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ABSTRACT

Signature transforms are iterated path integrals of continuous and discrete-time
time series data, and their universal nonlinearity linearizes the problem of feature
selection. This paper revisits some statistical properties of signature transform un-
der stochastic integrals with a Lasso regression framework, both theoretically and
numerically. Our study shows that, for processes and time series that are closer to
Brownian motion or random walk with weaker inter-dimensional correlations, the
Lasso regression is more consistent for their signatures defined by Itô integrals; for
mean reverting processes and time series, their signatures defined by Stratonovich
integrals have more consistency in the Lasso regression. Our findings highlight
the importance of choosing appropriate definitions of signatures and stochastic
models in statistical inference and machine learning.

1 INTRODUCTION

Signature transform. Originally introduced and studied in algebraic topology (Chen, 1954;
1957), the signature transform, sometimes referred to as the path signature or simply signature, has
been adopted and further developed in rough path theory (Lyons et al., 2007; Friz & Victoir, 2010).
Given any continuous or discrete time series, the signature transform produces a vector of real-
valued features that extract rich and relevant information (Morrill et al., 2020a; Lyons & McLeod,
2022). It has been proven an attractive and powerful tool for feature generation and pattern recogni-
tion with state-of-the-art performance in a wide range of domains, including handwriting recognition
(Yang et al., 2016b;c; Wilson-Nunn et al., 2018; Kidger et al., 2020; Ibrahim & Lyons, 2022), action
recognition (Yang et al., 2016a; Li et al., 2017; Fermanian, 2021; Lee et al., 2022; Yang et al., 2022;
Cheng et al., 2023), medical prediction (Kormilitzin et al., 2017; Morrill et al., 2019; Moore et al.,
2019; Morrill et al., 2020b; Pan et al., 2023; Bleistein et al., 2023), and finance (Gyurkó et al., 2013;
Lyons et al., 2014; Arribas, 2018; Lyons et al., 2019; Kalsi et al., 2020; Salvi et al., 2021; Akyildirim
et al., 2022; Cuchiero et al., 2023; Futter et al., 2023; Lemahieu et al., 2023). Comprehensive re-
views of successful and potential applications of the signature transform in machine learning can be
found in Chevyrev & Kormilitzin (2016) and Lyons & McLeod (2022).

Most of the empirical success and theoretical studies of the signature transform are built upon its
most striking universal nonlinearity property. It states that every continuous function of the time
series may be approximated arbitrarily well by a linear function of its signature (see Section 2.1).
Empirical studies (Levin et al., 2016; Lyons & McLeod, 2022; Pan et al., 2023; Bleistein et al.,
2023) demonstrate that the nonlinearity property gives the signature several advantages over end-
to-end neural-network-based nonlinear methods (Ahmed et al., 2023). First, training linear models
of signatures is more computationally efficient than neural networks; second, the linear model al-
lows for interpretability.1 When learning nonlinear relationships between variables, utilizing linear
regression models after applying the signature transform can yield significantly improved out-of-
sample prediction performance compared to modeling without the transform.

Signatures are iterated path integrals of time series, and there are multiple definitions of integrals
adopted for signatures. Despite the rapidly growing literature on the probabilistic characteristics of

1The signature transform can be understood as a method of feature engineering, and can be interpreted
based on the geometric shape of the underlying path; see Appendix A.
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signatures and the successful application of the signature transform in machine learning, the statis-
tical properties of the signature method are often overlooked. Furthermore, universal nonlinearity
can be expressed under different definitions of signatures (see Appendix B), raising the question
of which definition has better statistical properties for different processes and time series. To our
knowledge, most empirical studies in the literature use a default definition regardless of the spe-
cific scenarios being studied. However, using an inappropriate signature definition may lead to
suboptimal performance. Therefore, it is time to understand and systematically study the statistical
implications of these different forms of signatures on a given time series data.

Consistency of Lasso. In practice, feature selection methods like the Lasso (Tibshirani, 1996)
are commonly used to identify a sparse set of features from a universe of all signatures (Lyons,
2014; Chevyrev & Kormilitzin, 2016; Levin et al., 2016; Moore et al., 2019; Sugiura & Hosoda,
2020; Sugiura & Kouketsu, 2021; Lemercier et al., 2021; Lyons & McLeod, 2022; Lemahieu et al.,
2023; Bleistein et al., 2023; Cuchiero et al., 2023). One of the well-documented and extensively
studied issues concerning linear models is the consistency in feature selection by Lasso (Zhao & Yu,
2006; Bickel et al., 2009; Wainwright, 2009). Consistency is an important metric for out-of-sample
model performance. Given the different definitions of signatures, the natural starting point is the
consistency issue for Lasso regression models under different signature transforms.

Main results. This paper studies the consistency issue of Lasso for signature transforms. It focuses
on two definitions of signatures: Itô and Stratonovich. It chooses two representative classes of
Gaussian processes: multi-dimensional Brownian motion and Ornstein–Uhlenbeck (OU) process,
and their respective discrete-time counterparts, i.e., random walk and autoregressive (AR) process.
These processes have been widely applied in a number of domains (Uhlenbeck & Ornstein, 1930;
Levin et al., 2016; Arribas, 2018; Kidger et al., 2019; Lyons & McLeod, 2022).

To analyze the consistency of Lasso regressions, we first study the correlation structure of signa-
tures for these processes. For Brownian motions, the correlation structure is shown to be block
diagonal for Itô signatures (Propositions 1–2), and to have a special odd–even alternating structure
for Stratonovich signatures (Propositions 3–4). In contrast, the OU process exhibits this odd–even
alternating structure for either definition of the integral (Proposition 5).

Based on the correlation structures of signatures, we investigate the consistency of Lasso regressions
for different processes (Propositions 6–8). For time series and processes that are closer to Brownian
motion and with weaker inter-dimensional correlations, the Lasso regression is more consistent for
their feature selection by Itô signatures; for mean reverting time series and processes, Stratonovich
signatures yield more consistency for the Lasso regression.

Contribution. Our study takes the first step toward understanding the statistical properties of the
signature transform for regression analysis. It fills one of the gaps between the theory and the prac-
tice of signature transforms in machine learning. Our work highlights the importance of choosing
appropriate signature transforms and stochastic models for feature selection and for general statisti-
cal analysis.

2 THE FRAMEWORK

In this section, we present the framework for studying the consistency of feature selection in Lasso
via signature. All proofs are given in Appendix K.

2.1 REVIEW OF SIGNATURES AND THEIR PROPERTIES

Consider a d-dimensional continuous-time stochastic process Xt = (X1
t , X

2
t , . . . , X

d
t )

⊤ ∈ Rd,
0 ≤ t ≤ T , and its signature or signature transform defined as follows:
Definition 1 (Signature). For k ≥ 1 and i1, . . . , ik ∈ {1, 2, . . . , d}, the k-th order signature of the
process X with index (i1, . . . , ik) from time 0 to t is defined as

S(X)i1,...,ikt =

∫
0<t1<···<tk<t

dXi1
t1 · · · dX

ik
tk
, 0 ≤ t ≤ T. (1)

The 0-th order signature of X from time 0 to t is defined as S(X)0t = 1 for any 0 ≤ t ≤ T .
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In other words, the k-th order signature of X given by Equation (1) is its k-fold iterated path inte-
gral along the indices i1, . . . , ik. For a given order k, there are dk choices of indices (i1, . . . , ik),
therefore the number of all k-th order signatures is dk.

The integral in Equation (1) can be specified differently. For example, if X is a deterministic process,
it can be defined via the Riemann/Lebesgue integral. If X is a multi-dimensional Brownian motion,
it is a stochastic integral that can be defined either by the Itô integral or by the Stratonovich integral.
For clarity, we write

S(X)i1,...,ik,It =

∫
0<t1<···<tk<t

dXi1
t1 · · · dX

ik
tk

=

∫
0<s<t

S(X)i1,...,ik−1,I
s dXik

s

when considering the Itô integral, and

S(X)i1,...,ik,St =

∫
0<t1<···<tk<t

dXi1
t1 ◦ · · · ◦ dXik

tk
=

∫
0<s<t

S(X)i1,...,ik−1,S
s ◦ dXik

s

for the Stratonovich integral.

Throughout the paper, for ease of exposition, we refer to the signature of X as the Itô (the
Stratonovich) signature if the integral is defined in the sense of the Itô (the Stratonovich) integral.

Signatures enjoy several nice probabilistic properties under mild conditions. First, all expected
signatures of a stochastic process together characterize the distribution of the process (Chevyrev &
Lyons, 2016; Chevyrev & Oberhauser, 2022). Second, the signatures uniquely determine the path
of the underlying process (Hambly & Lyons, 2010; Le Jan & Qian, 2013; Boedihardjo et al., 2014).

One of the most striking properties of the signature transform is its universal nonlinearity (Levin
et al., 2016; Király & Oberhauser, 2019; Fermanian, 2021; Lemercier et al., 2021; Lyons & McLeod,
2022). It is of particular relevance for feature selection in machine learning or statistical analysis,
where one needs to find or learn a (nonlinear) function f that maps time series data X to a target label
y. By universal nonlinearity, any such function can be approximately linearized by the signature of
X in the following sense: for any ε > 0, under some technical conditions, there exists K ≥ 1 and a
linear function L such that

∥f(X)− L(SigKT (X))∥ ≤ ε, (2)

where SigKT (X) represents all signatures of X from time 0 to T truncated to some order K. This
universal nonlinearity lays the foundation for learning the relationship between the time series X
and a target label y using a linear regression. Appendix B summarizes different statements of the
universal nonlinearity of signatures in the literature.2

In the next section, we study feature selection via Lasso regression by signature transform.

2.2 FEATURE SELECTION USING LASSO WITH SIGNATURES

Suppose that one is given N pairs of samples, (X1, y1), (X2, y2), . . . , (XN , yN ), where Xn =
{Xn,t}0≤t≤T is the n-th time series, for n = 1, 2, . . . , N . Given a fixed order K ≥ 1, consider the
following regression model:

yn = β0+

d∑
i1=1

βi1S(Xn)
i1
T +

d∑
i1,i2=1

βi1,i2S(Xn)
i1,i2
T +· · ·+

d∑
i1,...,iK=1

βi1,...,iKS(Xn)
i1,...,iK
T +εn,

(3)
where n = 1, 2, . . . , N represents N samples, and {εn}Nn=1 are independent and identically dis-
tributed errors with mean zero and finite variance. Here the number of predictors, i.e., the signature
of various orders, is dK+1−1

d−1 , including the 0-th order signature S(X)0T = 1, whose coefficient is
β0. It has been documented that including signatures up to a small order K as predictors in a linear
regression usually suffices to achieve good performances in practice (Morrill et al., 2020a; Lyons &
McLeod, 2022).

The goal of Lasso is to identify the true predictors/features among all the predictors included in
linear regression (3). A predictor has a zero beta coefficient if it is not in the true model. The

2The time augmentation is discussed in Section 5 and Appendix H.
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selection of predictors with nonzero beta coefficients is a typical feature selection problem. We use
A∗

k to represent the set of all signatures of order k with nonzero coefficients in Equation (3). Given
any (nonlinear) function f that one needs to learn, let us define the set of true predictors3 A∗ by

A∗ =

K⋃
k=0

A∗
k :=

K⋃
k=0

{(i1, . . . , ik) : βi1,...,ik ̸= 0}. (4)

Here, we begin the union with k = 0 to include the 0-th order signature for notational convenience.

Given a tuning parameter λ > 0 and N samples, we adopt the following Lasso estimator to identify
the true predictors:

β̂
N
(λ) = argmin

β̃

[
N∑

n=1

(
yn−β̃0 −

d∑
i1=1

β̃i1 S̃(Xn)
i1
T −

d∑
i1,i2=1

β̃i1,i2 S̃(Xn)
i1,i2
T − · · ·

−
d∑

i1,...,iK=1

β̃i1,...,iK S̃(Xn)
i1,...,iK
T

)2

+ λ
∥∥∥β̃∥∥∥

1

]
, (5)

where β̃ is the vector containing all coefficients β̃i1,...,ik , and ∥·∥1 denotes the l1-norm. Here, S̃(Xn)
represents the standarized version of S(Xn) across N samples by the l2-norm, i.e., for any index
(i1, . . . , ik),

S̃(Xn)
i1,...,ik
T =

S(Xn)
i1,...,ik
T√∑N

m=1

[
S(Xm)i1,...,ikT

]2 , n = 1, 2, . . . , N.

