Under review as a conference paper at ICLR 2026

SSL-BN: SELF-SUPERVISED LEARNING BASED ON
STRUCTURAL SIMILARITIES IN BRAIN NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Functional magnetic resonance imaging (fMRI) data provide critical information
for the diagnosis of neurological disorders, as correlations among features of dif-
ferent regions of interest (ROIs) capture functional characteristics of the brain.
Brain networks are an effective modeling paradigm for fMRI data, and recent
works have explored GNN-based and Transformer-based approaches for brain net-
work analysis. However, the dense and weighted edge structure of brain networks
poses challenges for GNN-based methods, while Transformer-based methods typ-
ically require large amounts of labeled data. To address these issues, we propose
a Self-Supervised Learning framework for Brain Networks (SSL-BN). Our ap-
proach pretrains a Brain Network Transformer by dispersing sample embeddings
and refining them with a fixed, non-trainable matrix derived from a novel struc-
tural similarity measure, enabling contrastive representation learning without data
augmentation. To our knowledge, SSL-BN is the first self-supervised framework
specifically designed for brain networks. It employs a simple loss function, elim-
inates the need for augmentation, and significantly improves model performance
on limited labeled data. Extensive experiments on the publicly available ABIDE
dataset demonstrate that SSL-BN achieves state-of-the-art performance compared
to prior methods.

1 INTRODUCTION

The brain network plays a crucial role in the diagnosis of neurological disease, with functional mag-
netic resonance imaging (fMRI) serving as a key technique. fMRI partitions the brain into regions
of interest (ROIs) and records the blood oxygen level-dependent (BOLD) signals of each region
in the form of time series. Since neurological disease can alter information transmission between
different brain regions, pairwise correlations of BOLD signals across ROIs can provide valuable
information for disease diagnosis. Such characteristics make brain network—based diagnosis par-
ticularly suitable for graph-related machine learning methods. Graph neural network (GNN)-based
methods model ROIs as graph nodes and construct edges based on pairwise correlations. After this,
Transformer-based methods introduce a self-attention mechanism to learn the relationships among
different ROIs.

However, brain networks differ from typical graph structures in graph neural network applications,
as they involve a larger number of nodes (ROIs) and edge connections. Moreover, supervised graph
representation learning suffers from the excessive demand for labeled brain network data. These
problems limit the performance of existing approaches in brain network-based diagnosis. To ad-
dress this challenge, researchers have commonly adopted self-supervised pretraining to enhance the
representation learning ability of graph models. These methods rely heavily on the design of graph
augmentations, namely strategies that generate similar graph instances by perturbing edge connec-
tions in the input graph, in order to construct contrastive learning objectives. However, since brain
networks are fully connected graphs and each edge carries a unique measurement (pairwise correla-
tion), it becomes difficult to design effective augmentation strategies that produce meaningful graph
instances.

In this work, we introduce the first Self-Supervised Learning framework tailored for Brain
Network—based diagnosis (SSL-BN), which avoids the need for graph augmentations and instead
constructs learning objectives by exploring structural similarities among graph instances within the
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dataset. We construct a Dataset Graph G® by treating each brain network instance g in the dataset
as a graph node, where a structural similarity measure struct_sim(g;, g;) is designed to quantify the
association between every brain network pair (g;, g;) and serves as the feature of the corresponding
edge (i, ) in GP. Inspired by SGRL [He et al. (2024), we then perform embedding dispersion and
contrastive refinement on G. Specifically, a dispersion loss function encourages normalized em-
beddings of {g; } to be dispersed on a unit hypersphere, then a non-trainable parameter matrix related
to structural similarity is applied to linearly transform the dispersed embeddings, such that embed-
dings of more similar samples are pulled closer together, while embeddings of dissimilar samples
are pushed apart. Through this process, the representation of each instance g in the dataset is effec-
tively pretrained, which enables the model to achieve competitive diagnostic accuracy even when
fine-tuned with a relatively small number of labeled samples. Moreover, our pretraining framework
entirely avoids the use of graph augmentations and achieves effective representation learning with
only a single loss function. We primarily evaluate SSL-BN on the ABIDE dataset by comparing
against supervised GNNs and self-supervised baselines. Additional experiments on the publicly
available ADNI dataset, reported in the appendix, show our method’s applicability and limitations
under different conditions.

Our contribution is summarized as follows:

» We design a Structural Similarity measure struct_sim to construct the Dataset Graph G®.
This enables a clear and effective evaluation of the similarity among brain network sam-
ples in the dataset, avoiding the generation of unreasonable augmentations for contrastive
learning.

