
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VQKV: HIGH-FIDELITY AND HIGH-RATIO CACHE
COMPRESSION VIA VECTOR-QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The increasing context length in Large Language Models (LLMs) leads to a pro-
portional growth of the Key-Value (KV) cache, posing a significant challenge
for their deployment in resource-limited settings. While existing training-free
methods for KV cache compression, such as token eviction, feature dimension
reduction, and scalar quantization, can reduce memory usage, they often do so at
the cost of diminished model performance, especially at high compression ratios.
To resolve the trade-off between memory efficiency and model fidelity, we intro-
duce VQKV, a novel, training-free KV cache compression method based on vector
quantization. Instead of discarding tokens or compressing individual dimensions,
VQKV maps entire high-dimensional cache vectors to a compact, learned code-
book. This approach allows for the representation of thousands of floating-point
values with just a few integer indices corresponding to the codebook. As a re-
sult, VQKV achieves a significant compression ratio while enabling high-fidelity
reconstruction of the original cache vectors through a simple codebook lookup.
VQKV achieves a high compression ratio with minimal performance degradation.
Extensive evaluations on LLaMA3.1-8B and LLaMA3.2-3B models across long-
context benchmarks demonstrate that VQKV significantly outperforms existing
state-of-the-art compression methods at similar compression ratios, highlighting
its effectiveness in preserving information while substantially reducing the mem-
ory footprint of the KV cache.

1 INTRODUCTION

Large Language Model (LLM) has already found widespread applications in many fields due to their
outstanding capabilities. However, the scaling of context length results in continuous growth of the
Key-Value (KV) cache, which in turn limits the feasibility of employing large language models in
resource-constrained environments. Although approaches such as sparse attention and parameter
quantization can effectively alleviate memory usage, they frequently incur a degradation in model
performance. Therefore, developing a memory-efficient method that can simultaneously preserve
model performance is of critical importance for addressing this bottleneck in large language models.

Among existing training-free methods for KV cache compression, three main categories can be
identified: token eviction, feature dimension compression, and scalar quantization. Token eviction
methods (Li et al., 2024b; Zhang et al., 2023b; Xiao et al., 2023) reduce the KV cache size by se-
lectively discarding less critical token representations. While this strategy effectively shortens the
sequence length to achieve high compression ratios, it incurs an irreversible loss of information,
which can impair performance on tasks requiring long-range contextual understanding. Feature di-
mension compression techniques (Chang et al., 2024; Yuan et al., 2023; Liu et al., 2024a) exploit the
inherent redundancy within the high-dimensional KV vectors, often through methods like low-rank
decomposition. These approaches store a compressed representation and reconstruct the full vector
as needed. However, they often face a trade-off between compression ratio and performance, as
the low-rank approximation can struggle to retain all necessary information, particularly at higher
compression levels. Scalar quantization (Liu et al., 2024c; Yuan et al., 2023; Hooper et al., 2024)
is another widely used technique that reduces memory usage by independently compressing each
floating-point value in the cache to a lower bit-width. This approach faces a significant challenge
in maintaining fidelity at high compression ratios. By treating each feature independently, it fails

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to exploit the correlations and structural information within the high-dimensional vectors. Conse-
quently, pushing to very low bit-widths (e.g., 2 or 3 bits) often introduces substantial quantization
error, leading to a sharp decline in model performance.

In summary, these existing methods consistently struggle to balance between memory efficiency
and model performance. A natural question arises: Can we achieve high compression by preserving
the most salient information rather than discarding tokens or compressing individual dimensions?
To answer this, we propose VQKV, a novel training-free KV cache compression method using
vector quantization (VQ). VQKV maps high-dimensional cache vectors to a compact codebook,
storing only the corresponding integer indices to replace the original cache. This joint quantization
captures the intrinsic structure of the data, a key advantage over scalar quantization that treats each
dimension in isolation. During attention, the original cache is reconstructed via a simple codebook
lookup. By preserving vector-level information, VQKV achieves substantial memory savings with
a high compression ratio, while maintaining high fidelity and model performance across various
downstream tasks.

Extensive evaluations on LLaMA3.1-8B (Dubey et al., 2024) and LLaMA3.2-3B (AI, 2024) across
the LongBench (Bai et al., 2023), NIAH (Li et al., 2024a), and RULER (Hsieh et al., 2024) bench-
marks demonstrate that our VQKV significantly outperforms existing methods at comparable ratios.
Remarkably, on some tasks, VQKV even surpasses the performance of the uncompressed full-cache
baseline. Our contributions can be summarized as follows:

• We introduce vector quantization (VQ) to the problem of KV cache compression. This
novel perspective fundamentally addresses the limitations of existing methods by preserv-
ing the intrinsic structure and correlations within the KV vectors.

• We design a simple yet high effective training-free compression framework, VQKV. This
method reduces the memory footprint of the KV cache during decoding at the cost of a
modest amount of additional computation, thereby enabling the model to handle longer
contexts on resource-constrained devices.

• We conduct extensive experiments demonstrating SOTA performance. Through evalua-
tions of LLaMA3.1-8B (Dubey et al., 2024) and LLaMA3.2-3B (AI, 2024) on long-context
benchmarks (LongBench (Bai et al., 2023), NIAH (Li et al., 2024a) and RULER (Hsieh
et al., 2024)), we show that VQKV consistently outperforms existing training-free com-
pression methods at comparable ratios.