We perform this standardization for two reasons. First, the Lasso estimator is sensitive to the mag-
nitudes of the predictors, and standardization helps prevent the domination of predictors with larger
magnitudes in the estimation process (Hastie et al., 2009). Second, the magnitudes of the signatures
vary as the order of the signature changes (Lyons et al., 2007), therefore standardization is neces-
sary to ensure that the coefficients of different orders of signatures are on the same scale and can be
compared directly. Furthermore, the covariance matrix is now equivalent to the correlation matrix,
allowing us to focus on the correlation structure of the signatures in the subsequent analysis.

2.3 CONSISTENCY AND THE IRREPRESENTABLE CONDITION OF LASSO

Our goal is to study the consistency of feature selection via signatures using the Lasso estimator in
Equation (5). We use the concept of (strong) sign consistency, a custom definition of consistency
for Lasso proposed in Zhao & Yu (2006).
Definition 2 (Consistency). Lasso is (strongly) sign consistent if there exists λN , a function of
sample number N , such that

lim
N→+∞

P
(
sign

(
β̂
N
(λN )

)
= sign(β)

)
= 1,

where β̂
N
(·) is the Lasso estimator given by Equation (5), β is a vector containing all beta coeffi-

cients of the true model, Equation (3), and the function sign(·) maps positive entries to 1, negative
entries to −1, and 0 to 0.

In other words, sign consistency requires that a pre-selected λ can be used to achieve consistent
feature selection via Lasso.

The following irrepresentable condition is almost a necessary and sufficient condition for the Lasso
to be sign consistent (Zhao & Yu, 2006).
Definition 3 (Irrepresentable condition). The feature selection in Equation (3) satisfies the (strong)
irrepresentable condition if there exists a positive constant vector η such that∣∣∣ΣA∗c,A∗Σ−1

A∗,A∗sign(βA∗)
∣∣∣ ≤ 1− η,

3True predictors are predictors with nonzero coefficients in Equation (3).

4



where A∗ is given by Equation (4) and A∗c the complement of A∗, ΣA∗c,A∗ (ΣA∗,A∗ ) represents
the covariance matrix4 between all predictors in A∗c and A∗ (A∗ and A∗), βA∗ represents a vector
formed by beta coefficients for all predictors in A∗, 1 is an all-one vector, | · | calculates the absolute
values of all entries, and the inequality “≤” holds element-wise.

This irrepresentable condition uses the population covariance matrix instead of the sample covari-
ance matrix in Zhao & Yu (2006). Nevertheless, similar to Zhao & Yu (2006), it means that the
irrelevant predictors in A∗c cannot be sufficiently represented by the true predictors in A∗, implying
weak collinearity between the predictors. Appendix C provides more details about the irrepre-
sentable condition and its relationship with the consistency of Lasso.

By the signature transform, predictors in our linear regression (3) are correlated and have special
correlation structures that differ from earlier studies (Zhao & Yu, 2006; Bickel et al., 2009; Wain-
wright, 2009). We will show in the following section that their correlation structures vary with the
underlying process X, hence leading to different consistency performances for different processes.
Moreover, these correlation structures depend on the choice of integrals used in Equation (1).

3 CORRELATION STRUCTURE OF SIGNATURES

To study the consistency of Lasso using signatures, let us investigate the correlation structure of Itô
and Stratonovich signatures for two representative Gaussian processes with different characteristics:
the Brownian motion and the OU process.

3.1 CORRELATION STRUCTURE FOR MULTI-DIMENSIONAL BROWNIAN MOTION

Definition 4 (Brownian motion). X is a d-dimensional Brownian motion if it can be expressed as:

Xt = (X1
t , X

2
t , . . . , X

d
t )

⊤ = Γ(W 1
t ,W

2
t , . . . ,W

d
t )

⊤, (6)

where W 1
t ,W

2
t , . . . ,W

d
t are mutually independent standard Brownian motions, and Γ is a matrix

independent of t. In particular, dXi
tdX

j
t = ρijσiσjdt with ρijσiσj = (ΓΓ⊤)ij , where σi is the

volatility of Xi
t , and ρij ∈ [−1, 1] is the inter-dimensional correlation between Xi

t and Xj
t .

Now we study the correlation structure of Itô and Stratonovich signatures respectively.

3.1.1 ITÔ SIGNATURES FOR BROWNIAN MOTION

The following proposition gives the moments of Itô signatures of a d-dimensional Brownian motion.

Proposition 1. Let X be a d-dimensional Brownian motion given by Equation (6). For m,n =
1, 2, . . . and m ̸= n, we have:

E
[
S(X)i1,...,in,It

]
= 0, E

[
S(X)i1,...,in,It S(X)j1,...,jm,I

t

]
= 0,

E
[
S(X)i1,...,in,It S(X)j1,...,jn,It

]
=

tn

n!

n∏
k=1

ρikjkσikσjk .

With Proposition 1, the following result explicitly characterizes the correlation structure of Itô sig-
natures for Brownian motions.

Proposition 2. Let X be a d-dimensional Brownian motion given by Equation (6). If we arrange
the signatures in recursive order (see Definition A.5 in Appendix D), the correlation matrix for Itô
signatures of X with orders truncated to K is a block diagonal matrix:

ΣI = diag{Ω0,Ω1,Ω2, . . . ,ΩK}, (7)

4In this paper, in line with Zhao & Yu (2006), all covariances and correlation coefficients are defined to
be uncentered. Specifically, for random variables X and Y , we define their covariance as E[XY ], and their
correlation coefficient as E[XY ]/

√
E[X2]E[Y 2]. One can easily extend our results to the centered case.
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whose diagonal block Ωk represents the correlation matrix for all k-th order signatures, which is
given by:

Ωk = Ω⊗ Ω⊗ · · · ⊗ Ω︸ ︷︷ ︸
k

, k = 1, 2, . . . ,K, (8)

and Ω0 = 1, where ⊗ represents Kronecker product, and Ω is a d × d matrix whose (i, j)-th entry
is ρij .

Proposition 2 reveals several important facts about Itô signatures for Brownian motions. First, signa-
tures of different orders are mutually independent, leading to a block diagonal correlation structure.
Second, the correlation between signatures of the same order has a Kronecker product structure
determined by the inter-correlation (ρij) between different dimensions of X.

3.1.2 STRATONOVICH SIGNATURES FOR BROWNIAN MOTION

The moments and correlation structure for Stratonovich signatures of Brownian motions are more
complicated. We first provide the moments of Stratonovich signatures.
Proposition 3. Let X be a d-dimensional Brownian motion given by Equation (6). For m,n =
1, 2, . . . , we have

E
[
S(X)

i1,...,i2n−1,S
t

]
= 0, E

[
S(X)i1,...,i2n,St

]
=

1

2n
tn

n!

n∏
k=1

ρi2k−1i2k

2n∏
k=1

σik ,

E
[
S(X)i1,...,i2n,St S(X)

j1,...,j2m−1,S
t

]
= 0,

and E
[
S(X)i1,...,i2n,St S(X)j1,...,j2m,S

t

]
and E

[
S(X)

i1,...,i2n−1,S
t S(X)

j1,...,j2m−1,S
t

]
can be calcu-

lated using formulas provided in Proposition A.1 in Appendix D.

The following result explicitly characterizes the correlation structure of Stratonovich signatures for
Brownian motions.
Proposition 4. Let X be a d-dimensional Brownian motion given by Equation (6). The correlation
matrix for all Stratonovich signatures of X with orders truncated to 2K has the following odd–even
alternating structure:

ΣS =



Ψ0,0 0 Ψ0,2 0 · · · 0 Ψ0,2K

0 Ψ1,1 0 Ψ1,3 · · · Ψ1,2K−1 0
Ψ2,0 0 Ψ2,2 0 · · · 0 Ψ2,2K

0 Ψ3,1 0 Ψ3,3 · · · Ψ3,2K−1 0
...

...
...

...
. . .

...
...

0 Ψ2K−1,1 0 Ψ2K−1,3 · · · Ψ2K−1,2K−1 0
Ψ2K,0 0 Ψ2K,2 0 · · · 0 Ψ2K,2K


, (9)

where Ψm,n is the correlation matrix between all m-th and n-th order signatures, which can be
calculated using Proposition 3. In particular, if we re-arrange the indices of the signatures by
putting all odd-order signatures and all even-order signatures together respectively, the correlation
matrix has the following block diagonal form:

Σ̃S = diag{Ψodd,Ψeven},
where Ψodd and Ψeven are given respectively by

Ψ1,1 Ψ1,3 · · · Ψ1,2K−1

Ψ3,1 Ψ3,3 · · · Ψ3,2K−1

...
... · · ·

...
Ψ2K−1,1 Ψ2K−1,3 · · · Ψ2K−1,2K−1

 and


Ψ0,0 Ψ0,2 · · · Ψ0,2K

Ψ2,0 Ψ2,2 · · · Ψ2,2K

...
... · · ·

...
Ψ2K,0 Ψ2K,2 · · · Ψ2K,2K

 . (10)

Propositions 2 and 4 reveal a striking difference between Itô and Stratonovich signatures for Brow-
nian motions. Specifically, Itô signatures of different orders are uncorrelated, leading to a block
diagonal correlation structure; Stratonovich signatures, in contrast, are uncorrelated only if they
have different parity, leading to an odd–even alternating structure. This difference has significant
implications for the consistency of the two types of signatures, which will be discussed in Section 4.
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3.2 CORRELATION STRUCTURE FOR MULTI-DIMENSIONAL OU PROCESS

Definition 5 (OU process). X is a d-dimensional Ornstein–Uhlenbeck (OU) process if it can be
expressed as:

Xt = (X1
t , X

2
t , . . . , X

d
t )

⊤ = Γ(Y 1
t , Y

2
t , . . . , Y

d
t )

⊤, (11)

where Γ is a matrix independent of t, and Y 1
t , Y

2
t , . . . , Y

d
t are mutually independent OU processes

driven by the following stochastic differential equations:

dY i
t = −κiY

i
t dt+ dW i

t , Y i
0 = 0,

for i = 1, 2, . . . , d. Here κi > 0, and W i
t are independent standard Brownian motions.

The parameter κi of the OU process controls the speed of mean reversion. A higher κi implies a
stronger mean reversion. When κi = 0, Y i

t reduces to a standard Brownian motion.

The following proposition shows that the odd–even alternating structure we observe in Proposition
4 holds for both Itô and Stratonovich signatures of the OU process.

Proposition 5. Let X be a d-dimensional OU process given by Equation (11). The correlation
matrix for all Itô signatures and the correlation matrix for all Stratonovich signatures of X, with
orders truncated to 2K, both have the odd–even alternating structure given by Equation (9).

Proposition 5 can be regarded as a generalization of the correlation structures for Itô and
Stratonovich signatures of the Brownian motion in Propositions 2 and 4. In particular, for Itô signa-
tures of the Brownian motion, all off-diagonal blocks in the odd–even alternating structure reduce
to zero, as we observe in Proposition 2. However, the calculation of moments for the OU process is
much more complicated than that for the Brownian motion, which we discuss in Appendix D.

4 CONSISTENCY OF SIGNATURES USING LASSO

This section investigates the consistency of feature selection in Lasso using signatures for both
classes of Gaussian processes: the Brownian motion and the OU process. We also provide results
for their discrete-time counterparts: the random walk and the AR process, respectively.

4.1 CONSISTENCY OF SIGNATURES FOR BROWNIAN MOTION AND RANDOM WALK

The following propositions characterize when the irrepresentable condition holds for signatures of
Brownian motion.

Proposition 6. For a multi-dimensional Brownian motion given by Equation (6), the irrepresentable
condition holds if and only if it holds for each block in the block-diagonal correlation matrix. In
particular, for Itô signatures this is true when the irrepresentable condition holds for each Ωk in
Equation (8); for Stratonovich signatures this is true when the irrepresentable condition holds for
both Ψodd and Ψeven in Equation (10).