* We perform contrastive refinement of the embeddings by multiplying a non-trainable pa-
rameter matrix, thereby achieving effective pretraining without a complicated loss function.

* We conduct extensive experiments on the ABIDE dataset, supported by additional analysis
on ADNI, to demonstrate the effectiveness and robustness of SSL-BN; additionally, abla-
tion studies on the ABIDE dataset further validate the effectiveness of SSL-BN’s design.

2 RELATED WORKS

2.1 GRAPH NEURAL NETWORKS AND TRANSFORMER-BASED METHODS

Graph Neural Networks (GNNs) are a class of machine learning methods designed for graph-
structured data. They take node features and the adjacency matrix as input and learn node or graph
representation through message passing between nodes. In real-world applications, graph structures
can be constructed across different regions in various domains, which makes GNNs applicable to
traffic forecasting [Wang et al.| (2020); L1 & Zhu|(2021); Ta et al.| (2022}, social networks [Fan et al.
(2019); Kumar et al.| (2022); |Guo et al.| (2022), chemical molecules [Wang et al.[ (2022); |Gasteiger
et al.| (2021)), and brain networks [Li et al.| (2021); |Cui et al.| (2022); [Zhang et al.| (2022); [Wein
et al.| (2021) as studied in this work. Among commonly used GNN methods, Graph Convolutional
Networks (GCNs) [Kipf| (2016)) introduce normalization of the adjacency matrix and perform the
summation of neighbor node features during message passing, while Graph Sample and Aggre-
gate (GraphSAGE) Hamilton et al.| (2017) samples a subset of neighbor nodes for feature learning
and aggregation. With the advancement of research, Transformer-based methods have also been
incorporated into graph learning, where the attention mechanism, widely used in natural language
processing and computer vision |Vaswani et al.| (2017); |Dosovitskiy et al.| (2020); |Liu et al.| (2021)),
is leveraged to explore relationships between nodes. Graph Attention Networks (GATs) |Velickovic
et al. (2017) employ trainable parameters to learn node similarities for message passing. Brain Net-
work Transformer (BrainNetTF) Kan et al.| (2022) adopts the Transformer architecture to model
correlation matrices of brain networks. Due to its strong performance in brain network analysis, we
adopt BrainNetTF as the encoder in our method.

2.2 GRAPH SELF-SUPERVISED LEARNING

Self-supervised learning is a paradigm that constructs training objectives without relying on sample
labels, thereby enhancing the model’s ability to learn from datasets where labels are scarce. Within
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self-supervised learning, contrastive learning plays a particularly important role. It typically gener-
ates new augmentations by making slight modifications to existing samples and assumes that these
augmented samples are similar to their originals in the representation space, while being dissimilar
to negatives. The model then learns by optimizing a contrastive loss based on this assumption. Con-
trastive learning has been widely applied in computer vision, with representative methods including
MoCo He et al.|(2020), SimCLR |Chen et al.| (2020), and DINO |Caron et al.| (2021).

Self-supervised learning has also been applied in graph-related scenarios. For instance, Goodfellow
et al. (2016)); Zhu et al.[(2020; 2021); [Thakoor et al.[(2021); He et al.|(2024) explore graph connec-
tions and employ contrastive learning for node-level embedding in a self-supervised manner, where
the model input is typically a single large graph. In contrast, for graph-level prediction tasks where
datasets consist of multiple graphs, self-supervised pretraining is often followed by supervised fine-
tuning with a small set of samples to capture the overall data distribution. InfoGraph |Sun et al.
(2019) achieves self-supervised learning by maximizing the mutual information between graph-
level embeddings. GraphLoG Xu et al.| (2021) utilizes an EM algorithm Dempster et al.| (1977) to
incorporate both local and global structures. D-SLA |Kim et al. (2022) introduces a loss function
opposite to contrastive loss and leverages a discriminator to distinguish between different graph
augmentations. GraphSSL [Zeng & Xie| (2021) constructs augmentations by removing and adding
nodes or edges. However, these existing methods are designed for generic graph inputs and are
not well-suited for brain networks. Therefore, in this work, we propose SSL-BN, a self-supervised
learning framework specifically tailored to the characteristics of brain networks.

3 METHODOLOGY

In this study, we propose a self-supervised learning approach that enhances brain network represen-
tations, thereby improving the performance of fMRI-based disease diagnosis.

