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Abstract

While reasoning and multilingual capabilities
in Language Models (LMs) have achieved re-
markable progress in recent years, their inte-
gration into a unified paradigm—multilingual
reasoning—is at a nascent stage. Multilingual
reasoning requires language models to handle
logical reasoning across languages while ad-
dressing misalignment, biases, and challenges
in low-resource settings. This survey provides
the first in-depth review of multilingual reason-
ing in LMs. In this survey, we provide a system-
atic overview of existing methods that leverage
LMs for multilingual reasoning, specifically
outlining the challenges, motivations, and foun-
dational aspects of applying language models
to reason across diverse languages. We pro-
vide an overview of the standard data resources
used for training multilingual reasoning in LMs
and the evaluation benchmarks employed to as-
sess their multilingual capabilities. Next, we
analyze various state-of-the-art methods and
their performance on these benchmarks. Fi-
nally, we explore future research opportunities
to improve multilingual reasoning in LMs, fo-
cusing on enhancing their ability to handle di-
verse languages and complex reasoning tasks.

1 Introduction

If we spoke a different language, we would
perceive a somewhat different world.

Ludwig Wittgenstein

Large Language Models (LLMs) (Vaswani,
2017) have emerged as transformative tools in
natural language processing, demonstrating state-
of-the-art performance in language generation,
translation, and summarization. These models,
trained on vast corpora, excel in generating human-
like text and understanding diverse linguistic con-
texts. Despite their success in language generation,
LLMs often face significant challenges in address-
ing underrepresented languages and reasoning.

While the development of Multilingual LLMs
(Qin et al., 2024; Huang et al., 2024a) extends
LLM’s capabilities in addressing multiple lan-
guages and catering to the needs of linguistically
diverse communities, their proficiency in gener-
ation stems from training on large-scale corpora
optimized for next-word prediction rather than
logical inference (Ramji and Ramji, 2024). Conse-
quently, while they produce fluent and contextually
appropriate responses, they frequently struggle
with complex reasoning tasks, particularly those
requiring multi-step logic or nuanced understand-
ing (Patel et al., 2024). These limitations become
even more pronounced in multilingual settings
due to key technical problems like cross-lingual
misalignment, biases in training data, and the
scarcity of resources for low-resource languages.

Reasoning is formally defined as the process of
drawing logical conclusions, enabling individuals
and systems to solve problems and make complex
decisions. Recent advancements have sought
to enhance the reasoning capabilities of LLMs
using Chain-of-Thought (CoT) (Wei et al., 2022),
fine-tuning (Lobo et al., 2024), and hybrid mod-
eling (Yao et al., 2024), especially in high-resource
languages like English. However, reasoning in mul-
tilingual contexts remains a relatively unexplored
domain, where existing efforts predominantly focus
on a handful of high-resource languages, leaving
low-resource and typologically distant languages
underrepresented. The lack of robust bench-
marks, diverse training corpora, and alignment
strategies further impede progress in this vital area.

Multilingual reasoning, which combines
logical inference with multilingual capabilities, is
essential for creating Al systems that effectively
operate across diverse linguistic and cultural
contexts (Shi et al., 2022). Such systems hold
immense potential for global applications, from
multilingual education to culturally adaptive
healthcare, ensuring inclusivity and fairness. The



motivation for this survey arises from the urgent
need to address these challenges and provide a
systematic exploration of methods, resources, and
future directions for multilingual reasoning in
LLMs. The key contributions of our work are:

1) Comprehensive Overview: We systematically
review existing methods that leverage LLMs for
multilingual reasoning, outlining challenges, moti-
vations, and foundational aspects of applying rea-
soning to diverse languages.

2) Training Corpora and Evaluation Bench-
marks: We analyze the strengths, limitations, and
suitability of existing multilingual corpora and eval-
uation benchmarks in assessing the reasoning capa-
bilities of LLMs for diverse linguistic tasks.

3) Analysis of State-of-the-Art Methods: We
evaluate the performance of various state-of-the-art
techniques, including CoT prompting, instruction
tuning, and cross-lingual adaptations, on multilin-
gual reasoning benchmark tasks.

4) Future Research Directions: We identify key
challenges and provide actionable insights for ad-
vancing multilingual reasoning, focusing on adap-
tive alignment strategies, culturally aware bench-
marks, and methods for low-resource languages.

2 Multilingual Reasoning in LLMs

Recent advancements in LLMs have improved
their reasoning capabilities. However, extend-
ing them across languages introduces several
challenges, including consistency, low-resource
adaptation, and cultural integration. Below, we
describe the preliminaries and key characteristics
of multilingual reasoning, focusing on challenges
and desiderata for cross-lingual inference.

2.1 Preliminaries

Large Language Models (LLMs). LLMs are
transformer-based neural network architectures
designed to model the probability of a sequence of
tokens. Formally, LL.Ms are trained to predict the
likelihood of a word (or sub-word token) given the
preceding words in a sequence X = {x1,...,z,},
ie, P(X) = [y P(xi | ®1,...,2;—1), where
P(X) is the probability of the entire sequence and
P(zi|z1,...,x;—1) is the conditional probability
of the i token given the preceding tokens.

