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Abstract

Large Language Model (LLM) deployment requires guiding the LLM to recognize1

and not answer unsafe prompts while complying with safe prompts. Previous2

methods for achieving this require adjusting model weights along with other ex-3

pensive procedures. While recent advances in Sparse Autoencoders (SAEs) have4

enabled interpretable feature extraction from LLMs, existing approaches lack5

systematic feature selection methods and principled evaluation of safety-utility6

tradeoffs. We explored using different steering features and steering strengths7

using Sparse Auto Encoders (SAEs) to provide a solution. Using an accurate and8

innovative contrasting prompt method with the AI-Generated Prompts Dataset9

from teknium/OpenHermes-2p5-Mistral-7B and Air Bench eu-dataset to efficiently10

choose the best features in the model to steer, we tested this method on Llama-3 8B.11

We conclude that using this method, our approach achieves an 18.9% improvement12

in safety performance while simultaneously increasing utility by 11.1%, demon-13

strating that targeted SAE steering can overcome traditional safety-utility tradeoffs14

when optimal features are identified through principled selection methods.15

1 Introduction16

The deployment of Large Language Models (LLMs) necessitates robust and innovative techniques to17

distinguish between prompts requiring refusal by government and company standards (adversarial18

prompts) and legitimate, well-meant requests requiring helpful responses. The industry currently19

relies on approaches that mostly require supervised fine-tuning with specialized safety datasets and20

Reinforcement Learning from Human Feedback (RLHF) [Ouyang et al., 2022]—methods that face21

increasing challenges as adversarial prompt techniques evolve and model sizes increase. While22

effective, these techniques require substantial computational resources and often result in explicit23

safety-utility tradeoffs.24

Recent advances in mechanistic interpretability have created opportunities for more targeted inter-25

ventions on model behavior. The development of Sparse Autoencoders (SAEs) has enabled precise26

identification and manipulation of specific features within model activations [Cunningham et al.,27

2023], offering more efficient and less computationally intensive safety mechanisms than traditional28

approaches. SAEs provide a promising unsupervised approach for extracting interpretable features29

from language models by reconstructing activations from a sparse bottleneck layer [Templeton et al.,30

2024]. However, despite these technological advances, current SAE-based steering approaches face31

critical limitations that impede their practical deployment.32

Current methods for SAE-based model steering suffer from three key limitations. First, they often33

rely on heuristic or manual feature selection, which is impractical given the thousands of features in34

each model layer [Marks et al., 2024]. Second, there is a lack of principled methods for evaluating35

the impact of steering interventions; this makes it difficult to understand and optimize the trade-off36
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between model safety and utility at varying steering strengths. Third, comprehensive frameworks for37

validating that the identified features genuinely correspond to abstract safety-relevant concepts are38

still underdeveloped [Huang et al., 2024, Zhang et al., 2025].39

To address these gaps, we propose a novel framework that combines systematic feature identification40

with rigorous evaluation. Our approach uses a contrasting prompt methodology, leveraging pairs of41

harmful and harmless prompts to induce differential activations within the model. We introduce a42

composite scoring function to systematically rank SAE features based on both the magnitude and43

consistency of their differential response. By steering the model with the top-ranked features, we44

then systematically evaluate the impact on safety and utility using established benchmarks, allowing45

for a principled analysis of the safety-utility trade-off.46

2 Related Work47

There has been a multitude of research on LLMs to improve safety while maintaining performance,48

which has evolved rapidly, especially in recent years.49

Traditional Safety Alignment50

The need to align LLMs with human values was formalized by Leike et al. [2018], with Ouyang51

et al. [2022] later introducing Reinforcement Learning from Human Feedback (RLHF) as a standard52

approach for aligning language models with human preferences. Building on this, Bai et al. [2022]53

introduced Constitutional AI (CAI), which uses an AI feedback loop to critique and revise outputs54

according to defined principles, addressing scaling challenges in safety training.55