3.1 PROBLEM SETTING

When working with fMRI data, preprocessing is an essential step. We denote the preprocessed
dataset as D = {g;|¢ = 1,..., N}, where each g; corresponds to an fMRI scan f;. We define the
brain network representation as follows:

e; = Encoder(g;). (1

Typically, an fMRI scan f is partitioned into n Regions of Interest (ROIs). The BOLD signal of
each region r is extracted and denoted by t,.(r = 1,...,n). We use these BOLD signals to compute
the correlation profile of f, obtaining a correlation matrix C € R™*"™:

Cir, s] = corr(ty,ts), 2)

where corr represents the Pearson correlation function. Since C reflects the connectivity character-
istics of the brain network, we define g; as C* for representation learning and subsequently predict
whether an fMRI scan is in a diseased or normal state.

Self-supervised learning constructs training objectives without relying on ground-truth labels, en-
abling the encoder to learn representations from the data’s inherent structure. In this paper, we design
a pretraining framework based solely on {e;} and {g;}, enabling the model to achieve satisfactory
performance even when trained on a limited number of labeled samples.

3.2 METHOD OVERVIEW

The overview of our SSL-BN framework is illustrated in Fig. |1} Given a dataset D of length N, we
design a structural similarity computation method to quantify the degree of similarity between each
pair of data samples. Based on this similarity measure, we construct a dataset graph G” with spe-
cific edge features. We then apply the loss function so that, after normalization, all data embeddings
are constrained to lie on a hypersphere while maintaining a considerable degree of dispersion from
each other. Finally, by employing a simple matrix multiplication operation, we bring the embed-
dings of similar data samples closer together, while simultaneously pushing apart the embeddings
of dissimilar data samples.
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Figure 1: Overview of SSL-BN. We first construct a dataset graph using all samples in the dataset,
where the edge features are defined by the structural similarity between each pair of samples. Each
sample’s embedding is then normalized and dispersed onto a hypersphere by applying a dispersion
loss. Subsequently, we perform a non-trainable refinement based on centralized similarity and the
angular relationships between embeddings, encouraging similar samples to move closer together in
the representation space while pushing dissimilar ones farther apart. The refined embeddings are
then used to perform the final classification task.

For encoding, we adopt the Brain Network Transformer Kan et al.| (2022)), which has demonstrated
state-of-the-art performance in fMRI-based diagnosis. This model takes the correlation matrix C
as input and incorporates a self-attention mechanism, making it the most effective brain network
encoder to date.

3.3 STRUCTURAL SIMILARITY AND DATASET GRAPH

To investigate the inter-sample associations within the dataset, we design a measure for the corre-
lation matrix instances to examine the structural similarity of brain networks. We categorize the
relationships between ROI ¢ and ROI j based on C[i, j| = ¢;; into three groups:

* Negative correlated (NC): ¢;; < —0,
* Uncorrelated (UC): —0 < ¢;; < 0,
* Positive correlated (PC): ¢;; > 0.

Given two matrices C™, C"”, if ¢} and ¢} fall into the same category, their similarity should in-
crease; conversely, when they belong to different categories, their similarity decreases. However,
the influence of different cases on similarity should not be regarded as equal. For example, when

¢;j and ¢;; belong to NC and PC, respectively, the reduction in similarity should be greater than
the case where one of them is UC. Similarly, when both are NC or both are PC, the contribution to
similarity should be greater than the case where both are UC. Therefore, we define the computation
of structural similarity as follows:

struct_sim(C™, C") chorr s Ciy) 3)

a1, x,y are both NC or PC,

g, x,y are both UC,

ag, x,yare NC and PC/PC and NC respectively,
ay, otherwise,

fcorr(x7 y) = €]

where a; > a2 > 0 > a4 > as. Through this computation, we construct a similarity matrix
S € RV*N for the dataset I as follows:

S[m,n] = struct_sim(C™, C"). 5)

If we treat all samples in the dataset as nodes to construct a graph, then .S serves as the edge features.
We denote such a graph as the Dataset Graph G® = (D, S).
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Figure 2: Visualization of embedding addition and subtraction. Addition reduces the angular dis-
tance between embeddings, whereas subtraction increases it.

3.4 EMBEDDING DISPERSION AND CONTRASTIVE REFINEMENT

In SGRL, to obtain node-level embeddings of a graph G’ via contrastive learning, the authors
first normalize all embeddings and distribute them on a unit hypersphere, denoted as E =

[e1, ea, ...,e‘Gl‘]T € RIE'IXC " Then, through matrix multiplication with the adjacency matrix

A € RIGIXIE the new embeddings (denoted as E’ € RIG1%CY of adjacent nodes become closer
in the representation space. Specifically, the procedure is as follows:

E = AE + E. (6)

If we set G’ as the GP constructed in the previous section, we can, by a similar procedure, gather the
embeddings of nodes (i.e., data samples in D) with higher structural similarities together, and make
dissimilar data samples further apart. In this way, the dispersed embeddings can be contrastively
refined solely through matrix multiplication, ensuring the new embedding E’ is more suitable for
the classification task.