Reasoning. One of the key reasons behind the
success of LLMs in mathematical and logical tasks
is their reasoning capabilities. Formally, reasoning
enables LLLMs to draw logical conclusions C' from

premises P using a mapping function: C' = f(P).
To this end, there are different types of reasoning
strategies that an LLM can employ:

a) Deductive Reasoning: It derives specific con-
clusions from general premises. If a given set of
premises P; is true, the conclusion C' must be true,
ie, P\,P,...,P, = C,

b) Inductive Reasoning: Generalizes patterns
from specific instances, leading to probabilistic
conclusions, i.e., P, Py, ..., Py, = Cprobabilistic

¢) Abductive Reasoning: Infers the most plausible
explanation (Hpeg) for given observation O, i.e.,
0= Hbest

d) Analogical Reasoning: Identifies relationships
between domains and transfers knowledge, i.e., A :
Bx=C:D

e) Commonsense Reasoning: Uses real-world
knowledge for intuitive decision-making.

2.2 Desiderata in Multilingual Reasoning

Here, we describe desiderata that lay the foun-
dation for multilingual reasoning in LLMs. Let
L={ly,la,...,l,,} represent a set of m languages,
and let P; and C; denote the premise and conclu-
sion in a given language /;. For a multilingual
reasoning model M, the task can be defined as:
M(P,) — Cj,, Vl; € L, where M must satisty
the following key desiderata:

1. Consistency: A model should make log-
ically equivalent conclusions across languages
for semantically equivalent premises, i.e., Cj, ~
Gy, iftP, = PR;, Vll; € L, where = indi-
cates semantic equivalence of premises across lan-
guages. Consistency ensures that logical conclu-
sions remain invariant of the input language.

2. Adaptability: For languages I, € Liow-resources
the model must generalize effectively using cross-
lingual transfer from high-resource languages
and perform robust reasoning, ie., Vi €
Llow-resourcea M(Plk) — Clk .

3. Cultural Contextualization: Reasoning should
consider cultural and contextual differences inher-
ent to each language, i.e., for a context ¢;, specific
to language [;, the conclusion Cj, should adapt ac-
cordingly: C;, = f(Py,,c;,), VIl € L, where
f is a mapping function that integrates linguistic
reasoning with cultural nuances.

4. Cross-Lingual Alignment: The model must
align reasoning processes across typologically
diverse languages, where typology refers to
linguistic differences in syntax, morphology, and
structure (e.g., word order variations between
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Figure 1: Taxonomy tree of current Multilingual Reasoning Research. The thrusts for improving multilingual
reasoning mainly include representation learning, fine-tuning, prompting, and model editing. With the emergence of
multilingual LLMs, while initial research focused on naive prompting, recent works propose several alignment,
editing, and fine-tuning strategies to improve reasoning in multilingual LLMs.

English and Japanese). Given the typological
variations 7, and T, for languages [; and
l;, alignment ensures that reasoning remains
consistent and coherent across languages, i.e.,
if P, EPZJ., M(Pll)%M(Pl]), Vi, l; € L.
Next, we highlight existing works that propose dif-
ferent training corpora and benchmarks for multi-
lingual reasoning in Sec. 3 and then describe previ-
ously proposed techniques to improve the multilin-
gual reasoning of LLMs in Sec. 4.

3 Multilingual Reasoning Datasets

Models trained on english corpora exhibit language
biases (Lyu et al., 2024), limiting their reasoning ca-
pability on non-English languages. Training an LM
to solve math problems across languages requires
multilingual understanding and mathematical rea-
soning (Son et al., 2024). Hence, multilingual
datasets and benchmarks play a key role in training
multilingual LMs and evaluating the effectiveness
of various LMs and techniques in handling domain-
specific reasoning queries across low- and high-
resource languages (Xu et al., 2024; Rasiah et al.,
2024; Xue et al., 2024). Below, we detail training
datasets (Sec. 3.1) and benchmarks (Sec. 3.2), com-
prising domains, tasks, and language distribution
in current multilingual reasoning datasets.

3.1 Training Corpus

The best strategy to equip an LM with a specific
type of reasoning is to train the model on it.
However, the training objective differs based on
the use case, domain, and language in which
the model needs to be adapted. For example, to
perform mathematical reasoning (Cobbe et al.,
2021; Amini et al., 2019) in a particular language,
it needs to be trained with mathematical reasoning
datasets, which will differ if we want to adapt the
model for legal reasoning.

While most training corpora are predominantly
based on mathematical reasoning, XCSQA (Zhu
et al., 2024b) and MultiNLI (Williams et al., 2017)
are used for enhancing logical and coding reason-
ing, and sPhinX (Ahuja et al., 2024) is developed
to translate instruction-response pairs into 50 lan-
guages for fine-tuning. In addition, there are cases
where translation datasets like OPUS (Tiedemann,
2012), FLORES-200 (Goyal et al., 2022), and
LegoMT (Yuan et al., 2022) are used to map the
multilingual representation into the LM’s represen-
tation space. Further, Ponti et al. (2020) introduced
XCOPA to show that multilingual pre-training and
zero-shot fine-tuning underperform compared to
translation-based transfer. We argue that, moving
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Figure 2: Language distribution across training corpora and benchmarks for multilingual reasoning. The
y-axis denotes the number of training corpora/benchmark datasets that include a given language (x-axis). We
observe a long-tail distribution, denoting that current datasets predominantly cover languages like Chinese, English,
French, and German, highlighting the need for benchmarks that represent long-tail languages.
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Figure 3: Distribution of multilingual reasoning
datasets. We find that datasets predominantly com-
prise logical, commonsense, and math reasoning, and
the community needs benchmarks to include composi-
tional and tabular reasoning.

forward, selecting the appropriate dataset and train-
ing methodology is crucial for optimizing a model’s
performance in specialized reasoning tasks.