2 RELATED WORK

Cache Compression Previous work such as MLA (Liu et al., 2024a) and CSKV (Wang et al.,
2024), though achieving a high compression ratio by projecting high-dimensional caches into low-
dimension vectors, often need continue pretraining on LLMs or even need training LLMs from
scratch, which consumes a lot of computation. Beyond these training-based approaches, methods
like StreamingLLM (Xiao et al., 2023), H2O (Zhang et al., 2023b), SnapKV (Li et al., 2024b) and
PyramidKV (Cai et al., 2024) alleviate the bottlenecks in memory by selectively retaining or struc-
turally organizing the KV representations of important tokens, thereby reducing the memory usage
while preserving generation quality. But evicting token is not always robust because of unavoidable
information loss, especially at the view of long context retrieval tasks. Applying scalar quantization
directly on feature dimension of KV cache can substantially reduce memory usage while improving
computational efficiency (Liu et al., 2024c; Chang et al., 2024; Hooper et al., 2024). However, the
low precision in the retained cache leads to a decline in model performance. To sum up, existing
training-free efforts on KV cache compression often lack the exploration on feature dimension, or
suffer from insufficient precision when reconstructing the cache.

Vector Quantization Vector quantization is a widely recognized technique known for its effec-
tive compression and representation abilities. Wav2Vec (Baevski et al., 2020) and HuBERT (Hsu
et al., 2021) use VQ to extract discrete pseudo labels from continuous raw waves for unsupervised
learning. SoundStream (Zeghidour et al., 2021) introduces residual skill to VQ, thus enriching the
representation space of codebooks. In computer vision, VQ is generally used for concentrating in-
formation from pixels (He et al., 2022; Van Den Oord et al., 2017; Esser et al., 2021; Zheng et al.,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

find
nearest

VQKV

prefilling stage

append decoding stage

retrieval

indices of 
nearest entries

Codebook of VQ
[Nq,Nc,D]

KV codes, [L, Nq]

KV codes, [L+1, Nq]

KV cache, [L, D]

...

...

...

... ... ... ...

...

new codes, [1, Nq]
...

... ... ... ...

...

Reconstructed KV cache, [L+1, D]

sum Codebook of VQ
[Nq,Nc,D]

...

qu ant ize the KV Ca ch e...

...

VQKV

Prefilling Stage:
Quantization

Decoding Stage:
Retrieval

... ... ... ... ... ... ...

KV codes

input

KV Cache

init localreconstructed

...

...

Figure 1: Overview of our VQKV. The left part shows the detailed process of our VQKV on prefill-
ing stage and decoding stage. The right part shows the overview of our VQKV.

2022). At the same time, VQ helps introduce information from other modalities into LLMs (Liu
et al., 2024b; Zhang et al., 2023a). Other works use VQ for constraining the specialized formats of
generation, such as code generation (Liu et al., 2025b) and action generation (Wang et al., 2025).
Previous work have shown great compression and reconstruction capability of VQ for continuous
vectors. However, VQ has not been applied in representing text features on LLM nor in compressing
caches. Our VQKV first introduce VQ to represent context information and gain great efficacy.

3 METHODOLOGY

VQKV employs VQ to compress the KV cache along the feature dimension. By leveraging separate
codebooks for the key and value caches, VQKV achieves high-fidelity reconstruction while sub-
stantially reducing memory consumption, which is particularly beneficial for handling long-context
scenarios. In this section, we first describe how VQ is learned for compressing the KV cache, fol-
lowed by a detailed discussion of how VQKV is integrated into the inference process.

3.1 LEARNING VQ FOR KV CACHE

We use Residual Simple Vector Quantization (RSimVQ) for KV cache compression. Combining
residual skill (Zeghidour et al., 2021) with SimVQ (Zhu et al., 2024), RSimVQ consists of multiple
codebooks and has an extra projection matrix on every codebook to enhance expressiveness and
utilization. Each codebook can represent an independent subspace of original cache by an index
of the nearest codebook entry. Then, RSimVQ sums up all the codebook entries retrieved from
codebooks to reconstruct the original cache.

Specifically speaking, let x be the original cache and x̂ be the reconstructed cache, Qi be the code-
book with entries q1, ..., qNc

where Nc is the codebook size, and z be the selected index. For each
codebook, RSimVQ first finds the nearest entry and records corresponding index z.

x̂ = argminq∈{q1,...,qNc} ∥x−Wq∥ ≜ Wqz (1)

where W is the projection matrix of each codebook. Then, RSimVQ sends the residual part (x− x̂)
to Qi+1 for next step quantization.

x← x− x̂, zi ← z (2)

Iteratively, RSimVQ could map the original cache into a few set of codes z1, ..., zNq . VQKV only
store codebooks and these quantized codes in the memory instead of the original cache vector, lead-
ing the memory usage of original KV cache from [L,D] floats (ignoring layer and head dimension
here for simplicity) into [L,Nq] integers, which would reduce a lot of memory footprint when the
cache vectors are massive. When reconstructing, RSimVQ simply looks up entries according to
these codes and sums these entries up.