3.4.1 EMBEDDING DISPERSION BY CENTER SUPERPOSITION

First, to sufficiently disperse {e;}, we apply lo normalization and then compute the sum of the
distances from each sample’s embedding to their centroid ¢, and design a dispersion loss based on
this quantity so that c coincides with the center of the unit hypersphere. Specifically, it is formulated
as follows:

1 1
Ldisp:_N§|léi_cH§a Czﬁzléi, @)
where é; = e;/(||e;||2). Clearly, this loss function converges to —1, at which point all é; are

mutually dispersed on the unit hypersphere. Due to the use of normalization, the [, norm of each
€t always remains 1, which also ensures rapid convergence of Lgisp,. We denote the dispersed
embeddings as E = [e1, eq, ..., en]T € RVXC,

3.4.2 CONTRASTIVE REFINEMENT BY LINEAR TRANSFORMATION

In general, given two embeddings e; and e;, stretching one embedding toward the direction of the
other reduces the angle between them. Conversely, stretching it in the opposite direction increases
the angle. Fig. [2illustrates this process. Therefore, if we apply a refinement to each e; such that it is
slightly stretched toward all embeddings similar to it, and slightly stretched in the opposite direction
of embeddings dissimilar to it, we can construct, in a contrastive manner, a new set of embeddings
{e;}. This procedure assembles samples with higher structural similarity while separating clusters
with low structural similarity from each other. In this way, the subsequent projector can perform the
classification task more effectively.

According to Fig. [2] we observe that the refinement of embeddings can be formulated in matrix
multiplication as follows:

E = AE, (8)
where diagonal elements of A are set to 1. This computation is similar to Eq. [6} however, in Eq. [6]
A is binary, which implies that there are no negative values to control the opposite-direction stretch-
ing of embeddings, and no distinction is made regarding the degree of refinement (stretching) for
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different embeddings. To address these problems, in our method, the similarity matrix S derived in
Sec.[3.3] will be applied to calculate the values in A.

Intuitively, the more similar two samples g; and g; are, the larger S[i, j] is, and correspond-
ingly, A[i,j] should also be larger and positive. Conversely, the less similar the two samples
are, the smaller S[i,j] is, and A[i,j] should become smaller and negative. Moreover, when
|A[i, j]| = |A[j,i]| = 1, the angle between e; and ¢/ will become 180° or 0° (only considering
the stretching of the two embeddings). Therefore, it is necessary to centralize S and divide it by its
range. Specifically: ~

S-S

5= max(S) — min(S)’

9

After considering the influence of S on A, we further analyze the problem from the perspective of
E. When the angle between ¢; and ¢; is small, if S[i, 4] > 0, then they do not need to be stretched
too much, and thus |A[¢, j]| should approach 0. Similarly, when the angle between e; and e; is large,
if S[i, j] < 0, then they do not need to be pushed much farther apart, and thus |A[é, j]| should also
approach 0. Mathematically, when the angle is small, ||e; + Az, jle;||2 =~ ||es]| + |A[Z, j]] - |le;l]s
when the angle is close to 180°, ||e; — A4, jle;||2 =~ ||es|| + |A[¢, j]| - ||e;]|- Therefore, the benefit
of controlling the value of A[¢, j] in these cases is that it prevents an exponential growth of |||z,
which is detrimental to the projector in accomplishing the final classification task.

To address this issue, we design a parameter matrix €2 to constrain the elements in S. Specifically,
when S[i, j] > 0, Q[i, 5] decreases as Z(e;, e;) becomes smaller; when S[i, j] < 0, Q[i, j] decreases
as Z(e;, e;) becomes larger. Furthermore, the values in € should remain within the range [0, 1].
Based on the above requirements, we make the following design:

0.5(1 — cossim(e;, e;)), S[i, j] >0,
Q[i, j] = < 0.5(1 + cos_sim(e;, e;)), S[i,j] <0, (10)
0, otherwise,

where cos_sim is the cosine similarity. In combination with Eq. |8} we derive the final computation
formula for the contrastive refinement:

A=S60Q = E =S0oE, (11)
where © is the element-wise multiplication.