Proposition 7. For a multi-dimensional Brownian motion given by Equation (6), the irrepresentable
condition holds for the correlation matrix of Itô signatures given by Equation (7) if

|ρij | <
1

2max0≤k≤K{#A∗
k} − 1

, (12)

where A∗
k is defined in Equation (4).

Proposition 6 demonstrates both the similarity and difference between Itô signatures and
Stratonovich signatures for Brownian motions. In particular, the difference in the block structure
of their correlation matrices leads to the difference in the consistency of their feature selection.

Proposition 7 provides a sufficient condition for Itô signatures that can be easily used in practice:
the Lasso is consistent when different dimensions of the multi-dimensional Brownian motion are not
strongly correlated, with a sufficient bound by Equation (12). Appendix E discusses the tightness of
this bound.
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Empirically, it has been documented that a small K suffices to provide a reasonable approximation
in applications (Morrill et al., 2020a; Lyons & McLeod, 2022). Therefore, max0≤k≤K{#A∗

k} is
typically small, which implies that the bound given by Equation (12) is fairly easy to satisfy.

The consistency study for Stratonovich signatures reveals a different picture: the irrepresentable
condition may fail even when all dimensions of X are mutually independent. This is shown in
Example A.4 in Appendix D. It suggests that the statistical properties of Lasso may be worse for
Stratonovich signatures.

Simulations further confirm this implication.5 Consider a two-dimensional (d = 2) Brownian mo-
tion with inter-dimensional correlation ρ; assume that there are q = #A∗ true predictors in the true
model (3), and all of these predictors are signatures of orders no greater than K = 4. Now, first
randomly choose q true predictors from all dK+1−1

d−1 = 31 signatures; next randomly set each beta
coefficient of these true predictors from the standard normal distribution; next generate 100 sam-
ples from this true model with error term εn drawn from a normal distribution with mean zero and
standard error 0.01; then run a Lasso regression given by Equation (5) to select predictors based on
these 100 samples; and finally check whether the Lasso is sign consistent according to Definition 2.
Repeat the above procedure by 1,000 times and calculate the consistency rate, which is defined as
the proportion of consistent results among these 1,000 experiments.6
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(a) Brownian motion.
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(b) Random walk.

Figure 1: Consistency rates for the Brownian motion and the random walk with different values of
inter-dimensional correlation, ρ, and different numbers of true predictors, q. Solid lines correspond
to Itô signatures and dashed lines correspond to Stratonovich signatures.

Figure 1 shows the consistency rates for different values of inter-dimensional correlation, ρ, and
different numbers of true predictors, q. Figure 1a shows the results for the Brownian motion, and
Figure 1b for its discrete version—the random walk. First, signatures for both Brownian motion
and random walk are similar: they both exhibit higher consistency rates when the absolute value of
ρ is small, i.e., when the inter-dimensional correlations of the Brownian motion (random walk) are
weak; second, as the number of true predictors q increases, both consistency rates decrease. These
findings are consistent with our theoretical results.

Finally, consistency rates for Itô signatures are consistently higher than those for Stratonovich sig-
natures, holding other variables constant (ρ and q). This can be attributed to the difference between
the definitions of Itô and Stratonovich integrals. Recall that, given a partition of [0, T ], Itô integrals
use only the value of the integrand at the left endpoint of each subinterval, whereas Stratonovich
integrals use the values at both the left and the right endpoints. The interaction between the two
endpoints for Stratonovich integrals introduces more collinearity between Stratonovich signatures.
This is also observed in Propositions 2 and 4—signatures of different orders are uncorrelated when
using Itô signatures but become correlated when using Stratonovich signatures. The collinearity
between Stratonovich signatures contributes to their lower consistency for Lasso.

4.2 CONSISTENCY OF SIGNATURES FOR OU PROCESSES AND AR PROCESSES

For both the Itô and the Stratonovich signatures of the OU process, we have the following necessary
and sufficient condition for the irrepresentable condition. However, it appears difficult to derive the
analogue of Proposition 7 for OU processes.

5Appendix F reports more details including its computational cost and robustness checks.
6Appendices I examines the impact of the number of dimension d and the number of samples.
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Proposition 8. For a multi-dimensional OU process given by Equation (11), the irrepresentable
condition holds for the correlation matrix of signatures if and only if it holds for both Ψodd and
Ψeven given by Equation (10). This result holds for both Itô and Stratonovich signatures.

Now we study the impact of mean reversion on the consistency of Lasso, for both the OU process and
its discrete version—the autoregressive AR(1) model with parameter ϕ. Recall that higher values
of κ for the OU process and lower values of ϕ for the AR(1) model imply stronger levels of mean
reversion. We consider two-dimensional OU processes and AR(1) processes, with both dimensions
sharing the same parameters (κ and ϕ). The inter-dimensional correlation matrix ΓΓ⊤ is randomly
drawn from the Wishart(2, 2) distribution. Other simulation setups are the same as in Section 4.1.
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(b) AR(1) model.

Figure 2: Consistency rates for the OU process and the AR(1) model with different parameters (κ
and 1 − ϕ) and different numbers of true predictors, q. Solid lines correspond to Itô signatures and
dashed lines correspond to Stratonovich signatures.

Figure 2 shows the simulation results for the consistency rates of both processes. First, the Itô
signature reaches the highest consistency rate when κ and 1 − ϕ approach 0, which correspond
respectively to a Brownian motion and a random walk. Second, when the process is sufficiently
mean reverting, Stratonovich signatures have higher consistency rates than Itô signatures. Finally, as
observed in Section 4.1, Lasso gets less consistent when the number of true predictors q increases.
These results suggest that, in practice, for processes that are sufficiently rough or mean reverting
(Gatheral et al., 2018), using Lasso with Stratonovich signatures will likely lead to higher statistical
consistency compared to Itô signatures. More theoretical explanations are provided in Appendix D.
Appendix J examines the more complex ARIMA processes.

5 DISCUSSION

Other performance metrics. We have adopted the sign consistency of Lasso (Zhao & Yu, 2006),
defined as whether the Lasso can select all true predictors with correct signs. This restrictive notion
of consistency may be relaxed in the context of signatures. Extensions of the sign consistency for
signatures are given in Appendix G. Overall, a lower sign consistency implies poorer performances
when using other metrics to measure the performance of feature selection using Lasso, such as the
out-of-sample mean squared error.

Time augmentation. Time augmentation is a widely used technique in signature-based analysis,
which involves adding a time dimension t to the original time series, Xt (Chevyrev & Kormilitzin,
2016). Time augmentation lowers the consistency rate of Lasso, as presented in Appendix H.

Other feature selection techniques. While Lasso is a popular feature selection technique, there
are also other commonly used techniques, such as the bridge regression (Frank & Friedman, 1993).
The research on the consistency of signatures using other techniques is left for further investigation.

6 CONCLUSION

This paper studies the statistical consistency of Lasso regression for signatures. It finds that consis-
tency is highly dependent on the definition of the signatures and the characteristics of the underlying
processes. These findings call for further statistical studies for signature transform before its poten-
tial for machine learning can be fully realized.
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arXiv:2208.02293, 2022.

Christa Cuchiero, Guido Gazzani, and Sara Svaluto-Ferro. Signature-based models: Theory and
calibration. SIAM Journal on Financial Mathematics, 14(3):910–957, 2023.

Omar El Euch, Masaaki Fukasawa, and Mathieu Rosenbaum. The microstructural foundations of
leverage effect and rough volatility. Finance and Stochastics, 22:241–280, 2018.

Adeline Fermanian. Embedding and learning with signatures. Computational Statistics & Data
Analysis, 157:107148, 2021.

LLdiko E Frank and Jerome H Friedman. A statistical view of some chemometrics regression tools.
Technometrics, 35(2):109–135, 1993.

Peter K Friz and Nicolas B Victoir. Multidimensional Stochastic Processes as Rough Paths: Theory
and Applications, volume 120. Cambridge University Press, 2010.

Owen Futter, Blanka Horvath, and Magnus Wiese. Signature trading: A path-dependent extension
of the mean-variance framework with exogenous signals. arXiv preprint arXiv:2308.15135, 2023.

Jim Gatheral, Thibault Jaisson, and Mathieu Rosenbaum. Volatility is rough. Quantitative Finance,
18(6):933–949, 2018.

10
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A GEOMETRIC INTERPRETATION OF SIGNATURES

Signatures can be interpreted from a geometric perspective. Consider a d-dimensional piecewise
linear process Xt, Figure A.1 illustrates the geometric interpretation of its first two orders of sig-
natures. (The Itô and Stratonovich signatures are the same for a piecewise linear process.) The
green line represents the path of the i-th and the j-th dimensions of Xt, (Xi

t , X
j
t ), from time 0 to

T . By definition, the first order signatures are S(X)iT = Xi
T −Xi

0 and S(X)jT = Xj
T −Xj

0 , which
correspond to the increments of the path along the i-th and the j-th dimensions, respectively. Both
increments can be visualized as the length and height of the rectangle in Figure A.1.
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Figure A.1: The geometric interpretation of signatures.

Now we consider the second order signatures. By definition, we have S(X)i,iT = (Xi
T −Xi

0)
2/2 and

S(X)j,jT = (Xj
T − Xj

0)
2/2, which are functions of the first order signatures, S(X)iT and S(X)jT .

In addition, path integral theory implies that S(X)i,jT and S(X)j,iT are the areas of the blue and
orange regions, respectively (Chevyrev & Kormilitzin, 2016). Therefore, all the first two orders of
signatures can be interpreted using Figure A.1.

When Xt is a continuous martingale, such as a Brownian motion or an OU process, the geometric
interpretation mentioned above still applies to the Stratonovich signatures of Xt. The Itô signatures
can be interpreted as Stratonovich signatures adjusted using quadratic variations. This arises from
the following relationship between Itô and Stratonovich integrals:∫ t

0

AsdBs =

∫ t

0

As ◦ dBs −
1

2
[A,B]t,

where [A,B]t is the quadratic covariation between processes A and B. For example, if Xt =
(W1,W2, . . . ,Wd) is a d dimensional standard Brownian motion with correlations ρij between
dimensions i and j, we have

S(X)i,It = S(X)i,St ,

S(X)i,j,It = S(X)i,j,St − 1

2
ρijt,

for any i, j = 1, 2, . . . , d. Therefore, Itô signatures can be regarded as Stratonovich signatures
adjusted by the quadratic variation of the underlying process.

Higher order signatures may capture additional geometric features of the underlying path (Chevyrev
& Kormilitzin, 2016; Levin et al., 2016; Morrill et al., 2020a). This geometric interpretation of
signatures has also led to successful applications in character recognition and quantitative finance
(Levin et al., 2016).
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B TECHNICAL DETAILS FOR UNIVERSAL NONLINEARITY OF SIGNATURES

There are different statements of universal nonlinearity of signatures in the literature, which we
summarize in Table A.1.

Table A.1: Universal nonlinearity in the literature.

Path With time augmentation Integral

Cuchiero et al. (2022)
cadlag rough path Yes Rough

Cuchiero et al. (2023)
Continuous semimartingale Yes Stratonovich

Arribas (2018); Lyons et al. (2020)
Continuous rough path Yes Stratonovich

Levin et al. (2016)
Continuous rough path No Stratonovich or Itô

Levin et al. (2016); Király & Oberhauser (2019); Fermanian (2021)
Bounded variation path No Riemann/Lebesgue

The following theorem gives the precise statement of universal nonlinearity proposed in Levin et al.
(2016).
Theorem 1 (Universal nonlinearity, Theorem 3.1 of Levin et al. (2016)). Let Xt be a Rd-valued
continuous path with finite p-variation, and let S be a compact subset of signature paths of Xt from
time 0 to T . Assume that f : S → R is a continuous function. Then, for any ε > 0, there exists a
linear functional L : R∞ → R such that for every s ∈ S:

|f(s)− L(s)| ≤ ε.

The proof of this theorem can be found in Levin et al. (2016). Other versions of universal nonlinear-
ity can be found in, for example, Arribas (2018); Király & Oberhauser (2019); Lyons et al. (2020);
Fermanian (2021); Cuchiero et al. (2022; 2023).

