financial Question Answering. 1077

2. Efficient Reasoning Models. An emerging direction in reasoning research is enhancing resource 1078

efficiency in reasoning-aware models. Recent works like (Ning et al., 2024) propose strategies for more 1079

efficient reasoning, reducing computational costs while maintaining logical consistency. However, this 1080

area remains largely unexplored in multilingual settings, offering a key opportunity to develop scalable 1081

reasoning models that generalize across languages with minimal resources. 1082

3. Miscellaneous Tasks. LLMs have given extraordinary performance in many tasks yet they struggle 1083

with complex compositional reasoning (Zhao and Zhang, 2024a), performing only slightly better 1084

than random guessing. Models also struggle to reason over long texts, especially in low-resource 1085

languages (Hengle et al., 2025), often failing to combine information or recognize what’s missing—even 1086

when they can retrieve facts. 1087
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Figure 6: Accuracy trends of various methods on multilingual reasoning benchmarks, including MGSM, MSVAMP, XNLI,
and XCSQA. The x-axis represents the arXiv paper submission date, and the y-axis indicates percentage accuracy.

We show a detailed tabular format of the languages used in different reasoning datasets along with their 1088

languages. 1089
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af Afrikaans ar Arabic be Belarusian bg Bulgarian
bn Bengali ca Catalan cs Czech da Danish
de German el Greek en English es Spanish
et Estonian eu Basque fa Persian fi Finnish
fr French ha Hausa he Hebrew hi Hindi
hr Croatian ht Haitian hu Hungarian hy Armenian
id Indonesian id Indonesian is Icelandic it Italian
ja Japanese kn Kannada ko Korean lb Luxembourgish
mk Macedonian ml Malayalam mr Marathi nb Norwegian Bokmal
ne Nepali nl Dutch pl Polish pt Portuguese
qu Quechua ro Romanian ru Russian sk Slovak
sl Slovenian sr Serbian sv Swedish tr Turkish
uk Ukrainian ur Urdu vi Vietnamese zh Chinese

Table 1: Language Codes and Their Corresponding Languages
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Table 2: Multilingual Datasets and their respective papers, domains, and languages.

Dataset Paper Domain Languages

MSVAMP (She et al., 2024; Yoon et al., 2024; Zhu et al.,
2024c,b; Lai and Nissim, 2024; Chai et al.,
2024; Huang et al., 2024b; Zhang et al., 2024a;
Fan et al., 2025)

Maths zh , th , ja , en ,
de , fr , es , bn.
sw

MGSM (She et al., 2024; Yoon et al., 2024; Zhu et al.,
2024c,b; Lai and Nissim, 2024; Chai et al.,
2024; Huang et al., 2024b; Liu et al., 2024;
Zhang et al., 2024a; Fan et al., 2025)

Maths zh , th , ja , en ,
de , fr , es , ru ,
bn. sw , te

MNumGLUESub (She et al., 2024) Maths bn , th , sw , ja ,
zh , ru , de , es ,
fr , en

MetaMathQA (Yoon et al., 2024; Zhu et al., 2024c,b; Lai and
Nissim, 2024; Huang et al., 2024b)

Maths en

Proof-Pile 2 (Yoon et al., 2024) Maths en

Exams Dataset (Payoungkhamdee et al., 2024) Science and Humanities ar , de , fr , es ,
it , pl , vi , pt ,
sr , hu , tr , bg ,
hr , mk , sq

M4U Benchmark (Wang et al., 2024) Science zh , en , de

XCSQA (Zhu et al., 2024b; Zhang et al., 2024a; Fan
et al., 2025)

Common Sense zh , en , de , fr ,
es , ru , hi

XNLI (Zhu et al., 2024b; Liu et al., 2024; Zhang et al.,
2024a)

Logical zh , th , ur , en ,
de , fr , es , ru ,
el , tr , bg , hi , sw

MultiNLI (Zhu et al., 2024b), (Huang et al., 2024b) Logical en

BBH-Hard (Luo et al., 2024) Temporal, Tabular,
Spatial

Python , R , C++.