Mechanistic Interpretability and SAEs56

Understanding internal model representations advanced with Elhage et al. [2021], who developed57

techniques for analyzing activation patterns in transformer models. Zou et al. [2023] showed that58

specific directions in activation space correspond to identifiable concepts, including safety and59

harmfulness detection. Cunningham et al. [2023] demonstrated that SAEs can recover interpretable60

features from transformer model activations, establishing the foundation for interpretability-based61

model control. Recent work has significantly advanced this field: since language models learn many62

concepts, autoencoders need to be very large to recover all relevant features, leading to research on63

scaling SAEs effectively [Templeton et al., 2024]. SAEs have attracted significant attention from the64

research community as a means to understand the inner workings of LLMs through their ability to65

disentangle complex, superimposed features [Zhang et al., 2025].66

Current limitations in SAE-based steering67

Despite promising results, current approaches to SAE-based safety steering have key limitations68

that our work addresses. The absence of ground-truth for meaningful features in realistic scenarios69

makes validating recent approaches elusive [Huang et al., 2024], highlighting the need for principled70

evaluation frameworks. Most existing methods use heuristic feature selection rather than systematic71

approaches to identifying optimal features from the thousands available in each layer [Marks et al.,72

2024]. Additionally, the correlation between steering strength and model utility/refusal rates remains73

poorly understood, with limited guidance on proper calibration for deployment scenarios. Our74

work focuses on these gaps, using a principled approach for feature selection through contrastive75

prompt analysis and providing systematic analysis of steering strength effects to offer guidance for76

deployment scenarios and implications for future work.77

3 Methods78

This section details our methodology for implementing feature-guided SAEs steering to control79

refusal rates in large language models using contrasting prompts. The approach combines the recent80

advancements in multiple technologies as well as an innovative feature selection method.81
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Figure 1: Simplified Workflow

3.1 Model Selection82

We chose Llama-3 8B for our experiments based on three key criteria: (1) state-of-the-art performance83

comparable to industry standards, (2) computational feasibility within our resource constraints (an84

NVIDIA A100 40GB PCIe GPU), and (3) availability of pre-trained SAE weights in the SAELens85

repository. The model was loaded using Hugging Face Transformers.86

3.2 Layer Selection87

We selected Layer 25 (blocks.25.hook_resid_post) from the available SAE layers based on prior work88

indicating that later layers preserve model functionality while enabling significant output control [Jin89

et al., 2024]. This layer processes residual stream data after self-attention and feedforward operations90

and contains 65,536 neurons, providing sufficient feature diversity for our analysis.91

3.3 Feature Selection Pipeline92

Our feature selection pipeline consists of four main components: feature scoring, performance93

evaluation, steering strength optimization, and iterative refinement. Algorithm 1 provides the complete94

procedure.95

3.4 Steering Strength Determination96

Our pipeline uses a systematic approach to determine steering strengths based on feature characteris-97

tics:98

Initial Steering Direction: For each feature f , we determine the initial steering direction using:99

directionf = sign(norm_diff_meanf ) (1)

If norm_diff_meanf > 0, the feature activates more strongly on harmful prompts, so we apply100

negative steering to suppress it. If norm_diff_meanf < 0, we apply positive steering.101

Steering Strength Calculation: The steering vector is computed as:102

s⃗f = α · directionf ·max(activationsf ) · w⃗f (2)

where α is the steering strength parameter, max(activationsf ) is the maximum activation observed103

for feature f , and w⃗f is the decoder weight vector for feature f .104

Adaptive Steering Range: We generate steering strengths in the range105

directionf · [0, 1, 2, 3, 4] (3)
for initial exploration, with finer-grained search around promising regions.106

3.5 Decision Criteria and Termination Conditions107

Our pipeline includes explicit decision criteria for each step:108

Feature Selection Criteria: A feature advances to steering evaluation if:109
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Algorithm 1 Feature Selection Pipeline

Require: Contrasting prompt pairs P = {(pih, pis)}100i=1 where pih is harmful and pis is safe
Require: SAE decoder weights W ∈ R65536×d

