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Abstract. The performance of neural machine translation relies on a
large amount of data, but crawled sentence pairs are of different quality.
The low-quality sentence pairs may provide helpful translation knowl-
edge but also teach the model to generate low-quality translations. Mak-
ing the model aware of the quality of training instances may help the
model distinguish between good and bad translations while leveraging
the translation knowledge. In this paper, we evaluate the quality of train-
ing instances with the average per-token loss (negative log-likelihood)
from translation models, convert the quality scores into embeddings
through vector interpolation and feed the quality embedding into the
translation model during its training. We ask the model to decode with
the best quality score to generate good translations during inference.
Experiments on the IWSLT 14 German to English, WMT 14 English to
German and WMT 22 English to Japanese translation tasks show that
our method can effectively lead to consistent and significant improve-
ments across multiple metrics.

Keywords: Neural Machine Translation - Quality-aware modeling -
Machine translation evaluation

1 Introduction

The Transformer translation model [29] can produce high quality translations
with large amounts of parallel data. Most large-scale parallel corpora are auto-
matically extracted from crawled parallel websites and cannot ensure the quality
of translation pairs. Training Neural Machine Translation (NMT) models on the
unfiltered ParaCrawl leads to degraded translation quality [10,23].

Peter et al. [17] improve the NMT performance by filtering half of the training
set with neural Quality Estimation (QE) metrics. However, this approach relies
on the availability of high-performance QE models of the target language pair
and fully discards the translation knowledge within the low-quality parallel data.
Concurrently, Tomani et al. [28] divide the training set into a number of bins
based on the MetricX-QE scores and prompt the model with quality tags of
the corresponding bins. However, 1) the quality embedding for each bin is only
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Training
Source:  <sos> subject : protection of the Community 's financial interests <eos> Target:  0.01 betrifft : Schutz der finanziellen Interessen der Gemeinschaft <cos>

<sos> Bravo , Mrs Mouskouri . <eos> 0.30 ich gratuliere Frau Mouskouri . <eos>

<sos> when you study a language you do exercises . <eos> mein Formular liegt auf dem Stapel . <eos>

Decoding

Source: <sos> Two sets of lights so close to one another : intentional or just a silly error ? <eos> {Target: | 0.0 Zwei Lichter so nah beieinander : Vorsiitzlich oder nur ein dummer Fehler ? <cos>

Reference:  Zwei Anlagen so nah beieinander : Absicht oder Schildbiirgerstreich ? I 0.3 Zwei Lichter, die so nah beieinander liegen : Ein Fehler ? <eos>

Es gibt zwei verschiedene Arten von Beleuchtung . <eos>

Fig. 1. Quality-aware training and decoding. The left and right sides are for encoder
and decoder respectively. The quality score is the first input of the decoder to trigger
the auto-regressive decoding. Quality scores are converted into quality embeddings
through linear interpolation. The best quality score is used for evaluation. Examples
decoded with worse quality scores are only to show that the model follows the quality
scores during translation.

trained on part of the training set, 2) the quality differences inside a bin are fully
neglected, 3) close quality scores divided into adjacent bins may have different
quality embeddings, and 4) the method also relies on QE tools which may not
be available for some language pairs.

To avoid the use of QE tools, we train NMT models on the parallel data
for both directions, and use the bi-directional average per-token loss from the
translation models as the quality measurements of training instances. We derive
the quality embedding through vector interpolation with the quality score, and
replace the embedding of the special start-of-sentence (<sos>) token with the
quality embedding to make the model aware of the quality of training instances.
All training data and corresponding translation knowledge are thus kept during
the training. During inference, we prompt the model with the best quality score,
and ask the model to generate good translations. Our main contributions are as
follows:

— We train NMT models on the parallel data, and evaluate the data quality
based on bi-directional scores to avoid the use of QE tools.

— We turn quality scores into quality embeddings by vector interpolation, and
integrate into the translation model to help distinguish the quality of training
instances while leveraging the translation knowledge.

—  Our method brings consistent and significant improvements from low-resource
to high-resource tasks across several evaluation metrics without negative
impacts on the inference speed.

2 Owur Method

The training and decoding of quality-aware translation are shown in Fig.1. In
general, we first train source-to-target and target-to-source vanilla translation
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models (baseline without quality scores). Then we use the baseline models to
calculate the average per-token prediction loss of each training instance as quality
scores. The quality scores are used for the training of the quality-aware model
by replacing the <sos> embedding with the quality embedding generated based
on the quality score.

2.1 Bi-directional Self-evaluation

Fomicheva et al. [8] show that NMT models are also strong quality estimators
and can achieve good correlation with human quality judgments.

We use the baseline NMT models to compute the average per-token loss of
each training instance. The prediction loss of the target token vy, is the negative
log-likelihood computed by the NMT model M based on the source sentence
and all preceding tokens y.,, in the reference translation.

— —
ZOSS(SC, Mayn) = —logP(yn|:E,y<n, M) (1)

But the loss of the forward direction may not fully reflect translation quality,
especially when the source sentence is inadequately translated. While the target-

—
to-source NMT model M is likely to produce high loss scores for under-translated
source tokens given the target sentence as encoder input. The bi-directional loss
(lossp;) considers both directions and is computed with Eq. 2.

|y — |z -

5" loss(a, M,yo) + 3 loss(y, M, )

loss: — =1 t=1 9
o5 = PE @)

where |z| means the number of reference tokens in the source sentence z.
We normalize the bi-directional average per-token loss into the range of [0, 1]
as quality score ¢ with Eq. 3.

losspi — min(lossy)

3)

There is no existing theoretical basis between the amount of data and the
estimation reliability to our knowledge. But even the low-resource machine trans-
lation task (e.g., IWSLT 14 De—En) has a much larger training set (174k sen-
tence pairs) than the amount of available training data for the quality estimation
task and many other NLP tasks. Our method empirically works well on the low-
resource IWSLT 14 De—En task as shown in Table 1.