C TECHNICAL DETAILS FOR THE IRREPRESENTABLE CONDITION AND SIGN
CONSISTENCY

In our main article, we briefly introduce the definitions of the sign consistency and the irrepre-
sentable condition for Lasso as proposed by Zhao & Yu (2006). This appendix provides more
technical details on these definitions and their relationships.

We have introduced the strong sign consistency in our main paper; see Definition 2. To enhance
readability, we present the definition again below.
Definition A.1 (Strong Sign Consistency). Lasso is strongly sign consistent if there exists λN , a
function of sample number N , such that

lim
N→+∞

P
(
sign

(
β̂
N
(λN )

)
= sign(β)

)
= 1,

where β̂
N
(·) is the Lasso estimator given by Equation (5), β is a vector containing all beta coeffi-

cients of the true model, Equation (3), and the function sign(·) maps positive entries to 1, negative
entries to −1, and 0 to 0.

There is another version of sign consistency of Lasso, general sign consistency, which is defined as
follows.
Definition A.2 (General Sign Consistency). Lasso is general sign consistent if

lim
N→+∞

P
(
∃λ ≥ 0, sign

(
β̂
N
(λ)
)
= sign(β)

)
= 1,

where the notations are defined as Definition A.1.
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Strong sign consistency implies that using a preselected λN can achieve consistent predictor selec-
tion via Lasso. General sign consistency means that there is an appropriate value of λ that selects
the true predictors. Strong sign consistency implies general sign consistency.

We also have introduced the strong irrepresentable condition in our main paper; see Definition 3. To
enhance readability, we present the definition again below.

Definition A.3 (Strong Irrepresentable Condition). The feature selection in Equation (3) satisfies
the strong irrepresentable condition if there exists a positive constant vector η such that∣∣∣Σ̂N

A∗c,A∗(Σ̂N
A∗,A∗)−1sign(βA∗)

∣∣∣ ≤ 1− η,

where A∗ is given by Equation (4) and A∗c the complement of A∗, Σ̂N
A∗c,A∗ (Σ̂N

A∗,A∗ ) represents
the sample covariance matrix between all predictors in A∗c and A∗ (A∗ and A∗), βA∗ represents a
vector formed by beta coefficients for all predictors in A∗, 1 is an all-one vector, | · | calculates the
absolute values of all entries, and the inequality “≤” holds element-wise.

The weak version is defined as follows.

Definition A.4 (Weak Irrepresentable Condition). The feature selection in Equation (3) satisfies the
weak irrepresentable condition if∣∣∣Σ̂N

A∗c,A∗(Σ̂N
A∗,A∗)−1sign(βA∗)

∣∣∣ < 1,

where the inequality “<” holds element-wise, and other notations are defined as Definition A.3.

As explained by Zhao & Yu (2006), the irrepresentable conditions resemble a regularization con-
straint on the regression coefficients of the false predictors on true predictors. In particular, when
signs of the true beta coefficients are unknown, for the irrepresentable conditions to hold for all
possible signs, we need the L1 norms of the regression coefficients to be smaller than 1, i.e.,∣∣∣(Σ̂N

A∗,A∗)−1Σ̂N
A∗,A∗c

∣∣∣ < 1.

That is, the total amount of a false predictor represented by the true predictors is not to reach 1,
which explains the name of “irrepresentable condition.”

Zhao & Yu (2006) demonstrate that the irrepresentable condition is almost a necessary and sufficient
condition for the consistency of Lasso. This “almost” equivalence is established by the following
two theorems, which are Theorems 1 and 2 of Zhao & Yu (2006):

Theorem 2 (Theorem 1 of Zhao & Yu (2006)). The feature selection in Equation (3) is strongly
sign consistent if the strong irrepresentable condition holds.

Theorem 3 (Theorem 2 of Zhao & Yu (2006)). The feature selection in Equation (3) is general sign
consistent only if there exists n such that weak irrepresentable condition holds for N > n.

Theorems 2 and 3 can be summarized as:

strong irrepresentable condition ⇒ strong sign consistency
⇓

weak irrepresentable condition ⇐ general sign consistency

Therefore, Zhao & Yu (2006) documented that the irrepresentable condition is “almost necessary
and sufficient” for sign consistency.

D TECHNICAL DETAILS AND EXAMPLES FOR THE CALCULATION OF
CORRELATION MATRICES

This appendix provides details and examples for calculating the correlation structures of signatures.
Appendices D.1 and D.2 discuss the Brownian motion and the OU process, respectively.
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D.1 BROWNIAN MOTION

Itô signature. Propositions 1–2 in the main paper give explicit formulas for calculating the corre-
lation structure of Itô signatures for Brownian motions. The “recursive order” mentioned in Propo-
sition 2 is defined as follows.
Definition A.5 (Recursive Order). Consider a d-dimensional process X. We order the indices of all
of its 1st order signatures as:

1 2 · · · d.

Then, if all k-th order signatures are ordered as:

r1 r2 · · · rdk ,

we define the orders of all (k + 1)-th order signatures as:

r1, 1 r2, 1 · · · rdk , 1 r1, 2 r2, 2 · · · rdk , 2 · · · · · · · · · r1, d r2, d · · · rdk , d.

For example, for a d = 3 dimensional process, the recursive order of its signatures is:

• 1st order: 1 2 3

• 2nd order: 1, 1 2, 1 3, 1 1, 2 2, 2 3, 2 1, 3 2, 3 3, 3

• 3rd order: 1, 1, 1 2, 1, 1 3, 1, 1 1, 2, 1 2, 2, 1 3, 2, 1 1, 3, 1 2, 3, 1 3, 3, 1
1, 1, 2 2, 1, 2 3, 1, 2 1, 2, 2 2, 2, 2 3, 2, 2 1, 3, 2 2, 3, 2 3, 3, 2
1, 1, 3 2, 1, 3 3, 1, 3 1, 2, 3 2, 2, 3 3, 2, 3 1, 3, 3 2, 3, 3 3, 3, 3

• ...

To provide intuition for Propositions 1–2 in the main paper, the following two examples show the
correlation structures of Itô signatures for 2-dimensional Brownian motions with inter-dimensional
correlations ρ = 0.6 and ρ = 0, respectively.
Example A.1. Consider a 2-dimensional Brownian motion given by Equation (6) with inter-
dimensional correlation ρ = 0.6. Figure A.2 shows the correlation matrix of its Itô signatures
with orders truncated to 4 calculated using Proposition 1. The figure illustrates Proposition 2—the
correlation matrix has a block diagonal structure, and each block of the matrix is the Kronecker

product of the inter-dimensional correlation matrix
(

1 0.6
0.6 1

)
.

Figure A.2: Correlation matrix of Itô signatures with orders truncated to 4 for a 2-dimensional
Brownian motion with inter-dimensional correlation ρ = 0.6.
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Example A.2. Consider a 2-dimensional Brownian motion given by Equation (6) with inter-
dimensional correlation ρ = 0. Figure A.3 shows the correlation matrix of its Itô signatures with
orders truncated to 4 calculated using Proposition 1. When ρ = 0, the block diagonal correlation
matrix reduces to an identity matrix, indicating that all of its Itô signatures are mutually uncorre-
lated.

Figure A.3: Correlation matrix of Itô signatures with orders truncated to 4 for a 2-dimensional
Brownian motion with inter-dimensional correlation ρ = 0.

Stratonovich signature. Propositions 3–4 in the main paper provide formulas for calculat-
ing the correlation structure of Stratonovich signatures for Brownian motions. The follow-
ing proposition gives recursive formulas for calculating E

[
S(X)i1,...,i2n,St S(X)j1,...,j2m,S

t

]
and

E
[
S(X)

i1,...,i2n−1,S
t S(X)

j1,...,j2m−1,S
t

]
, which extends Proposition 3 in the main paper.

Proposition A.1. Let X be a d-dimensional Brownian motion given by Equation (6). For any
l, t ≥ 0 and m,n = 1, 2, . . . , define f2n,2m(l, t) := E

[
S(X)i1,...,i2n,Sl S(X)j1,...,j2m,S

t

]
, we have:

f2n,2m(l, t) = g2n,2m(l, t) +
1

2
ρj2m−1j2mσj2m−1σj2m

∫ t

0

f2n,2m−2(l, s)ds, (A.1)

g2n,2m(l, t) = ρi2nj2mσi2nσj2m

∫ l∧t

0

f2n−1,2m−1(s, s)ds

+
1

2
ρi2n−1i2nσi2n−1σi2n

∫ l

0

g2n−2,2m(s, t)ds, (A.2)

with initial conditions

f0,0(l, t) = 1, (A.3)
g0,2m(l, t) = 0. (A.4)
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In addition, define f2n−1,2m−1(l, t) := E
[
S(X)

i1,...,i2n−1,S
l S(X)

j1,...,j2m−1,S
t

]
, we have:

f2n−1,2m−1(l, t) = g2n−1,2m−1(l, t) +
1

2
ρj2m−2j2m−1

σj2m−2
σj2m−1

∫ t

0

f2n−1,2m−3(l, s)ds,

(A.5)

g2n−1,2m−1(l, t) = ρi2n−1j2m−1
σi2n−1

σj2m−1

∫ l∧t

0

f2n−2,2m−2(s, s)ds

+
1

2
ρi2n−2i2n−1σi2n−2σi2n−1

∫ l

0

g2n−3,2m−1(s, t)ds, (A.6)

with initial conditions

f1,1(l, t) = ρi1j1σi1σj1(l ∧ t), (A.7)

g1,2m−1(l, t) = ρi1j2m−1

1

2m−1

(l ∧ t)m−1

(m− 1)!
σi1

2m−1∏
k=1

σjk

m−1∏
k=1

ρj2k−1j2k . (A.8)

Here, x ∧ y represents the smaller value between x and y.

The following two examples show the correlation structures of Stratonovich signatures for 2-
dimensional Brownian motions with inter-dimensional correlations ρ = 0.6 and ρ = 0, respectively,
calculated using Propositions 3–4 in the main paper and Proposition A.1.
Example A.3. Consider a 2-dimensional Brownian motion given by Equation (6) with inter-
dimensional correlation ρ = 0.6. Figure A.4 shows the correlation matrix of its Stratonovich signa-
tures with orders truncated to 4 calculated using Propositions 3 and A.1. The figure illustrates that
the correlation matrix has an odd–even alternating structure.

Figure A.4: Correlation matrix of Stratonovich signatures with orders truncated to 4 for a 2-
dimensional Brownian motion with inter-dimensional correlation ρ = 0.6.

Example A.4. Consider a 2-dimensional Brownian motion given by Equation (6) with inter-
dimensional correlation ρ = 0. Figure A.5 shows the correlation matrix of its Stratonovich sig-
natures with orders truncated to 4 calculated using Propositions 3 and A.1. The figure demonstrates
that the correlation matrix has an odd–even alternating structure, even though different dimensions
of the Brownian motion are mutually independent (ρ = 0). This is different from the result for Itô
signatures shown in Example A.2, where all Itô signatures are mutually uncorrelated.

In this case, suppose that one includes all Stratonovich signatures of orders up to K = 4 in the Lasso
regression given by Equation (5), and the true model given by Equation (3) has beta coefficients
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Figure A.5: Correlation matrix of Stratonovich signatures with orders truncated to 4 for a 2-
dimensional Brownian motion with inter-dimensional correlation ρ = 0.

β0 = 0, β1 > 0, β2 > 0, β1,1 > 0, β1,2 > 0, β2,1 > 0, β2,2 < 0, and βi1,i2,i3 = βi1,i2,i3,i4 = 0.
Then, by Proposition 3,

ΣS
A∗c,A∗(ΣS

A∗,A∗)−1sign(βA∗) = (0, 0.77, 0.5, 0, 0.5, 0.5, 0, 0.5, 0.77, 1.01, 0.73, 0.47, 0,

0.47, 0, 0.58, 0.73, 0.73,−0.58, 0, 0.47, 0, 0.47, 0.73,−1.01),

which does not satisfy the irrepresentable condition defined in Definition 3 because 1.01 > 1.

