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Abstract

Large Language Model (LLM) deployment requires guiding the LLM to recognize
and not answer unsafe prompts while complying with safe prompts. Previous
methods for achieving this require adjusting model weights along with other ex-
pensive procedures. While recent advances in Sparse Autoencoders (SAEs) have
enabled interpretable feature extraction from LLMs, existing approaches lack
systematic feature selection methods and principled evaluation of safety-utility
tradeoffs. We explored using different steering features and steering strengths
using Sparse Auto Encoders (SAEs) to provide a solution. Using an accurate and
innovative contrasting prompt method with the AI-Generated Prompts Dataset
from teknium/OpenHermes-2p5-Mistral-7B and Air Bench eu-dataset to efficiently
choose the best features in the model to steer, we tested this method on Llama-3 8B.
We conclude that using this method, our approach achieves an 18.9% improvement
in safety performance while simultaneously increasing utility by 11.1%, demon-
strating that targeted SAE steering can overcome traditional safety-utility tradeoffs
when optimal features are identified through principled selection methods.

1 Introduction

The deployment of Large Language Models (LLMs) necessitates robust and innovative techniques to
distinguish between prompts requiring refusal by government and company standards (adversarial
prompts) and legitimate, well-meant requests requiring helpful responses. The industry currently
relies on approaches that mostly require supervised fine-tuning with specialized safety datasets and
Reinforcement Learning from Human Feedback (RLHF) [Ouyang et al., 2022 —methods that face
increasing challenges as adversarial prompt techniques evolve and model sizes increase. While
effective, these techniques require substantial computational resources and often result in explicit
safety-utility tradeoffs.

Recent advances in mechanistic interpretability have created opportunities for more targeted inter-
ventions on model behavior. The development of Sparse Autoencoders (SAEs) has enabled precise
identification and manipulation of specific features within model activations [[Cunningham et al.|
2023]], offering more efficient and less computationally intensive safety mechanisms than traditional
approaches. SAEs provide a promising unsupervised approach for extracting interpretable features
from language models by reconstructing activations from a sparse bottleneck layer [Templeton et al.,
2024]. However, despite these technological advances, current SAE-based steering approaches face
critical limitations that impede their practical deployment.

Current methods for SAE-based model steering suffer from three key limitations. First, they often
rely on heuristic or manual feature selection, which is impractical given the thousands of features in
each model layer [Marks et al.| 2024]. Second, there is a lack of principled methods for evaluating
the impact of steering interventions; this makes it difficult to understand and optimize the trade-off
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between model safety and utility at varying steering strengths. Third, comprehensive frameworks for
validating that the identified features genuinely correspond to abstract safety-relevant concepts are
still underdeveloped [Huang et al., 2024} [Zhang et al., 2025].

To address these gaps, we propose a novel framework that combines systematic feature identification
with rigorous evaluation. Our approach uses a contrasting prompt methodology, leveraging pairs of
harmful and harmless prompts to induce differential activations within the model. We introduce a
composite scoring function to systematically rank SAE features based on both the magnitude and
consistency of their differential response. By steering the model with the top-ranked features, we
then systematically evaluate the impact on safety and utility using established benchmarks, allowing
for a principled analysis of the safety-utility trade-off.

2 Related Work

There has been a multitude of research on LLMs to improve safety while maintaining performance,
which has evolved rapidly, especially in recent years.

Traditional Safety Alignment

The need to align LLMs with human values was formalized by [Leike et al.| [2018]], with [Ouyang
et al.|[2022] later introducing Reinforcement Learning from Human Feedback (RLHF) as a standard
approach for aligning language models with human preferences. Building on this, Bai et al.| [2022]]
introduced Constitutional Al (CAI), which uses an Al feedback loop to critique and revise outputs
according to defined principles, addressing scaling challenges in safety training.

Mechanistic Interpretability and SAEs

Understanding internal model representations advanced with |[Elhage et al.[[2021]], who developed
techniques for analyzing activation patterns in transformer models. [Zou et al.| [2023]] showed that
specific directions in activation space correspond to identifiable concepts, including safety and
harmfulness detection. (Cunningham et al.| [2023] demonstrated that SAEs can recover interpretable
features from transformer model activations, establishing the foundation for interpretability-based
model control. Recent work has significantly advanced this field: since language models learn many
concepts, autoencoders need to be very large to recover all relevant features, leading to research on
scaling SAEs effectively [Templeton et al.,2024]]. SAEs have attracted significant attention from the
research community as a means to understand the inner workings of LLMs through their ability to
disentangle complex, superimposed features [Zhang et al., 2025].

