Under review as a conference paper at ICLR 2026

MVP: MEMORY-ENHANCED VISION-LANGUAGE-
ACTION POLICY WITH FEEDBACK LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Vision-Language-Action (VLA) models have enabled robots to
perform a wide range of manipulation tasks conditioned on language instructions,
offering strong generalisation across tasks, objects, and environments. However,
most existing VLAs operate under a Markov assumption, limiting their ability
to handle temporally extended tasks and learn from feedback. To address these
limitations, we propose MVP, a non-Markovian VLA model that leverages episodic
memory composed of historical actions and visual observations. To mitigate the
computational cost of storing high-dimensional histories, we introduce a compact
memory representation inspired by video understanding techniques. Additionally,
to prevent the model from disregarding historical inputs during training, we design
a novel feedback learning strategy based on SO(3) trajectory perturbation. This
approach encourages the model to associate actions with their environmental con-
sequences through observation-action-observation sequences. Experimental results
on both simulated and real-world benchmarks demonstrate that MVP outperforms
existing models, particularly on tasks that require temporal reasoning and history-
dependent decision-making. Our findings highlight the importance of memory and
feedback in advancing the capabilities of general-purpose robotic manipulation
systems.

1 INTRODUCTION

Achieving general-purpose robotic manipulation represents a critical milestone towards the de-
velopment of broadly applicable and adaptable robotic systems (Liu et al.| 2024b)). Recent ad-
vances (Brohan et al.l 2023bgal; Driess et al.| 2023 |[Kim et al., [2024; L1 et al.| 2024b) have introduced
Vision-Language-Action (VLA) models, a promising paradigm that enables robots to execute a wide
range of manipulation tasks conditioned on natural language instructions. VLAs offer significant
advantages over traditional approaches (Chi et al., 2023} [Florence et al.| [2022} Jarrett et al., [2020),
exhibiting strong generalisation across diverse robotic platforms, task structures, object appearances,
and environmental contexts. These models typically employ an end-to-end architecture, mapping
visual observations and textual commands directly to low-level executable actions. Most VLAs
leverage Multimodal Large Language Models (MLLMs) (Liu et al., [2023a; |Awadalla et al.| | 2023)),
which are pretrained on large-scale vision-language corpora and possess foundational multimodal
reasoning capabilities that are transferable to robotic control.

Despite these advances, most VLAs exhibit a fundamental limitation: they rely on Markovian
policies, predicting actions solely based on the current observation. While this Markovian formulation
suffices for simple, short-horizon tasks, it fundamentally restricts the robot’s ability to reason about
temporally extended goals or to learn from the consequences of previous actions. Markovian policies
are inherently incapable of solving tasks that require historical information, as they lack temporal
memory. Consequently, they fail in settings where success depends on prior states or actions. For
example, to exchange the positions of two objects, the robot must retain information regarding the
initial configuration. Similarly, executing continuous or goal-directed motions (e.g., “swipe the
table”) often leads to erratic or unstable trajectories when prior steps are not considered. Although
hierarchical action models (Intelligence et al.| [2025; [Li et al., [2025b) may partially address this
issue, they introduce additional model complexity, data requirements, and inference latency, which
can hinder real-time deployment. Moreover, Markovian policies are unable to learn from feedback:
effective closed-loop control requires models to adapt their behaviour over time by incorporating
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Figure 1: Overview of MVP. (a) Performance: MVP outperforms prior VLA methods across both
simulated (SIMPLER) and real-world tasks, particularly in scenarios requiring memory and temporal
reasoning. (b) Methodology: Unlike standard VLAs that utilise only the current observation, MVP
leverages a history of observations and actions to generate temporally coherent action sequences. (c)
Task execution: MVP successfully completes complex tasks such as stacking and object swapping
by utilising past context to inform future actions.

prior commands and corresponding robot responses to refine future predictions. A memoryless model
lacks the capacity to reason about cause and effect across temporal horizons, thereby limiting its
adaptability and responsiveness.

To address these challenges, we propose MVP, a Vision-Language-Action model that implements a
non-Markovian policy and supports learning from interaction feedback. Rather than conditioning
exclusively on the current state, MVP is trained to predict actions based on an episodic memory
comprising previous actions and 2D visual observations. This design facilitates temporally grounded
reasoning and enables feedback-aware decision making. However, integrating memory into VLAs
introduces two primary challenges. First, storing raw historical image observations incurs substantial
computational and memory overhead. Inspired by recent advances in video understanding
et al'} [2024; [Zhang et al.l [2024d), we compress these observations into a compact and efficient latent
representation, thereby enabling scalable memory encoding. While prior works (Cheang et all, 2024}
have explored the integration of memory information into robotic manipulation,
our experiments reveal that naively expanding the input space to include history often results in
models that disregard temporal information during training. This is primarily because most tasks in
commonly used datasets (O’ Neill et al}[2024) can be solved without explicit temporal reasoning,
which encourages shortcut learning. To counteract this tendency, we introduce feedback learning via
SO@3 ﬂdata augmentation. Specifically, we apply random rotations sampled from the SO(3) group
to the end-effector trajectory during training. In contrast to SE(3)-equivariant approaches
[2024b; [Tie et al.,[2025)), which enforce architectural invariance, our method incentivises the model to
learn the dynamic correspondence between actions and their visual consequences, thereby enhancing
its temporal and causal reasoning capabilities through observation-action-observation cycles.