D.2 OU PROCESS

Deriving explicit formulas for calculating the exact correlation between signatures of OU processes
(both Itô and Stratonovich) is complicated. Here we provide an example to show the general ap-
proach for calculating the correlation. The proof of this example is given in Appendix K, and one
can use a similar routine to compute the correlation for other setups of OU processes.
Example A.5. Consider a 1-dimensional OU process Xt = Yt with a mean reversion speed κ > 0:

dYt = −κYtdt+ dWt, Y0 = 0. (A.9)

The correlation coefficients between its 0-th order and 2nd order signatures are

E
[
S(X)0,IT S(X)1,1,IT

]
√
E
[
S(X)0,IT

]2
E
[
S(X)1,1,IT

]2 =
−2κT − e−2κT + 1√

4κTe−2κT + 3e−4κT − 6e−2κT − 4κT + 3 + 4κ2T 2
,

E
[
S(X)0,ST S(X)1,1,ST

]
√
E
[
S(X)0,ST

]2
E
[
S(X)1,1,ST

]2 =

√
3

3
,

for Itô and Stratonovich signatures, respectively. The proof is provided in Appendix K.

Figure A.6a shows the absolute values of correlation coefficients between the 0-th order and 2nd
order signatures calculated using the formulas above under different values of κ. Notably, the
correlation for Itô signatures rises with κ, while the correlation for Stratonovich signatures remains
fixed at

√
3
3 .

We further perform simulations to estimate the correlation coefficients for higher-order signatures
of the OU process. We generate 10,000 sample paths of the OU process using the methods discussed
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Figure A.6: Absolute values of correlation coefficients between signatures of the 1-dimensional
OU process. Solid lines correspond to Itô signatures and dashed lines correspond to Stratonovich
signatures.

in Appendix F. For each path, we calculate the corresponding signatures and then estimate the
sample correlation matrix based on the 10,000 simulated samples. Figure A.6b shows the simulation
results for the absolute values of correlation coefficients between the first four order signatures
under different values of κ. Consistent with the observation in Figure A.6a, the correlation for Itô
signatures rises with κ, while the correlation for Stratonovich signatures remains relatively stable.
Notably, the correlations for Itô signatures are zero when κ = 0, which reduces to a Brownian
motion. In addition, when κ is sufficiently large, the absolute values of correlation coefficients for
Itô signatures exceed those for Stratonovich signatures.

Recall that the irrepresentable condition, as defined in Definition 3, illustrates that a higher correla-
tion generally leads to poorer consistency. Therefore, based on Example A.5, we can expect that the
Lasso is more consistent when using Itô signatures for small values of κ (weaker mean reversion),
and more consistent when using Stratonovich signatures for large values of κ (stronger mean rever-
sion). This provides a theoretical explanation for our observations in Section 4.2 of the main paper:
When processes are sufficiently rough or mean reverting (El Euch et al., 2018; Gatheral et al., 2018),
using Lasso with Stratonovich signatures will likely lead to higher statistical consistency compared
to Itô signatures.

E IRREPRESENTABLE CONDITION FOR ITÔ SIGNATURES OF BROWNIAN
MOTION WITH EQUAL INTER-DIMENSIONAL CORRELATION

In this appendix, we investigate the irrepresentable condition for Itô signatures of a multi-
dimensional Brownian motion with equal inter-dimensional correlation. This analysis not only
provides further insights into the irrepresentable condition but also demonstrates the tightness of
the sufficient condition presented in Proposition 7 in our main paper.

The following proposition characterizes whether the irrepresentable condition holds under different
values of inter-dimensional correlation for the Brownian motion when using Itô signatures. For
mathematical simplicity, we assume that only the first order signatures are included in the regression
model.

Proposition A.2. For a multi-dimensional Brownian motion given by Equation (6) with equal inter-
dimensional correlation ρ = ρij , assume that only its first order signatures are included in (3), and
all true beta coefficients are positive. Then, the irrepresentable condition for the correlation matrix
of Itô signatures holds if ρ ∈ (− 1

2#A∗
1
, 1), and does not hold if ρ ∈ (− 1

#A∗
1
,− 1

2#A∗
1
].

Remark A.1. Proposition A.2 only discusses the results for ρ ∈ (− 1
#A∗

1
, 1) because, if ρ < − 1

#A∗
1

,
the inter-dimensional correlation matrix for the Brownian motion is not positive definite.

Proposition A.2 provides insights into the sufficient condition given by Proposition 7. In particu-
lar, Proposition A.2 demonstrates that the sufficient condition (12) is tight under the equal inter-
dimensional correlation setup for ρ < 0. Meanwhile, it also reveals that, for ρ > 0, the irrep-
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resentable condition always holds but may not satisfy (12). In other words, in this equal inter-
dimensional correlation setup, (12) is tight when ρ < 0, and is loose when ρ > 0.

F DETAILS FOR SIMULATIONS

This appendix provides additional technical details, computational cost, and robustness checks for
the simulations conducted in this paper.

F.1 MORE TECHNICAL DETAILS

Simulation of processes. We simulate the i-th dimension of the Brownian motion, W i
t , and OU

process, Y i
t , by discretizing the stochastic differential equations of the processes using the Euler–

Maruyama method:

• Brownian motion: W i
tk+1

= W i
tk

+
√
∆tεik, W i

0 = 0;

• OU process: Y i
tk+1

= Y i
tk

− κiY
i
tk
∆t+

√
∆tεik, Y i

0 = 0.

Here, 0 = t0 < t1 < · · · < tN = T , tk+1 − tk = ∆t = T/N for any k, and εik are randomly drawn
from the standard normal distribution. The number of steps is set to N = 100.

The i-th dimension of the random walk and AR(1) model, both denoted by Zi
t , are simulated using

the following formulas:

• Random walk: Zi
tk+1

= Zi
tk

+ eik, Zi
0 = 0;

• AR(1) model: Zi
tk+1

= ϕiZ
i
tk

+ εik, Zi
0 = 0.

Here, 0 = t0 < t1 < · · · < tN = T , tk+1 − tk = ∆t = T/N for any k, eik are randomly drawn
from the following distribution:

P(eik = +1) = P(eik = −1) = 0.5,

and εik are randomly drawn from the standard normal distribution. The number of steps is set to
N = 100.

After simulating each dimension of the processes, we simulate the inter-dimensional correlation
between different dimensions of the processes using the Cholesky decomposition. Specifically, we
set the inter-dimensional correlation matrix ΓΓ⊤ based on the setups described in the main paper
and calculate Γ using the Cholesky decomposition. Finally, we generate X using Equations (6) or
(11).

In all of our simulations, we set the length of the processes to T = 1, and the initial values of the
processes to zero. These choices have no impact on the results because the signatures of a path X
are invariant under a time reparametrization and a shift of the starting point of X, see, for example,
Chevyrev & Kormilitzin (2016).

Calculation of integrals. The calculation of Itô and Stratonovich signatures requires the calcula-
tion of Itô and Stratonovich integrals. By definition, these integrals are computed using the following
schemes:

• Itô integral:
∫ T

0
AtdBt ≈

∑N−1
k=0 Atk(Btk+1

−Btk);

• Stratonovich integral:
∫ T

0
At ◦ dBt ≈

∑N−1
k=0

1
2 (Atk +Atk+1

)(Btk+1
−Btk).

Here, we set 0 = t0 < t1 < · · · < tN = T and tk+1 − tk = ∆t = T/N for any k.

F.2 COMPUTATIONAL DETAILS

• The simulations are implemented using Python 3.7.
• The simulations are run on a laptop with an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz.
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• The random seed is set to 0 for reproducibility.

• The Lasso regressions are performed using the sklearn.linear model.lars path
package.

• Each individual experiment, including generating 100 paths, calculating their signatures,
and performing the Lasso regression, can be completed within one second.

F.3 ROBUSTNESS CHECKS

To show the robustness of our simulations shown in Figures 1 and 2 in Section 4 of the main pa-
per, we present Figures A.7 and A.8, which include confidence intervals (shaded regions) for the
estimated consistency rates of the Brownian motion/random walk and OU process/AR(1) model,
respectively.

In Figures A.7 and A.8, we estimate the consistency rate by repeating the procedure described in
Section 4 100 times, and this process is repeated 30 times to obtain the confidence interval for the
estimation. Thus, these confidence intervals are based on 30 estimations of the consistency rate,
with each estimation calculated using 100 experiments.
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(a) Brownian motion.
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(b) Random walk.

Figure A.7: Consistency rates for the Brownian motion and the random walk with different values
of inter-dimensional correlation, ρ, and different numbers of true predictors, q. Solid lines corre-
spond to Itô signatures and dashed lines correspond to Stratonovich signatures. Shaded regions are
confidence intervals of the experiments.
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(a) OU process.
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(b) AR(1) model.

Figure A.8: Consistency rates for the OU process and the AR(1) model with different parameters (κ
and 1 − ϕ) and different numbers of true predictors, q. Solid lines correspond to Itô signatures and
dashed lines correspond to Stratonovich signatures. Shaded regions are confidence intervals of the
experiments.

We observe that the confidence intervals of the consistency rates shown in Figures A.7 and A.8 are
narrow. Moreover, the observations made in Figures 1 and 2 are consistent with the results presented
here, further confirming the robustness of our findings.
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G EXTENSIONS OF THE DEFINITION OF CONSISTENCY

As remarked in Section 5 of the main paper, the sign consistency may be too restrictive and can
be relaxed in the context of signatures. This appendix provides numerical experiments that explore
several extensions of consistency measures for signatures.

G.1 PRECISION, RECALL, AND F1-SCORE

One possible approach for extending the definition of consistency is to use precision, recall, and the
F1-score to evaluate the performance of the Lasso regression in selecting true predictors.

In particular, for a given tuning parameter λ in the Lasso regression, Equation (5), let A(λ) denote
the set of selected predictors based on the Lasso:

A(λ) =

K⋃
k=0

{(i1, . . . , ik) : β̃i1,...,ik(λ) ̸= 0},

where β̃i1,...,ik(λ) are beta coefficients estimated using Equation (5). The true predictor set, A∗, is
defined in Equation (4). We can calculate the true positive (TP), false positive (FP), true negative
(TN), and false negative (TN) counts as follows:

TP(λ) = #A(λ)∩A∗, FP(λ) = #A(λ)∩A∗c, TN(λ) = #A(λ)c∩A∗c, FN(λ) = #A(λ)c∩A∗,

where A∗c and A(λ)c represent the complements of A∗ and A(λ), respectively. The precision,
recall, and F1-score can then be defined as:

precision(λ) =
TP(λ)

TP(λ) + FP(λ)
,

recall(λ) =
TP(λ)

TP(λ) + FN(λ)
,

F1-score(λ) =
2

1/recall(λ) + 1/precision(λ)
.

We can then examine the maximum values of precision, recall, and F1-score as we vary the tuning
parameter λ in the Lasso. These maximum values reflect the best performance in terms of feature
selection by the Lasso.

To assess these measures of consistency, we conducted simulations similar to those in Section 4.1
for the Brownian motion. Figure A.9 shows the maximum values of precision, recall, and F1-score
for the Brownian motion with different inter-dimensional correlation values (ρ) and numbers of true
predictors (q), averaged over 1,000 experiments. The results demonstrate that, similar to the findings
in Figure 1, the maximum precision (Figure A.9a) and F1-score (Figure A.9c) reach their highest
values when ρ = 0, and decrease as the dimensions of the Brownian motion become more correlated.
It is also observed that the results for Itô signatures consistently outperform those for Stratonovich
signatures. In addition, compared to Figure 1, these alternative measures of consistency exhibit a
less pronounced decrease in performance as the absolute value of ρ increases.

It is worth noting that the maximum recall rate (Figure A.9b) remains close to 1 under different
parameters. This occurs because none of the predictors are selected by the Lasso when the tuning
parameter λ is extremely large. As a result, FN(λ) is zero, and recall(λ) is equal to 1. Consequently,
the maximum recall rate is not an appropriate measure of consistency in the context of signatures
when using the Lasso.

G.2 OUT-OF-SAMPLE R2

The out-of-sample R2 is a commonly used measure of model performance in machine learning. It
generalizes the notion of consistency as it considers the performance of the model on out-of-sample
data, rather than solely focusing on the selection of true predictors by the Lasso. This aligns well
with practical applications. Furthermore, it is consistent with the concept of universal nonlinearity
in signatures, as described by Equation (2). Universal nonlinearity suggests that the true model can
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(a) Maximum precision.
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(b) Maximum recall.
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(c) Maximum F1-score.