Current limitations in SAE-based steering

Despite promising results, current approaches to SAE-based safety steering have key limitations
that our work addresses. The absence of ground-truth for meaningful features in realistic scenarios
makes validating recent approaches elusive [Huang et al.,[2024], highlighting the need for principled
evaluation frameworks. Most existing methods use heuristic feature selection rather than systematic
approaches to identifying optimal features from the thousands available in each layer [Marks et al.,
2024]]. Additionally, the correlation between steering strength and model utility/refusal rates remains
poorly understood, with limited guidance on proper calibration for deployment scenarios. Our
work focuses on these gaps, using a principled approach for feature selection through contrastive
prompt analysis and providing systematic analysis of steering strength effects to offer guidance for
deployment scenarios and implications for future work.

3 Methods

This section details our methodology for implementing feature-guided SAEs steering to control
refusal rates in large language models using contrasting prompts. The approach combines the recent
advancements in multiple technologies as well as an innovative feature selection method.



82

83
84
85
86

87

88
89
90
91

92

93
94
95

96

97
98

99

100
101

102

103
104

105

106

107

108

109

Choose and
load an model Choose an Test on Alpaca Analyze Resullts,
using the available Eval and compare to
Transformers feature and AirBench previous features

library steer

Change steering
strength

Figure 1: Simplified Workflow

3.1 Model Selection

We chose Llama-3 8B for our experiments based on three key criteria: (1) state-of-the-art performance
comparable to industry standards, (2) computational feasibility within our resource constraints (an
NVIDIA A100 40GB PClIe GPU), and (3) availability of pre-trained SAE weights in the SAELens
repository. The model was loaded using Hugging Face Transformers.

3.2 Layer Selection

We selected Layer 25 (blocks.25.hook_resid_post) from the available SAE layers based on prior work
indicating that later layers preserve model functionality while enabling significant output control [Jin
et al., 2024]]. This layer processes residual stream data after self-attention and feedforward operations
and contains 65,536 neurons, providing sufficient feature diversity for our analysis.

3.3 Feature Selection Pipeline

Our feature selection pipeline consists of four main components: feature scoring, performance
evaluation, steering strength optimization, and iterative refinement. Algorithm(I]provides the complete
procedure.

3.4 Steering Strength Determination

Our pipeline uses a systematic approach to determine steering strengths based on feature characteris-
tics:

Initial Steering Direction: For each feature f, we determine the initial steering direction using:
directiony = sign(norm_diff_mean ) e

If norm_diff_meany > 0, the feature activates more strongly on harmful prompts, so we apply
negative steering to suppress it. If norm_diff_mean; < 0, we apply positive steering.
Steering Strength Calculation: The steering vector is computed as:

55 = - directiony - max(activationsy) - Wy )
where « is the steering strength parameter, max(activations ) is the maximum activation observed
for feature f, and 10 is the decoder weight vector for feature f.

Adaptive Steering Range: We generate steering strengths in the range
directiony - [0,1,2,3,4] 3)
for initial exploration, with finer-grained search around promising regions.

3.5 Decision Criteria and Termination Conditions

Our pipeline includes explicit decision criteria for each step:

Feature Selection Criteria: A feature advances to steering evaluation if:



Algorithm 1 Feature Selection Pipeline

Require: Contrasting prompt pairs P = {(p},, p’)}}% where p}, is harmful and p?, is safe

Require: SAE decoder weights 1/ € R65536xd
Require: Model M, layer L = 25
Ensure: Optimal feature f* and steering strength o*

1: Initialize feature scores S = {}

2: Initialize performance history H = {}

3: for each feature f € {1,2,...,65536} do

4:  activations) <+ ExtractActivations(M, L, {p}, })

5. activationss + ExtractActivations(M, L, {p%})

6: scorey < ComputeScore(activationsy, activations,, 1))
7. S[f] ¢ scores

8: end for

9: candidates < TopK(S, k = 8)

10: for each candidate feature f. € candidates do
11:  unit « DeterminelnitialSteering(f., S|[f])
12: aygnge < GenerateSteeringRange(a;p,it)
13:  for each steering strength @ € aqnge do

14: sa fetyscore < EvaluateSafety(M, f., o)

15: utilityscore < EvaluateUtility(M, f., o)