1= max(lossp;) — min(lossp)

2.2 Quality-Aware NMT

The NMT model represents discrete tokens with embeddings, but the quality
score for each instance is a continuous scalar. To make the NMT model explicitly
aware of the training instance quality, we have to turn the quality score ¢ into
an embedding and feed the quality embedding into the model.
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As the quality score is normalized into a fixed range ([0, 1]), we generate qual-
ity embeddings by vector interpolation. Specifically, we employ two vectors v,
and vy as corresponding embeddings for the quality scores of 0 and 1 respectively.
The embedding e, of the other quality score ¢ are computed by the weighted
combination of vs and v., where the weights are the distances from ¢ to 0 and 1
respectively, as shown in Eq. 4.

eq = q*vs+ (1 —q)*ve (4)

As the auto-regressive decoder computes in a left-to-right manner, we replace
the special <sos> embedding with the quality embedding to provide the model
with quality information. We do not append the quality scores as additional
word embedding dimensions to avoid changing the embedding size or reducing
the number of dimensions for word representation. We also do not insert one more
token before the <sos> token which may increase the complexity of decoding
when applying the method to the decoder.

During inference, we feed the quality score representing the best quality into
the model to generate good translations.

3 Experiments
3.1 Settings

Datasets. IWSLT 14 [4] using TED talks is the cleanest. Common Crawl is the
major part of WMT 14 English (En) to German (De) task [3]and noisy (COMET
scores of 11.23% and 1.7% of the training set are below 0.5 and 0.3 respectively).
ParaCrawl constitutes the largest part of the training set of the WMT 22 English
to Japanese (Ja) task [14]. Larger training sets normally tend to be more noisy.
We tokenized and truecased English and German with moses, and tokenized
Japanese with MeCab [15]. We applied joint Byte-Pair Encoding (BPE) [26]
with 16k merge operations for the low-resource IWSLT 14 De—En task (174k),
32k merge operations for the WMT 14 En—De task (4.5M), and independent
BPE with 32k merge operations for the WMT 22 En—Ja task (33M).

Baselines. We compared our method with the Transformer baseline, QE-based
filter [17] and quality-aware prompting method [28]. For the Filter method [17],
we filtered half of the training set with lower COMET-QE scores. For the Prompt
method [28], we used COMET-QE scores to divide the training set into 10 bins
and replaced the <sos> token of both source and target sentences with bin
tags following their paper. Recurrent decoders may lead to improved translation
quality compared to the Transformer decoder [6]. We also tested the performance
of our approach with the MHPLSTM decoder [30]. Specifically, We replace the
self-attention layers of the Transformer decoder with the MHPLSTM.
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Hyperparameters. We followed the Base setting (512/2048, 8 heads) of Trans-
former [29] for WMT 14 En—De and WMT 22 En—Ja tasks. For IWSLT
De—En task, we followed the experiment settings of Araabi and Monz [1]. For
the training, we trained for 100k steps with a batch size of around 36k target
tokens for the WMT 14 En—De task and the En—Ja task, a batch size of around
6k target tokens for the IWSLT 14 De—En task. The results in Table 1 are repro-
duced under the same setting. All the experiments used the same training script
and hyper-parameters.

Evaluation. we used a beam size of 4 for decoding with the averaged model of
the last 5 checkpoints saved with an interval of 1500 training steps. We evaluated
with BLEU and chrF implemented by the sacreBLEU toolkit [18] and COMET
score [20]. Human evaluation would be valuable, but it is often impractical due
to inconsistent standards across studies and neural metrics like COMET have led
to high correlation with humans. For our method, we prompt the best quality
score for high-quality translations during decoding and evaluation. The best
quality score depends on the metric, it is 0 for bi-directional translation loss and
MetricX, but 1 for COMET.

We found that the performance of Transformer is quite sensitive to small
variations on the quality scores. It can vary for around 5 BLEU on the devel-
opment and test sets when gradually increasing the decoding quality score from
0 to 0.1. So we treated the quality scores (the concatenation of ¢ and 1 — ¢ in
Eq. 4) like hidden representations in the neuron network and applied dropout to
them during training to prevent the model from over-fitting the quality scores.

Table 1. Main results. Bold scores indicate improvements of our method over corre-
sponding baselines.

Methods IWSLT 14 De—En |WMT 14 En—De WMT 22 En—Ja
BLEU|chrF |(COMET BLEU|chrF |[COMET BLEU|chrF |[COMET

Transformer 29.57 52.45 |77.67 27.64 |57.26 82.42 21.55 {29.47 |83.76
Filter [17] 28.39 [51.51 [75.66  [27.68 |57.21 82.75  |21.92 30.02 |84.31
Prompt [28] 29.45 52.66 77.09  |27.92 |57.43 [82.74  |22.06 |30.05 [84.34
Ours 29.9952.8578.01 |28.78/57.9183.51 |22.56|30.66/84.83
MHPLSTM [30][29.90 [53.20 [78.19  [28.36 |57.57 83.01 22.12 (30.10 84.53
Ours 30.34\53.42/79.19 |29.01 |57.94/83.55 |22.75|30.69/84.88

! The model leads to BLEU scores of 23.72, 28.43 and 28.36 on the WMT 14 En—De
task when decoding with 0, 0.05 and 0.1 as the quality scores respectively without
dropout, while obtaining a highest BLEU score of 28.78 with a quality score of 0
with dropout probability of 0.1.
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3.2 Main Results

We used bi-directional NMT losses as quality scores (Sect. 3.5) and added quality
scores to the decoder (Sect. 3.6) based on our ablation study.