Figure A.9: Maximum values of precision, recall, and F1-score for the Brownian motion with dif-
ferent values of inter-dimensional correlation, ρ, and different numbers of true predictors, q. Solid
lines correspond to Itô signatures and dashed lines correspond to Stratonovich signatures.

be approximated by a linear combination of signatures, without requiring the exact selection of true
predictors by the Lasso regression.

We conduct simulations to study the out-of-sample R2 in the context of signatures using Lasso.
Consider a two-dimensional (d = 2) Brownian motion with inter-dimensional correlation ρ; assume
that there are q = #A∗ true predictors in the true model (3), and all of these predictors are signatures
of orders no greater than K = 4. Now, first randomly choose q true predictors from all dK+1−1

d−1 = 31
signatures; next randomly set each beta coefficient of these true predictors from the standard normal
distribution; next generate 200 samples from this true model with error term εn drawn from a normal
distribution with mean zero and standard error 0.0001. We divide the 200 samples into a training
set and a test set, with 100 samples assigned to each. Then, we run a Lasso regression given by
Equation (5) to select predictors based on the training set. The tuning parameter λ is chosen using
5-fold cross-validation. Finally, we calculate the out-of-sample R2 using the chosen λ on the test
set. We repeat the above procedure by 1,000 times and calculate the average out-of-sample R2.

Figure A.10 shows the out-of-sample R2 for different values of inter-dimensional correlation, ρ, and
different numbers of true predictors, q. We can find that, first, Lasso exhibits lower out-of-sample R2

when the absolute value of ρ is small, i.e., when the inter-dimensional correlations of the Brownian
motion are weak. Second, as the number of true predictors q increases, the out-of-sample R2 in-
creases. Finally, Itô signatures have lower out-of-sample R2 than those for Stratonovich signatures,
holding other variables constant (ρ and q).

All these findings are consistent with our analysis of sign consistency in the main paper. A higher
consistency rate corresponds to a higher precision, a higher F1-score, and a lower out-of-sample
R2. This consistency across different metrics reinforces the applicability of our theoretical results
when using alternative measures to evaluate the performance of Lasso in the context of signatures.
It confirms that the theoretical insights derived from sign consistency extend to other evaluation
metrics, demonstrating the robustness and broad applicability of our findings.
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Figure A.10: Average out-of-sample R2 for the Brownian motion with different values of inter-
dimensional correlation, ρ, and different numbers of true predictors, q. Solid lines correspond to Itô
signatures and dashed lines correspond to Stratonovich signatures.

H TIME AUGMENTATION

Time augmentation is a widely used technique in signature-based analysis, which involves adding a
time dimension t to the original time series, Xt (Chevyrev & Kormilitzin, 2016; Lyons & McLeod,
2022). In this section, we consider the time-augmented Brownian motion defined as follows:

Definition A.6 (Time-augmented Brownian motion). X̂ is a (d + 1)-dimensional time-augmented
Brownian motion if it can be expressed as:

X̂t =
(
t,X⊤

t

)⊤
=
(
t,X1

t , X
2
t , . . . , X

d
t

)⊤
, (A.10)

where Xt = (X1
t , X

2
t , . . . , X

d
t )

⊤ is a d-dimensional Brownian motion given by Equation (6) in the
main paper. For notational simplicity, let X0

t = t, then

X̂t =
(
X0

t , X
1
t , X

2
t , . . . , X

d
t

)⊤
.

Now we discuss the correlation structure of signatures and the consistency of signatures using Lasso
for the time-augmented Brownian motion.

H.1 CORRELATION STRUCTURE OF SIGNATURES FOR TIME-AUGMENTED BROWNIAN
MOTION

The following proposition shows the moments of Itô signatures for the time-augmented Brownian
motion. Note that an index of 0 corresponds to the time dimension, X0

t = t.

Proposition A.3. Let X̂ be a (d+1)-dimensional time-augmented Brownian motion given by Equa-

tion (A.10). For any l, t ≥ 0 and m,n = 1, 2, . . . , fn,m(l, t) := E
[
S(X̂)i1,...,in,Il S(X̂)j1,...,jm,I

t

]
can be calculated recursively by:

fn,m(l, t) =


∫ l

0

∫ t

0
fn−1,m−1(s, τ)dτds, if in = 0, jm = 0,∫ l

0
fn−1,m(s, t)ds, if in = 0, jm ̸= 0,∫ t

0
fn,m−1(l, s)ds, if in ̸= 0, jm = 0,

ρinjmσinσjm

∫ l∧t

0
fn−1,m−1(s, s)ds, if in ̸= 0, jm ̸= 0,

with initial conditions

f0,m(l, t) =

{
tm

m! if j1 = j2 = · · · = jm = 0,

0, otherwise,

fn,0(l, t) =

{
tn

n! if i1 = i2 = · · · = in = 0,

0, otherwise.

The following proposition shows the moments of Stratonovich signatures for the time-augmented
Brownian motion.
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Proposition A.4. Let X̂ be a (d+1)-dimensional time-augmented Brownian motion given by Equa-

tion (A.10). For any l, t ≥ 0 and m,n = 1, 2, . . . , fn,m(l, t) := E
[
S(X̂)i1,...,in,Sl S(X̂)j1,...,jm,S

t

]
can be calculated recursively by:

fn,m(l, t) =

∫ l

0

∫ t

0
fn−1,m−1(s, τ)dτds, if in = 0, jm = 0,∫ l

0
fn−1,m(s, t)ds, if in = 0, jm ̸= 0,

ρinjmσinσjm

∫ l∧t

0
fn−1,m−1(s, s)ds, if in ̸= 0, jm ̸= 0, in−1 = 0, jm−1 = 0,

ρinjmσinσjm

∫ l∧t

0
fn−1,m−1(s, s)ds

+ 1
2ρin−1inσin−1

σin

∫ l

0
gn−2,m(s, t)ds, if in ̸= 0, jm ̸= 0, in−1 ̸= 0, jm−1 = 0,

ρinjmσinσjm

∫ l∧t

0
fn−1,m−1(s, s)ds

+ 1
2ρin−1inσin−1

σin

∫ l

0
gn−2,m(s, t)ds

+ 1
2ρjm−1jmσjm−1σjm

∫ t

0
g̃m−2,n(s, l)ds

+ 1
4ρin−1inσin−1

σinρjm−1jmσjm−1
σjm

·
∫ l

0

∫ t

0
fn−2,m−2(s, τ)dτds, if in ̸= 0, jm ̸= 0, in−1 ̸= 0, jm−1 ̸= 0,

gn,m(l, t) ={∫ l

0
gn−1,m(s, t)ds, if in = 0,

ρinjmσinσjm

∫ l∧t

0
fn−1,m−1(s, s)ds+

1
2ρin−1inσin−1σin

∫ l

0
gn−2,m(s, t)ds, if in ̸= 0,

g̃m,n(t, l) ={∫ t

0
g̃m−1,n(s, l)ds, if jm = 0,

ρinjmσinσjm

∫ l∧t

0
fn−1,m−1(s, s)ds+

1
2ρjm−1jmσjm−1

σjm

∫ t

0
g̃m−2,n(s, l)ds, if jm ̸= 0,

with initial conditions

f0,0(l, t) = 1,

g0,m(l, t) =

{∫ t

0
f0,m−1(l, s)ds, if jm = 0,

0, if jm ̸= 0,

g̃0,n(l, t) =

{∫ l

0
fn−1,0(s, t)ds, if in = 0,

0, if in ̸= 0.

The following example shows the correlation structures of Itô and Stratonovich signatures for a
(1+1)-dimensional time-augmented Brownian motion X̂.

Example A.6. Consider a (1+1)-dimensional time-augmented Brownian motion X̂. Figures A.11
and A.12 show the correlation structures of Itô and Stratonovich signatures of X̂, respectively, cal-
culated through simulations. In particular, we first simulate 10,000 paths of X̂, then calculate the
signatures of each path, and finally calculate the sample correlation matrix of the signatures.

From the figures, we can observe that the correlation matrix of the time-augmented Brownian motion
does not exhibit the same special structures (block diagonal or odd–even alternating) we observe in
the main paper. In addition, the correlation between Stratonovich signatures is generally stronger
than that between Itô signatures.

By comparing Figures A.11 and A.12 with Figures A.3 and A.5 in the main paper, we can find that
the time augmentation generally increases the correlation between signatures. Therefore, we expect
that the time augmentation will lead to a lower consistency rate for Lasso.

H.2 CONSISTENCY OF SIGNATURES FOR TIME-AUGMENTED BROWNIAN MOTION

We conduct simulations to study the consistency of signatures using Lasso for the time-augmented
Brownian motion.
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Figure A.11: Correlation matrix of Itô signatures with orders truncated to 4 for a (1+1)-dimensional
time-augmented Brownian motion X̂.

Figure A.12: Correlation matrix of Stratonovich signatures with orders truncated to 4 for a (1+1)-
dimensional time-augmented Brownian motion X̂.
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Consider a (2+1)-dimensional time-augmented Brownian motion X̂, which is the time-augmented
version of a 2-dimensional Brownian motion X. The inter-dimensional correlation of X is ρ. We
perform the same experiment as conducted in Section 4.1 for X̂.

Figure A.13 shows the consistency rates for different values of inter-dimensional correlation, ρ,
and different numbers of true predictors, q. The observations are similar to the results for Brownian
motion without time augmentation (Figure 1a). In addition, the consistency rates are generally lower
when there exists time augmentation (Figure A.13) compared to the case without time augmentation
(Figure 1a). This is consistent with Example A.6 because time augmentation tends to increase the
correlation between signatures, which results in a lower consistency rate.
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Figure A.13: Consistency rates for the time-augmented Brownian motion with different values of
inter-dimensional correlation, ρ, and different numbers of true predictors, q. Solid lines correspond
to Itô signatures and dashed lines correspond to Stratonovich signatures.

In summary, our simulation shows that time augmentation lowers the consistency rate of Lasso.

I IMPACT OF THE DIMENSION OF THE PROCESS AND THE NUMBER OF
SAMPLES

All simulations in our main paper consider the case of d = 2 (dimension of the process) and N =
100 (number of samples) to confirm the theoretical results. The choice of d = 2 is consistent with
the simulation setup commonly used in the literature on signatures; see, for example, Chevyrev &
Kormilitzin (2016). In this appendix, we examine how the consistency of Lasso varies with the
dimension of the process d and the number of samples N .

Figure A.14 shows how the consistency of Lasso varies with d. Figure A.14a shows the results for
the Brownian motion, and Figure A.14b for the OU process with κ = 2. We set the number of true
predictors to be three. Other simulation setups remain the same as in the main paper.
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(a) Brownian motion.
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(b) OU process.

Figure A.14: Consistency rates for the Brownian motion and the random walk with different num-
bers of dimensions, d, and different values of inter-dimensional correlation, ρ. Solid lines correspond
to Itô signatures and dashed lines correspond to Stratonovich signatures.

First, for each value of d, the conclusions in our main paper remain valid (e.g., for the Brownian
motion, the consistency rate for Itô signatures is higher than Stratonovich signatures). Therefore, it
is sufficient to consider the case of d = 2 in our main paper. Second, for the Brownian motion, we
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observe that the consistency rate decreases with d. This can be attributed to the fact that the inter-
dimensional correlation of the process leads to stronger correlations between signatures. Third, for
the OU process, the consistency rate increases with d because the inter-dimensional correlation of
the process is weaker than the correlation between the increments of the OU process itself.

Figure A.15 shows the relationship between the consistency rate and the number of samples. In
general, we find that the consistency rate increases as the number of samples increases.
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(a) Brownian motion.
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(b) OU process.

Figure A.15: Consistency rates for the Brownian motion and the OU process with different numbers
of samples, N , and different values of inter-dimensional correlation, ρ. Solid lines correspond to Itô
signatures and dashed lines correspond to Stratonovich signatures.

J THE ARIMA PROCESS

This appendix examines the consistency of signatures for a more complex model—the
ARIMA(p, I, q) model, where p is the lag of AR, I is the degree of differencing, and q is the lag of
MA.