16: H[(fe, )]  (safetyscore, utilityscore)

17: if safetyscore < thresholdgg ety OR utilityscore < thresholdygiiiry then
18: break // Early termination for poor performance

19: end if

20:  end for

21: end for

22: (f*,a*) < SelectOptimal(H)
23: return (f*,a*)

110 * scorey > 1.7 (top 10% of features)
111 * |norm_diff_mean | > 0.8 (sufficient differential activation)
112 * variancey < 0.2 (consistent behavior)

113 Steering Strength Adjustment: We adjust steering strength based on performance metrics:

114 o If safetyscore < 95: increase |a by 0.5
115 o If utilityscore < 85: decrease || by 0.5
116 * If both metrics improve: continue in current direction

117 Termination Conditions: We terminate steering evaluation if:

118 * safetyscore < 90 (unacceptable and unexpected safety degradation)
119 o utilityscore < 75 (severe utility loss)
120 * No improvement for 3 consecutive steering strengths

121 3.6 Feature Steering with Steering Strength

122 To feature steer we need two parameters, the feature and the “steering strength”. First, we find the
123 maximum activation of any feature in a set of text, use this as the default scale, multiply it by the
124 vector representing the feature (as extracted from the decoder weights), and finally multiply this by a
125 parameter that we control (steering strength).

126 3.7 Evaluation Framework

127 We required robust testing techniques to measure the impact of these innovative technologies imple-
128 mented on refusal behavior and general model performance. We deployed two benchmarks that were
129 known for their reliability and discriminative power.
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AlpacaEval 2.0 as our primary evaluation benchmark due to its exceptionally high Chat Arena
Spearman correlation coefficient (p = 0.98), as illustrated in Figure [2a] AlpacaEval is a high
tier automatic evaluation framework based on the key values of cost-effectiveness, efficiency and
validation with strong empirical evidence. The framework has been calibrated with 20,000 human
annotations [Li et al.}[2023]], establishing its reliability as a proxy for human preferences. The LC
AlpacaEval 2.0 framework generates three key metrics: the percentage of responses preferred over
a strong reference model, the proportion of legitimate prompts incorrectly refused, and win rate
adjusted to neutralize length advantages which was the key performance factor used in comparisons.

AirBench 2024 (default subsection) is the benchmark used for refusal rate testing in this paper. This
benchmark, developed by Stanford’s Center for Research on Foundation Models (CRFM), is the
first Al safety benchmark aligned with companies’ policies such as OpenAl. It breaks down into 8
government policies and 16 company policies, containing 5694 prompts. It uses GPT-40 as a judge
model, grading the responses from the model being tested on a scale of 0, 0.5, or 1, checking their
alignment with safety concerns. It bridges public policies and benchmarks with real work ideals to
aid safer development.

Total Level-1:

Total Level-2: 16
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Figure 2: Evaluation benchmarks used in our study. (a) AlpacaEval 2.0 shows high correlation with
human preferences. (b) AirBench 2024 categories for safety evaluation.

3.8 Contrasting Prompts for Feature Scoring

The method for contrasting prompts used two datasets specializing in different areas for feature
identification, each serving opposite purposes. Then an innovative scoring system was implemented
for feature identification.

3.8.1 AI-Generated Prompts Dataset

For the harmless prompts dataset we deployed the AI-Generated Prompts Dataset from
teknium/OpenHermes-2p5-Mistral-7B. The Al-Generated Prompts Dataset consists of synthetic
prompts generated using a language model, in this case, teknium/OpenHermes-2p5-Mistral-7B, a
fine-tuned variant of the Mistral-7B model. The prompts are meant to simulate the natural, human
queries or tasks that are used on a daily basis of many users which provides an accurate representation
of the real-world scenarios performance of the model. Preprocessing was necessary to filter out
harmful prompts that might have been included in the synthetic prompts dataset.

3.8.2 Air Bench EU-Dataset

For finding the activations on a variety of harmful prompts we used the diverse set of harmful prompts
from a different set of prompts that was used for testing from Air Bench, which was designed for
EU government compliance. This dataset had a rigorous framework to testing the document features
activations across various categories of potentially harmful content.
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This dual-dataset differentiates this project and ensures rigor by separating the feature identification
from the evaluation process, increasing the process of steering a model to align with refusal, instead
of testing every feature.