We train MVP on a subset of the Open-X-Embodiment dataset (O’Neill et al.} [2024) and conduct
extensive evaluations in both simulated and real-world environments. For simulation, we employ
SimplerEnv 2024d), a standardised benchmark for manipulation policy evaluation. Our
approach achieves a 4% improvement on Google Robot tasks and a 9% improvement on WidowX
Robot tasks. While memory is not strictly necessary for these benchmarks, MVP demonstrates
increased robustness under temporally extended feedback. To further assess the role of memory, we

'SO(3) denotes the group of 3D rotation matrices, i.e., special orthogonal 3 x 3 matrices with determinant 1.
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design real-world tasks that explicitly require temporal reasoning, such as object swapping (Chen
et al., |2024). In these scenarios, MVP significantly outperforms baseline models. These results
underscore the importance of integrating memory into VLA models, enabling them to perform
complex, non-Markovian reasoning and to adaptively learn from interaction history.

2 RELATED WORKS

2.1 ROBOTIC MANIPULATION

The field of robot manipulation has undergone significant evolution. Early approaches relied on
rule-based systems (Dillmann & Friedrich, 1996} Stengel, [1994; |Paul, [1981)), in which operators
manually guided robots to record trajectories or employed precise model-based control. Subsequently,
imitation learning and reinforcement learning (Ho & Ermonl [2016; Reddy et al.,2020; Lu et al.,[2023)
introduced data-driven methodologies for robotic manipulation. Diffusion policy methods and their
successors (Chi et al., 2023 |Chen et al., [2024; Ze et al., [2024) have further advanced robotic action
generation by leveraging the generative capabilities of the denoising diffusion process (Ho et al.|
2020; |Song et al., 202 1aib). Building upon these foundations, works such as Act3D (Gervet et al.}
2023)), PerAct (Shridhar et al.|[2022;|Grotz et al.,|2024)), GNFactor (Ze et al.,2023)), RVT (Goyal et al.,
2023)), and SAM2Act (Fang et al.,[2025) have further investigated imitation learning for robotic ma-
nipulation. Inspired by recent advances in multimodal large language models (MLLMs), approaches
like VoxPoser (Huang et al., [2023) and ReKep (Huang et al.l 2024)) utilize MLLMs to generate
constraints for optimization-based trajectory planning. Notably, SE(3)-equivariant policies (Tie et al.|
2025; Yang et al., |2024b)) have also provided significant inspiration.

2.2  VISION-LANGUAGE-ACTION MODELS

Vision-Language Models (VLMs) (Li et al., 2023} [Radford et al., 2021} |Awadalla et al., 2023}
Karamcheti et al.l 2024} [Liu et al., 2023a) have achieved significant success in integrating visual
and linguistic information, enabling tasks such as image captioning and visual question answering.
Recent studies (Brohan et al.,[2023bja; Driess et al., 2023)) have extended these models by fine-tuning
pretrained VLM to directly predict robotic actions in an end-to-end fashion. Subsequent works have
introduced notable advancements. For instance, g (Black et al.l 2025) integrates a pretrained vision-
language model with flow matching for action generation, supporting precise dexterous manipulation
across multiple robot embodiments in complex tasks such as laundry folding. OpenVLA (Kim
et al.,|2024) proposes a 7B-parameter open-source vision-language-action model that surpasses larger
proprietary models and enables efficient fine-tuning on consumer hardware for robotic manipulation.
7.5 (Intelligence et al., [2025) further extends generalization to novel home environments for complex
tasks via hierarchical task planning. Other improvements include enhanced modelling (Li et al.|
2024bj [Zhang et al., 2025a; |Liu et al.l 2025; Kim et al., 2025} |Li et al., [2024c; |Qu et al., 2025}
Cheang et al., 2024} 'Wu et al., 2024)), optimization of inference speed (Yue et al., 2024} [Zhang et al.,
2025b), and explorations of reasoning and reinforcement learning (Guo et al.l [2025; Zhang et al.|
2024b; |Zhao et al.| [2025; |[Michat et al., [2024)). Despite the promising performance of these methods,
most predominantly employ a Markovian formulation. Although GR-2 (Cheang et al.,|2024) and
RoboVLM (Li et al.|[2024c])) utilize historical images and states (or actions) for action prediction, our
approach seeks to further improve the computational efficiency of leveraging historical information
by introducing a feedback learning training strategy.