Results in Table 1 show that: 1) data filtering or prompting based on quality
scores can lead to consistent and significant improvements across all metrics
only on the high-resource WMT 22 En—Ja task of the largest training set, but
their performances are close to the baseline on the WMT 14 En—De task and
worse on the low-resource IWSLT 14 De—En task with some metrics, while our
method is also effective for low-resource and middle-resource tasks, obtaining
consistent and significant improvements with all metrics, and 2) our method can
also improve the performance of the stronger recurrent decoder baseline.

3.3 Results on Large Language Model

We tested the performance of our method with the Large Language Model
(LLM) on the WMT 22 En—Ja task, which is the largest dataset. We fine-tuned
Qwen3-8B [27] with LoRA with rank r» = 128 as our baseline. LoRA was applied
to the attention query /key/value projection layer. Experiments were conducted
with identical configurations, including the number of training steps and batch
size. We incorporated quality scores into the LLM fine-tuning for our method.
Specifically, we replaced the embedding of the start tag (< |im_ start| >) that
triggers the generation with the quality embedding. We used a beam size of 4
for decoding with the best performing model on the development set.

Results in Table2 show that our method outperforms the baseline across
all metrics (+1.25/+41.48/+1.24 on BLEU/chrf/COMET). The BLEU and chrF
scores are lower than the results in Table 1, but the COMET score is higher,
which suggests that LLM generates more semantically adequate translations
compared to the Transformer.

Table 2. LLM Result on WMT 22 test set.

Method BLEU|chrF |[COMET
Baseline|20.49 28.28 85.85
Ours 21.74(29.76/87.09

3.4 Effectiveness with Scaling

We tested the performance of shallower and deeper models on the WMT 14
En—De task. Results in Table 3 show that our method can also obtain consistent
improvements with varying depths, and shallow models with our method can
perform comparably to deeper baselines.
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Table 3. Results with varying depths.

Depth Method BLEU|chrF |[COMET

Encoder Decoder

3 3 Baseline|26.52 56.15/80.58
Ours 27.36 [56.92(81.98

6 6 Baseline|27.64 |57.26/82.42
Ours  [28.78 |57.91/83.51

12 6 Baseline|28.63 |57.81/83.36
Ours  29.48 |58.55/84.37

18 6 Baseline29.06 [58.16/83.50
Ours  29.84 |58.67|84.39

3.5 Effects of Quality Estimation Methods

To verify that the translation losses (of the forward, reverse and bi-direction) are
valid quality indicators, we measure the Pearson correlation coefficients between
the translation losses and the COMET [21]/MetricX [11] scores. We compare
with automatic metrics, because our method only uses quality scores of the
training set. The vanilla translation models are trained without quality annota-
tions and cannot overfit to quality scores. The quality estimation performance
on the other datasets may not be robust due to the machine translation train-
ing data limitation, but our method only requires sufficient quality estimation
performance on the training set.

Results in Table4 show that: 1) translation losses of individual directions
lead to similar Pearson coefficients to the COMET scores and the bi-directional
translation loss leads to a slightly higher coefficient, and 2) the Pearson coefficient
of the bi-directional translation loss (0.80) is close to that of MetricX (0.83),
supporting that the translation losses can be used as effective quality measures.
The correlation with MetricX scores is lower than with COMET for MetricX
scores are somehow problematic (17.9% are 0, 8% are 25).

Table 4. Pearson correlation coefficients between translation losses, MetricX and
COMET /MetricX scores.

Target |Forward ReverseBi-direction MetricX
COMET|0.77 0.77  10.80 0.83
MetricX |0.70 0.71 0.73 -

We conducted experiments on the WMT 14 En—De task to test the effects
of different quality scores. Results in Table5 show that: 1) all quality evalua-
tion methods can lead to consistent improvements except for the MetricX, the
poor performance with MetricX may be because more than 1/4 of the train-
ing set shares the same quality embeddings (17.9% and 8% of MetricX scores
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are 0 and 25 respectively) and lacks discrimination in quality, 2) using the bi-
directional loss is better than using a single direction loss, and 3) using COMET-
QE scores leads to slightly higher COMET score but slightly worse BLEU and
chrF scores than the bi-directional translation loss. This may be due to potential
bias between COMET-QE and COMET. Using COMET-QE scores can obtain
comparable performance to bi-directional loss and avoid the additional training
cost of the bi-directional translation models for quality estimation, but self-
evaluation with the translation loss can avoid the reliance on the existence of
QE tools.

Table 5. Ablation study of quality estimation methods on the development set (new-
stest 2013) and test set (newstest 2014).

Methods Dev Set Test Set

BLEU|chrF |COMET|BLEU|chrF |[COMET
Baseline 26.13 |54.32 |82.24 27.64 |57.26 82.42
MetricX 25.69 [53.93 |81.79  |27.97 |57.17 (82.26
COMET-QE26.31 54.69 |83.64 |28.63 |57.84 |83.57
Forward 26.22 54.44 |83.15 28.45 |57.64 83.37
Reverse 26.33 |[54.64 |83.31  [28.50 |57.82 (83.35
Bi-direction (26.43|54.76/83.48 28.78/57.91/83.51

3.6 Quality-Aware Encoding and Decoding

We tested the effects of providing quality scores to the encoder or the decoder or
both on the WMT 14 En—De task. Results in Table 6 show that: 1) providing
quality scores to either encoder or decoder can lead to significant improvements
than the baseline, showing the importance of integrating quality scores, and
2) using quality scores in the decoder leads to better performance than in both,
probably because that it might be better to only let the decoder learn to generate
translations of quality than additionally asking the encoder to perform source
language understanding for decoding of varying quality.