3.2 Evaluation Benchmark

Benchmarks are key to advancing the field of
multilingual reasoning as they provide a systematic
framework to assess the performance of models
across diverse reasoning tasks. Each reasoning task
and domain presents unique challenges, making it
crucial to have tailored benchmarks that reflect spe-
cific requirements and complexities of those tasks.
Below, we analyze the evaluation benchmarks
on three key aspects, namely languages (Fig. 2),
domain (Fig. 3), and task (Fig. 4).

3.2.1 Domains and Tasks Covered

Multilingual reasoning in LMs spans multiple do-
mains, each with its complexities and requirements,
and understanding these differences is essential
for developing LMs that can effectively adapt to
various applications. For instance, Cobbe et al.
(2021) highlighted that mathematical reasoning
requires structured multi-step logic and datasets.
While Ponti et al. (2020) showed that causal rea-
soning in XCOPA relies on cross-lingual consis-
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Figure 4: Distribution of domains in multilingual rea-
soning datasets. While legal, commonsense, and math
domain dataset cover up to 54% of current multilingual
reasoning research, other under-explored domains
include ethics, science, visual, and compositional.

tency and commonsense inference, Ostling and
Tiedemann (2016) noted that multilingual reason-
ing introduces typological challenges. These stud-
ies emphasize the need for tailored approaches to
address the specific demands of each task and do-
main. Hence, it is crucial to build reliable and
robust benchmarks for developing more robust
techniques tailored to handle the complexity of a
particular domain and task. Figs. 3-4 show the dis-
tribution of datasets across various domains and
tasks, highlighting the need to develop more com-
prehensive benchmarks across multiple domains.
Currently, tasks such as math, legal, and common-
sense reasoning dominate multilingual benchmarks,
collectively accounting for 54 % of the total (Fig. 4).
In contrast, domains like science, ethics, and vi-
sual, tabular, and temporal reasoning are underrep-
resented, covering only 35%. Notably, crucial do-
mains such as finance and healthcare still lack
dedicated evaluation benchmarks for multilin-
gual reasoning, highlighting a significant gap in the
field.

3.2.2 Languages Covered

Comprehensive language coverage is vital for mul-
tilingual reasoning, ensuring inclusivity and bal-
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Figure 5: Taxonomy of Multilingual Reasoning Methods. A taxonomy of approaches for enhancing multilingual
reasoning in models, covering (A) Representation Alignment, (B) Finetuning, (C) Prompting, and (D) Model Editing.

anced performance across low- and high-resource
linguistic communities. Based on languages, cur-
rent benchmarks can be primarily classified into
human and coding languages. Benchmarks like
XNLI (Conneau et al., 2018), mCSQA (Sakai et al.,
2024), and m-ARC (Lai et al., 2023) predomi-
nantly focus on high-resource languages like En-
glish, Chinese, French, and Spanish. While some
efforts include low-resource languages like Swahili
(XCOPA (Ponti et al., 2020)), Haitian (M4U (Wang
et al., 2024)), and Nepali (mMMLU (Hendrycks
et al., 2020)), their representation remains min-
imal and research in these languages remains at
a nascent stage. Typologically distant and under-
represented languages, such as Kannada, Gujarati
(XxSTREET (Li et al., 2024a)), and Quechua, are
rarely included, further widening linguistic in-
equalities. Datasets like FLORES-200 attempt
to balance low- and high-resource languages but
fail to achieve comprehensive coverage. To ensure
effective LLM performance across diverse linguis-
tic and cultural contexts, it is critical to include
a broader range of low-resource and endangered
languages (Goyal et al., 2022; Amini et al., 2019)
(see the complete distribution of human languages
across benchmarks in Fig. 2). Finally, only four
benchmarks (Luo et al., 2024; Xu et al., 2024,
Zhang et al., 2024b; Li et al., 2024a) incorporate
coding languages across multiple languages.

4 Methods

Multilingual reasoning within LMs has garnered
significant attention in recent years, leading to the
development of diverse techniques for enhancing
their capabilities across diverse languages. Prior
works have explored various directions to improve
multilingual reasoning. Building upon this body of
work (see Fig. 5), we identify four primary thrusts,

viz. representation alignment, fine-tuning, prompt-
ing, and model editing, collectively contributing
to advancing multilingual reasoning in LMs.

a) Representation Alignment. Multilingual
reasoning requires consistent representations
across languages, but LMs often struggle due
to imbalanced training data. Representation
alignment ensures that equivalent concepts share
similar embeddings, reducing inconsistencies in
multilingual inference, vital for reasoning and mul-
tilingual generalization. Li et al. (2024b) employs
contrastive learning to align multilingual sentence
representations by treating translation pairs as
positive samples and pulling their embeddings
closer, bridging language representation gaps and
enhancing model’s cross-lingual reasoning and
generation capabilities. Multilingual Alignment
Learning is another technique that ensures seman-
tic consistency across languages by aligning their
representations for improved multilingual perfor-
mance (Huang et al., 2024b), bridging multilingual
encoders with LLMs using minimal parameters
to achieve effective alignment without supervi-
sion (Yoon et al., 2024; Kargaran et al., 2024).
Similarly, Ruan et al. (2025) integrates all encoder
layer representations and employs adaptive fusion-
enhanced attention to enable layer-wise alignment
between the LLM and multilingual encoder,
ensuring consistent cross-lingual representations
and improving the model’s multilingual reasoning
capabilities. Finally, an exciting new direction is
multilingual compositional learning, which con-
structs compositional representations by combining
equivalent token embeddings across multiple
languages (Arora et al., 2024) and formalizing
problems in an abstract space and solving them
step-by-step using self-training for improved align-
ment across languages (Ranaldi and Pucci, 2025).