Java , Javascript

NLVR2 (Song et al., 2024) Visual en

MARVL (Song et al., 2024) Visual id , sw , ta , tr , zh

xSTREET (Li et al., 2024a) Logical ar , zh , ja , en ,
es , ru

Translated Code
Comments (TCC)

(Li et al., 2024a) Code Java , JavaScript ,
Python

mCoT-MATH (Lai and Nissim, 2024) Maths zh , th , ja , en ,
de , fr , es , ru ,
bn , hi , te

Reasoning by
Equivalence Dataset

(Arora et al., 2024) Logical en , fr , es , de ,
pt , hi

Reasoning by
Inheritance Dataset

(Arora et al., 2024) Logical en , fr , es , de ,
pt , hi

XCOT (Chai et al., 2024) Maths de , fr , es , ru ,
zh , ja , th , te ,
bn , sw , en

mCSQA (Sakai et al., 2024) Common Sense zh , ja , en , fr ,
de , pt , ru
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Dataset Paper Domain Languages

Rulings, Legislation,
Court View Generation,
Critically Prediction,
Law Area Prediction,
Judgment Prediction
Datasets

(Rasiah et al., 2024) Legal de , fr , it , ro , en

mRewardBench (Gureja et al., 2024) Logical and
CommonSense

ar , cs , de , el ,
es , fa , fr , he ,
hi , id , it , ja ,
ko , nl , pl , pt ,
ro , ru , tr , uk ,
vi , zh

Moral Judgement
Dataset

(Khandelwal et al., 2024) Moral en , zh , hi , ru ,
es , sw

MCR (Zhao and Zhang, 2024b) Compositional ja , ko , fr

mTEMPREASON (Bajpai and Chakraborty, 2025) Temporal ro , de , fr

XCOPA (Liu et al., 2024) Common Sense zh , it , vi , tr ,
id , sw , th , et ,
ta , ht , qu

mARC (Kargaran et al., 2024) Common Sense zh , ja , en , de ,
fr , es

IndiMathQA (Anand et al., 2025) Maths en , hi

CRUXEval (Xu et al., 2024) Code C# , C++ , D , GO ,
Java , JavaScript ,
Julia , Luca ,
Perlm PHP , R ,
Racket , Ruby ,
Rust , Scala ,
Shell , Swift ,
TypeScript

Dataset Paper Domain Languages

mMMLU (Kargaran et al., 2024) Common Sense ar , zh , vi , id ,
en , de , fr , it ,
nl , eu , es , pt ,
ca , da , ru , hr ,
hy , hu , ro , ne ,
kn , uk , sr , sv ,
mr , nb , ml , is ,
bn , hi , ta , te , gu

MMWP Benchmark (Zhang et al., 2024a) Maths af , ar , be , bn ,
eu , gu , ha , hi ,
hy , is , kn , lb ,
mk , ml , mr , ne ,
sk , sw , ta , te ,
th , bg , ca , cs ,
da , fi , hr , hu ,
id , ko , nb , pl ,
pt , ro , sl , sr ,
uk , vi , de , en ,
es , fr , it , ja ,
nl , ru , sv , zh
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Reasoning Type Papers

Deductive Lai and Nissim (2024), Chai et al. (2024), Huang et al. (2024b), Zhang et al. (2024a), Huang et al.
(2024b), Fan et al. (2025), Payoungkhamdee et al. (2024), Luo et al. (2024), Song et al. (2024), Li et al.
(2024a), Arora et al. (2024), Rasiah et al. (2024), Sakai et al. (2024), Khandelwal et al. (2024), Kargaran
et al. (2024), Anand et al. (2025), Xu et al. (2024), She et al. (2024), Zhu et al. (2024b), Li et al. (2024c),
Lim et al. (2024), Bajpai and Chakraborty (2025), Li et al. (2024b)