x̂ =

Nq∑
i

Qi[zi] (3)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 16 32 48 64 80 96 112 128

Re
co
ns
tr
uc
tio

n
Lo
ss

Key Cache Dimension

Reconstruction Loss per Key Cache Dimension
LLaMA3.1-8B

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

0 16 32 48 64 80 96 112 128

Re
co
ns
tr
uc
tio

n
Lo
ss

Value Cache Dimension

Reconstruction Loss per Value Cache Dimension
LLaMA3.1-8B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 16 32 48 64 80 96 112 128

Re
co
ns
tr
uc
tio

n
Lo
ss

Key Cache Dimension

Reconstruction Loss per Key Cache Dimension
LLaMA3.2-3B

1.4

1.45

1.5

1.55

1.6

1.65

1.7

0 16 32 48 64 80 96 112 128

Re
co
ns
tr
uc
tio

n
Lo
ss

Value Cache Dimension

Reconstruction Loss per Value Cache Dimension
LLaMA3.2-3B

Figure 2: Reconstruction loss per dimension of KV cache on OpenWebText (Gokaslan et al., 2019).
The positions of key cache dimensions with poor reconstruction exhibit a periodic pattern, leading
us to separate low- and high-frequency components and use two independent RSimVQ on recon-
structing key cache.

We prefetch the KV cache from around 10M tokens to train all these codebooks and two independent
RSimVQs are trained separately for key and value cache. More details abount training are described
in Section 4.1. During training, RSimVQ uses a stop-gradient operation sg(·) to keep gradient
flowing after discretization, along with the training loss as follows

L = ∥x− x̂∥2 + β∥qz − sg(x)∥2 + γ∥x− sg(qz)∥ (4)

After training, we evaluate the cache reconstruction capability of RSimVQ on OpenWebText
(Gokaslan et al., 2019) and observe that the positions of key cache dimensions with poor reconstruc-
tion exhibit a periodic pattern. Figure 2 shows that when building the vector spaces of key cache,
VQ tends to overfitting on some head dimensions while underfitting on other dimensions. This ob-
servation indicates that different dimensions of key caches vary in different reconstruction difficulty.
Similarly, Liu et al. (2025a) has also reported the same anomalous phenomenon. We attribute this
to the Rotary Positional Embedding (RoPE)(Su et al., 2024) mechanism in the model: the lower
dimensions of the key cache encode low-frequency information while the higher dimensions encode
high-frequency information, leading to the heterogeneous distribution of the key cache. These addi-
tional position information prevent a single RSimVQ from adequately reconstructing the entire key
cache. To address this issue, we partition the key cache dimensions into low- and high-frequency
components according to the reconstruction quality, and employ two independent RSimVQs to re-
construct them separately.

3.2 USING VQKV ON INFERENCE TIME

Figure 1 illustrates the overall workflow of VQKV, where the left side depicts the compres-
sion–reconstruction process of the KV cache, and the right side presents how VQKV is integrated
into the prefill and decoding stages. Specifically, during prefill, VQKV compresses each KV cache
vector by mapping it to the nearest entries in multiple codebooks and storing only the corresponding
indices as KV codes. During decoding, VQKV compresses the cache of each new token, updates
the stored KV codes, and reconstructs the required KV cache from the codebooks, while maintaining
a local sliding window by discarding the oldest entries.

To be more specifically, in the prefilling stage, we preserve both an initial segment of the KV cache
of length Linit and the most recent segment of length Llocal from compression.

Ki,Kl = K[: Linit],K[−Llocal :]; V i, V l = V [: Linit], V [−Llocal :] (5)

Then we distinguish the low- and high-frequency components in key cache according to the recon-
struction quality. Dl, Dh are the corresponding dimensions of the two components. And we have
the intermediate KV cache to be compressed:

Kml = K[Linit : −Llocal, D
l], Kmh = K[Linit : −Llocal, D

h]

V m =V [Linit : −Llocal]
(6)

As discussed above, we use three trained RSimVQs to compress intermediate cache Kml,Kmh, V m

into KV codes Kcl,Kch, V c correspondingly. Let the codebook number of each RSimVQ be

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

N l
q, N

h
q , N

v
q , then the compressed KV cache have the size Kcl ∈ NL×N l

q ,Kch ∈ NL×Nh
q , V c ∈

NL×Nv
q . After compressing, we use the original KV for forward propagation.

Kcl = VQl(Kml), Kch = VQh(Kmh), V c = VQv(V m) (7)

O = attention(Q,K, V ) (8)

In the decoding stage, we compress the cache out of the local range individually.

Kcl ← Kcl + VQl(Kl[0, Dl]), Kch ← Kch + VQh(Kl[0, Dh])

V c ← V c + VQv(V l[0])
(9)

Then VQKV reconstructs the intermediate KV cache by selecting the entries from each codebook
according to the stored indices.