b) Finetuning. It leverages cross-lingual data and
tasks to fine-tune models for enhanced reasoning
and comprehension, leading to numerous innova-
tive approaches. For instance, LingualLIFT (Zhang
et al., 2024a) uses code-switched fine-tuning along
with language alignment layers to effectively
bridge the gap between English and low-resource
languages, helping maintain the nuance and
context across linguistic boundaries. Similarly,
QuestionAlign (Zhu et al., 2024b) aligns questions
and responses in multiple languages, thereby
enhancing cross-lingual understanding and
consistency in reasoning and Ko et al. (2025)
introduces a strategic fine-tuning approach that
anchors reasoning in English and then translates
results, significantly reducing cross-lingual
performance gaps. Strategic fine-tuning using
a small but high-quality bilingual dataset can
enhance both the reasoning capabilities and
non-English language proficiency of LLMs (Ha,
2025). While these methods have leaned towards
extensive fine-tuning, SLAM (Fan et al., 2025)
introduces a more parameter-efficient strategy and
selectively tunes layers critical for multilingual
comprehension, significantly lowering the com-
putational demands while still maintaining or
even enhancing the model’s reasoning capabilities.
Translation has also been harnessed as a powerful
tool for knowledge transfer in multilingual settings,
where TransLLM (Geng et al., 2024) focuses on
translation-aware fine-tuning to align different
languages, enhancing language understanding but
also adapting the model for various cross-lingual
tasks. For those aiming at more complex reasoning
tasks, reasoning-focused fine-tuning has proven
beneficial. The Multilingual CoT (mCoT) instruc-
tion tuning method (Lai and Nissim, 2024) utilizes
a dataset specifically curated for reasoning across
languages and combines CoT reasoning with
instruction tuning to boost consistency and logical
problem-solving in multiple languages. In addition,
preference-based techniques to align reasoning
outputs across languages emphasize the use of
language imbalance as a reward signal in models
like Direct Preference and Proximal Policy Opti-
mization (She et al., 2024). Recent research has
demonstrated that Process Reward Modeling offers
fine-grained feedback at each step of the reasoning
process, only Wang et al. (2025) has shown its
application on non-English language. Finally, an
interesting direction moving forward is curriculum-
based and retriever-based fine-tuning techniques

to enhance multilingual reasoning (Anand et al.,
2024; Bajpai and Chakraborty, 2024), where
models must not only retrieve relevant information
but also compare them to evaluate relationships
between them (Agrawal et al., 2024; Ranaldi et al.,
2025b; Shao et al., 2024; Yang et al., 2025).

¢) Prompting. Prompting has emerged as a key
technique for enhancing how LLMs adapt and
reason across different languages. By guiding the
model through specific strategies, prompting facil-
itates dynamic language adaptation and addresses
the data imbalance challenge, thereby enhancing
cross-lingual consistency, logical alignment, and
the robustness of reasoning. For instance, an
effective method is Direct Multilingual Input
Prompting (Sakai et al., 2024), where the model di-
rectly processes inputs in various native languages
without translation, preserving the original linguis-
tic nuances. This approach was notably applied
in the paper “Do Moral Judgements” (Khandelwal
et al., 2024), where moral scenarios were directly
presented in their native languages to assess the
model’s reasoning capabilities. Another strategy,
Translation-based prompting (Liu et al., 2024)
uses translation to convert multilingual inputs into
a target language for processing, where tasks are
translated into English for reasoning and translated
back to the target language for evaluation (Wang
et al., 2024; Zhao and Zhang, 2024b). This is also
used to generate diverse CoT with Negative Ratio-
nales by incorporating both correct and incorrect
reasoning paths to refine multilingual reasoning
capabilities (Payoungkhamdee et al., 2024). While
in-context learning with natural language can
be ambiguous and less effective in low-resource
languages, program-based demonstrations offer
clearer, structured reasoning that transfers better
across languages (Ranaldi et al., 2025a). In
addition to the above strategies, Dictionary
Insertion Prompting (DIP) offers a lightweight
and practical alternative by inserting English
translations of keywords into non-English prompts,
bridging linguistic gaps without full translation
and enabling clearer reasoning and improved
performance in multilingual tasks (Lu et al., 2024).
d) Model Editing. Model editing is a growing and
exciting research area that aims to modify/update
the information stored in a model. Formally, model
editing strategies update pre-trained models for
specific input-output pairs without retraining them
and impacting the baseline model performance
on other inputs. Multilingual Precision Editing in-