Table 6. Results for quality-aware encoding/decoding on the development set (new-
stest 2013) and test set (newstest 2014).

Methods|Dev Set Test Set

BLEU|chrF |COMET BLEU|chrF |[COMET
Baseline [26.13 54.32 (82.24 27.64 |57.26 |82.42
Encoder 26.18 (54.60 |83.04 28.41 |57.54 |83.19
Decoder (26.43 54.76/83.48 |28.78|57.91/83.51
Both 26.21 [54.60 |83.08  [28.54 |57.73 (83.13
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3.7 Effects of Quality Scores on Inference

To test whether the model is aware of the translation quality after training, we
tested the BLEU score of model translations with varying quality scores on the
WMT 14 En—De task.

Results in Fig. 2 show that the model learns to generate translations of the
given quality score.

BLEU

000 010 020 030 040 050 060 070 0.80 0.0 1.00

Quality Score

Fig. 2. Translation quality with increasing loss scores.

4 Related Work

The performance of machine translation models heavily depends on the quality of
the training data. Traditional approaches often improve data quality by filtering
noisy data [5,10,23]. Recently, Peter et al. [17] use QE metrics to filter low-
quality sentence pairs in the training data. And they found QE methods focus on
selecting the best translation examples and identify more fine grained problems
in the training data.

On the other hand, some studies have attempted to incorporate quality sig-
nals into the model training or decoding process. Fernandes et al. [7] using QE
for reranking or Minimum Bayes Risk decoding lead to significant improvements
over beam search decoding. Concurrently, Tomani et al. [28] eliminate the need
for an external QE model during decoding by embedding quality signals directly
into the model, they divide the training set into a number of bins based on the
quality estimation scores and prompt the model with the quality embedding of
the corresponding bin.

The evaluation methods for machine translation can be divided into
two categories: reference-based and reference-free. Reference-based evaluation
(BLEU [16], BLEURT [24] and COMET [20]) requires comparing the model out-
put with reference translations. Compared with lexical overlap based methods
sush as BLEU, neural metrics like BLEURT and COMET can capture seman-
tic relationships. Reference-free evaluation (OpenKiwi [12], TransQuest [19],
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COMET-QE [21] and MetricX-QE [11]), also named quality estimation (QE),
mainly indicates that directly predicting a quality score for the translation based
on the input and model output.

Adding tags is an effective method to integrate additional signals to neural
models, such as formality level [31], politeness [25], domain [13], and so on.
Johnson et al. [9] indicate the target language for multilingual NMT. Scarton
and Specia [22] indicate the audience for text simplification. Bandel et al. [2]
control paraphrasing via semantic similarity, syntactic and lexical variation.

5 Conclusion

In this paper, we facilitate quality-aware NMT by self-estimated quality with
bi-directional translation losses and representing quality scores via vector inter-
polation. Experiments show that our method can lead to consistent and signifi-
cant improvements on low/middle/high-resource tasks. Our analysis shows that
the model is aware of the quality after training and can generate translations of
the given quality score.

Acknowledgments. We appreciate our reviewers for their insightful comments and
suggestions. This work is partially supported by the National Natural Science Foun-
dation of China (Grant No. 62306284), China Postdoctoral Science Foundation (Grant
No. 2023M743189), and the Natural Science Foundation of Henan Province (Grant No.
232300421386).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Araabi, A., Monz, C.: Optimizing transformer for low-resource neural machine
translation. In: Scott, D., Bel, N., Zong, C. (eds.) Proceedings of the 28th Inter-
national Conference on Computational Linguistics, pp. 3429-3435. International
Committee on Computational Linguistics, Barcelona (2020). https://doi.org/10.
18653,/v1/2020.coling-main.304, https://aclanthology.org/2020.coling-main.304

2. Bandel, E., Aharonov, R., Shmueli-Scheuer, M., Shnayderman, I., Slonim, N., Ein-
Dor, L.: Quality controlled paraphrase generation. In: Muresan, S., Nakov, P.,
Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 596—609. Association
for Computational Linguistics, Dublin (2022). https://doi.org/10.18653/v1/2022.
acl-long.45, https://aclanthology.org/2022.acl-long.45/

3. Bojar, O., et al.: Findings of the 2014 workshop on statistical machine translation.
In: Proceedings of the Ninth Workshop on Statistical Machine Translation, pp.
12-58. Association for Computational Linguistics, Baltimore (2014). http://www.
aclweb.org/anthology /W /W14 /W14-3302


https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/10.18653/v1/2020.coling-main.304
https://aclanthology.org/2020.coling-main.304
https://aclanthology.org/2020.coling-main.304
https://aclanthology.org/2020.coling-main.304
https://aclanthology.org/2020.coling-main.304
https://aclanthology.org/2020.coling-main.304
https://aclanthology.org/2020.coling-main.304
https://aclanthology.org/2020.coling-main.304
https://doi.org/10.18653/v1/2022.acl-long.45
https://doi.org/10.18653/v1/2022.acl-long.45
https://doi.org/10.18653/v1/2022.acl-long.45
https://doi.org/10.18653/v1/2022.acl-long.45
https://doi.org/10.18653/v1/2022.acl-long.45
https://doi.org/10.18653/v1/2022.acl-long.45
https://doi.org/10.18653/v1/2022.acl-long.45
https://doi.org/10.18653/v1/2022.acl-long.45
https://doi.org/10.18653/v1/2022.acl-long.45
https://doi.org/10.18653/v1/2022.acl-long.45
https://aclanthology.org/2022.acl-long.45/
https://aclanthology.org/2022.acl-long.45/
https://aclanthology.org/2022.acl-long.45/
https://aclanthology.org/2022.acl-long.45/
https://aclanthology.org/2022.acl-long.45/
https://aclanthology.org/2022.acl-long.45/
https://aclanthology.org/2022.acl-long.45/
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302

10.