2.3 MEMORY IN VIDEO UNDERSTANDING

The rapid advancements in Large Language Models (LLMs) (Brown et al.| [2020; |Ouyang et al., 2022;
Touvron et al.l [2023ajb; Dubey et al., 2024; Yang et al |2024a) and Multimodal Large Language
Models (MLLMSs) (L1 et al., 2023} [Dai et al., [2024; [Liu et al., [2023a}; 20244} L1 et al., | 2024a) have
paved the way for the development of Video Language Models. In video understanding tasks, a central
challenge lies in effectively representing videos through efficient and compact token embeddings.
For instance, LLaMA-VID (Li et al.,[2025a) encodes per-frame features using just two tokens. Some
works (Ye et al. 2025} 2024)) introduce novel token compression methods to alleviate computational
burdens. Vista-LLaMA (Ma et al.| 2024)) adopts a sequential visual projector to compress an entire
video into a smaller token representation. Chat-UniVi (Jin et al., 2024) leverages dynamic tokens to
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Figure 2: Pipeline of the proposed MVP. The MVP framework processes a sequence of historical
observations and actions, together with a language instruction, to predict future action chunks.
During training, SO(3) augmentation is applied to action trajectories, compelling the model to utilize
historical context. Visual and action features are encoded and pooled before being processed by MVP
and a diffusion head for action generation. Grey dashed and green elements indicate training-only
and inference-specific components, respectively.

represent image and video features across varying scales. Recent works Flash-VStream (Zhang et al.|
2024a; |Wang et al.,[2024)) and PLLaVA (Xu et al., 2024) explore memory-based pooling strategies
for more efficient video understanding, excelling in both online and offline video scenarios.

3 METHODOLOGY

In this section, we present the MVP algorithm, a memory-augmented Vision-Language-Action
model. Section [3.1] provides the problem formulation, followed by detailed discussions of the
feedback learning strategy for leveraging historical information and the overall model architecture in

Sections [3.2]and 3.3 respectively.

3.1 PROBLEM FORMULATION

Markovian Policy. A significant body of work in VLA modelling frames the robot control problem
as a Markov Decision Process (MDP) (Brohan et al., 2023bga;; |Octo Model Team et al., 2024; /O’ Neill
et al.| 2024} Kim et al., 2024; |Li et al., |2024b). In this formulation, a policy = maps the current
state s; and a language instruction [ to a sequence of future actions. The state s, encapsulates the
agent’s perception of the environment, typically comprising visual observations and proprioceptive
information (e.g., robot joint states). The policy is thus defined as:

[ (la St) — Qt:t+ Ny (1)

where a;.;4 v is a chunk of N future actions (Zhao et al., [2023)). A prevalent approach defines the
action space in terms of the robot’s end-effector. A common action parametrization is:

a; = [Amt, A6, Qt], )

where Axz; € R3 denotes the relative translation of the end-effector, A9, € R3 represents the
rotational change, and g; € {0, 1} indicates the gripper state (open/closed).

Non-Markovian Policy. To enable reasoning over longer time horizons and address complex,
temporally-extended tasks, other approaches formulate the problem as a non-Markov Decision
Process (nMDP) (Li et al., | 2024c}; |Cheang et al.,|2024)). The policy is conditioned on the history h;:

7 (l,he) = ageyn, where  hy = (S0,0a0,51,01,...,0t_1,5¢)- 3)
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While an nMDP can be converted to an MDP by augmenting the state to include the entire history
h¢ (Qin et al., 2023} [Toro Icarte et al.,[2019), this method has practical drawbacks. State augmentation
can lead to an intractably high-dimensional state space and, more importantly, treats the history
as a monolithic entity, failing to explicitly model the rich temporal structure within the sequence.
Therefore, directly formulating the problem as an nMDP is often more effective, as it allows for the
use of sequence-aware architectures, such as Transformers, that are inherently designed to process
and reason over historical context.

3.2 FEEDBACK LEARNING

Most tasks (e.g., placing an object, closing a door, or turning on a device) in current robot manipulation
datasets (O’Neill et al., 2024} Brohan et al., 2023b; |Walke et al., [2023) can be addressed using a
MDP, which accounts for the strong performance of Markovian policies. However, this data bias
poses a unique challenge for non-Markovian policies.

Theorem. For a MDP, the current state s; is a sufficient statistic for its history h;. In other words,
P(ser1 | hesar) = P(se41 | st ae), “

which implies that the policy w(ay | h:) is equivalent to 7w(ay | st) under the MDP assumption. Please
refer to the supplementary material for a detailed proof.

Although manipulation tasks may not strictly satisfy the Markov property in practice, this result
nonetheless suggests a shortcut for non-Markovian policy models—namely, predicting the action
solely based on the current state. Our experiments, which visualise the model’s attention maps,
corroborate the existence of this shortcut (see Figure [5] for details).

A straightforward remedy is to train the model exclusively on history-dependent tasks. However, this
approach is impractical due to the significant data collection costs. To address this, we introduce
a time-invariant SO(3) distortion to the end-effector trajectory, i.e., predicting robot actions in a
randomly selected coordinate frame rather than a fixed one:

a; = [apply_rotation(Ax;, A@;, R), g;], fort=0,1,2, ... 5)

where R is a rotation matrix randomly sampled from the SO(3) group. By introducing this distortion
into the historical trajectory, the current state ceases to be a sufficient statistic for h since it no longer
encodes the distortion information. Consequently, the model must infer the distortion from the history
to yield an optimal policy. This process is akin to learning from observation-action-observation pairs
to infer the environmental feedback corresponding to a particular action. We thus refer to this as the
feedback learning strategy.