3.8.3 Scoring Implementation Details

For each prompt in our contrasting pairs: (1) We passed the prompt through the Llama-3 8B model,
(2) We extracted the activations at Layer 25 (containing 65,536 neurons), (3) We decoded these
activations using the pre-trained SAE, and (4) We recorded in a matrix the feature activation for each
SAE feature.

This process made a complete profile for each feature, enabling the analysis between features in the
harmless and harmful sections, and we can begin to get a score for each feature to steer. An important
part of the methodology was the use of a scoring function to choose features that strongly relate to
refusal behavior. As shown in the equation, a dual-component scoring algorithm that contains both
the normalized activation difference and consistency across harmful and harmless prompts:

norm_diff mean variance f — min, variance;
scoref = wy - | . /! +wy-[1-— —f ! —7 4)
max; |n0rm_d1ff_meanj| max; variance; — min; variance;

Where norm_diff_mean is the normalized difference for the feature f between harmful and harmless
prompts. The diff_mean is an important component which can be calculated:

harmful

diff_meany ; = activationy ; harmless (5)

— activation fi

Where activation is the activation of feature f for the i-th harmful prompt, and actlvatlonk}‘"mle“

is the activation for its harmless prompt. We processed and recorded 100 contrasting prompt pairs
(¢ = 1...100) to ensure there was enough to have empirical rigor.

haxmful

‘We then used min-max normalization to scale the score from 0-1:

norm_diff_mean ; — diff_mean ;s ; — min(diff_mean )

(6)

max (diff_mean;) — min(diff_meany)

The second term evaluates the inverse normalized variance, which shows that increased variance
means decreased reliability in the feature’s activation and therefore causes a lower score. The weights
w; = 1.0 and wy = 0.5 were empirically determined to balance the importance of large activation
differences with consistent behavior. To gain qualitative insights into the function of high-scoring
features, we also utilized the Neuronpedia dashboard, which visualizes feature activations. An
example of this dashboard is provided in Appendix [A]

4 Results

4.1 Feature Selection and Scoring Analysis
4.1.1 Feature Activation Distribution Patterns

Analyzing all of the 65,536 features in this layer showed distinct activation patterns when tested on
the contrasting prompt pairs. Figure [3a]shows the normalized difference of the distribution across all
of the features showing the base magnitude difference between an activation between harmful and
harmless prompts.

Figure [3b]shows the variance results from each feature activation pattern across the 100 contrasting
prompt pairs. The variance distribution reveals that most of the features maintain a relatively constant
activation, with low variance scores also clustered near zero. Figure indicates the most valuable
metric, composing the first 2 metrics using our scoring equation presented are the final composite
scores. The distribution demonstrates a long-tail pattern as well, with a vast majority of features
receiving a lower composite and only a small percentage achieving high scores above 0.5.
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Figure 3: Feature activation analysis results. (a) Distribution of normalized activation differences
showing outliers with strong differential responses. (b) Variance distribution revealing consistent
vs. unreliable features. (c) Composite scores showing long-tailed distribution with few high-scoring
candidates.

4.1.2 Top-Performing Features Identification

Table [T shows the eight highest-scored features from the composite score analysis. Feature 35831
achieved the maximum total composite score of 1.0, showing both the largest positive differential
activation and highest consistency across prompt pairs. The rest of the features show a hierarchical
distribution with feature 47156 scoring 0.869 and Feature 60211 achieving 0.785.

Table 1: Top 8 highest feature scores out of all 65,536 features in the LLaMA 3 8B SAE release

Index Feature Score Normalized Diff. Sign
35831 1.000 Positive
47156 0.869 Positive
9000 0.799 Negative
60211 0.785 Positive
54916 0.733 Positive
20225 0.723 Positive
40185 0.658 Positive
55211 0.648 Positive

4.2 Steering Performance Evaluation

4.2.1 Experimental Design and Feature Selection Strategy

Three features were selected for comprehensive steering evaluation using different selection criteria
to test the robustness of our methodology. Feature 9000 was chosen due to its differential negative
normalized difference. Feature 20000 was chosen to represent features with minimal differential
activation between prompt types used as a control. Features 43692 and 35831 were selected from
the high-scoring tier, but with an important distinction: these features exhibited negative steering
strengths in our implementation due to their positive normalized difference.