volves making updates to model knowledge while
ensuring minimal impact on unrelated information.
Multilingual knowledge Editing with neuron-
Masked Low-Rank Adaptation (MEMLA) (Xie
et al.,, 2024) enhances multilingual reasoning
by leveraging neuron-masked LoRA-based edits
to integrate knowledge across languages and
improve multi-hop reasoning capabilities. Fur-
ther, Multilingual Translation Post-editing refines
translations by correcting errors in multilingual
outputs for better alignment, where we can enhance
multilingual reasoning by incorporating auxiliary
translations into the post-editing process, enabling
LLMs to improve semantic alignment and trans-
lation quality across languages (Lim et al., 2024).
An emerging complementary direction investi-
gates inference-time (test-time) compute scaling
in enhancing multilingual reasoning. Recent
work shows that scaling up compute for English-
centric reasoning language models (RLMs) can
significantly improve performance across many
languages, including low-resource ones, even
surpassing larger models (Yong et al., 2025). While
most test-time techniques, such as CoT prompting
with trial and error, have primarily focused on
English, methods like English-Pivoted CoT train-
ing (Tran et al., 2025) exploit the model’s strong
English reasoning capabilities to support multi-
lingual tasks, offering a promising path to bridge
alignment gaps for underrepresented languages.

5 Evaluation Metrics and Benchmarks

Evaluating multilingual reasoning in LLMs
requires standardized metrics to ensure logical con-
sistency and cross-lingual coherence. Unlike tradi-
tional NLP, it must address inference errors, transla-
tion drift, and reasoning stability across languages.

5.1 Metrics

Here, we detail key metrics for evaluating multilin-
gual reasoning, along with their formal definitions:
1) Accuracy. These metrics assess overall correct-
ness in reasoning and multilingual benchmarks: 1)
General Accuracy measures the proportion of cor-
rect outputs over total samples, and ii) Zero-Shot
Accuracy, which evaluates model performance on
unseen tasks or categories without fine-tuning.

2) Reasoning and Consistency. These metrics
evaluate logical inference and multi-step reasoning
ability: 1) Reasoning Accuracy assesses correctness
in logical and step-by-step reasoning tasks and ii)

Path Consistency measures coherence between rea-
soning steps in CoT prompting.

3) Translation and Cross-Lingual. To ensure
multilingual reasoning consistency, models must
preserve meaning across languages: i) Translation
Success Rate measures correctness and semantic
preservation in multilingual translations as the ratio
of accurate translations and total translations and
i1) Cross-Lingual Consistency evaluates whether
logically equivalent statements yield consistent
reasoning outputs across different languages.

4) Perplexity and Alignment. They quantify
semantic alignment and measure whether em-
beddings across languages remain consistent: i)
Perplexity-Based Alignment (FPyjign)

N
1
Palign = exp <_N Zlog P(.%'U) y (1)

i=1

where P(z;) is the model’s probability of pre-
dicting token x; (lower perplexity means better
alignment) and ii) Semantic Alignment measures
the cosine similarity between multilingual sentence
embeddings: Sajign = %, where E) and F;
are sentence embeddings in different languages.

5.2 Performance on Benchmarks

Here, we discuss the performance of the afore-
mentioned methods on standard mathematical
(MGSM (Shi et al., 2022), MSVAMP (Chen et al.,
2023)), commonsense (XCSQA (Lin et al., 2021)),
logical (xNLI (Conneau et al., 2018)) reasoning
benchmarks!. Next, we describe the four most
popular benchmarks and detail the performance of
reasoning techniques, highlighting existing model
gaps that limit their reasoning performance.
MGSM tests multilingual arithmetic reasoning
in LMs with 250 translated math problems in ten
diverse languages. While recent trends suggest that
advanced post-training techniques like MAPO are
key for strong performance, fine-tuning strategies
may be more impactful than stronger reasoning
architectures or relying on the model’s English
expertise to improve multilingual performance.
MSVAMP is an out-of-domain multilingual mathe-
matical reasoning dataset comprising 10k problems
across ten languages and serves as a comprehensive
test bed to evaluate LMs’ generalization in multilin-
gual mathematical contexts. We find that advanced
preference optimization achieves much stronger

'We only cover benchmarks analyzed by more than four
papers.



performance than CoT-based fine-tuning, suggest-
ing advanced fine-tuning techniques are a better
direction to beat the current best in this benchmark.
xCSQA is a multilingual extension of the
CommonsenseQA dataset, encompassing 12,247
multiple-choice questions translated into 15
languages, designed to assess LMs’ cross-lingual
commonsense reasoning capabilities. The current
trend shows that stronger fine-tuning strategies
like two-step fine-tuning or preference optimiza-
tion show better performance than selectively
fine-tuning specific layers as in SLAM.

xNLI evaluates cross-lingual inference across
15 languages. Recent studies suggest that LM
integration with external models (Huang et al.,
2024b) and multilingual alignment followed by
fine-tuning (Zhang et al., 2024a) outperform
contrastive learning methods like TCC (Chia et al.,
2023), highlighting the need for more structured
multilingual adaptation strategies.