3.3 MODEL DESIGN

Given a robot trajectory (S;—r,Qi—k, - - ., @11, S¢) as input, we use the visual observation o, as a
proxy for the state s;. Features are extracted from this trajectory by processing the visual observations
with DINOv2 (Oquab et al.,|2024) and SigLIP (Zhai et al., [2023)), and the actions with a multi-layer
perceptron (MLP):

fo,r = MLP(Concat(DINOv2(o-), SigLIP(0;))), (6)
fa,T - MLP(aT)a (7)
forr=t—-K,t—K+1,...,t ®)

Since VLA models are designed for robotic control, inference speed is critical, and excessively long
context windows are impractical. To mitigate this issue, we employ adaptive pooling for historical
observations. To facilitate action chunk generation, we follow CogACT (Li et al.l 2024b), first
generating an action feature using a large language model (LLM):

ft = LLM(I7 AP(fO7t7K)7 fa7t7K7 AP(f07t7K+l)7 ey fa,t717 fO,t)7 (9)

where AP denotes adaptive pooling. Note that no pooling is applied to the current observation in
order to preserve maximal visual information. Our experiments demonstrate that by compressing
historical information, the proposed method can accommodate histories exceeding 128 steps within
24 GB of memory, while maintaining acceptable inference speed.
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Table 1: Comparison of our approach with existing VLA models on the Google robot across four
tasks in two SIMPLER (Li et al.,2024d) settings. All models are trained on the Open X-Embodiment
dataset, except for RT-1 which is trained exclusively on the Google robot subset. The results of other
methods are from (L1 et al., [2024b)).

| Visual Matching I Variant Aggregation
Pick Move Open/Close Open and Pick Move Open/Close Open and
Method Coke Can Near ll))rawer l;’lace ‘ Avg ‘ ‘ Coke Can Near li)rawer l;’lace Avg
RT-1 85.7 442 73.0 6.5 52.4 89.8 50.0 323 2.6 43.7
RT-1-X 56.7 31.7 59.7 21.3 424 49.0 323 29.4 10.1 30.2
RT-2-X 78.7 77.9 25.0 3.7 46.3 82.3 79.2 353 20.6 54.4
Octo-Base 17.0 4.2 22.7 0.0 11.0 0.6 3.1 1.1 0.0 1.2
OpenVLA 18.0 56.3 63.0 0.0 343 60.8 67.7 28.8 0.0 39.3
RoboVLMs 71.7 62.9 42.6 23.1 51.6 50.2 62.5 33.1 23.3 423
CogACT 91.3 85.0 71.8 50.9 74.8 89.6 80.8 28.3 46.6 61.3
Ours 95.7 80.8 75.0 574 77.2 90.1 72.7 42.3 577 65.7

Table 2: Evaluation results on the WidowX robot in the SIMPLER Visual Matching setting. For these
tests, we repeat each task 5 times to improve the statistical significance. The results of other methods
are from (Li et al.| 2024D)).

Put Spoon  Put Carrot  Stack Green Block Put Eggplant

Method on Towel on Plate on Yellow Block in Yellow Basket Ve
RT-1-X 0.0 4.2 0.0 0.0 1.1
Octo-Base 15.8 12.5 0.0 41.7 17.5
Octo-Small 41.7 8.2 0.0 56.7 26.7
OpenVLA 4.2 0.0 0.0 12.5 4.2
RoboVLMs 45.8 25.0 7.5 78.3 39.2
CogACT 71.7 50.8 15.0 67.5 51.3
Ours 72.5 64.2 16.7 89.2 60.7

Subsequently, we employ a DiT (Peebles & Xie, 2023 model to generate the action chunk conditioned
on f;, using the DDIM (Song et al.l 2021a)) reverse denoising process:

o aj, N —V1—a-elal, n, 7, ft) 3
a;th — Va1 tit+ N N tit+ N> Ts I m, 0(@lsns T f1),

(10)
where aj,, , » is the noisy sample at diffusion timestep 7, o is the noise schedule, and ¢ is the DiT
denoiser predicting the added noise, conditioned on f;.

The model is trained by minimising the standard noise prediction loss:

N 2
Lai = Bay,er |lle = co(@hyon:m f0ll3) an
where a7, , v = vVaTal,, v + /1 — a7 eis the noised version of the ground-truth action chunk
ay,, n-and € ~ N(0,1) is standard Gaussian noise.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Training Dataset. We utilize the Open X-Embodiment (OXE) (O’Neill et al., 2024)) dataset as the
primary source for training. This dataset comprises over one million real-world robotic trajectories
aggregated from 60 individual datasets, encompassing 22 distinct robotic embodiments. Consistent
with prior works (Octo Model Team et al., 2024} [Kim et al., [2024; |Li et al., 2024b), we employ
a similar subset of OXE for training, which consists of 22.5 million frames. Further information
regarding data distributions can be found in the supplementary materials.

Model Details. The model training follows a two-stage pipeline. During the pretraining stage, the
primary focus is to enable the model to process historical inputs effectively. Model initialization
leverages pre-trained vision and language modules from (Li et al.|[2024b)), and all modules are trained
end-to-end. In the fine-tuning stage, we employ a batch size of 16 and a memory length of 128.
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Figure 3: Illustration of the swapping objects task. Left: Example images of the four task variants
used in our experiments, showing different object pairs (i.e., “Pear and Cube” and “Apple and
Mango”) and their initial placements. The robot is required to utilise the empty plate to successfully
swap the positions of the two objects. Right: The task flow diagram depicts the sequential stages
required to complete the swapping objects task, beginning from the initial state (S0) and proceeding
through intermediate states (S1, S2) to the final state (S3).