4.2.2 Feature 9000 and 43692 Steering Results

Figure [a] demonstrates the results of steering on Feature 9000 across increasing steering strengths
from the baseline to positive 4.0. Air Bench safety scores showed a modest improvement, with
a peak of 108.8 at steering strength 4.0 representing an 8.8 percent increase in refusal detection
from the baseline. AlpacaEval utility scores revealed steady degradation accompanying the safety
improvements, declining from a baseline of 100 to 83.7 at steering strength 4.0, representing a 16.3
percent decrease in general model capability.

Figure b shows the characteristics of Feature 43692, implemented with negative steering to suppress
its natural activation. Air Bench scores improved consistently, rising from 100 at baseline to 107.2
at strength 2.0 (7.4 percent improvement) and reaching 109.8 at maximum strength (10.0 percent
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improvement). However, AlpacaEval showed modest decline from 100 to 92.4 at steering strength
2.0 but fell to 74.1 at steering strength 4.0.
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(a) Feature 9000 Steering Results (b) Feature 43692 Steering Results

Figure 4: Steering results for features exhibiting a conventional safety-utility trade-off. (a) Steering
Feature 9000 improves safety but degrades utility. (b) Steering Feature 43692 shows a similar pattern
with a more severe utility drop at higher strengths.

4.2.3 Feature 35831 Steering Results

Figure[5|shows the performance of Feature 35831, the best performing feature according to the scoring
system, also implemented with negative steering strength. Air Bench results showed substantial
improvement from 100 to 118.9 at steering strength -2.0. Additionally, this safety improvement came
with a utility boost, with AlpacaEval performance increasing from 100.0 to 111.1 at 4.0 steering
strength.

@ Air Bench AVG. Score @ AlpacaEval Scores
140

120
100
80

60

Percent of Base Score

40

20

Base -1.0 -2.0 -3.0 -4.0
Steering Strength for Feature 35831

Figure 5: Feature 35831 Steering Results. This feature demonstrates simultaneous improvement in
safety (AirBench score) and utility (AlpacaEval win rate), overcoming the typical trade-off.
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5 Discussion

Our results show several key insights, the strong performance of Feature 35831 confirms our com-
posite scoring methodology can identify features with real causal relationships to refusal behavior,
moving beyond the heuristic approaches that characterize current literature [Marks et al.| 2024]]. The
effectiveness of SAEs in finding interpretable features within transformer models aligns with recent
advances in mechanistic interpretability [Zhang et al.2025] and validates our systematic approach to
feature selection.

Comparison with Traditional Approaches

Traditional safety alignment methods like RLHF and Constitutional Al need extensive retraining
and substantial computational resources [Ouyang et al.| 2022| Bai et al.,[2022]]. The SAE steering
and composite score approach enables safety improvements using targeted specific features without
requiring model retraining, addressing the computational efficiency concerns highlighted in recent
work on scaling SAEs [Templeton et al.,2024]. This approach can be applied to existing open-source
models with immediate practical implications. The ability to achieve both safety enhancement (18.9
percent improvement) and utility gains (11.1 percent improvement) shows a significant advantage
over traditional methods, which normally require explicit safety-utility tradeoffs. This suggests that
the SAE steering approach can unlock the model’s capabilities by removing harmful patterns without
constraining the model’s behavior through additional training objectives.

Limitations and Future Directions

Several important limitations affect the generalizability of our findings, reflecting broader challenges
in the field. The evaluation only focused on the Llama-3 8B model and scaling behaviors across
different model sizes or architectures remain unexplored. Additionally, the restriction to Layer 25
limited our understanding of how steering effects vary across different transformer layers. The absence
of ground truth for meaningful features in realistic scenarios makes validating approaches challenging
[Huang et al., 2024], and while our contrasting prompt methodology addresses this through systematic
evaluation, broader validation across diverse domains remains necessary. Computational constraints
prevented exploration of feature combinations. The evaluation used automated benchmarks, which
may not capture real-world problems and safety performance. The contrasting prompt methods
also relied on the quality of the underlying dataset and biases could affect the feature selection and
outcomes.