K̂m[Dl] = VQ−1(Kcl), K̂m[Dh] = VQ−1(Kch), K̂ = cat(Ki, K̂m,Kl)

V̂ m = VQ[V c], V̂ = cat(V i, V̂ m, V l)
(10)

With the current query qt+1, we calculate the attention output ot+1 by

ot+1 = attention(qt+1, K̂, V̂ ) (11)

The total compression ratio of VQKV is associated with the number of codebooks. For KV cache
with dimension of DK and DV , our VQKV achieves a compression ratio r such that

r =
(
1−

Nv
q +N l

q +Nh
q

DK +DV

)
× 100% (12)

3.3 EFFICIENCY OPTIMZATION

To improve the efficiency of the quantization process, we optimize the algorithm for computing the
nearest distances within codebooks. By adopting a block-wise computation strategy, we effectively
reduce the peak memory consumption during distance calculations. Moreover, since the residual
structure in RSimVQ inherently lacks parallelism, we enhance parallel efficiency in the quantization
process by performing batched quantization computations based on the current Llocal. Specifically,
instead of quantizing KV cache one by one during LLM decoding, we compute the quantization
process on the entire cache segment Kl and V l in a single operation.

Kcl ← Kcl + VQl(Kl[:, Dl]), Kch ← Kch + VQh(Kl[:, Dh])

V c ← V c + VQv(V l)
(13)

In this way, the compression step of VQ is performed only once every Llocal steps, which would
otherwise occur at every decoding step, thereby substantially improving efficiency. When recon-
structing the cache, we only rebuild the portion required for the current decoding step.

In addition, since VQKV reconstructed the intact attention portion, our VQKV is natively com-
patible with acceleration framework like FlashAttention (Dao et al., 2022; Dao, 2024) and vLLM
(Kwon et al., 2023). Moreover, the decompression process of VQKV can be integrated into stan-
dard FlashDecoding, allowing the compressed KV codes to be progressively decoded during the
computation of every blocks of the sequence, thereby further reducing memory consumption and
improving time efficiency. It is worth noting that this functionality has not been implemented in the
experiments reported in this paper; nevertheless, our approach still achieves a substantial reduction
in memory usage. In future work, we plan to optimize VQKV on FlashDecoding (Dao, 2024) with
customized triton kernel to gain better memory and latency efficiency.

4 EXPERIMENT

4.1 SETUP

We conduct all our experiments on LLaMA3.1-8B (Dubey et al., 2024) and LLaMA3.2-3B (AI,
2024). For both models, we set the length of initial token Linit to 4 and the length of lo-
cal tokens Llocal to 1024. We sample 0.1% data of OpenWebText (Gokaslan et al., 2019)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

for RSimVQ training and every RSimVQ is trained with learning rate 0.001 and batch size
65536. The size of codebooks vary from cache type and models. For LLaMA3.1-8B (Dubey
et al., 2024), we use the codebook number (Nv

q , N
l
q, N

h
q ) = (8, 20, 16) with the codebook size

(Nv
c , N

l
c, N

h
c ) = (65536, 65536, 16384), while for LLaMA3.2-3B (AI, 2024), we use a codebook

number (Nv
q , N

l
q, N

h
q ) = (10, 20, 14) and set all codebook sizes to 65536. By Equation 12, our

method achieves a compression ratio of 82.8% on both model. As discussed in Section 3.3, all our
experiments are launched without FlashAttention (Dao et al., 2022; Dao, 2024).

4.2 LONG-CONTEXT EVALUATION

The long-context evaluation experiments are all performed on multiple NVIDIA H100 GPU with
FP32 precision. We evaluate our VQKV against other KV cache optimization methods with three
long-context benchmarks on OpemCompass (Contributors, 2023): LongBench (Bai et al., 2023),
Needle-In-A-Haystack(NIAH) (Li et al., 2024a) and RULER (Hsieh et al., 2024). All tasks are set
with a truncation context length of 32K. We compare with the ASVD (Yuan et al., 2023), SnapKV
(Li et al., 2024b), Palu (Chang et al., 2024) and KIVI (Liu et al., 2024c). For fair comparison, we
set the ratio parameters to 0.2 in ASVD, keep 2048 recalled middle tokens in SnapKV, retain 70%
of the KV in Palu and apply 4-bit quantization, 75% compression in KIVI. The results of SnapKV
and Palu on NIAH are referred from Liu et al. (2025a)

Across LongBench (Table 1), NIAH (Figure 3, 4), and RULER (Figure 5 and Table 2), our VQKV
consistently achieves the best trade-off between compression and performance. On LongBench, it
delivers average scores closest to the uncompressed baseline and surpasses existing baselines under
both LLaMA3.1-8B and LLaMA3.2-3B. On NIAH, our approach maintains a perfect 100 score,
identical to the full-cache model, while other methods exhibit clear degradation. On RULER, it
preserves strong long-context capability, achieving results close to the baseline and substantially
outperforming competing methods, even at 32K context length. These results collectively demon-
strate the robustness and effectiveness of our approach in both general and long-context scenarios.