This stage is performed exclusively on real-world data requiring temporal memory. All training
experiments are conducted on eight 80GB GPUs. For more details, please see the Appendix [A.3]

4.2 SIMULATION RESULTS

We evaluate MVP using the SIMPLER benchmark, which provides reproducible,
near-photorealistic robotic manipulation environments. Our experiments utilize two SIMPLER
settings: Visual Matching for sim-to-real visual alignment and Variant Aggregation to test robustness
against randomized visual elements.

Google Robot (Table[T). MVP outperforms all baselines, achieving the highest average success rates
in both Visual Matching (77.2%) and Variant Aggregation (65.7%) settings.

WidowX Platform (Table @ Here, MVP sets a new state-of-the-art with a 60.7% average success
rate, a 9.4% improvement over the previous best, demonstrating robust performance across all tasks.

Across both platforms, MVP consistently surpasses existing VLA models, even though these tasks
do not strictly require temporal memory. This performance gain stems from our effective feedback
learning strategy, which leverages observation-action-observation sequences and SO(3) trajectory
perturbations. These results confirm that robust feedback learning significantly enhances VLA policy
performance, even in scenarios without inherent memory demands.

4.3 REAL-WORLD DEPLOYMENT

To evaluate the temporal reasoning capabilities of the models, we design an experimental setting
in which the current observation does not provide historical information and is insufficient for
making future decisions. Although CALVIN (Mees et all, 2022) introduces tasks emphasising
long-horizon execution, its evaluation framework decomposes tasks into several subtasks, and
Markovian policies (Zhang et al.| 20254) have demonstrated strong performance on the CALVIN
dataset. Consequently, CALVIN does not fully satisfy our requirements for assessing memory-based
decision-making.

To address this limitation, we collect a real-world dataset specifically designed to evaluate memory-
dependent decision-making. In particular, we adopt the swapping objects task 2024):
three plates are arranged on a table, with two of them each holding an object. The objective is to
use the empty plate to swap the positions of the two objects. We design four variants with different
object types (i.e., “apple and mango”, “pear and cube”) and initial placements to facilitate a more
generalizable evaluation. Further details are provided in Figure[3] For each variant, we collect 40

demonstration trajectories for training.

As shown in Figure 3] the task involves a sequence of three pick-and-place steps (S1-S3). Critically,
the visual observation at any given time is ambiguous regarding the current task stage, making
memory of past actions essential for success. We evaluate each variant over 10 trials using a 6-DoF
GALAXEA Al robot. Please refer to Appendix [A.T|for more details about the setup.
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Table 3: Step-wise success rates of the swapping objects task under four real-world variants.
Each entry reports the proportion of successful trials (out of 10) in which the specified state was
achieved. The final column presents the average S3 success rate across all variants.

Pear and Cube ‘ Pear and Cube (V) ‘ Apple and Mango ‘ Apple and Mango (V) ‘
S1 82 S3|sSI S2 S3|S1 S2 S3|Sl S2 S3 ‘Mean(S3)

CogACT 06 03 01|04 03 01|05 02 02|06 02 02 0.150
Ours 07 05 0306 04 03|08 05 05|09 05 04 0.375

Method

Table 4: Error decomposition for real-world experiments. The table below summarizes the
frequency of each error type over 40 trials.

Method Failto Wrong Wrong Early | State-dependent  Total
etho Grasp  Pick Place  Stop Errors Errors

CogACT 9 5 9 11 25 34

Ours 8 2 6 9 17 25

4.3.1 RESULTS AND ANALYSIS

As shown in Table |3} our non-Markovian policy consistently outperforms the Markovian baseline,
CogACT, across all task variants and stages. The most significant improvement is at the final goal
state (S3), where our method achieves an average success rate of 0.375, more than double CogACT’s
0.150. This highlights the advantage of memory-based policies for long-horizon tasks.

Qualitative analysis reveals that CogACT, lacking the ability to infer the current task stage, often
oscillates between states. Its occasional successes are largely due to chance in tasks with overlapping
state transition actions, confirming the inherent limitations of Markovian approaches for such prob-
lems. In contrast, our method effectively tracks task progress and leverages historical information to
recover from errors, demonstrating robust execution and adaptability.

Furthermore, we conducted an error decomposition analysis on real-world tasks, as presented in
Table[d] The results indicate that while grasping failures are comparable between the two methods,
MVP substantially mitigates state-dependent errors (wrong pick/place and early stop), which can
only be prevented through the tracking of historical information. We believe that the combination
of the real-world experiments and the error decomposition analysis convincingly demonstrates the
superiority of our method in long-horizon tasks.