Figure A.16 shows how the consistency rate varies with p, q, and I . We find that the consistency
rate does not exhibit any apparent dependence on p and q, but does highly rely on I . Specifically,
the consistency rate generally decreases as I increases due to the stronger correlation between the
increments of the ARIMA processes introduced by I .
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(a) Consistency rates for different p.
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(b) Consistency rates for different q.

Figure A.16: Consistency rates for the ARIMA(p, I, q) with different lags of AR, p, lags of MA, q,
and degrees of differencing, I . Solid lines correspond to Itô signatures and dashed lines correspond
to Stratonovich signatures.

K PROOFS

This appendix provides the proofs of all theoretical results in this paper.

Proof of Proposition 1. For the expectation, we have

E
[
S(X)i1,...,in,It

]
= E

[∫ t

0

S(X)i1,...,in−1
s dXin

s

]
= 0 (A.11)
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because the expectation of an Itô integral is zero.

Next we prove E
[
S(X)i1,...,in,It S(X)j1,...,jm,I

t

]
= 0 for m ̸= n by induction. Without loss of

generality, we assume that m > n. When n = 1, for any m > 1, we have

E
[
S(X)i1,It S(X)j1,...,jm,I

t

]
= E

[(∫ t

0

dXi1
s

)(∫ t

0

S(X)j1,...,jm−1
s dXjm

s

)]
=

∫ t

0

E
[
S(X)j1,...,jm−1,I

s

]
ρi1jmσi1σjmds = 0,

where the second equality uses the Itô isometry and the third equality uses Equation (A.11). Now
assume that for m > n, we have E

[
S(X)i1,...,in,It S(X)j1,...,jm,I

t

]
= 0. Then,

E
[
S(X)

i1,...,in+1,I
t S(X)

j1,...,jm+1,I
t

]
=E

[(∫ t

0

S(X)i1,...,in,It dXin+1
s

)(∫ t

0

S(X)j1,...,jm,I
s dXjm+1

s

)]
=

∫ t

0

E
[
S(X)i1,...,ik,It S(X)j1,...,jm,I

s

]
ρin+1jm+1σin+1σjm+1ds = 0.

This proves E
[
S(X)i1,...,in,It S(X)j1,...,jm,I

t

]
= 0.

We finally prove E
[
S(X)i1,...,in,It S(X)j1,...,jn,It

]
= tn

n!

∏n
k=1 ρikjkσikσjk by induction. When

n = 1, we have

E
[
S(X)i1,It S(X)j1,It

]
=E

[(∫ t

0

dXi1
s

)(∫ t

0

dXj1
s

)]
=

∫ t

0

ρi1j1σi1σj1ds = tρi1j1σi1σj1 .

Then, assume that E
[
S(X)i1,...,in,It S(X)j1,...,jn,It

]
= tn

n!

∏n
k=1 ρikjkσikσjk . We have

E
[
S(X)

i1,...,in+1,I
t S(X)

j1,...,jn+1,I
t

]
=E

[(∫ t

0

S(X)i1,...,in,Is dXin+1
s

)(∫ t

0

S(X)j1,...,jn,Is dXjn+1
s

)]
=

∫ t

0

E
[
S(X)i1,...,in,Is S(X)j1,...,jn,Is

]
ρin+1jn+1

σin+1
σjn+1

ds

=

∫ t

0

(
sn

n!

n∏
k=1

ρikjkσikσjk

)
ρin+1jn+1

σin+1
σjn+1

ds =
tn+1

(n+ 1)!

n+1∏
k=1

ρikjkσikσjk .

Therefore, E
[
S(X)i1,...,in,It S(X)j1,...,jn,It

]
= tn

n!

∏n
k=1 ρikjkσikσjk . This completes the proof.

Proof of Proposition 2. By Proposition 1, for any n, we have

E
[
S(X)i1,...,in,It S(X)j1,...,jn,It

]
√
E
[
S(X)i1,...,in,It

]2
E
[
S(X)j1,...,jn,It

]2 =
tn

n!

∏n
k=1 ρikjkσikσjk√

tn

n!

∏n
k=1 σikσik · tn

n!

∏n
k=1 σjkσjk

=

n∏
k=1

ρikjk ,

implying that
E
[
S(X)i1,It S(X)j1,It

]
√
E
[
S(X)i1,It

]2
E
[
S(X)j1,It

]2 = ρi1j1
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and

E
[
S(X)i1,...,in,It S(X)j1,...,jn,It

]
√
E
[
S(X)i1,...,in,It

]2
E
[
S(X)j1,...,jn,It

]2 = ρinjn ·
E
[
S(X)

i1,...,in−1,I
t S(X)

j1,...,jn−1,I
t

]
√
E
[
S(X)

i1,...,in−1,I
t

]2
E
[
S(X)

j1,...,jn−1,I
t

]2 .
This proves the Kronecker product structure given by Equation (8).

Proposition 1 also implies that, for any m ̸= n,

E
[
S(X)i1,...,in,It S(X)j1,...,jm,I

t

]
√
E
[
S(X)i1,...,in,It

]2
E
[
S(X)j1,...,jm,I

t

]2 = 0.

This proves that Itô signatures with different orders are uncorrelated and, therefore, the correlation
matrix is block diagonal. This completes the proof.

Proof of Proposition 3. We omit the proof of Equations

E
[
S(X)

i1,...,i2n−1,S
t

]
= 0

and
E
[
S(X)i1,...,i2n,St S(X)

j1,...,j2m−1,S
t

]
= 0

because they can be proven using a similar approach to the proof Proposition 5. Equation

E
[
S(X)i1,...,i2n,St

]
=

1

2n
tn

n!

n∏
k=1

ρi2k−1i2k

2n∏
k=1

σik

is a corollary of Proposition A.1.

Proof of Proposition 4. This is a direct corollary of Proposition 3.

Proof of Proposition 5. We only need to prove that, for an odd number m and an even number n,
we have

E
[
S(X)i1,...,imt S(X)j1,...,jnt

]
= 0

for any i1, . . . , im and j1, . . . , jn taking values in {1, 2, . . . , d}. Here the signatures can be defined
in the sense of either Itô or Stratonovich.

Consider the reflected OU process, X̃t = −Xt. By definition, X̃t is also an OU process with
the same mean reversion parameter. Therefore, the signatures of X̃t and Xt should have the same
distribution. In particular, we have

E
[
S(X̃)i1,...,imt S(X̃)j1,...,jnt

]
= E

[
S(X)i1,...,imt S(X)j1,...,jnt

]
. (A.12)

Now we consider the definition of the signatures:

S(X)i1,...,imt =

∫
0<t1<···<tm<t

dXi1
t1 · · · dX

im
tk

,

where the integral can be defined in the sense of either Itô or Stratonovich. We therefore have

S(X̃)i1,...,imt = S(−X)i1,...,imt =

∫
0<t1<···<tm<t

d(−Xi1
t1 ) · · · d(−Xim

tk
)

= (−1)m
∫
0<t1<···<tm<t

dXi1
t1 · · · dX

im
tk

= (−1)mS(X)i1,...,imt .

Similarly, we have
S(X̃)j1,...,jnt = (−1)nS(X)j1,...,jnt .
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Therefore,

E
[
S(X̃)i1,...,imt S(X̃)j1,...,jnt

]
= (−1)m+nE

[
S(X)i1,...,imt S(X)j1,...,jnt

]
= −E

[
S(X)i1,...,imt S(X)j1,...,jnt

]
,

and combining this with Equation (A.12) leads to the result.

Proof of Proposition 6. This result holds because of Proposition 2 and Zhao & Yu (2006, Corollary
5).

Proof of Proposition 7. This result holds because of Proposition 2, Zhao & Yu (2006, Corollary 2),
and Zhao & Yu (2006, Corollary 5).

Proof of Proposition 8. This result holds because of Proposition 4 and Zhao & Yu (2006, Corollary
5).

Proof of Proposition A.1. By the relationship between the Stratonovich integral and the Itô integral,
we have

S(X)j1,...,jm,S
t =

∫ t

0

S(X)j1,...,jm−1,S
s ◦ dXjm

s

=

∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s +
1

2

[
S(X)j1,...,jm−1,S , Xjm

]
t
,

where [A,B]t represents the quadratic covariation between processes A and B from time 0 to t.
Furthermore, by properties of the quadratic covariation,[

S(X)j1,...,jm−1,S , Xjm
]
t
=

∫ t

0

S(X)j1,...,jm−2,S
s d

[
Xjm−1 , Xjm

]
s

= ρjm−1jmσjm−1σjm

∫ t

0

S(X)j1,...,jm−2,S
s ds.

Therefore,

S(X)j1,...,jm,S
t =

∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s +
1

2
ρjm−1jmσjm−1σjm

∫ t

0

S(X)j1,...,jm−2,S
s ds.

For any l, t ≥ 0 and m,n = 0, 1, . . . , define

fn,m(l, t) := E
[
S(X)i1,...,in,Sl S(X)j1,...,jm,S

t

]
,

gn,m(l, t) := E
[
S(X)i1,...,in,Sl

∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s

]
.

Then, by Fubini’s theorem,

fn,m(l, t) = E
[
S(X)i1,...,in,Sl S(X)j1,...,jm,S

t

]
=E

[
S(X)i1,...,in,Sl

(∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s +
1

2
ρjm−1jmσjm−1

σjm

∫ t

0

S(X)j1,...,jm−2,S
s ds

)]
=gn,m(l, t) +

1

2
ρjm−1jmσjm−1σjmE

[
S(X)i1,...,in,Sl

∫ t

0

S(X)j1,...,jm−2,S
s ds

]
=gn,m(l, t) +

1

2
ρjm−1jmσjm−1

σjm

∫ t

0

E
[
S(X)i1,...,in,Sl S(X)j1,...,jm−2,S

s

]
ds

=gn,m(l, t) +
1

2
ρjm−1jmσjm−1

σjm

∫ t

0

fn,m−2(l, s)ds.
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This proves Equations (A.1) and (A.5). In addition, by Itô isometry and Fubini’s theorem,

gn,m(l, t) = E
[
S(X)i1,...,in,Sl

∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s

]
=E

[(∫ l

0

S(X)i1,...,in−1,S
s dXin

s +
1

2
ρin−1inσin−1

σin

∫ l

0

S(X)i1,...,in−2,S
s ds

)

·
∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s

]

=E

[∫ l

0

S(X)i1,...,in−1,S
s dXin

s

∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s

]

+
1

2
ρin−1inσin−1

σinE

[∫ l

0

S(X)i1,...,in−2,S
s ds

∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s

]

=ρinjmσinσjm

∫ l∧t

0

E
[
S(X)i1,...,in−1,S

s S(X)j1,...,jm−1,S
s

]
ds

+
1

2
ρin−1inσin−1

σin

∫ l

0

E
[
S(X)i1,...,in−2,S

s

∫ t

0

S(X)j1,...,jm−1,S
u dXjm

u

]
ds

=ρinjmσinσjm

∫ l∧t

0

fn−1,m−1(s, s)ds+
1

2
ρin−1inσin−1

σin

∫ l

0

gn−2,m(s, t)ds.

This proves Equations (A.2) and (A.6).

Now we prove the initial conditions. First, by the definition of 0-th order signatures, f0,0(l, t) =
E[S(X)0l S(X)0t ] = 1, which proves Equation (A.3). Second,

g0,2m(l, t) = E
[∫ t

0

S(X)j1,...,j2m−1,S
s dXj2m

s

]
= 0

because the expectation of an Itô integral is zero, which proves Equation (A.4). Third,

f1,1(l, t) = E
[
S(X)i1,Sl S(X)j1,St

]
= E

[∫ l

0

1 ◦ dXi1
s

∫ t

0

1 ◦ dXj1
s

]
= E

[
Xi1

l Xj1
t

]
= ρi1j1σi1σj1(l ∧ t),

which proves Equation (A.7). Fourth, by Itô isometry,

g1,2m−1(l, t) = E
[
S(X)i1,Sl

∫ t

0

S(X)j1,...,j2m−2,S
s dXj2m−1

s

]
= E

[∫ l

0

1 ◦ dXi1
s

∫ t

0

S(X)j1,...,j2m−2,S
s dXj2m−1

s

]

= E

[∫ l

0

dXi1
s

∫ t

0

S(X)j1,...,j2m−2,S
s dXj2m−1

s

]

=

∫ l∧t

0

E
[
S(X)j1,...,j2m−2,S

s

]
ρi1j2m−1σi1σj2m−1ds

= ρi1j2m−1
σi1σj2m−1

∫ l∧t

0

f0,2m−2(s, s)ds.