Single-Doc Multi-Doc Summary Few-shot Synthetic Code Avg.
NQ Qsp MF HQ WQ Msq GR QS MN TR TQ SS PC PR LCC Re-P

LLaMA3.1-8B 12.9 20.2 32.4 12.0 14.0 8.7 29.8 25.2 1.0 73.5 91.0 47.2 0.8 26.8 72.2 69.2 33.6
+ ASVD 4.6 9.9 16.1 9.7 7.4 5.2 9.0 16.6 12.8 60.0 78.7 33.7 2.8 4.9 30.4 36.9 21.2
+ SnapKV 12.7 19.8 32.5 12.0 13.8 8.6 29.2 24.9 12.6 73.0 91.0 46.5 0.8 26.8 60.0 59.7 32.7
+ Palu 6.4 16.6 23.1 9.7 12.3 6.6 16.5 21.5 10.7 72.5 84.6 37.1 1.3 14.3 64.7 59.1 28.6
+ KIVI 19.2 20.8 31.2 15.2 17.7 8.2 17.6 12.1 3.9 72.5 89.6 33.9 2.2 15.9 67.6 64.4 30.7
+ Ours 13.4 19.7 30.6 11.4 13.8 8.2 26.1 23.9 0.9 73.0 91.3 46.1 0.8 31.8 71.5 68.9 33.2

LLaMA3.2-3B 10.3 21.6 34.9 9.7 13.0 6.8 30.2 23.7 28.2 70.0 87.2 38.2 0.0 7.0 70.0 66.4 32.3
+ ASVD 0.8 10.7 8.8 5.4 5.2 2.7 8.7 8.6 11.1 31.5 49.1 17.7 3.3 3.5 35.4 36.6 14.9
+ SnapKV 6.0 21.5 33.5 9.9 12.9 7.1 22.8 24.1 27.1 65.0 87.2 38.4 0.0 7.0 69.6 64.3 31.0
+ Palu 12.2 16.7 27.7 9.9 11.6 6.6 24.2 20.0 19.4 58.0 86.4 41.4 0.3 4.7 56.2 54.3 28.1
+ KIVI 7.4 22.1 33.1 9.8 12.0 5.2 17.4 14.2 16.0 69.5 88.3 30.3 1.2 7.4 70.0 65.6 29.3
+ Ours 11.7 21.3 35.3 10.0 14.4 7.0 29.2 23.2 27.3 70.0 87.2 38.8 0.0 7.0 70.3 64.8 32.3

Table 1: Results of LLaMA3.1-8B (Dubey et al., 2024) and LLaMA3.2-3B (AI, 2024) on Long-
Bench (Bai et al., 2023). Our VQKV achieves the closest performance to the full cache models on
comparable compression ratio against other methods.

4.3 MEMORY EFFICIENCY

To show the memory efficiency of our VQKV, we test the maximum generation length of
LLaMA3.1-8B on a single NVIDIA A100 40GB with FP32 without FlashAttention. As shown
in Table 3, our method maintains nearly the same peak memory usage as the baseline across differ-
ent generation lengths, with only a marginal increase. More importantly, it significantly extends the
maximum generation length: while the baseline LLaMA3.1-8B encounters an out-of-memory error
at around 25k tokens, our method supports over 52k tokens on a single NVIDIA A100 40GB GPU,
doubling the usable context length. These results demonstrate that our approach effectively pre-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 100.00

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(a) LLaMA3.1-8B

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 85.67

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(b) ASVD

4000 8000 16000 24000 32000
Token Limit

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 88.35

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(c) SnapKV

4000 8000 16000 24000 32000
Token Limit

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 68.99

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(d) Palu

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 99.71

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(e) KIVI

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 100.00

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(f) VQKV(ours)

Figure 3: Results of LLaMA3.1-8B (Dubey et al., 2024) on Needle-In-A-Haystack (NIAH)(Li et al.,
2024a). The results of SnapKV (Li et al., 2024b) and Palu (Chang et al., 2024) are referred from Liu
et al. (2025a). Our VQKV maintain a perfect score while other methods exhibit clear degradation.

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 100.00

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(a) LLaMA3.2-3B

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 36.42

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(b) ASVD

4000 8000 16000 24000 32000
Token Limit

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 90.29

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(c) SnapKV

4000 8000 16000 24000 32000
Token Limit

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 35.99

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(d) Palu

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 98.69

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(e) KIVI

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 100.00

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(f) VQKV(ours)

Figure 4: Results of LLaMA3.2-3B (AI, 2024) on Needle-In-A-Haystack (NIAH)(Li et al., 2024a).
The results of SnapKV (Li et al., 2024b) and Palu (Chang et al., 2024) are referred from Liu et al.
(2025a). Our VQKV maintains a perfect score while other methods exhibit clear degradation.

4K 8K 16K 32K Avg.
LLaMA3.1-8B 94.74 92.78 93.12 89.59 92.56
+ ASVD 39.75 32.94 25.27 19.29 29.31
+ SnapKV 91.18 77.12 69.80 58.52 74.16
+ Palu 74.70 66.01 59.80 52.44 63.24
+ KIVI 57.91 52.81 47.60 49.73 52.01
+ Ours 93.96 89.80 87.47 79.10 87.58

LLaMA3.2-3B 90.14 85.69 82.91 78.15 84.22
+ ASVD 27.15 20.83 15.95 9.51 18.36
+ SnapKV 85.33 69.57 61.73 58.74 68.84
+ Palu 71.75 65.38 59.69 55.08 62.98
+ KIVI 37.92 49.37 41.41 36.28 41.25
+ Ours 88.50 79.31 73.75 67.14 77.18