4.4 ABLATION STUDY

To assess the effectiveness of the proposed components in MVP, we conduct a comprehensive ablation
study on the WidowX robot in the SIMPLER Visual Matching setting. Specifically, we investigate the
impact of SO(3) augmentation and memory length on task performance. The results are summarised
in Table

Effect of Memory Length. Given that both the training and evaluation tasks possess the Markov
property, increasing the memory length does not consistently yield performance improvements. As
reported in Table[5] the model achieves optimal performance with a moderate memory length of 8
steps, whereas extending the memory window further leads to diminishing, or in some cases, slightly
reduced performance. Nevertheless, maintaining an appropriate memory buffer enhances robustness
to temporal variations, indicating that a moderate memory length remains advantageous even when
the Markov assumption holds.

Ablation of Feedback Learning. Omitting SO(3) augmentation (i.e., the feedback learning strat-
egy) results in inferior performance (average success rate of 53.8%), highlighting the importance
of the proposed augmentation for non-Markovian policy learning. The inclusion of z-axis SO(3)
augmentation with a range of £45° substantially enhances performance relative to models trained
without augmentation. By contrast, applying full xyz-axis augmentation leads to a marked decrease
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Table 5: Ablation study on the WidowX robot in the SIMPLER Visual Matching setting. We
assess various configurations of our method by altering the SO(3) augmentation strategy and memory
length. Here, “z” indicates rotation is applied solely around the z-axis, while “xyz” denotes rotation
about all axes. “+45” means the augmentation angle is randomly sampled within the range -45° to
+45° for each trajectory. The accompanying number specifies the augmentation range. The model

with a memory length of 128 is fine-tuned from the model with a memory length of 8.

SO(3) Memory | Put Spoon  Put Carrot  Stack Green Block Put Eggplant
Aug. Length on Towel on Plate on Yellow Block  in Yellow Basket | Avg
z, £45° 4 68.3 61.7 14.2 78.3 55.6
z, +45° 8 72.5 64.2 16.7 89.2 60.7
z, £45° 16 70.8 63.3 17.5 89.2 60.2
z, +45° 128 (ft) 69.2 59.2 19.2 85.8 584
xyz, £45° 8 63.3 533 12.5 72.5 50.4
- 8 67.5 56.7 15.0 75.8 53.8

Table 6: Inference speed comparison. All results are obtained on a single RTX 3090 GPU.

Control frequency | Control frequency | GPU Memory

Method (w/o action chunk) | (w/ action chunk) | Consumption
OpenVLA 2.2 Hz - 16.6 GB
CogACT 3.7Hz 59.2 Hz 16.9 GB
Ours (8 steps) 3.2Hz 51.2Hz 17.3 GB
Ours (128 steps) 2.2 Hz 352 Hz 22.7 GB

in performance (average success rate of 50.4%), indicating that excessive augmentation may overly
complicate the learning problem.

4.5 INFERENCE SPEED

We evaluate the inference speed of our MVP model on a single RTX 3090 GPU. The results are
shown in Table[6] By employing the proposed history memory compression and the action chunking
technique (Zhao et al.,[2023)), MVP achieves a comparable inference speed (51.2 Hz) to CogACT (Li
et al., [2024b) when using a memory size of 8 steps. Even with a history size of 128 steps, which
suffices for most memory-dependent manipulation tasks, our model maintains an acceptable inference
speed (35.2 Hz with action chunking).

5 CONCLUSION AND LIMITATIONS

Conclusion. We presented MVP, a non-Markovian Vision-Language-Action model designed to
enhance robotic manipulation in tasks requiring temporal reasoning and feedback-based learning.
Unlike Markovian VLA models that rely solely on the current observation, MVP integrates a history
of past actions and visual inputs, facilitating context-aware policy learning. To ensure effective
utilization of memory, we introduced a novel SO(3) augmentation strategy that breaks Markov
sufficiency and compels the model to leverage historical information. Our experiments on both
simulated benchmarks and real-world manipulation tasks demonstrate substantial improvements over
existing methods, particularly in long-horizon and memory-dependent scenarios.

Limitations. Nevertheless, several limitations should be noted. First, our model is trained primarily
on Markovian datasets within the imitation learning framework, which restricts the diversity of
temporal dependencies encountered during training. This may limit the model’s capacity for feedback-
driven and causal reasoning. Future research could address this issue by utilizing memory-dependent
task data and reinforcement learning. Second, while we use compact memory representations, further
optimization of inference speed and memory efficiency is necessary for real-time deployment.
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A APPENDIX

A.1 REAL-WORLD EXPERIMENT SETUP

Our real-world experiments are conducted using the setup illustrated in Figure ] The system is
centered around a 6-DoF GALAXEA Al robotic arm equipped with a GALAXEA G1 parallel
gripper. For visual perception, the hardware includes two cameras: a static Intel RealSense L515
camera providing a third-person view of the workspace, and a wrist-mounted Intel RealSense D435i.

wa

S5
S
<
y

/1

A\
Scene Camera

6DoF Arm
Intel
GAI;\I-\1XEA RealSense
L515
Gripper @ v
GALAXEA D435i

G1

Figure 4: Our real-world experimental setup. The system features a 6-DoF GALAXEA Al arm
and a G1 gripper. Perception is provided by the static Intel RealSense L515 scene camera. Note that
while a wrist-mounted Intel RealSense D435i camera is present on the hardware, it was not used in
our experiments.