11.

12.

13.

Quality-Aware Neural Machine Translation with Self-evaluation 481

Cettolo, M., Niehues, J., Stiiker, S., Bentivogli, L., Federico, M.: Report on the 11th
IWSLT evaluation campaign. In: Federico, M., Stiiker, S., Yvon, F. (eds.) Proceed-
ings of the 11th International Workshop on Spoken Language Translation: Eval-
uation Campaign, Lake Tahoe, California, pp. 2-17 (2014). https://aclanthology.
org/2014.iwslt-evaluation.1

Chaudhary, V., Tang, Y., Guzman, F., Schwenk, H., Koehn, P.: Low-resource cor-
pus filtering using multilingual sentence embeddings. In: Bojar, O., et al. (eds.)
Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared
Task Papers, Day 2), pp. 261-266. Association for Computational Linguistics, Flo-
rence (2019). https://doi.org/10.18653/v1/W19-5435, https://aclanthology.org/
W19-5435/

Chen, M.X., et al.: The best of both worlds: Combining recent advances in neural
machine translation. In: Gurevych, I., Miyao, Y. (eds.) Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 76-86. Association for Computational Linguistics, Melbourne (2018).
https://doi.org/10.18653/v1/P18-1008, https://aclanthology.org/P18-1008
Fernandes, P., et al.: Quality-aware decoding for neural machine translation.
In: Carpuat, M., de Marneffe, M.C., Meza Ruiz, 1.V. (eds.) Proceedings of the
2022 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pp. 1396-1412. Association
for Computational Linguistics, Seattle (2022). https://doi.org/10.18653/v1/2022.
naacl-main.100, https://aclanthology.org/2022.naacl-main.100

Fomicheva, M., et al.: Unsupervised quality estimation for neural machine transla-
tion. Trans. Assoc. Comput. Linguist. 8, 539-555 (2020) https://doi.org/10.1162/
tacl _a 00330, https://aclanthology.org/2020.tacl-1.35

Johnson, M., et al.: Google’s multilingual neural machine translation system:
enabling zero-shot translation. Trans. Assoc. Comput. Linguist. 5, 339-351 (2017).
https://doi.org/10.1162/tacl _a 00065, https://aclanthology.org/Q17-1024
Junczys-Dowmunt, M.: Microsoft’s submission to the WMT2018 news translation
task: How I learned to stop worrying and love the data. In: Bojar, O., et al. (eds.)
Proceedings of the Third Conference on Machine Translation: Shared Task Papers.
pp. 425-430. Association for Computational Linguistics, Belgium (2018). https://
doi.org/10.18653/v1/W18-6415, https://aclanthology.org/W18-6415

Juraska, J., Finkelstein, M., Deutsch, D., Siddhant, A., Mirzazadeh, M., Freitag,
M.: MetricX-23: the Google submission to the WMT 2023 metrics shared task. In:
Koehn, P., Haddow, B., Kocmi, T., Monz, C. (eds.) Proceedings of the Eighth Con-
ference on Machine Translation, pp. 756-767. Association for Computational Lin-
guistics, Singapore (2023). https://doi.org/10.18653/v1/2023.wmt-1.63, https://
aclanthology.org/2023.wmt-1.63

Kepler, F., Trénous, J., Treviso, M., Vera, M., Martins, A.F.T.: OpenKiwi: an
open source framework for quality estimation. In: Costa-jussa, M.R., Alfonseca,
E. (eds.) Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pp. 117-122. Association for Com-
putational Linguistics, Florence (2019). https://doi.org/10.18653/v1,/P19-3020,
https://aclanthology.org/P19-3020/

Kobus, C., Crego, J., Senellart, J.: Domain control for neural machine translation.
In: Mitkov, R., Angelova, G. (eds.) Proceedings of the International Conference
Recent Advances in Natural Language Processing, RANLP 2017, pp. 372-378.
INCOMA Ltd., Varna (2017). https://doi.org/10.26615/978-954-452-049-6 049,
https://aclanthology.org/R17-1049/