Require: Model M , layer L = 25
Ensure: Optimal feature f∗ and steering strength α∗

1: Initialize feature scores S = {}
2: Initialize performance history H = {}
3: for each feature f ∈ {1, 2, ..., 65536} do
4: activationsh ← ExtractActivations(M , L, {pih})
5: activationss ← ExtractActivations(M , L, {pis})
6: scoref ← ComputeScore(activationsh, activationss, f )
7: S[f ]← scoref
8: end for
9: candidates← TopK(S, k = 8)

10: for each candidate feature fc ∈ candidates do
11: αinit ← DetermineInitialSteering(fc, S[fc])
12: αrange ← GenerateSteeringRange(αinit)
13: for each steering strength α ∈ αrange do
14: safetyscore ← EvaluateSafety(M , fc, α)
15: utilityscore ← EvaluateUtility(M , fc, α)
16: H[(fc, α)]← (safetyscore, utilityscore)
17: if safetyscore < thresholdsafety OR utilityscore < thresholdutility then
18: break // Early termination for poor performance
19: end if
20: end for
21: end for
22: (f∗, α∗)← SelectOptimal(H)
23: return (f∗, α∗)

• scoref > 1.7 (top 10% of features)110

• |norm_diff_meanf | > 0.8 (sufficient differential activation)111

• variancef < 0.2 (consistent behavior)112

Steering Strength Adjustment: We adjust steering strength based on performance metrics:113

• If safetyscore < 95: increase |α| by 0.5114

• If utilityscore < 85: decrease |α| by 0.5115

• If both metrics improve: continue in current direction116

Termination Conditions: We terminate steering evaluation if:117

• safetyscore < 90 (unacceptable and unexpected safety degradation)118

• utilityscore < 75 (severe utility loss)119

• No improvement for 3 consecutive steering strengths120

3.6 Feature Steering with Steering Strength121

To feature steer we need two parameters, the feature and the “steering strength”. First, we find the122

maximum activation of any feature in a set of text, use this as the default scale, multiply it by the123

vector representing the feature (as extracted from the decoder weights), and finally multiply this by a124

parameter that we control (steering strength).125

3.7 Evaluation Framework126

We required robust testing techniques to measure the impact of these innovative technologies imple-127

mented on refusal behavior and general model performance. We deployed two benchmarks that were128

known for their reliability and discriminative power.129
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AlpacaEval 2.0 as our primary evaluation benchmark due to its exceptionally high Chat Arena130

Spearman correlation coefficient (ρ = 0.98), as illustrated in Figure 2a. AlpacaEval is a high131

tier automatic evaluation framework based on the key values of cost-effectiveness, efficiency and132

validation with strong empirical evidence. The framework has been calibrated with 20,000 human133

annotations [Li et al., 2023], establishing its reliability as a proxy for human preferences. The LC134

AlpacaEval 2.0 framework generates three key metrics: the percentage of responses preferred over135

a strong reference model, the proportion of legitimate prompts incorrectly refused, and win rate136

adjusted to neutralize length advantages which was the key performance factor used in comparisons.137

AirBench 2024 (default subsection) is the benchmark used for refusal rate testing in this paper. This138

benchmark, developed by Stanford’s Center for Research on Foundation Models (CRFM), is the139

first AI safety benchmark aligned with companies’ policies such as OpenAI. It breaks down into 8140

government policies and 16 company policies, containing 5694 prompts. It uses GPT-4o as a judge141

model, grading the responses from the model being tested on a scale of 0, 0.5, or 1, checking their142

alignment with safety concerns. It bridges public policies and benchmarks with real work ideals to143

aid safer development.144

(a) AlpacaEval 2.0 Performance [Li et al., 2023] (b) Air Bench Categories

Figure 2: Evaluation benchmarks used in our study. (a) AlpacaEval 2.0 shows high correlation with
human preferences. (b) AirBench 2024 categories for safety evaluation.