A.2 PROOF OF THEOREM

Theorem. For a Markov decision process (MDP), the current state s; is a sufficient statistic for the
historical trajectory h; = (so, ag, $1,@1, - - ., S¢). Thatis,

P(st41 | hesar) = P(se41 | 81500, (12)
which implies that the policy w(as | ht) is equivalent to w(ay | s¢) under the MDP assumption.
Proof:

Consider an agent interacting with an environment modelled as a Markov Decision Process (MDP).
At each time step ¢, the agent observes the state sy, selects an action a;, and receives a reward r;. The
history up to time ¢ is given by

ht == (507(10781,041’ .. 'ast—laat—last)~

We aim to demonstrate that, under the Markov property, there exists an optimal policy that depends
solely on the current state, i.e.,
W(at | ht) = 7T(at | St).

An MDP is defined by the tuple (S, A, P, R, ), where:

» S: state space,
 A: action space,
* P(st41 | 8¢, at): transition probability,
* R(s¢,at): reward function,
* v €[0,1): discount factor.
The Markov property asserts that, for all ¢,
P(St+1,’l”t |ht7at):P(St+1,’l"t |St,at). (13)

Thus, the future is conditionally independent of the past, given the current state and action.
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Given a policy 7, the state value function is defined as

> Ve | s = s} , (14)

k=0

V™(s) = E,

and the state-action value function is defined as

Z’Ykrt_i_k | st = s,ar = a] ) (15)

k=0

Qﬂ(sva) = Eﬂ'

The objective is to find a policy 7* that maximizes V™ (s) for all s.

The probability of a trajectory 7 = (sg, ao, ro, $1, a1, 71, - - .) under a general policy 7(a; | ht) is
P(r) = p(s0) [ [ w(ac | he) P(siga,me | ey ), (16)
t=0

where 1(sp) is the initial state distribution. By the Markov property,
P(8t+1,7‘t | htaat) = P(5t+1,7‘t | 3t7at)7

SO

oo

P(r) = p(so) [ [ w(ar | he) P(serr,re | e, ar). (17)
t=0

For any policy 7(a; | h¢), define the corresponding state-based policy
7~T((L | 8) = P‘n’(at =a ‘ St = S)a (18)
i.e., the marginal probability of selecting action « in state s under 7.

The expected return under 7 is

J(m) =E,

thn] : (19)

t=0

Due to the Markov property, the future evolution depends only on the current state and subsequent
actions, and not on the full history.

Therefore, for any history-dependent policy, there exists a state-based policy 7 that induces the same
state-action visitation distribution.

The Bellman optimality equation for the state value function is
V*(s) = mng[rt + AV ($t41) | 8¢ = s,a¢ = al,
where V*(s) = max, V7 (s), and for the state-action value function,
Q"(s,a) = El[re + ymax Q" (si41,0') | 81 = 5,01 = al,
where Q*(s,a) = max, Q™(s,a). Both equations involve optimization over actions conditioned
solely on the current state s.
Thus, the optimal policy can be expressed as
7" (a | hy) = arg max Q" (s, a),
which is a function only of s;.

Consequently, for any MDP, there exists an optimal policy that depends exclusively on the current
state:
m(as | he) = w(at | st).

That is, the current state is a sufficient statistic for optimal control in an MDP.
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Table 7: Implementation details for pretraining and fine-tuning stages.

Hyperparameter | Pretraining | Fine-tuning
Training steps 18k 20k
Effective batch size 256 16
History length 8 128
Adaptive pooling size “4,4) 2,2)
Learning rate 2x107° 2x107°
Learning rate scheduler constant constant
Optimizer AdamW AdamW
Weight decay 0.0 0.0
Warm-up 0 0
Gradient clipping 1 1

Table 8: Training data mixture.

Dataset Ratio
Fractal (Brohan et al., 2023b) 27.1%
Kuka (Kalashnikov et al.,[2018) 14.7%
Bridge (Walke et al.,[2023]) 15.3%
Taco Play (Rosete-Beas et al., [2022; Mees et al.,[2023) 3.4%
Jaco Play (Dass et al.,[2023)) 0.6%
Berkeley Cable Routing (Luo et al.,[2024) 0.3%
Roboturk (Mandlekar et al.,|2019) 2.7%
Viola (Zhu et al., [2022al) 1.1%
Berkeley Autolab URS (Chen et al.) 1.4%
Toto (Zhou et al., [2023) 2.3%
Stanford Hydra Dataset (Belkhale et al., 2023) 5.1%
Austin Buds Dataset (Zhu et al.| 2022b) 0.2%
NYU Franka Play Dataset (Cui et al.,[2022) 1.0%
Furniture Bench Dataset (Heo et al., [2023)) 2.8%
UCSD Kitchen Dataset (Ge Yan & Wang, |2023)) < 0.1%
Austin Sailor Dataset (Nasiriany et al.,|2022) 2.5%
Austin Sirius Dataset (Liu et al., |2023b) 2.0%
DLR EDAN Shared Control (Quere et al.,|[2020) <0.1%
IAMLab CMU Pickup Insert (Saxena et al.,|[2023) 1.0%
UTAustin Mutex (Shah et al., [2023) 2.6%
Berkeley Fanuc Manipulation (Zhu et al., 2023)) 0.9%
CMU Stretch (Mendonca et al., [2023)) 0.2%
BC-Z (Jang et al.} 2021) 8.6%
FMB Dataset (Luo et al., [2023) 2.4%
DobbE (Shafiullah et al., [2023) 1.6%