Table 2: Results of LLaMA3.1-8B (Dubey et al., 2024) and LLaMA3.2-3B (AI, 2024) on RULER
(Hsieh et al., 2024). Our VQKV outperforms other methods on 4K, 8K, 16K and 64K length.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0%

20%

40%

60%

80%

100%

CWE

FEW

SK1

SK2

SK3

MK1

MK2MK3

MV

MQ

SQ

HP

VT

Results of LLaMA3.1-8B on RULER_4K
+SnapKV +ASVD +KIVI +Palu +VQKV(ours)

0%

20%

40%

60%

80%

100%

CWE

FEW

SK1

SK2

SK3

MK1

MK2MK3

MV

MQ

SQ

HP

VT

Results of LLaMA3.1-8B on RULER_8K
+SnapKV +ASVD +KIVI +Palu +VQKV(ours)

0%

20%

40%

60%

80%

100%

CWE

FEW

SK1

SK2

SK3

MK1

MK2MK3

MV

MQ

SQ

HP

VT

Results of LLaMA3.1-8B on RULER_16K
+SnapKV +ASVD +KIVI +Palu +VQKV(ours)

0%

20%

40%

60%

80%

100%

CWE

FEW

SK1

SK2

SK3

MK1

MK2MK3

MV

MQ

SQ

HP

VT

Results of LLaMA3.1-8B on RULER_32K
+SnapKV +ASVD +KIVI +Palu +VQKV(ours)

0%

20%

40%

60%

80%

100%

CWE

FEW

SK1

SK2

SK3

MK1

MK2MK3

MV

MQ

SQ

HP

VT

Results of LLaMA3.2-3B on RULER_4K
+SnapKV +ASVD +KIVI +Palu +VQKV(ours)

0%

20%

40%

60%

80%

100%

CWE

FEW

SK1

SK2

SK3

MK1

MK2MK3

MV

MQ

SQ

HP

VT

Results of LLaMA3.2-3B on RULER_8K
+SnapKV +ASVD +KIVI +Palu +VQKV(ours)

0%

20%

40%

60%

80%

100%

CWE

FEW

SK1

SK2

SK3

MK1

MK2MK3

MV

MQ

SQ

HP

VT

Results of LLaMA3.2-3B on RULER_16K
+SnapKV +ASVD +KIVI +Palu +VQKV(ours)

0%

20%

40%

60%

80%

100%

CWE

FEW

SK1

SK2

SK3

MK1

MK2MK3

MV

MQ

SQ

HP

VT

Results of LLaMA3.2-3B on RULER_32K
+SnapKV +ASVD +KIVI +Palu +VQKV(ours)

Figure 5: Detailed results of LLaMA3.1-8B (Dubey et al., 2024) and LLaMA3.2-3B (AI, 2024) on
RULER (Hsieh et al., 2024) in different context length. The results of full cache model are taken as
the 100% reference.

serves memory efficiency while substantially enhancing long-sequence generation capability, high-
lighting its advantages in both compression ratio and memory footprint.

Generation Length Max Length
32 128 256 512 1024 2048 4096 8192 16384 32768

LLaMA3.1-8B 29.94 29.96 30.02 30.07 30.21 30.49 31.05 32.18 34.43 OOM 25841
+ Ours 30.63 30.66 30.71 30.76 31.74 31.83 32.02 32.38 33.44 35.66 52096

Table 3: Peak memory usage in generation time on LLaMA3.1-8B (Dubey et al., 2024). Our method
achieves twice longer generation length than full-cached base model on a single NVIDIA A100
40GB, demonstrating great compression ratio and memory footprint of VQKV.

5 ABLATION STUDY

We evaluate our approach on different combination of codebook numbers and codebook sizes. On
Longbench (Bai et al., 2023), NIAH (Li et al., 2024a) and RULER (Hsieh et al., 2024), the ablation
on codebook numbers show that more codebooks contribute to better performance but lower com-
pression ratio. Bigger codebook sizes also help with performance improvement but hurt the memory
footprint.

As shown in Table 4, when the total number of parameters of the codebooks is comparable, in-
creasing the number of codebooks tends to yield a more substantial improvement in downstream
performance. However, an excessively large number of codebooks directly reduces the compression
ratio, in which case larger codebook sizes are required to ensure high-fidelity reconstruction.

The observed phenomenon can be explained as follows. Increasing the number of codebooks effec-
tively enhances the representational capacity of the quantization process. Each additional codebook
provides an extra subspace in which the input vector can be approximated, thereby distributing the
representational burden. In residual or compositional quantization schemes, this corresponds to a
multi-stage refinement where successive codebooks progressively correct the residual error, leading
to a substantial reduction in quantization distortion.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Codebook Number Codebook Size Ratio Param LongBench NIAH RULER
V L H V L H

12 30 24

64k 64k 16k

74.2% 277.27 33.30 100.00 90.25
10 25 20 78.5% 231.05 33.45 100.00 89.21
8 20 16 82.8% 184.85 33.21 100.00 87.58
6 15 12 87.1% 138.63 32.40 99.86 77.38
4 10 8 91.4% 92.42 30.82 83.60 39.01

8 20 16

64k 64k 64k 82.8% 222.60 33.23 100.00 87.77
64k 64k 32k 82.8% 184.85 33.21 100.00 87.58
32k 32k 32k 82.8% 55.87 32.57 100.00 84.71
4k 4k 4k 82.8% 14.19 32.03 99.71 76.93
1k 1k 1k 82.8% 3.77 31.61 95.05 61.08

Table 4: Ablation on codebook numbers and codebook sizes. We evaluate different combinations
on LongBench (Bai et al., 2023), NIAH (Li et al., 2024a), and RULER (Hsieh et al., 2024). Detailed
results are in Appendix B.