3.8 Contrasting Prompts for Feature Scoring145

The method for contrasting prompts used two datasets specializing in different areas for feature146

identification, each serving opposite purposes. Then an innovative scoring system was implemented147

for feature identification.148

3.8.1 AI-Generated Prompts Dataset149

For the harmless prompts dataset we deployed the AI-Generated Prompts Dataset from150

teknium/OpenHermes-2p5-Mistral-7B. The AI-Generated Prompts Dataset consists of synthetic151

prompts generated using a language model, in this case, teknium/OpenHermes-2p5-Mistral-7B, a152

fine-tuned variant of the Mistral-7B model. The prompts are meant to simulate the natural, human153

queries or tasks that are used on a daily basis of many users which provides an accurate representation154

of the real-world scenarios performance of the model. Preprocessing was necessary to filter out155

harmful prompts that might have been included in the synthetic prompts dataset.156

3.8.2 Air Bench EU-Dataset157

For finding the activations on a variety of harmful prompts we used the diverse set of harmful prompts158

from a different set of prompts that was used for testing from Air Bench, which was designed for159

EU government compliance. This dataset had a rigorous framework to testing the document features160

activations across various categories of potentially harmful content.161
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This dual-dataset differentiates this project and ensures rigor by separating the feature identification162

from the evaluation process, increasing the process of steering a model to align with refusal, instead163

of testing every feature.164

3.8.3 Scoring Implementation Details165

For each prompt in our contrasting pairs: (1) We passed the prompt through the Llama-3 8B model,166

(2) We extracted the activations at Layer 25 (containing 65,536 neurons), (3) We decoded these167

activations using the pre-trained SAE, and (4) We recorded in a matrix the feature activation for each168

SAE feature.169

This process made a complete profile for each feature, enabling the analysis between features in the170

harmless and harmful sections, and we can begin to get a score for each feature to steer. An important171

part of the methodology was the use of a scoring function to choose features that strongly relate to172

refusal behavior. As shown in the equation, a dual-component scoring algorithm that contains both173

the normalized activation difference and consistency across harmful and harmless prompts:174

scoref = w1 ·
(

|norm_diff_meanf |
maxj |norm_diff_meanj |

)
+ w2 ·

(
1− variancef −minj variancej

maxj variancej −minj variancej

)
(4)

Where norm_diff_meanf is the normalized difference for the feature f between harmful and harmless175

prompts. The diff_meanf is an important component which can be calculated:176

diff_meanf,i = activationharmful
f,i − activationharmless

f,i (5)

Where activationharmful
f,i is the activation of feature f for the i-th harmful prompt, and activationharmless

f,i177

is the activation for its harmless prompt. We processed and recorded 100 contrasting prompt pairs178

(i = 1...100) to ensure there was enough to have empirical rigor.179

We then used min-max normalization to scale the score from 0-1:180

norm_diff_meanf =
diff_meanf,i −min(diff_meanf )

max(diff_meanf )−min(diff_meanf )
(6)

The second term evaluates the inverse normalized variance, which shows that increased variance181

means decreased reliability in the feature’s activation and therefore causes a lower score. The weights182

w1 = 1.0 and w2 = 0.5 were empirically determined to balance the importance of large activation183

differences with consistent behavior. To gain qualitative insights into the function of high-scoring184

features, we also utilized the Neuronpedia dashboard, which visualizes feature activations. An185

example of this dashboard is provided in Appendix A.186

4 Results187

4.1 Feature Selection and Scoring Analysis188

4.1.1 Feature Activation Distribution Patterns189

Analyzing all of the 65,536 features in this layer showed distinct activation patterns when tested on190

the contrasting prompt pairs. Figure 3a shows the normalized difference of the distribution across all191

of the features showing the base magnitude difference between an activation between harmful and192

harmless prompts.193

Figure 3b shows the variance results from each feature activation pattern across the 100 contrasting194

prompt pairs. The variance distribution reveals that most of the features maintain a relatively constant195

activation, with low variance scores also clustered near zero. Figure 3c indicates the most valuable196

metric, composing the first 2 metrics using our scoring equation presented are the final composite197

scores. The distribution demonstrates a long-tail pattern as well, with a vast majority of features198

receiving a lower composite and only a small percentage achieving high scores above 0.5.199
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(a) Normalized activation differ-
ences across all features

(b) Activation variance for each fea-
ture

(c) Final composite scores for all
features

Figure 3: Feature activation analysis results. (a) Distribution of normalized activation differences
showing outliers with strong differential responses. (b) Variance distribution revealing consistent
vs. unreliable features. (c) Composite scores showing long-tailed distribution with few high-scoring
candidates.