6 Future Directions

With the rapid development of reasoning models,
our community must ensure that models remain
unbiased towards low-resource languages. Look-
ing forward, we call on the community to put their
collective efforts into the following directions:

1. Multilingual Alignment and Reasoning Trans-
fer. A key challenge in multilingual reasoning is
the lack of data in different languages. One promis-
ing solution is to leverage existing large datasets
and transfer/distill their knowledge in the repre-
sentation space (Yoon et al., 2024; Huang et al.,
2024b). Future research should develop cross-
lingual knowledge transfer techniques, enabling
models to use high-resource languages as a bridge
to enhance reasoning in low-resource languages.
Another direction is to generate synthetic datasets
using techniques like back-translation and data aug-
mentation, tailored specifically for reasoning tasks.
2. Explainable and Interpretable Reasoning.
Ensuring faithful reasoning in multilingual LLMs
is challenging due to linguistic diversity, translation
ambiguities, and reasoning inconsistencies. Studies
on English CoT reasoning (Tanneru et al., 2024;
Lobo et al., 2024) highlight faithfulness issues,
which become more severe when extended to low-
resource languages. Causal reasoning can enhance
cross-lingual alignment, improving interpretability
by uncovering cause-and-effect relationships
across languages. Future research should focus

on integrating causal reasoning and multilingual
CoT frameworks to ensure logical coherence,
transparency, and trust in multilingual Al systems.
3. Advanced Training and Inference Techniques.
While recent advancements in multilingual reason-
ing have introduced reasoning-aware fine-tuning
and multilingual preference optimization tech-
niques, further efforts are needed to improve train-
ing paradigms. Some exciting techniques in this
direction includes post-training RL methods that
improve reasoning in low-resource languages (Wu
et al., 2024) and efficient inference-time scaling
and Agentic frameworks (Khanov et al., 2024;
Chakraborty et al., 2024). Preliminary post-
training works (Xuan et al., 2025) show that they
yield mixed results across languages, with effec-
tiveness depending on the base model and required
degree of linguistic diversity, highlighting the need
for language inclusive training approaches.

4. Unified Evaluation Metrics. A comprehensive
evaluation framework is a crucial missing compo-
nent for assessing multilingual reasoning capabil-
ities. Metrics should measure logical consistency,
cultural adaptability, and robustness, considering
real-world and adversarial multilingual settings.
S. Multimodal Multilingual Reasoning. While
there are a few works on visual reasoning in the
multilingual context (Das et al., 2024; Gao et al.,
2025), multimodal reasoning (integrating tables,
text, image, audio, and video) remains largely
unexplored. Advancing this area could enable
models to handle complex tasks in low-resource
languages and incorporate cross-modal reasoning.
Refer to Appendix A for additional directions.

7 Conclusion

Multilingual reasoning in LLMs is a rapidly
evolving field, addressing critical challenges like
cross-lingual alignment, low-resource language
gaps, and cultural adaptation. Our survey high-
lights advancements in fine-tuning, prompting,
and representation learning while identifying gaps
in scalability and domain-specific applications.
It serves as a call to action for the LLM and
reasoning community to focus on advanced
alignment techniques, culturally aware reasoning,
and scalable architectures. By breaking language
barriers and fostering inclusivity, multilingual
reasoning can create globally impactful Al systems.
Our survey provides a foundation for advancing
research in this transformative domain.



8 Limitations

This is the first survey dedicated to the important
and emerging topic of multilingual reasoning. We
have made every effort to include key studies and
recent advancements in this area; however, we ac-
knowledge that some relevant work may have been
unintentionally missed. As the field is still in its
early stages, this survey does not aim to provide
definitive solutions for improving multilingual rea-
soning. Instead, our goal is to analyze existing
approaches and offer a comprehensive evaluation
of which techniques demonstrate stronger perfor-
mance across current benchmarks.
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A Appendix

Related Surveys The earliest surveys (Qin et al., 2024; Xu et al., 2025)—both from April 2024 focus
on laying foundational taxonomies of Multilingual LLMs(MLLMs):(Qin et al., 2024) survey resources,
taxonomy, and emerging frontiers in MLLMs, while (Xu et al., 2025) delve deeply into multilingual
corpora, alignment techniques, and bias issues. Huang et al. (2024a) broadens the scope to multiple
perspectives—training/inference, security, cultural domains, and datasets—framing “new frontiers” in
multilingual LLM research. Finally, survey by (Zhu et al., 2024a) provides the most comprehensive
“systematic” treatment: it covers architectures, pre-training objectives, alignment datasets, a detailed
evaluation roadmap (including safety, interpretability, reasoning), and real-world applications across
domains. This survey is the first survey dedicated specifically to multilingual reasoning, drilling deeply
into logical inference across languages, its unique challenges (misalignment, bias, low-resource gaps),
and the benchmarks and methods tailored to evaluate and improve reasoning capabilities.

Additional Future Directions. Below, are some additional future directions to advance multilingual
reasoning in language models.

1. New Benchmarks: As multilingual reasoning advances, robust evaluation benchmarks are essential
because reasoning is highly domain-specific in nature, developing targeted benchmarks is crucial,
especially in high-stakes fields like healthcare, law, and finance, where accuracy directly affects
decision-making. For instance, Xue et al. (2024) introduces FAMMA which shows significant challenges
in the field of Financial Question Answering.

2. Efficient Reasoning Models. An emerging direction in reasoning research is enhancing resource
efficiency in reasoning-aware models. Recent works like (Ning et al., 2024) propose strategies for more
efficient reasoning, reducing computational costs while maintaining logical consistency. However, this
area remains largely unexplored in multilingual settings, offering a key opportunity to develop scalable
reasoning models that generalize across languages with minimal resources.