In contrast, enlarging the size of a single codebook primarily improves the granularity of representa-
tion within that codebook. While larger codebooks allow for finer partitioning of the input space, the
benefit diminishes due to the inherent challenges of high-dimensional vector spaces: newly added
entries may not efficiently capture the distribution of inputs, resulting in limited marginal gains.

Therefore, increasing the number of codebooks is akin to adding additional layers of expressive
power, which yields a more pronounced improvement in reconstruction fidelity, whereas enlarg-
ing the codebook size merely increases the resolution of each layer and provides relatively modest
benefits.

6 CONCLUSION

In this paper, we proposed VQKV, a training-free KV cache compression framework that leverages
vector quantization to jointly capture correlations within cache vectors. By replacing continuous
representations with compact discrete codes, VQKV achieves high compression ratios while pre-
serving fidelity, thus overcoming the limitations of token eviction, feature dimension compression,
and scalar quantization. Extensive experiments on LLaMA3.1-8B and LLaMA3.2-3B show that
VQKV consistently outperforms existing training-free methods and even surpasses the full-cache
baseline in some cases, demonstrating its effectiveness for memory-efficient long-context inference.

7 LIMITATIONS

Our method still has room for improvement in decoding efficiency. In principle, it can be integrated
with FlashDecoding and further accelerated with Triton kernels to enhance efficiency and reduce
memory consumption. However, such optimizations are not pursued in this paper, and we leave
them for future work.

8 ETHICAL STATEMENT

This study adheres to recognized ethical guidelines and professional standards. It does not involve
human participants, handle sensitive personal information, or engage in applications with potential
ethical concerns. All experimental procedures and analyses were conducted in accordance with
established norms, ensuring scientific rigor, transparency, and reliability.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this paper, we will publicly release our VQKV, the complete training
and inference code and all checkpoints used in our experiments. We expect these as a reference for
efficient LLM improvement, motivating and advancing more progress in this field.

REFERENCES

Meta AI. Llama 3.2: Revolutionizing edge ai and vision with
open, customizable models. https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/, 2024.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
work for self-supervised learning of speech representations. Advances in neural information
processing systems, 33:12449–12460, 2020.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne
Xiong, Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyra-
midal information funneling. arXiv preprint arXiv:2406.02069, 2024.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873–12883, 2021.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

10

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://github.com/open-compass/opencompass
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM transactions on audio, speech, and language processing,
29:3451–3460, 2021.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Mo Li, Songyang Zhang, Yunxin Liu, and Kai Chen. Needlebench: Can llms do retrieval and
reasoning in 1 million context window?, 2024a. URL https://arxiv.org/abs/2407.
11963.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947–22970, 2024b.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Dongyang Liu, Shitian Zhao, Le Zhuo, Weifeng Lin, Yi Xin, Xinyue Li, Qi Qin, Yu Qiao, Hong-
sheng Li, and Peng Gao. Lumina-mgpt: Illuminate flexible photorealistic text-to-image genera-
tion with multimodal generative pretraining. arXiv preprint arXiv:2408.02657, 2024b.

Xiaoran Liu, Siyang He, Qiqi Wang, Ruixiao Li, Yuerong Song, Zhigeng Liu, Linlin Li, Qun Liu,
Zengfeng Huang, Qipeng Guo, et al. Beyond homogeneous attention: Memory-efficient llms via
fourier-approximated kv cache. arXiv preprint arXiv:2506.11886, 2025a.

Zihan Liu, Xinhao Luo, Junxian Guo, Wentao Ni, Yangjie Zhou, Yue Guan, Cong Guo, Weihao
Cui, Yu Feng, Minyi Guo, et al. Vq-llm: High-performance code generation for vector quanti-
zation augmented llm inference. In 2025 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 1496–1509. IEEE, 2025b.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024c.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Luning Wang, Shiyao Li, Xuefei Ning, Zhihang Yuan, Shengen Yan, Guohao Dai, and Yu Wang.
Cskv: Training-efficient channel shrinking for kv cache in long-context scenarios. arXiv preprint
arXiv:2409.10593, 2024.

Yating Wang, Haoyi Zhu, Mingyu Liu, Jiange Yang, Hao-Shu Fang, and Tong He. Vq-vla: Improv-
ing vision-language-action models via scaling vector-quantized action tokenizers. arXiv preprint
arXiv:2507.01016, 2025.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models. arXiv
preprint arXiv:2312.05821, 2023.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
stream: An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 30:495–507, 2021.

11

https://arxiv.org/abs/2407.11963
https://arxiv.org/abs/2407.11963


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
Speechgpt: Empowering large language models with intrinsic cross-modal conversational abil-
ities. arXiv preprint arXiv:2305.11000, 2023a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023b.