In addition, by using Equation (A.1) recursively, we can obtain that

f0,2m−2(s, s) =
1

2m−1

sm−1

(m− 1)!

m−1∏
k=1

ρj2k−1j2k

2m−2∏
k=1

σjk .
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Therefore,

g1,2m−1(l, t) = ρi1j2m−1

1

2m−1

(l ∧ t)m−1

(m− 1)!
σi1

2m−1∏
k=1

σjk

m−1∏
k=1

ρj2k−1j2k ,

which proves Equation (A.8). This completes the proof.

Proof of Proposition A.3. When in = 0 and jm = 0, by Fubini’s theorem,

fn,m(l, t) = E

[∫ l

0

S(X̂)i1,...,in−1,I
s ds

∫ t

0

S(X̂)j1,...,jm−1,I
τ dτ

]

= E

[∫ l

0

∫ t

0

S(X̂)i1,...,in−1,I
s S(X̂)j1,...,jm−1,I

τ dτds

]
=

∫ l

0

∫ t

0

fn−1,m−1(s, τ)dτds.

When in = 0 and jm ̸= 0, by Fubini’s theorem,

fn,m(l, t) = E

[∫ l

0

S(X̂)i1,...,in−1,I
s ds · S(X̂)j1,...,jm,I

t

]

= E

[∫ l

0

S(X̂)i1,...,in−1,I
s S(X̂)j1,...,jm,I

t ds

]
=

∫ l

0

fn−1,m(s, t)ds.

When in ̸= 0 and jm = 0, we can similarly obtain

fn,m(l, t) =

∫ t

0

fn,m−1(l, s)ds.

When in ̸= 0 and jm ̸= 0, by Itô isometry,

fn,m(l, t) = E

[∫ l

0

S(X̂)i1,...,in−1,I
s dXin

s

∫ t

0

S(X̂)j1,...,jm−1,I
s dXjm

s

]

=

∫ l∧t

0

E
[
S(X̂)i1,...,in−1,I

s S(X̂)j1,...,jm−1,I
s

]
ρinjmσinσjmds

= ρinjmσinσjm

∫ l∧t

0

∫ t

0

fn−1,m−1(s, s)ds.

The initial conditions can be easily verified using Proposition 1. This completes the proof.

Proof of Proposition A.4. We omit the proof because one can easily use approaches similar to the
proofs of Propositions 3 and A.3 to obtain the result by letting

fn,m(l, t) := E
[
S(X̂)i1,...,in,Sl S(X̂)j1,...,jm,S

t

]
,

gn,m(l, t) := E
[
S(X̂)i1,...,in,Sl

∫ t

0

S(X̂)j1,...,jm−1,S
u dXjm

u

]
,

g̃m,n(t, l) := E

[
S(X̂)j1,...,jm,S

t

∫ l

0

S(X̂)i1,...,in−1,S
u dXin

u

]
.

Proof of Example A.5. The solution to stochastic differential equation (A.9) can be explicitly ex-
pressed as

Yt =

∫ t

0

e−κ(t−s)dWs, t ≥ 0,

where Wt is a standard Brownian motion. Therefore, by Itô isometry, Yt is a Gaussian random
variable with mean 0 and variance

Var(Yt) = E
[
Y 2
t

]
= E

[∫ t

0

e−κ(t−s)dWs

]2
=

∫ t

0

[
e−κ(t−s)

]2
ds =

1− e−2κt

2κ
.

Now we calculate the correlation coefficient for its Itô and Stratonovich signatures, respectively.
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Itô signatures. By the definition of signatures and Equation (A.9), we have

E
[
S(X)1,1,IT

]
= E

[∫ T

0

YtdYt

]
= −κE

[∫ T

0

Y 2
t dt

]
+ E

[∫ T

0

YtdWt

]
= −κ

∫ T

0

E
[
Y 2
t

]
dt

= −κ

∫ T

0

1− e−2κt

2κ
dt = −T

2
+

1− e−2κT

4κ
. (A.13)

For the second moment, by Itô isometry, we have

E
[
S(X)1,1,IT

]2
= E

[∫ T

0

YtdYt

]2
= E

[
−κ

∫ T

0

Y 2
t dt+

∫ T

0

YtdWt

]2

= κ2

∫ T

0

∫ T

0

E
[
Y 2
t Y

2
s

]
dtds− 2κE

[∫ T

0

Y 2
t dt

∫ T

0

YtdWt

]
+

∫ T

0

E
[
Y 2
t

]
dt

=: (a) − (b) + (c).

It is easy to calculate Term (c):

(c) =
∫ T

0

E
[
Y 2
t

]
dt =

∫ T

0

1− e−2κt

2κ
dt =

T

2κ
+

e−2κT − 1

4κ2
. (A.14)

To derive Term (a), we need to calculate E
[
Y 2
t Y

2
s

]
. Assume that s < t and denote Mt =∫ t

0
eκudWu, we have Yt = e−κtMt, and therefore

E
[
Y 2
t Y

2
s

]
= e−2κ(t+s)E

[
M2

t M
2
s

]
= e−2κ(t+s)E

[
(Mt −Ms +Ms)

2M2
s

]
= e−2κ(t+s)

[
E
[
(Mt −Ms)

2M2
s

]
+ 2E

[
(Mt −Ms)M

3
s

]
+ E

[
M4

s

]]
.

Because Mt −Ms =
∫ t

s
eκudWu is a Gaussian random variable with mean 0 and variance

Var(Mt −Ms) = E
[
(Mt −Ms)

2
]
= E

[∫ t

s

eκudWu

]2
=

∫ t

s

[eκu]
2
du =

e2κt − e2κs

2κ
,

and Mt has independent increments, we further have

E
[
Y 2
t Y

2
s

]
= e−2κ(t+s)

[
E
[
(Mt −Ms)

2
]
E
[
M2

s

]
+ 2E [Mt −Ms]E

[
M3

s

]
+ E

[
M4

s

]]
= e−2κ(t+s)

[
e2κt − e2κs

2κ
· e

2κs − 1

2κ
+ 0 + 3

(
e2κs − 1

2κ

)2
]

=
1 + 2e−2κt+2κs − e−2κs − 5e−2κt + 3e−2κt−2κs

4κ2

when s < t. One can similarly write the corresponding formula for the case of s > t and therefore
obtain that

(a) = κ2

∫ T

0

∫ T

0

E
[
Y 2
t Y

2
s

]
dtds

=
1

4

(
T 2 +

T

κ
+

10Te−2κT

2κ
+

3e−4κT

4κ2
− 9

4κ2
+

3e−2κT

2κ2

)
.

For Term (b), note that

2κE

[∫ T

0

Y 2
t dt

∫ T

0

YtdWt

]
= 2κ

∫ T

0

E

[
Y 2
s

∫ T

0

YtdWt

]
ds,

we therefore need to calculate f(s) := E
[
Y 2
s

∫ T

0
YtdWt

]
for s < T . To do this, by Itô’s Lemma,

we have
dY 2

s = 2YsdYs + d[Y, Y ]s = −2κY 2
s ds+ 2YsdWs + ds,

35



which implies that

Y 2
s = −2κ

∫ s

0

Y 2
u du+ 2

∫ s

0

YudWu +

∫ s

0

du.

Therefore, for s < T , with the help of Itô isometry and Equation (A.14), we have

f(s) = E

[
Y 2
s

∫ T

0

YtdWt

]

= E

[(
−2κ

∫ s

0

Y 2
u du+ 2

∫ s

0

YudWu +

∫ s

0

du

)∫ T

0

YtdWt

]

= −2κ

∫ s

0

E

(
Y 2
u

∫ T

0

YtdWt

)
du+ 2

∫ s

0

E
[
Y 2
t

]
dt+ 0

= −2κ

∫ s

0

f(u)du+
s

κ
+

e−2κs − 1

2κ2
,

and taking derivatives of both sides leads to

df

ds
= −2κf(s) +

1

κ
− e−2κs

κ
.

By solving this ordinary differential equation with respect to f with initial condition f(0) = 0, we
obtain that

f(s) =
1

2κ2
− se−2κs

κ
− e−2κs

2κ2
.

Therefore,

(b) = 2κ

∫ T

0

f(s)ds =
T

κ
+

Te−2κT

κ
+

e−2κT − 1

κ2
.

Finally, we obtain that

E
[
S(X)1,1,IT

]2
= (a) − (b) + (c) =

Te−2κT

4κ
+

3e−4κT

16κ2
− 3e−2κT

8κ2
− T

4κ
+

3

16κ2
+

T 2

4
. (A.15)

Therefore, for Itô signature, we have

E
[
S(X)0,IT S(X)1,1,IT

]
√
E
[
S(X)0,IT

]2
E
[
S(X)1,1,IT

]2 =
E
[
S(X)1,1,IT

]
√
E
[
S(X)1,1,IT

]2
=

−2κT − e−2κT + 1√
4κTe−2κT + 3e−4κT − 6e−2κT − 4κT + 3 + 4κ2T 2

,

where we use the fact that the 0-th order signature is defined as 1.

Stratonovich signatures. The Stratonovich integral and the Itô integral are related by∫ t

0

As ◦ dBs =

∫ t

0

AsdBs +
1

2
[A,B]t.

Therefore, for Stratonovich signatures, we have

S(X)1,ST =

∫ T

0

1 ◦ dYt =

∫ T

0

1dYt +
1

2
[1, Y ]T =

∫ T

0

1dYt = S(X)1,IT = YT ,

and

S(X)1,1,ST =

∫ T

0

S(X)1,ST ◦ dYt =

∫ T

0

Yt ◦ dYt =

∫ T

0

YtdYt +
1

2
[Y, Y ]T = S(X)1,1,IT +

T

2
,

where we use the fact that [1, Y ]T = 0 and [Y, Y ]T = T . Now we can use our results for the Itô
signatures, Equations (A.13) and (A.15), to obtain that

E
[
S(X)1,1,ST

]
= E

[
S(X)1,1,IT

]
+

T

2
=

1− e−2κT

4κ
,
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and

E
[
S(X)1,1,ST

]2
= E

[
S(X)1,1,IT +

T

2

]2
= E

[
S(X)1,1,IT

]2
+ TE

[
S(X)1,1,IT

]
+

T 2

4
=

3(1− e−2κT )2

16κ2
.

Therefore, for the Stratonovich signature, we have

E
[
S(X)0,ST S(X)1,1,ST

]
√
E
[
S(X)0,ST

]2
E
[
S(X)1,1,ST

]2 =

√
3

3
.

This completes the proof.

Proof of Proposition A.2. Let a = #A∗
1 and b = #A∗c

1 . Under the equal inter-dimensional correla-
tion assumption, we have ΣA∗,A∗ = (1 − ρ)Ia + ρ1a1

⊤
a , where Ia is an a × a identity matrix and

1a is an a-dimensional all-one vector. In addition, ΣA∗c,A∗ = ρ1b1
⊤
a , where 1b is a b-dimensional

all-one vector. Using the Sherman–Morrison formula, we have

Σ−1
A∗,A∗ =

1

1− ρ
Ia −

ρ

(1− ρ)(1 + (a− 1)ρ)
1a1

⊤
a .

Therefore, because all true beta coefficients are positive, we have

ΣA∗c,A∗Σ−1
A∗,A∗sign(βA∗) =

aρ

1 + (a− 1)ρ
1a.

Hence, the irrepresentable condition∣∣∣ΣA∗c,A∗Σ−1
A∗,A∗sign(βA∗)

∣∣∣ = a|ρ|
1 + (a− 1)ρ

1a < 1a

holds if and only if a|ρ|
1+(a−1)ρ < 1. One can easily verify that this holds if ρ ∈ (− 1

2#A∗
1
, 1), and does

not hold if ρ ∈ (− 1
#A∗

1
,− 1

2#A∗
1
]. This completes the proof.
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