3. Miscellaneous Tasks. LLMs have given extraordinary performance in many tasks yet they struggle
with complex compositional reasoning (Zhao and Zhang, 2024a), performing only slightly better
than random guessing. Models also struggle to reason over long texts, especially in low-resource
languages (Hengle et al., 2025), often failing to combine information or recognize what’s missing—even
when they can retrieve facts.
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Figure 6: Accuracy trends of various methods on multilingual reasoning benchmarks, including MGSM|, MSVAMP, XNLI,
and XCSQA. The z-axis represents the arXiv paper submission date, and the y-axis indicates percentage accuracy.

We show a detailed tabular format of the languages used in different reasoning datasets along with their
languages.
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Afrikaans
Bengali
German
Estonian
French
Croatian
Indonesian
Japanese
Macedonian
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Quechua
Slovenian
Ukrainian

Arabic
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Bulgarian
Danish

Spanish
Finnish

Hindi
Armenian
Italian
Luxembourgish
Norwegian Bokmal
Portuguese
Slovak

Turkish
Chinese
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Table 1: Language Codes and Their Corresponding Languages



Table 2: Multilingual Datasets and their respective papers, domains, and languages.

Dataset Paper Domain Languages
MSVAMP (She et al., 2024; Yoon et al., 2024; Zhu et al., Maths (zh), (th),(ja), (en),
2024c,b; Lai and Nissim, 2024; Chai et al.
fod > ’ ’ ,fr), (es), (bn
2024; Huang et al., 2024b; Zhang et al., 2024a; . € @
Fan et al., 2025)
MGSM (She et al., 2024; Yoon et al., 2024; Zhu et al., Maths (zh), (th), (Fa), (en),
2024c,b; Lai and Nissim, 2024; Chai et al.
fnd 4 ’ ’ de), | fr), (es), (ru),
2024; Huang et al., 2024b; Liu et al., 2024; % W
Zhang et al., 2024a; Fan et al., 2025) = T
MNumGLUESub (She et al., 2024) Maths (bn). (th), (sw). (ja).
(zh), (ru), (de), (es),
fr), (en
MetaMathQA (Yoon et al., 2024; Zhu et al., 2024c,b; Lai and Maths en
Nissim, 2024; Huang et al., 2024b)
Proof-Pile 2 (Yoon et al., 2024) Maths (en)
Exams Dataset (Payoungkhamdee et al., 2024) Science and Humanities (ar), (de), (fr), (es),
(it) (pL). (vil. (pt)
s . 6 b,
hr), (mk], @
M4U Benchmark (Wang et al., 2024) Science (zh), (en),
XCSQA (Zhu et al., 2024b; Zhang et al., 2024a; Fan ~ Common Sense (zh), (en), (de), (fr),
et al., 2025) (es), (ru), (hi)
XNLI (Zhu et al., 2024b; Liu et al., 2024; Zhang et al., Logical @, (th), (ur), (en),
2024a) del, (fr), (es), (ru),
MultiNLI (Zhu et al., 2024b), (Huang et al., 2024b) Logical (en)
BBH-Hard (Luo et al., 2024) Temporal, Tabular, Python\ O, Ct++.)
Spatial (Java), (Javascript
NLVR2 (Song et al., 2024) Visual (en)
MARVL (Song et al., 2024) Visual (id), (sw), (ta), (tr), (zh)
XSTREET (Li et al., 2024a) Logical (ar).(zh), (ja). (en),
Translated Code (Li et al., 2024a) Code Javal,[JavaScript |,
Comments (TCC) @
ython
mCoT-MATH (Lai and Nissim, 2024) Maths (zh), (th), (ja), (en),
(de), (fr), &), (ru),
(bn), (i,
Reasoning by (Arora et al., 2024) Logical (en), (fr), (es), (de),
Equivalence Dataset , (hi)
Reasoning by (Arora et al., 2024) Logical (en), (fr), (es), (de),
Inheritance Dataset (pt), (hi)
XCOT (Chai et al., 2024) Maths (de), (fr), s), (ru),
zh), (ja), (th). (te),
(bn). (sw. (en)
mCSQA (Sakai et al., 2024) Common Sense (zh), (ja), (en), (fr),
(de), [pt), (ru)

3
+
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Dataset Paper Domain Languages

Rulings, Legislation, ~ (Rasiah et al., 2024) Legal (de), (fr), (it), ro), (en)
Court View Generation,

Critically Prediction,

Law Area Prediction,

Judgment Prediction

Datasets
mRewardBench (Gureja et al., 2024) Logical and @@r), (cs), (de), (el),
CommonSense (es), (fa), (fr), (he),
(hi. (14 (it (3a.
kol (L} (p1}, (pt
(ro). (ru). (tr), (uk)
(vi)
Moral Judgement (Khandelwal et al., 2024) Moral (en), (zh), (hi), (ru),
Dataset es), (sw
MCR (Zhao and Zhang, 2024b) Compositional ja), (ko), (fr
mTEMPREASON  (Bajpai and Chakraborty, 2025) Temporal (ro), (de),
XCOPA (Liu et al., 2024) Common Sense (zh), (it), (vi), (xr),
id), (sw), (th), (et),
(ta).(ht. (qu)
mARC (Kargaran et al., 2024) Common Sense (zh), , (en), (de),
(o) @
IndiMathQA (Anand et al., 2025) Maths (en),
CRUXEval (Xu et al., 2024) Code (c#), (C++), (D), (GO),
Java), LJavaScript R
Julia), (Luca),
PHP). (R}
Racket ), |[Ruby|,
(Rust), (Scala),
Shell), (Swift),
TypeScript
Dataset Paper Domain Languages
mMMLU (Kargaran et al., 2024) Common Sense ,zh), (vi), (id),
MMWP Benchmark (Zhang et al., 2024a) Maths R 3 , X