Chuanxia Zheng, Tung-Long Vuong, Jianfei Cai, and Dinh Phung. Movq: Modulating quantized
vectors for high-fidelity image generation. Advances in Neural Information Processing Systems,
35:23412–23425, 2022.

Yongxin Zhu, Bocheng Li, Yifei Xin, Zhihua Xia, and Linli Xu. Addressing representation collapse
in vector quantized models with one linear layer. arXiv preprint arXiv:2411.02038, 2024.

A THE USE OF LARGE LANGUAGE MODELS

This paper uses LLMs only for polishing writing.

B DETAILED RESULT ON ABLATION STUDY

We conduct ablation studies on the number and size of codebooks. On LLaMA3.1-8B, we evaluate
different combinations of codebook numbers and codebook sizes, and test them on LongBench,
NIAH, and RULER. The detailed experimental results are presented as follows.

ID Codebook Number Codebook Size Compression Ratio Total Param
V L H V L H

A 12 30 24

64k 64k 16k

74.2% 277.27
B 10 25 20 78.5% 231.05
C 8 20 16 82.8% 184.85
D 6 15 12 87.1% 138.63
E 4 10 8 91.4% 92.42

F

8 20 16

64k 64k 64k 82.8% 222.6
G 64k 64k 16k 82.8% 184.85
H 16k 16k 16k 82.8% 55.87
I 4k 4k 4k 82.8% 14.19
J 1k 1k 1k 82.8% 3.77

Table 5: Experiment settings for ablation study. For simplification, every combination of codebooks
is marked with a letter as experiment ID.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

ID Single-Doc Multi-Doc Summary Few-shot Synthetic Code Avg.
NQ Qsp MF HQ WQ Msq GR QS MN TR TQ SS PC PR LCC Re-P

A 12.7 20.2 31.8 11.2 14.5 8.2 28.7 24.5 0.9 73.5 91.0 46.1 0.8 27.3 72.2 69.3 33.3
B 13.7 20.6 30.1 11.7 14.3 8.2 28.4 25.6 0.9 73.5 91.0 46.1 0.8 29.3 72.1 69.1 33.5
C 13.4 19.7 30.6 11.4 13.8 8.2 26.1 23.9 0.9 73.0 91.3 46.1 0.8 31.8 71.5 68.9 33.2
D 12.8 17.6 28.2 11.7 13.8 8.3 20.4 24.2 0.6 71.5 91.0 45.6 0.8 32.8 71.3 67.9 32.4
E 13.0 15.7 26.2 11.4 14.2 7.9 16.7 22.9 0.6 59.0 91.0 44.7 0.6 31.3 71.0 67.1 30.8

F 13.3 20.0 30.1 11.6 13.8 8.2 26.3 24.6 0.8 73.5 91.3 45.7 0.8 31.3 71.6 68.9 33.2
C 13.4 19.7 30.6 11.4 13.8 8.2 26.1 23.9 0.9 73.0 91.3 46.1 0.8 31.8 71.5 68.9 33.2
G 11.9 18.9 29.0 11.2 13.3 8.2 23.3 23.1 0.9 73.5 90.8 46.1 0.8 29.8 71.9 68.5 32.6
H 12.9 18.9 27.8 11.7 13.5 8.0 20.5 23.3 0.8 71.0 90.8 45.3 0.8 28.0 71.3 68.1 32.0
I 14.4 17.0 27.6 11.6 14.1 7.9 17.9 23.1 0.7 67.0 90.9 44.4 0.8 29.8 71.2 67.5 31.6

Table 6: Results of different numbers and sizes of codebook on LongBench.

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 100.00

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(a) A

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 100.00

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(b) B

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 100.00

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(c) C

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 99.86

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(d) D

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 83.60

0

20

40

60

80

100
Sc

or
e

Average Depth Score

(e) E

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 100.00

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(f) F

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 100.00

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(g) G

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 99.71

0

20

40

60

80

100

Sc
or

e

Average Depth Score

(h) H

2000 4000 8000 16000 24000 32000
Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

De
pt

h 
Pe

rc
en

t

Overall Score: 95.05

0

20

40

60

80

100

Sc
or

e
Average Depth Score

(i) I

Figure 6: Results of different numbers and sizes of codebook on Needle-In-A-Haystack.

ID 4K 8K 16K 32K Avg.
A 94.42 91.69 90.47 84.40 90.25
B 94.04 90.89 88.77 83.13 89.21
C 93.96 89.80 87.47 79.10 87.58
D 87.86 79.38 75.06 67.22 77.38
E 56.51 41.09 32.46 25.96 39.01

F 93.76 90.21 87.20 79.90 87.77
C 93.96 89.80 87.47 79.10 87.58
G 91.84 87.11 83.54 76.36 84.71
H 86.56 79.99 74.53 66.63 76.93
I 74.59 64.77 57.16 47.81 61.08

Table 7: Results of different numbers and sizes of codebook on RULER

13


	Introduction
	Related Work
	Methodology
	Learning VQ for KV Cache
	Using VQKV on Inference Time
	Efficiency Optimzation

	Experiment
	Setup
	Long-Context Evaluation
	Memory Efficiency

	Ablation Study
	Conclusion
	Limitations
	Ethical Statement
	Reproducibility Statement
	The Use of Large Language Models
	Detailed Result on Ablation Study