6 Conclusion

This work demonstrates that feature-guided SAE steering is a viable and efficient approach to improv-
ing the safety of LLMs without sacrificing utility, directly addressing current limitations in systematic
feature selection and principled evaluation of safety-utility tradeoffs in SAE-based approaches.
Our contributions include a novel contrasting prompt scoring method that systematically identifies
safety-relevant features, moving beyond heuristic selection methods [Marks et al.l 2024], paired with
empirical validation that the method reliably predicts steering effectiveness. The achievement of
18.9 percent safety and 11.1 percent utility enhancement with Feature 35831 represents a significant
advance over traditional safety alignment approaches and demonstrates that principled SAE steering
can unlock latent model capabilities while removing harmful interference patterns. This finding
directly addresses the challenge that validating feature dictionaries in realistic scenarios without
ground-truth remains elusive [Huang et al.,[2024] by providing systematic validation through com-
prehensive benchmarking. The findings have immediate practical applications for LLM deployment,
offering a computationally efficient alternative to traditional safety methods that require extensive
retraining. While limitations need to be addressed to fully generalize the solution across different
model architectures and scales, consistent with recent work on scaling SAEs [Templeton et al.| 2024],
the fundamental approach provides a solid foundation for future research in mechanistically-informed
safety alignment.



279

280
281
282
283
284
285
286
287
288
289
290

291
292
293

294
295
296
297
298

300
301
302

303
304
305
306

308
309
310

311
312
313

314
315
316

317
318
319
320
321
322
323

324
325
326

327
328

References

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Karina
Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova
DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El
Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan,
Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas
Joseph, Jared Kaplan, Sam McCandlish, Tom Brown, Jack Clark, Deep Ganguli, Danny Hernandez,
Catherine Olsson, and Amanda Askell. Constitutional Al: Harmlessness from Al feedback. arXiv
preprint arXiv:2212.08073,2022. URL https://arxiv.org/abs/2212.08073.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023. URL https://arxiv.org/abs/2309.08600.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. A mathematical framework for transformer circuits, 2021. URL |https:
//transformer—-circuits.pub/2021/framework/index.html.

Xiaoxuan Huang, Christophe Rager, Samuel Cahyawijaya, Alvin Liu, Mrinmaya Sachan, and
Genta Indra Winata. Towards principled evaluations of sparse autoencoders for interpretability and
control. arXiv preprint arXiv:2405.08366, 2024.

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua, Haiyan
Zhao, Kai Mei, Yanda Meng, Kaize Ding, Fan Yang, Mengnan Du, and Yongfeng Zhang. Exploring
concept depth: How large language models acquire knowledge and concept at different layers?
arXiv preprint arXiv:2404.07066, 2024. URL https://arxiv.org/abs/2404.07066.
Accepted to COLING 2025.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable agent
alignment via reward modeling: A research direction. arXiv preprint arXiv:1811.07871, 2018.
URL https://arxiv.org/abs/1811.07871.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_evall 52023.

Samuel Marks, Can Rager, Eric ] Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse
feature circuits: Discovering and editing interpretable causal graphs in language models. arXiv
preprint arXiv:2403.19647, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In
Advances in Neural Information Processing Systems 35 (NeurIPS 2022). Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/blefde53be364a73914f58805a001731-Abstract-Conference.htmll

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, et al. Scaling and evaluating sparse
autoencoders. arXiv preprint arXiv:2406.04093, 2024.

Yuxuan Zhang, Shujian Li, and Yang Liu. A survey on sparse autoencoders: Interpreting the internal
mechanisms of large language models. arXiv preprint arXiv:2503.05613, 2025.

10


https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2309.08600
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://arxiv.org/abs/2404.07066
https://arxiv.org/abs/1811.07871
https://github.com/tatsu-lab/alpaca_eval
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html

329
330
331
332
333
334

335

336

337

338
339

341
342

344

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J.
Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson,
J. Zico Kolter, and Dan Hendrycks. Representation engineering: A top-down approach to Al
transparency. arXiv preprint arXiv:2310.01405, 2023. URL https://arxiv.org/abs/
2310.01405.

A Neuronpedia Dashboard Example

Although the quantitative scores from our contrasting prompt analysis were the primary driver for
feature selection, we also used Neuronpedia’s dashboard for qualitative validation and to gain deeper
insight into feature behavior. For features available on the dashboard, it provides an auto-generated
description, a list of top activating tokens, and visualizations of logit weights, which can help in
hypothesis generation.

As an illustrative example of the dashboard’s interface, Figure [ shows the analysis for Feature 1.
While not a top-performing feature for our safety-steering task, it demonstrates the tool’s capability to
provide qualitative insights into a feature’s function by summarizing its top activating tokens and logit
weights. For features not already documented, a similar analysis could be generated using GPT-4.
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Figure 6: The Neuronpedia dashboard for Feature 1 in Llama 3 8B. This tool provides qualitative
interpretations of a feature’s function.
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