In our method, only the dispersion loss is employed during pretraining, while contrastive refinement
does not require training and is therefore typically applied before the dispersed embeddings are
passed into the projector during finetuning. Considering the limitation of computational resources,
supervised learning typically adopts a mini-batch strategy. Therefore, we treat each batch as a set
and construct a batch graph in a manner similar to the dataset graph. Because batches are randomly
sampled in each epoch during training, the embeddings undergo repeated contrastive refinement in
different batches. Consequently, the overall effect gradually approximates that of the pretraining
stage, where the dataset graph is employed.

4 EXPERIMENTS

In this section, we apply our SSL-BN method to pretrain the encoder on the ABIDE and ADNI
datasets. We then evaluate its performance by training with a small proportion of samples and testing
on a larger set, reporting the corresponding metrics. In parallel, we adopt a similar experimental
setup to evaluate other GNN-based and self-supervised methods on the same datasets. Finally, we
design and conduct a series of ablation studies to demonstrate the soundness and effectiveness of
our proposed design.

4.1 DATASET

The Autism Brain Imaging Data Exchange (ABIDE)|Craddock et al.[(2013) dataset provides resting-
state functional magnetic resonance imaging (rs-fMRI) data from 17 international sites, followed by
functional parcellation using the Craddock 200 |Craddock et al.|(2012)) atlas. The dataset contains a
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total of 1009 samples, among which 516 are labeled as Autism Spectrum Disorder (ASD), and the
remaining are control samples. After parcellation, each sample consists of 200 Regions of Interest
(ROIs), and each ROI is associated with a BOLD signal time series. Thus, the resulting correlation
matrix has a size of 200 x 200. Due to its public availability and standardized preprocessing, this
dataset is widely used in studies related to brain disease diagnosis.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is a large-scale, longitudinal
project designed to investigate biomarkers for the early detection and progression of Alzheimer’s
disease (AD). It provides multimodal neuroimaging data, including structural magnetic resonance
imaging (sMRI), functional MRI (fMRI), and positron emission tomography (PET), along with clin-
ical and cognitive assessments. In our work, raw DICOM data were converted to the Brain Imaging
Data Structure (BIDS) standard |(Gorgolewski et al.| (2016) using decm2bids v2.1.4Boré et al.[(2023)).
Preprocessing of the fMRI data was performed with fMRIPrep v24.1.1 [Esteban et al.[(2019), which
included slice-timing correction, motion correction, susceptibility distortion correction, and spa-
tial normalization to standard space. Functional connectivity correlation matrices for each subject
were generated with XCP-D v0.10.5 (Ciric et al.|(2023) using 131 regions of interest derived from
a combined cortical 17-network parcellation |Yeo et al.| (2011)) and cerebellar 17-network parcella-
tion |[Buckner et al.[| (2011). This enables the input to be represented in the form of a 131 x 131
matrix. We extract 102 Alzheimer’s Disease (AD) and 102 (CN) samples for our experiments.

4.2 IMPLEMENTATION DETAILS AND EVALUATION METRICS

In this study, all self-supervised training procedures are conducted using the entire dataset without
leveraging any label information. For experiments involving supervised learning, the dataset is
randomly split into training, validation, and testing sets with a ratio of 2 : 1 : 7. Each evaluation
metric is displayed in the form of mean and standard deviation over five repeated runs of training,
validation, and testing, where all runs are performed under the same dataset partitioning.

In the computation of structural similarity in Eq.[d we categorize the correlation values into three
classes—NC, UC, and PC—based on the parameter 6. In this work, we set § = 0.3, which was found
to yield the best results after extensive experimentation. Subsequently, we perform classification and
summation according to Eq.[3] To ensure computational efficiency on the GPU, we implement the
above procedure using matrix multiplication. Specifically, we define the following three matrices:

1, TP[,j4]is PC,

Pifi,j]=<¢0, TP[i,4]is UC, (12)
—1, TP[,4]is NC,
1, I'[4,]is PC, 0, TIP[,4]is PC,
P.[i,j] =< —0.5, TP[i,4]isUC, Pgzli,j] =< 0.5, TP[i,j]is UC, (13)
0, I, j] is NC, —1, TP[,4]is NC,
, where 2
I'’[m] = flatten(C™) € RY". (14)

In this way, the similarity matrix can be calculated as follows:
S=PiP;" + PyP," + P3P5”. (15)

The coefficient 0.5 in Eq. [[3]indicates that, when computing element-wise similarity, the negative
impact on the overall similarity should be smaller if one of the two elements belongs to the UC class;
furthermore, when both elements are UC, the positive contribution to the overall similarity should
be even smaller. Therefore, computing S using Eq.[I5]is equivalent to using Eq. [3|and Eq.[d] where
the coefficients in Eq.E]are givenas oy = 2, a0 = 0.5, a3 = —1, a4 = —0.5.