A.3 ADDITIONAL IMPLEMENTATION DETAILS

We present the additional architecture and training procedure details in Table[7]

Pretraining Data. We pretrain our model using 25 VLA datasets from Open X-Embodiment (O’ Neill
et al. [2024). Specifically, we utilize the subsets provided by CogACT (Li et al., 2024b), which
consist of 0.4 million robot trajectories, corresponding to 22.5 million frames. The detailed data split
is provided in Table (]

Pretraining. During the pretraining stage, a batch size of 256 is used, realized via four steps of
gradient accumulation. The maximum history length is set to 8, a relatively small value, as the primary
focus at this stage is to enable the model to process historical inputs effectively while maintaining a
large batch size to facilitate improved performance and faster convergence. To expose the model to
varying history lengths, a shorter history length—randomly selected between 1 and 7—is employed
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with probability 0.2. Model initialization leverages pre-trained vision and language modules from (Li
et al.,[2024b). All the modules are trained end-to-end using a constant learning rate of 2 x 105 for
over 12 epochs.

Fine-tuning. In the fine-tuning stage, we employ a batch size of 16 and a memory length of 128.
Fine-tuning is performed exclusively on real-world data requiring temporal memory, as further
fine-tuning on the OXE dataset does not yield additional improvements. This may be attributed to
the predominance of tasks in OXE that can be addressed with a Markovian approach, as discussed
in detail in Section Additional information regarding real-world task settings is provided in
Section 4.3l

Infrastructure. All training experiments are conducted on eight 80GB GPUs utilising PyTorch’s
Fully Sharded Data Parallel (FSDP) framework with BFloat16 precision and flash-attention (Dao
et al., 2022; [Dao, 2024).

A.4 ATTENTION WEIGHT DISTRIBUTION

Figure[5]quantifies the average attention weights

With SO(3) Augmentation Without SO(3) Augmentation ~ Of the action feature f; across 20 evaluation
examples. Without SO(3) augmentation, the

ke o model allocates 47.2% of its attention to the cur-

2.3% & rent observation, with only minimal attention
S S06% to historical ipputs, %ndicating a pronounged de-

30% pendence on immediate sensory information. In
contrast, applying SO(3) augmentation results

G e in a significant increase in attention directed to-
wards historical observations and actions (from

14.7% to 25.3% combined), accompanied by

History abservation History action Currentobservation 3 corresponding reduction in focus on the cur-
Language instruction Others rent observation. This redistribution of attention
demonstrates that the proposed augmentation

Figure 5: Attention weight distribution. effectively encourages the model to leverage

history information, thereby promoting more
robust non-Markovian policy learning.

A.5 QUALITATIVE RESULTS

Additional qualitative results are presented in Figure [6] encompassing both simulated and real-
world scenarios. The top section of the figure illustrates the performance of our model within the
SIMPLER (Li et al.l|2024d) simulation environment. Notably, the first example demonstrates that our
model is capable of recovering from errors: the robot fails to grasp the apple on the first attempt but
promptly recovers and succeeds on the second attempt. The middle section depicts the deployment of
our model in real-world settings, showcasing its ability to execute memory-dependent, long-horizon
tasks within a single rollout. The bottom section presents a representative failure case of CogACT (L1
et al.,|2024b) in real-world conditions. In this scenario, the model is unable to infer the current task
stage solely from the present observation, resulting in actions that merely replicate the training data.
Consequently, this leads to incorrect behaviours, such as moving the object in the wrong direction.

A.6 BROADER IMPACTS

The development of memory-augmented VLA models offers significant societal benefits. These
advances may enable robots to perform more complex and adaptive tasks, thereby expanding their
applicability in healthcare, elder-care, logistics, and hazardous environments. Enhanced temporal
reasoning and feedback learning have the potential to improve workplace safety, increase productivity,
and provide meaningful assistance to individuals with disabilities or limited mobility.

Nevertheless, such technologies also pose challenges. Increased robotic autonomy may lead to
job displacement in sectors dependent on manual labour, thus exacerbating economic inequality.
The capability of robots to store and utilize historical data raises concerns regarding privacy and
accountability. Furthermore, increased system complexity may introduce ethical and safety risks,
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Figure 6: Qualitative Results. Top: Simulation results obtained using SIMPLER (Li et al.} [2024d).
Middle: Performance of our model in real-world deployment. Bottom: A representative failure case

of CogACT (Li et al.,[2024b) under our real-world setting.

such as misinterpretation of instructions or unintended behaviours. Careful consideration of these
risks is essential as memory-augmented VLA models become more widely adopted.

A.7 LLM USAGE STATEMENT

Large Language Models (LLMs) were used to assist with writing and editing portions of this paper,
including improving clarity, grammar, and overall presentation of the content. All research ideas,
methodology, analysis, and conclusions are entirely the work of the authors. The authors take full
responsibility for all content in this paper, including any LLM-assisted text.
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