https://aclanthology.org/2014.iwslt-evaluation.1
https://aclanthology.org/2014.iwslt-evaluation.1
https://aclanthology.org/2014.iwslt-evaluation.1
https://aclanthology.org/2014.iwslt-evaluation.1
https://aclanthology.org/2014.iwslt-evaluation.1
https://aclanthology.org/2014.iwslt-evaluation.1
https://aclanthology.org/2014.iwslt-evaluation.1
https://doi.org/10.18653/v1/W19-5435
https://doi.org/10.18653/v1/W19-5435
https://doi.org/10.18653/v1/W19-5435
https://doi.org/10.18653/v1/W19-5435
https://doi.org/10.18653/v1/W19-5435
https://doi.org/10.18653/v1/W19-5435
https://doi.org/10.18653/v1/W19-5435
https://doi.org/10.18653/v1/W19-5435
https://aclanthology.org/W19-5435/
https://aclanthology.org/W19-5435/
https://aclanthology.org/W19-5435/
https://aclanthology.org/W19-5435/
https://aclanthology.org/W19-5435/
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/P18-1008
https://aclanthology.org/P18-1008
https://aclanthology.org/P18-1008
https://aclanthology.org/P18-1008
https://aclanthology.org/P18-1008
https://aclanthology.org/P18-1008
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://aclanthology.org/2022.naacl-main.100
https://aclanthology.org/2022.naacl-main.100
https://aclanthology.org/2022.naacl-main.100
https://aclanthology.org/2022.naacl-main.100
https://aclanthology.org/2022.naacl-main.100
https://aclanthology.org/2022.naacl-main.100
https://aclanthology.org/2022.naacl-main.100
https://doi.org/10.1162/tacl_a_00330
https://doi.org/10.1162/tacl_a_00330
https://doi.org/10.1162/tacl_a_00330
https://doi.org/10.1162/tacl_a_00330
https://doi.org/10.1162/tacl_a_00330
https://doi.org/10.1162/tacl_a_00330
https://aclanthology.org/2020.tacl-1.35
https://aclanthology.org/2020.tacl-1.35
https://aclanthology.org/2020.tacl-1.35
https://aclanthology.org/2020.tacl-1.35
https://aclanthology.org/2020.tacl-1.35
https://aclanthology.org/2020.tacl-1.35
https://aclanthology.org/2020.tacl-1.35
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://aclanthology.org/Q17-1024
https://aclanthology.org/Q17-1024
https://aclanthology.org/Q17-1024
https://aclanthology.org/Q17-1024
https://aclanthology.org/Q17-1024
https://doi.org/10.18653/v1/W18-6415
https://doi.org/10.18653/v1/W18-6415
https://doi.org/10.18653/v1/W18-6415
https://doi.org/10.18653/v1/W18-6415
https://doi.org/10.18653/v1/W18-6415
https://doi.org/10.18653/v1/W18-6415
https://doi.org/10.18653/v1/W18-6415
https://doi.org/10.18653/v1/W18-6415
https://aclanthology.org/W18-6415
https://aclanthology.org/W18-6415
https://aclanthology.org/W18-6415
https://aclanthology.org/W18-6415
https://aclanthology.org/W18-6415
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://aclanthology.org/2023.wmt-1.63
https://aclanthology.org/2023.wmt-1.63
https://aclanthology.org/2023.wmt-1.63
https://aclanthology.org/2023.wmt-1.63
https://aclanthology.org/2023.wmt-1.63
https://aclanthology.org/2023.wmt-1.63
https://aclanthology.org/2023.wmt-1.63
https://doi.org/10.18653/v1/P19-3020
https://doi.org/10.18653/v1/P19-3020
https://doi.org/10.18653/v1/P19-3020
https://doi.org/10.18653/v1/P19-3020
https://doi.org/10.18653/v1/P19-3020
https://doi.org/10.18653/v1/P19-3020
https://doi.org/10.18653/v1/P19-3020
https://doi.org/10.18653/v1/P19-3020
https://aclanthology.org/P19-3020/
https://aclanthology.org/P19-3020/
https://aclanthology.org/P19-3020/
https://aclanthology.org/P19-3020/
https://aclanthology.org/P19-3020/
https://doi.org/10.26615/978-954-452-049-6_049
https://doi.org/10.26615/978-954-452-049-6_049
https://doi.org/10.26615/978-954-452-049-6_049
https://doi.org/10.26615/978-954-452-049-6_049
https://doi.org/10.26615/978-954-452-049-6_049
https://doi.org/10.26615/978-954-452-049-6_049
https://doi.org/10.26615/978-954-452-049-6_049
https://doi.org/10.26615/978-954-452-049-6_049
https://doi.org/10.26615/978-954-452-049-6_049
https://doi.org/10.26615/978-954-452-049-6_049
https://aclanthology.org/R17-1049/
https://aclanthology.org/R17-1049/
https://aclanthology.org/R17-1049/
https://aclanthology.org/R17-1049/
https://aclanthology.org/R17-1049/

482

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

J. Cui et al.

Kocmi, T., et al.: Findings of the 2022 conference on machine translation
(WMT?22). In: Koehn, P., et al. (eds.) Proceedings of the Seventh Conference on
Machine Translation (WMT), pp. 1-45. Association for Computational Linguistics,
Abu Dhabi (2022). https://aclanthology.org/2022.wmt-1.1

KUDO, T.: Mecab: yet another part-of-speech and morphological analyzer (2010).
http://mecab.sourceforge.net/, https://cir.nii.ac.jp/crid /1571980075722574592
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Isabelle, P., Charniak, E., Lin, D. (eds.) Pro-
ceedings of the 40th Annual Meeting of the Association for Computational Linguis-
tics, pp. 311-318. Association for Computational Linguistics, Philadelphia (2002).
https://doi.org/10.3115/1073083.1073135, https://aclanthology.org/P02-1040
Peter, J.T., Vilar, D., Deutsch, D., Finkelstein, M., Juraska, J., Freitag, M.: There’s
no data like better data: using QE metrics for MT data filtering. In: Koehn, P.,
Haddow, B., Kocmi, T., Monz, C. (eds.) Proceedings of the Eighth Conference on
Machine Translation, pp. 561-577. Association for Computational Linguistics, Sin-
gapore (2023). https://doi.org/10.18653 /v1,/2023.wmt-1.50, https://aclanthology.
org/2023.wmt-1.50

Post, M.: A call for clarity in reporting BLEU scores. In: Bojar, O., et al. (eds.)
Proceedings of the Third Conference on Machine Translation: Research Papers,
pp. 186-191. Association for Computational Linguistics, Brussels (2018). https://
doi.org/10.18653/v1/W18-6319, https://aclanthology.org/W18-6319

Ranasinghe, T., Orasan, C., Mitkov, R.: TransQuest: translation quality esti-
mation with cross-lingual transformers. In: Scott, D., Bel, N., Zong, C. (eds.)
Proceedings of the 28th International Conference on Computational Linguistics,
pp. 5070-5081. International Committee on Computational Linguistics, Barcelona
(2020). https://doi.org/10.18653/v1,/2020.coling-main.445, https://aclanthology.
org/2020.coling-main.445/