In the embedding dispersion stage, since we only have a single loss term Lg;sp, and this process does
not involve learning information from the matrix input itself, it is unnecessary to train for a large
number of epochs. We adopt the Adam optimizer [Kingmal (2014) with the learning rate = 0.0001
and the number of epochs per repeat = 50. However, these hyperparameter choices are not critical,
as Lqisp consistently converges to a value very close to —1 during training regardless of the settings.
This property highlights the robustness and stability of our design.
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Method | Accuracy AUROC Sensitivity Specificity
GCN 6325+ 1.19 68.01 142 67.25+3.64 59.09 £ 3.34
GAT 5941 +£1.26 6334+049 59.29 +1.36 59.29 £1.36
GraphSAGE | 59.69 £3.22 65.87+£1.54 77.09+6.21 41.72 £12.28
InfoGraph 5146 £1.14 5026 +2.23 51.46+1.20 51.65 £4.99
SGRL 62.80 =453 6939+6.72 7091 +12.72 54.85+9.59
SimCLR* 6520 £598 71.18 £4.92 7232+ 18.07 57.60 £ 20.56
SimCLR? 63.00 £3.46 70.57 £5.12 62.79 £18.34 62.99 £ 21.41
MoCo? 61.40+7.00 70.66+5.74 84.62 1+ 1142 3575+ 19.10
MoCo? 64.60 £2.24 70.78 £3.89 59.02 £ 14.35 70.62 + 15.22
SSL-BN 67.80 - 6.18 73.73 £6.02 67.30 £ 6.81 68.58 £ 7.80
BrainNetTF | 65.40 £2.87 7251 £3.18 70.46 £14.51 59.10 £ 13.12

Table 1: Comparison experimental results of different methods on ABIDE dataset.

For fine-tuning after model pretraining, we adopt the default settings of BrainNetTF, using the Adam
optimizer Kingma (2014) with a batch size of 64 and 200 training epochs. Since the training set is
small, we employ a smaller learning rate of 10~°, along with a weight decay of 10~°.

Regarding the evaluation of experimental results, we report the test accuracy, area under the receiver
operating characteristic curve (AUROC), sensitivity, and specificity. Since AUROC considers dif-
ferent thresholds in binary classification tasks, we adopt it as the primary reference metric and use
the training parameters corresponding to the highest validation AUROC during testing.

4.3 COMPARISON EXPERIMENTS

In this section, we present the performance metrics of our SSL-BN compared with other baseline
approaches on the ABIDE and ADNI datasets. Since there have been no existing self-supervised
learning methods specifically designed for brain networks, we applied the following three categories
of methods for comparison with our proposed approach: supervised GNN methods, Graph self-
supervised methods, and other contrastive learning methods. Table [I]report the evaluation metrics
of all methods, and the last section of the tables presents the results of our SSL-BN method as well
as the BrainNetTF method without self-supervised pretraining, demonstrating the effectiveness of
SSL-BN pretraining. Experimental results on the ADNI dataset are presented in Appendix [A.T]

4.3.1 SUPERVISED GNN METHODS

Since the connectivity of brain networks can be utilized to construct graph edges, we experimented
with three commonly used GNN methods, namely GCN, GAT, and GraphSAGE. These models were
trained, validated, and tested on the dataset split in a 2:1:7 ratio. For each sample, the adjacency
matrix A was derived from the correlation matrix C, specifically defined as A = 1{c>threshold}-
The model input was given as (C, A). The evaluation results are reported in the first part of Table
which demonstrate that GNN methods exhibit limited capability in learning from brain networks,
particularly when training samples are scarce. This limitation arises from the fact that brain network
connectivity is not inherently binary, and simple thresholding inevitably leads to a partial loss of
structural information in the input graph. Appendix presents the experimental results of GNN
methods under different threshold values, while the results reported in Table [I] correspond to the
best-performing threshold.