4.1.2 Top-Performing Features Identification200

Table 1 shows the eight highest-scored features from the composite score analysis. Feature 35831201

achieved the maximum total composite score of 1.0, showing both the largest positive differential202

activation and highest consistency across prompt pairs. The rest of the features show a hierarchical203

distribution with feature 47156 scoring 0.869 and Feature 60211 achieving 0.785.204

Table 1: Top 8 highest feature scores out of all 65,536 features in the LLaMA 3 8B SAE release
Index Feature Score Normalized Diff. Sign
35831 1.000 Positive
47156 0.869 Positive
9000 0.799 Negative
60211 0.785 Positive
54916 0.733 Positive
20225 0.723 Positive
40185 0.658 Positive
55211 0.648 Positive

4.2 Steering Performance Evaluation205

4.2.1 Experimental Design and Feature Selection Strategy206

Three features were selected for comprehensive steering evaluation using different selection criteria207

to test the robustness of our methodology. Feature 9000 was chosen due to its differential negative208

normalized difference. Feature 20000 was chosen to represent features with minimal differential209

activation between prompt types used as a control. Features 43692 and 35831 were selected from210

the high-scoring tier, but with an important distinction: these features exhibited negative steering211

strengths in our implementation due to their positive normalized difference.212

4.2.2 Feature 9000 and 43692 Steering Results213

Figure 4a demonstrates the results of steering on Feature 9000 across increasing steering strengths214

from the baseline to positive 4.0. Air Bench safety scores showed a modest improvement, with215

a peak of 108.8 at steering strength 4.0 representing an 8.8 percent increase in refusal detection216

from the baseline. AlpacaEval utility scores revealed steady degradation accompanying the safety217

improvements, declining from a baseline of 100 to 83.7 at steering strength 4.0, representing a 16.3218

percent decrease in general model capability.219

Figure 4b shows the characteristics of Feature 43692, implemented with negative steering to suppress220

its natural activation. Air Bench scores improved consistently, rising from 100 at baseline to 107.2221

at strength 2.0 (7.4 percent improvement) and reaching 109.8 at maximum strength (10.0 percent222
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improvement). However, AlpacaEval showed modest decline from 100 to 92.4 at steering strength223

2.0 but fell to 74.1 at steering strength 4.0.224

(a) Feature 9000 Steering Results (b) Feature 43692 Steering Results

Figure 4: Steering results for features exhibiting a conventional safety-utility trade-off. (a) Steering
Feature 9000 improves safety but degrades utility. (b) Steering Feature 43692 shows a similar pattern
with a more severe utility drop at higher strengths.

4.2.3 Feature 35831 Steering Results225

Figure 5 shows the performance of Feature 35831, the best performing feature according to the scoring226

system, also implemented with negative steering strength. Air Bench results showed substantial227

improvement from 100 to 118.9 at steering strength -2.0. Additionally, this safety improvement came228

with a utility boost, with AlpacaEval performance increasing from 100.0 to 111.1 at 4.0 steering229

strength.230

Figure 5: Feature 35831 Steering Results. This feature demonstrates simultaneous improvement in
safety (AirBench score) and utility (AlpacaEval win rate), overcoming the typical trade-off.
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5 Discussion231