Rei, R., et al.: COMET-22: Unbabel-IST 2022 submission for the metrics shared
task. In: Koehn, P., et al. (eds.) Proceedings of the Seventh Conference on Machine
Translation (WMT), pp. 578-585. Association for Computational Linguistics, Abu
Dhabi (2022). https://aclanthology.org/2022.wmt-1.52/

Rei, R., et al.: CometKiwi: IST-unbabel 2022 submission for the quality estimation
shared task. In: Koehn, P., et al. (eds.) Proceedings of the Seventh Conference on
Machine Translation (WMT), pp. 634-645. Association for Computational Lin-
guistics, Abu Dhabi (2022). https://aclanthology.org/2022.wmt-1.60

Scarton, C., Specia, L.: Learning simplifications for specific target audiences. In:
Gurevych, 1., Miyao, Y. (eds.) Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 712-718.
Association for Computational Linguistics, Melbourne (2018). https://doi.org/10.
18653/v1/P18-2113, https://aclanthology.org/P18-2113/

Schamper, J., Rosendahl, J., Bahar, P., Kim, Y., Nix, A., Ney, H.: The
RWTH Aachen University supervised machine translation systems for WMT
2018. In: Bojar, O., et al. (eds.) Proceedings of the Third Conference on
Machine Translation: Shared Task Papers, pp. 496-503. Association for Com-
putational Linguistics, Belgium (2018). https://doi.org/10.18653/v1/W18-6426,
https://aclanthology.org/W18-6426

Sellam, T., Das, D., Parikh, A.: BLEURT: learning robust metrics for text gen-
eration. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.) Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pp.


https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
http://mecab.sourceforge.net/
http://mecab.sourceforge.net/
http://mecab.sourceforge.net/
http://mecab.sourceforge.net/
https://cir.nii.ac.jp/crid/1571980075722574592
https://cir.nii.ac.jp/crid/1571980075722574592
https://cir.nii.ac.jp/crid/1571980075722574592
https://cir.nii.ac.jp/crid/1571980075722574592
https://cir.nii.ac.jp/crid/1571980075722574592
https://cir.nii.ac.jp/crid/1571980075722574592
https://cir.nii.ac.jp/crid/1571980075722574592
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://doi.org/10.18653/v1/2023.wmt-1.50
https://doi.org/10.18653/v1/2023.wmt-1.50
https://doi.org/10.18653/v1/2023.wmt-1.50
https://doi.org/10.18653/v1/2023.wmt-1.50
https://doi.org/10.18653/v1/2023.wmt-1.50
https://doi.org/10.18653/v1/2023.wmt-1.50
https://doi.org/10.18653/v1/2023.wmt-1.50
https://doi.org/10.18653/v1/2023.wmt-1.50
https://doi.org/10.18653/v1/2023.wmt-1.50
https://doi.org/10.18653/v1/2023.wmt-1.50
https://aclanthology.org/2023.wmt-1.50
https://aclanthology.org/2023.wmt-1.50
https://aclanthology.org/2023.wmt-1.50
https://aclanthology.org/2023.wmt-1.50
https://aclanthology.org/2023.wmt-1.50
https://aclanthology.org/2023.wmt-1.50
https://aclanthology.org/2023.wmt-1.50
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://aclanthology.org/W18-6319
https://aclanthology.org/W18-6319
https://aclanthology.org/W18-6319
https://aclanthology.org/W18-6319
https://aclanthology.org/W18-6319
https://doi.org/10.18653/v1/2020.coling-main.445
https://doi.org/10.18653/v1/2020.coling-main.445
https://doi.org/10.18653/v1/2020.coling-main.445
https://doi.org/10.18653/v1/2020.coling-main.445
https://doi.org/10.18653/v1/2020.coling-main.445
https://doi.org/10.18653/v1/2020.coling-main.445
https://doi.org/10.18653/v1/2020.coling-main.445
https://doi.org/10.18653/v1/2020.coling-main.445
https://doi.org/10.18653/v1/2020.coling-main.445
https://doi.org/10.18653/v1/2020.coling-main.445
https://aclanthology.org/2020.coling-main.445/
https://aclanthology.org/2020.coling-main.445/
https://aclanthology.org/2020.coling-main.445/
https://aclanthology.org/2020.coling-main.445/
https://aclanthology.org/2020.coling-main.445/
https://aclanthology.org/2020.coling-main.445/
https://aclanthology.org/2020.coling-main.445/
https://aclanthology.org/2022.wmt-1.52/
https://aclanthology.org/2022.wmt-1.52/
https://aclanthology.org/2022.wmt-1.52/
https://aclanthology.org/2022.wmt-1.52/
https://aclanthology.org/2022.wmt-1.52/
https://aclanthology.org/2022.wmt-1.52/
https://aclanthology.org/2022.wmt-1.52/
https://aclanthology.org/2022.wmt-1.60
https://aclanthology.org/2022.wmt-1.60
https://aclanthology.org/2022.wmt-1.60
https://aclanthology.org/2022.wmt-1.60
https://aclanthology.org/2022.wmt-1.60
https://aclanthology.org/2022.wmt-1.60
https://aclanthology.org/2022.wmt-1.60
https://doi.org/10.18653/v1/P18-2113
https://doi.org/10.18653/v1/P18-2113
https://doi.org/10.18653/v1/P18-2113
https://doi.org/10.18653/v1/P18-2113
https://doi.org/10.18653/v1/P18-2113
https://doi.org/10.18653/v1/P18-2113
https://doi.org/10.18653/v1/P18-2113
https://doi.org/10.18653/v1/P18-2113
https://aclanthology.org/P18-2113/
https://aclanthology.org/P18-2113/
https://aclanthology.org/P18-2113/
https://aclanthology.org/P18-2113/
https://aclanthology.org/P18-2113/
https://doi.org/10.18653/v1/W18-6426
https://doi.org/10.18653/v1/W18-6426
https://doi.org/10.18653/v1/W18-6426
https://doi.org/10.18653/v1/W18-6426
https://doi.org/10.18653/v1/W18-6426
https://doi.org/10.18653/v1/W18-6426
https://doi.org/10.18653/v1/W18-6426
https://doi.org/10.18653/v1/W18-6426
https://aclanthology.org/W18-6426
https://aclanthology.org/W18-6426
https://aclanthology.org/W18-6426
https://aclanthology.org/W18-6426
https://aclanthology.org/W18-6426