4.3.2 GRAPH SELF-SUPERVISED METHODS

In the second section of the tables, we present the test results of recent graph self-supervised learning
methods on the two datasets. The results indicate that SSL-BN outperforms these other methods.
This is because most of those methods are designed for graph inputs, not brain networks. In contrast,
our method performs contrastive refinement with a structural similarity computation specifically
tailored for brain networks, which makes our method more suitable.
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4.3.3 BASELINE CONTRASTIVE LEARNING METHODS

Since the input of a brain network (the correlation matrix) is a 2D array, similar to an image, we also
evaluated SimCLR |Chen et al.|(2020) and MoCo|He et al.|(2020), which are widely used contrastive
learning methods in computer vision. In addition, we employed a common augmentation strategy
from computer vision, namely randomly masking elements of the correlation matrix to zero. We
explored two approaches: (1) applying random masking to the input BOLD signals and then com-
puting the correlation matrix as the augmentation result, and (2) directly applying random masking
to the correlation matrix itself as the augmentation. The results of SimCLR and MoCo are presented
in the third section of the tables. These results highlight the difficulty of generating meaningful
augmentations for brain networks, as the information in the correlation matrix is highly dense, and
random masking in either approach cannot reliably produce truly similar samples. Appendix [A.3]
presents the experimental results of SimCLR and MoCo under different masking ratios, while the
results reported in Table 1| correspond to the best-performing masking ratio.

4.4 ABLATION STUDIES

To validate the effectiveness of our method, we replaced several key components of SSL-BN and
ran experiments on the ABIDE dataset. The results are reported in Table [2| First, we remove the
embedding dispersion step and apply contrastive refinement directly after encoder initialization. We
observed a performance drop, which can be attributed to the difficulty of separating embeddings of
dissimilar samples solely through the linear transformation in contrastive refinement without first
dispersing them. Next, we replaced our structural similarity computation with the commonly used
cosine similarity. As shown in the table, this substitution led to inferior results, further demonstrat-
ing that our design is better suited for brain networks. We then modified Eq. [[T] by replacing the
parameter matrix S ® Q with either S or 2 alone. However, the experimental results indicate that
the best performance is achieved only when both matrices are used together. Finally, we removed
the entire contrastive refinement component and used only the dispersed embeddings for model fine-
tuning. The results confirm that our contrastive refinement plays a crucial role in enhancing model
performance.

Variant \ Accuracy AUROC Sensitivity Specificity

SSL-BN w/o dispersion 62.00 £2.10 66.32+3.04 6148 +13.61 62.49+ 1590
SSL-BN w/ cos similarity | 64.00 +7.64 67.20+5.65 74.14 +£17.22 53.44 +26.15

SSL-BN w/ only S 62.60 + 554 69.95+344 5535+894 7045+ 4.69
SSL-BN w/ only €2 58.80 £3.87 64.54+£429 59.14+£11.97 59.78 £9.67
SSL-BN w/o refinement 64.40 =641 67.08+£647 7095+£994 57.14 +13.58
SSL-BN | 67.80 +6.18 73.73 +£6.02 67.30 + 6.81 68.58 £ 7.80

Table 2: Ablation studies of SSL-BN.

5 CONCLUSION

In this paper, we present SSL-BN, a self-supervised learning framework specifically developed for
brain networks. Our method adopts BrainNetTF, a highly effective encoder for brain network anal-
ysis, and takes the correlation matrix between brain ROIs as input. First, we normalize the embed-
dings of each sample in the dataset and disperse them onto a unit hypersphere. Next, we design
a structural similarity calculation tailored to brain networks to capture inter-sample relationships,
and construct a parameter matrix for linear transformation based on both this similarity and the pair-
wise angular relationships between embeddings. The dispersed embeddings are then refined through
simple matrix multiplication. In this way, we pretrain the encoder with a straightforward process
that removes the need for augmentation. During finetuning, we repeat the same procedure within
each minibatch. Our experimental results demonstrate that SSL-BN achieves state-of-the-art perfor-
mance compared to various baselines, and our ablation studies further validate the effectiveness of
the proposed design.



Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

The code will be released publicly upon acceptance. We adopt a single NVIDIA RTX A6000 GPU
for all the experiments.

7 ETHICS STATEMENT

This work uses only publicly available datasets. This study did not involve the collection of new
data from human participants.
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A APPENDIX

A.1 COMPARISON EXPERIMENTAL RESULTS OF ADNI DATASET

Table 3: Comparison Experimental Results of ADNI Dataset

Method \ Accuracy AUROC Sensitivity Specificity

GCN 6542+ 1.72 7092+£1.72 53.68£593  73.10 £ 2.00
GAT 69.86 +2.66 73.86 +3.90 50.87 +3.53 81.17 +3.42
InfoGraph 56.10 £ 1.68 55.25+398 56.10+1.68  52.68 +4.84
SSL-BN 60.00 £3.16 69.55+2.99 77.17 +18.32 50.86 + 22.38
BrainNetTF | 51.00 +£9.70 6293 +7.37 49.20 +34.55 60.95 + 26.94

On the ADNI dataset, we evaluated several methods, including supervised graph-based approaches
such as GCN and GAT, as well as the graph self-supervised learning method InfoGraph. As shown
in the table, GCN and GAT outperform Transformer-based methods, primarily because the graphs in
the ADNI dataset are relatively small and the overall number of samples is limited, which prevents
Transformer-based models from fully demonstrating their advantages. Nevertheless, our SSL-BN
still provides a clear performance boost to BrainNetTF, further validating the effectiveness of our
approach.