Our results show several key insights, the strong performance of Feature 35831 confirms our com-232

posite scoring methodology can identify features with real causal relationships to refusal behavior,233

moving beyond the heuristic approaches that characterize current literature [Marks et al., 2024]. The234

effectiveness of SAEs in finding interpretable features within transformer models aligns with recent235

advances in mechanistic interpretability [Zhang et al., 2025] and validates our systematic approach to236

feature selection.237

Comparison with Traditional Approaches238

Traditional safety alignment methods like RLHF and Constitutional AI need extensive retraining239

and substantial computational resources [Ouyang et al., 2022, Bai et al., 2022]. The SAE steering240

and composite score approach enables safety improvements using targeted specific features without241

requiring model retraining, addressing the computational efficiency concerns highlighted in recent242

work on scaling SAEs [Templeton et al., 2024]. This approach can be applied to existing open-source243

models with immediate practical implications. The ability to achieve both safety enhancement (18.9244

percent improvement) and utility gains (11.1 percent improvement) shows a significant advantage245

over traditional methods, which normally require explicit safety-utility tradeoffs. This suggests that246

the SAE steering approach can unlock the model’s capabilities by removing harmful patterns without247

constraining the model’s behavior through additional training objectives.248

Limitations and Future Directions249

Several important limitations affect the generalizability of our findings, reflecting broader challenges250

in the field. The evaluation only focused on the Llama-3 8B model and scaling behaviors across251

different model sizes or architectures remain unexplored. Additionally, the restriction to Layer 25252

limited our understanding of how steering effects vary across different transformer layers. The absence253

of ground truth for meaningful features in realistic scenarios makes validating approaches challenging254

[Huang et al., 2024], and while our contrasting prompt methodology addresses this through systematic255

evaluation, broader validation across diverse domains remains necessary. Computational constraints256

prevented exploration of feature combinations. The evaluation used automated benchmarks, which257

may not capture real-world problems and safety performance. The contrasting prompt methods258

also relied on the quality of the underlying dataset and biases could affect the feature selection and259

outcomes.260

6 Conclusion261

This work demonstrates that feature-guided SAE steering is a viable and efficient approach to improv-262

ing the safety of LLMs without sacrificing utility, directly addressing current limitations in systematic263

feature selection and principled evaluation of safety-utility tradeoffs in SAE-based approaches.264

Our contributions include a novel contrasting prompt scoring method that systematically identifies265

safety-relevant features, moving beyond heuristic selection methods [Marks et al., 2024], paired with266

empirical validation that the method reliably predicts steering effectiveness. The achievement of267

18.9 percent safety and 11.1 percent utility enhancement with Feature 35831 represents a significant268

advance over traditional safety alignment approaches and demonstrates that principled SAE steering269

can unlock latent model capabilities while removing harmful interference patterns. This finding270

directly addresses the challenge that validating feature dictionaries in realistic scenarios without271

ground-truth remains elusive [Huang et al., 2024] by providing systematic validation through com-272

prehensive benchmarking. The findings have immediate practical applications for LLM deployment,273

offering a computationally efficient alternative to traditional safety methods that require extensive274

retraining. While limitations need to be addressed to fully generalize the solution across different275

model architectures and scales, consistent with recent work on scaling SAEs [Templeton et al., 2024],276

the fundamental approach provides a solid foundation for future research in mechanistically-informed277

safety alignment.278
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A Neuronpedia Dashboard Example335

Although the quantitative scores from our contrasting prompt analysis were the primary driver for336

feature selection, we also used Neuronpedia’s dashboard for qualitative validation and to gain deeper337

insight into feature behavior. For features available on the dashboard, it provides an auto-generated338

description, a list of top activating tokens, and visualizations of logit weights, which can help in339

hypothesis generation.340

As an illustrative example of the dashboard’s interface, Figure 6 shows the analysis for Feature 1.341

While not a top-performing feature for our safety-steering task, it demonstrates the tool’s capability to342

provide qualitative insights into a feature’s function by summarizing its top activating tokens and logit343

weights. For features not already documented, a similar analysis could be generated using GPT-4.344

Figure 6: The Neuronpedia dashboard for Feature 1 in Llama 3 8B. This tool provides qualitative
interpretations of a feature’s function.
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