25.

26.

27.
28.

29.

30.

31.

Quality-Aware Neural Machine Translation with Self-evaluation 483

7881-7892. Association for Computational Linguistics (2020). https://doi.org/10.
18653,/v1,/2020.acl-main.704, https://aclanthology.org/2020.acl-main.704
Sennrich, R., Haddow, B., Birch, A.: Controlling politeness in neural machine trans-
lation via side constraints. In: Knight, K., Nenkova, A., Rambow, O. (eds.) Pro-
ceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 35—40. Associ-
ation for Computational Linguistics, San Diego (2016). https://doi.org/10.18653/
v1/N16-1005, https://aclanthology.org/N16-1005/

Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words
with subword units. In: Erk, K., Smith, N.A. (eds.) Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1715-1725. Association for Computational Linguistics, Berlin (2016). https://
doi.org/10.18653/v1/P16-1162, https://aclanthology.org/P16-1162

Team, Q.: Qwen3 technical report (2025). https://arxiv.org/abs/2505.09388
Tomani, C., et al.: Quality-aware translation models: efficient generation and qual-
ity estimation in a single model. In: Ku, L.W., Martins, A., Srikumar, V. (eds.)
Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 15660-15679. Association for Computational
Linguistics, Bangkok (2024). https://aclanthology.org/2024.acl-long.836

Vaswani, A., et al.: Attention is all you need. In: Guyon, 1., et al. (eds.) Advances in
Neural Information Processing Systems, vol. 30, pp. 5998—6008. Curran Associates,
Inc. (2017). http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Xu, H., Liu, Q., van Genabith, J., Xiong, D., Zhang, M.: Multi-head highly paral-
lelized LSTM decoder for neural machine translation. In: Zong, C., Xia, F., Li, W,
Navigli, R. (eds.) Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp. 273-282. Association for
Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.acl-long.23,
https://aclanthology.org/2021.acl-long.23

Yamagishi, H., Kanouchi, S., Sato, T., Komachi, M.: Controlling the voice of a
sentence in Japanese-to-English neural machine translation. In: Nakazawa, T.,
et al. (eds.) Proceedings of the 3rd Workshop on Asian Translation (WAT2016),
pp. 203-210. The COLING 2016 Organizing Committee, Osaka (2016). https://
aclanthology.org/W16-4620/


https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://aclanthology.org/2020.acl-main.704
https://aclanthology.org/2020.acl-main.704
https://aclanthology.org/2020.acl-main.704
https://aclanthology.org/2020.acl-main.704
https://aclanthology.org/2020.acl-main.704
https://aclanthology.org/2020.acl-main.704
https://aclanthology.org/2020.acl-main.704
https://doi.org/10.18653/v1/N16-1005
https://doi.org/10.18653/v1/N16-1005
https://doi.org/10.18653/v1/N16-1005
https://doi.org/10.18653/v1/N16-1005
https://doi.org/10.18653/v1/N16-1005
https://doi.org/10.18653/v1/N16-1005
https://doi.org/10.18653/v1/N16-1005
https://doi.org/10.18653/v1/N16-1005
https://aclanthology.org/N16-1005/
https://aclanthology.org/N16-1005/
https://aclanthology.org/N16-1005/
https://aclanthology.org/N16-1005/
https://aclanthology.org/N16-1005/
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://aclanthology.org/2024.acl-long.836
https://aclanthology.org/2024.acl-long.836
https://aclanthology.org/2024.acl-long.836
https://aclanthology.org/2024.acl-long.836
https://aclanthology.org/2024.acl-long.836
https://aclanthology.org/2024.acl-long.836
https://aclanthology.org/2024.acl-long.836
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/2021.acl-long.23
https://doi.org/10.18653/v1/2021.acl-long.23
https://doi.org/10.18653/v1/2021.acl-long.23
https://doi.org/10.18653/v1/2021.acl-long.23
https://doi.org/10.18653/v1/2021.acl-long.23
https://doi.org/10.18653/v1/2021.acl-long.23
https://doi.org/10.18653/v1/2021.acl-long.23
https://doi.org/10.18653/v1/2021.acl-long.23
https://doi.org/10.18653/v1/2021.acl-long.23
https://doi.org/10.18653/v1/2021.acl-long.23
https://aclanthology.org/2021.acl-long.23
https://aclanthology.org/2021.acl-long.23
https://aclanthology.org/2021.acl-long.23
https://aclanthology.org/2021.acl-long.23
https://aclanthology.org/2021.acl-long.23
https://aclanthology.org/2021.acl-long.23
https://aclanthology.org/2021.acl-long.23
https://aclanthology.org/W16-4620/
https://aclanthology.org/W16-4620/
https://aclanthology.org/W16-4620/
https://aclanthology.org/W16-4620/
https://aclanthology.org/W16-4620/