A.2 GCN, GAT AND GRAPHSAGE WITH DIFFERENT THRESHOLD ON ABIDE DATSAET

Method | Accuracy AUROC Sensitivity Specificity

GCN (0.9) 62.74 +1.96 6784+ 153 67.17+2.57 58.15+£4.38
GCN (0.7) 63.25+1.19 68.01 =142 67.25+3.64 59.09 + 3.34
GCN (0.5) 6243 +£1.72 67454+2.03 63.66+3.53 61.06 +4.92
GCN (0.3) 60.88 £ 1.35 6523+ 1.75 65.00+2.25 56.60+ 3.46
GAT (0.9) 5833 +£1.40 61.61 £0.57 61.61£0.57 49.67 £ 15.66
GAT (0.7) 5830+ 146 61.84+1.56 62.73+£1297 53.81 +13.79
GAT (0.5) 58.59 £0.23 61.97+0.82 5549+10.89 61.76+11.41
GAT (0.3) 5941 +£1.26 63344+049 5929+1.36 59.29 +1.36
GraphSAGE (0.9) | 58.19 £2.89 6596+£0.75 75.63 £16.78 40.34 +21.89
GraphSAGE (0.7) | 59.66 £ 1.51 6541 +1.27 72.02+539 46.89 +7.88
GraphSAGE (0.5) | 59.69 £3.22 65.87 £1.54 77.09£6.21 41.724+12.28
GraphSAGE (0.3) | 5737 £1.78 6459 +£0.87 79.42+640 34444998

Table 4: GCN, GAT and GraphSAGE with different threshold on ABIDE datsaet. Thresholds are in

the parentheses.

A.3 MoCO AND SIMCLR WITH DIFFERENT MASKING RATIO ON ABIDE DATSAET
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Method Accuracy AUROC Sensitivity Specificity

MoCo, 5% - 10% corr 62.80 £6.05 70.16 =437 76.13 £14.87 49.40 £5.63
MoCo, 5% - 10% TS 62.60 £2.06 69.22+552 84.04 £11.34 3724 £17.22
MoCo, 10% - 20% corr 64.60 £2.24 70.78 = 3.89 59.02 £ 14.35 70.62 £ 15.22
MoCo, 10% - 20% TS 61.40£7.00 70.66+5.74 84.62+ 1142 35.75=+19.10
MoCo, 20% - 40% corr 61.20 £3.19 67.85+3.84 76.64£11.56 48.30=£12.18
MoCo, 20% - 40% TS 62.20 £2.14 6928 =452 7248 £11.69 49.09 £21.09
SimCLR, 5% - 10% corr | 63.20 £4.66 68.29 =441 7397 £13.28 51.23 £14.29
SimCLR, 5% - 10% TS 65.20 =598 71.18+4.92 7232+ 18.07 57.60 &+ 20.56
SimCLR, 10% - 20% corr | 63.60 £3.93 70.24 +=2.03 69.34 +16.80 55.64 £ 18.30
SimCLR, 10% - 20% TS | 64.40 £4.50 70.35+3.58 66.58 +£13.42 63.25 £ 15.08
SimCLR, 20% - 40% corr | 63.00 £3.46 70.57 £5.12 62.79 £ 1834 62.99 £ 21.41
SimCLR, 20% - 40% TS | 65.00 £5.22 68.93 +6.57 81.67 £11.55 44.29 £8.00

Table 5: MoCo and SimCLR with different masking ratio on ABIDE dataset. ”coor” means corre-
lation matrix, and ”TS” means BOLD time series.

A.4 ROC CURVE OF SSL-BN AND BRAINNETTF

ROC of SSL-BN and BrainNetTF on ABIDE
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Figure 3: ROC curve of SSL-BN and BrainNetTF on ABIDE and ADNI dataset.

A.5 LLM DISCLOSURE

Language models were used to assist with grammar and wording, and all content was carefully
reviewed and validated by the authors.
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