Inductive Chai et al. (2024), Huang et al. (2024b), Zhang et al. (2024a), Huang et al. (2024b), Fan et al. (2025),
Payoungkhamdee et al. (2024), Luo et al. (2024), Song et al. (2024), Li et al. (2024a), Arora et al. (2024),
Rasiah et al. (2024), Sakai et al. (2024), Khandelwal et al. (2024), Kargaran et al. (2024), Anand et al.
(2025), Xu et al. (2024), She et al. (2024), Zhu et al. (2024b), Li et al. (2024c), Lim et al. (2024), Bajpai
and Chakraborty (2025), Li et al. (2024b), Wei et al. (2024), Xie et al. (2024), Yang et al. (2024), Geng
et al. (2024), Yang et al. (2025), Ko et al. (2025), Ruan et al. (2025), Lu et al. (2024), Agrawal et al.
(2024), Ranaldi et al. (2025b), Ha (2025), Ranaldi et al. (2025a), Ranaldi and Pucci (2025), Xuan et al.
(2025), Yoon et al. (2024), Zhu et al. (2024c), Lai and Nissim (2024), Chai et al. (2024), Huang et al.
(2024b), Zhang et al. (2024a), Huang et al. (2024b), Fan et al. (2025), Payoungkhamdee et al. (2024),
Luo et al. (2024), Song et al. (2024), Li et al. (2024a), Arora et al. (2024), Rasiah et al. (2024), Sakai
et al. (2024), Khandelwal et al. (2024), Kargaran et al. (2024), Anand et al. (2025), Xu et al. (2024), She
et al. (2024), Zhu et al. (2024b), Li et al. (2024c), Lim et al. (2024), Bajpai and Chakraborty (2025), Li
et al. (2024b), Wei et al. (2024), Xie et al. (2024), Yang et al. (2024), Geng et al. (2024), Yang et al.
(2025), Ko et al. (2025), Ruan et al. (2025), Lu et al. (2024), Agrawal et al. (2024), Ranaldi et al. (2025b),
Ha (2025), Ranaldi et al. (2025a), Ranaldi and Pucci (2025)

Abductive Huang et al. (2024b), Zhang et al. (2024a)

Analogical Zhang et al. (2024a), Huang et al. (2024b), Fan et al. (2025), Payoungkhamdee et al. (2024), Luo et al.
(2024), Song et al. (2024), Li et al. (2024a), Arora et al. (2024), Rasiah et al. (2024), Sakai et al. (2024),
Khandelwal et al. (2024), Kargaran et al. (2024), Anand et al. (2025), Xu et al. (2024), She et al. (2024),
Zhu et al. (2024b), Li et al. (2024c), Lim et al. (2024), Bajpai and Chakraborty (2025), Li et al. (2024b),
Wei et al. (2024), Xie et al. (2024), Yang et al. (2024), Geng et al. (2024), Yang et al. (2025), Ko et al.
(2025), Ruan et al. (2025), Lu et al. (2024), Agrawal et al. (2024), Ranaldi et al. (2025b), Ha (2025),
Ranaldi et al. (2025a), Ranaldi and Pucci (2025)

Commonsense Huang et al. (2024b), Fan et al. (2025), Payoungkhamdee et al. (2024), Luo et al. (2024), Song et al.
(2024), Li et al. (2024a), Arora et al. (2024), Rasiah et al. (2024), Sakai et al. (2024), Khandelwal et al.
(2024), Kargaran et al. (2024), Anand et al. (2025), Xu et al. (2024), She et al. (2024), Zhu et al. (2024b),
Li et al. (2024c), Lim et al. (2024), Bajpai and Chakraborty (2025), Li et al. (2024b), Wei et al. (2024),
Xie et al. (2024)

Table 3: Categorization of Papers by Reasoning Type
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