NU-(DU)'OTOFFJI—'TO"H‘l—“U)DT'O'—“l—“‘
S/|o /(3 (7 H)le) ln oo (O3 D)< (@3] )

JEERERREREEE EREEREES
c (7))o [O]F ]l |= (| un|]c (S = O X cj|lo/|=

) (- m::na@xrcﬁam11m—n<
<) et l—‘CTﬂQJQ)\'_SJDm(‘D o/l=35) lo)le) v |F)a

FEERERERRDE EREERE REE
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Reasoning Type

Papers

Deductive

Lai and Nissim (2024), Chai et al. (2024), Huang et al. (2024b), Zhang et al. (2024a), Huang et al.
(2024b), Fan et al. (2025), Payoungkhamdee et al. (2024), Luo et al. (2024), Song et al. (2024), Li et al.
(2024a), Arora et al. (2024), Rasiah et al. (2024), Sakai et al. (2024), Khandelwal et al. (2024), Kargaran
et al. (2024), Anand et al. (2025), Xu et al. (2024), She et al. (2024), Zhu et al. (2024b), Li et al. (2024c),
Lim et al. (2024), Bajpai and Chakraborty (2025), Li et al. (2024b)

Inductive

Chai et al. (2024), Huang et al. (2024b), Zhang et al. (2024a), Huang et al. (2024b), Fan et al. (2025),
Payoungkhamdee et al. (2024), Luo et al. (2024), Song et al. (2024), Li et al. (2024a), Arora et al. (2024),
Rasiah et al. (2024), Sakai et al. (2024), Khandelwal et al. (2024), Kargaran et al. (2024), Anand et al.
(2025), Xu et al. (2024), She et al. (2024), Zhu et al. (2024b), Li et al. (2024c), Lim et al. (2024), Bajpai
and Chakraborty (2025), Li et al. (2024b), Wei et al. (2024), Xie et al. (2024), Yang et al. (2024), Geng
et al. (2024), Yang et al. (2025), Ko et al. (2025), Ruan et al. (2025), Lu et al. (2024), Agrawal et al.
(2024), Ranaldi et al. (2025b), Ha (2025), Ranaldi et al. (2025a), Ranaldi and Pucci (2025), Xuan et al.
(2025), Yoon et al. (2024), Zhu et al. (2024c¢), Lai and Nissim (2024), Chai et al. (2024), Huang et al.
(2024b), Zhang et al. (2024a), Huang et al. (2024b), Fan et al. (2025), Payoungkhamdee et al. (2024),
Luo et al. (2024), Song et al. (2024), Li et al. (2024a), Arora et al. (2024), Rasiah et al. (2024), Sakai
et al. (2024), Khandelwal et al. (2024), Kargaran et al. (2024), Anand et al. (2025), Xu et al. (2024), She
et al. (2024), Zhu et al. (2024b), Li et al. (2024c), Lim et al. (2024), Bajpai and Chakraborty (2025), Li
et al. (2024b), Wei et al. (2024), Xie et al. (2024), Yang et al. (2024), Geng et al. (2024), Yang et al.
(2025), Ko et al. (2025), Ruan et al. (2025), Lu et al. (2024), Agrawal et al. (2024), Ranaldi et al. (2025b),
Ha (2025), Ranaldi et al. (2025a), Ranaldi and Pucci (2025)

Abductive

Huang et al. (2024b), Zhang et al. (2024a)

Analogical

Zhang et al. (2024a), Huang et al. (2024b), Fan et al. (2025), Payoungkhamdee et al. (2024), Luo et al.
(2024), Song et al. (2024), Li et al. (2024a), Arora et al. (2024), Rasiah et al. (2024), Sakai et al. (2024),
Khandelwal et al. (2024), Kargaran et al. (2024), Anand et al. (2025), Xu et al. (2024), She et al. (2024),
Zhu et al. (2024b), Li et al. (2024c¢), Lim et al. (2024), Bajpai and Chakraborty (2025), Li et al. (2024b),
Wei et al. (2024), Xie et al. (2024), Yang et al. (2024), Geng et al. (2024), Yang et al. (2025), Ko et al.
(2025), Ruan et al. (2025), Lu et al. (2024), Agrawal et al. (2024), Ranaldi et al. (2025b), Ha (2025),
Ranaldi et al. (2025a), Ranaldi and Pucci (2025)

Commonsense

Huang et al. (2024b), Fan et al. (2025), Payoungkhamdee et al. (2024), Luo et al. (2024), Song et al.
(2024), Li et al. (2024a), Arora et al. (2024), Rasiah et al. (2024), Sakai et al. (2024), Khandelwal et al.
(2024), Kargaran et al. (2024), Anand et al. (2025), Xu et al. (2024), She et al. (2024), Zhu et al. (2024b),
Li et al. (2024c), Lim et al. (2024), Bajpai and Chakraborty (2025), Li et al. (2024b), Wei et al. (2024),
Xie et al. (2024)

Table 3: Categorization of Papers by Reasoning Type
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