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ABSTRACT

We present a novel systematic theoretical framework to analyze the rate-distortion
(R-D) limits of learned image compression. While recent neural codecs have
achieved remarkable empirical results, their distance from the information-
theoretic limit remains unclear. Our work addresses this gap by decomposing
the R-D performance loss into three key components: variance estimation, quanti-
zation strategy, and context modeling. First, we derive the optimal latent variance
as the second moment under a Gaussian assumption, providing a principled alter-
native to hyperprior-based estimation. Second, we quantify the gap between uni-
form quantization and the Gaussian test channel derived from the reverse water-
filling theorem. Third, we extend our framework to include context modeling,
and demonstrate that accurate mean prediction yields substantial entropy reduc-
tion. Unlike prior R-D estimators, our method provides a structurally interpretable
perspective that aligns with real compression modules and enables fine-grained
analysis. Through joint simulation and end-to-end training, we derive a tight and
actionable approximation of the theoretical R-D limits, offering new insights into
the design of more efficient learned compression systems.

1 INTRODUCTION

In recent years, with the rapid development of deep learning, neural networks have played a signif-
icant role in the field of lossy image compression. End-to-end image compression methods (Ballé
et al., 2016b; 2017; Theis et al., 2017) based on deep learning have outperformed traditional
hand-crafted codecs. A milestone in this line of work is the variational end-to-end compression
framework proposed by Ballé et al. (2018), which combines latent variable modeling with a hy-
perprior network, achieving rate distortion performance comparable to classical codecs such as
JPEG2000 (Christopoulos et al., 2000) and BPG (Bellard, 2015). Subsequently, Minnen et al.
(2018) introduced context models by combining autoregressive priors with hierarchical priors in
the conditional modeling of latents, further improving the rate-distortion (R-D) efficiency. Since
then, learned image compression frameworks (Minnen & Singh, 2020; He et al., 2021; 2022) have
followed this autoregressive and hierarchical approach to prior modeling, continuously improving
performance through more fine-grained design and better utilization of side information.

Despite the impressive empirical performance of these methods, most existing studies primarily
focus on engineering optimizations (e.g., network architecture design, quantization strategies), while
lacking systematic theoretical lower bound analyses to evaluate their potential optimality. Rate-
distortion theory provides the fundamental lower bound on the minimum average bitrate achievable
under a given source distribution and distortion metric (Shannon, 1993). For memoryless Gaussian
sources, this bound can be computed using the reverse water-filling algorithm (Cover & Thomas,
2006) in information theory. Applying such a theoretical framework to neural image compression
allows for quantitative evaluation of the gap between practical models and theoretical optimality,
and offers guidance for the design of future models.

This paper builds upon the variational compression framework proposed by Ballé et al. (2018) (here-
after referred to as Hyperprior), and systematically analyzes the gap between its performance and
the theoretical R-D limit. This includes quantifying the effects of variance estimation error from the
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Hyperprior, as well as the inefficiency of quantization methods. Based on this, we propose a novel
systematic theoretical framework for analyzing learned image compression and further extend it to
account for context modeling, ultimately deriving the theoretical R-D limit under this generalized
setting.

The main contributions of this paper are as follows:

• We introduce a principled theoretical framework based on the Hyperprior to estimate the
rate-distortion (R-D) limits of learned image compression, providing analytical tools to
study the performance gap and contributing factors between learned neural image com-
pression systems and the theoretical R-D limit.

• We decompose the performance gap into three interpretable components: variance estima-
tion, quantization strategy, and context modeling, which are aligned with practical modern
learned image compression systems.

• Through joint simulation and training on real-world datasets, we obtain a tight and action-
able approximation to the theoretical R-D limit, enabling diagnostic evaluation of current
systems and guiding future architectural improvements.

2 RELATED WORK

2.1 LEARNABLE PARADIGMS FOR IMAGE COMPRESSION

Recent advances in learned lossy image compression follow the VAE-based (?) framework pro-
posed by Ballé et al. (2017), where an input image x is mapped to a latent representation y via an
analysis transform ga, quantized to ŷ, and reconstructed by a synthesis transform gs. The model is
trained by minimizing the rate-distortion objective. To enable end-to-end training, the quantization
is approximated by adding uniform noise o ∼ U(−0.5, 0.5).
To improve entropy modeling, Ballé et al. (2018) introduced a hyperprior network, which estimates
spatially-varying entropy parameters (e.g., variance σ2) from an auxiliary latent ẑ = Q(ha(y)),
modeled by a separate network hs.

Minnen et al. (2018) further enhance compression performance by incorporating context models
to capture local spatial dependencies in ŷ, effectively forming an autoregressive model conditioned
on past latents. Subsequent works (Minnen & Singh, 2020; He et al., 2021; 2022; Ballé et al.,
2020; Cheng et al., 2020; Jiang et al., 2023) have largely followed this design paradigm, leveraging
increasingly sophisticated combinations of hierarchical and autoregressive priors to model latent
distributions more accurately and achieve improved compression efficiency.

2.2 RATE-DISTORTION ESTIMATION

Rate-distortion theory provides a principled foundation for characterizing the minimum rate R(D)
achievable under a distortion constraint D. However, computing the rate-distortion function R(D)
for natural images is notoriously difficult due to the high-dimensional and continuous nature of
real-world data, making the classical Blahut-Arimoto algorithm (Blahut, 1972; Arimoto, 1972) dif-
ficult to apply directly. Early efforts like Gibson (2017) derived lower bounds using hand-crafted
source models, but these are often constrained by simplifying assumptions. More recent approaches
estimate R(D) directly from the data. Huang et al. (2020) introduced an AIS-based framework
that approximates the R(D) of deep generative models (e.g., VAE (Kingma & Welling, 2013),
GAN (Goodfellow et al., 2014), AAE (Makhzani et al., 2015)), treating compression as a lossy
coding problem and variational upper bounds to measure rate; Sandwich Bound (Yang & Mandt,
2022) leverages a variational autoencoder to learn latent representations and conditional distribu-
tions, yielding paired upper and lower bounds; the NERD (Lei et al., 2022) adopts an end-to-end
strategy that jointly optimizes an “optimizer-decoder” pair to minimize mutual information; and
the Wasserstein gradient descent (WGD) method (Yang et al., 2023) reformulates the dual of the
rate-distortion problem as a functional optimization task with adversarial regularization.

Despite these advances, most data-driven estimators focus on the global R(D) curve and offer lim-
ited insight into which components of neural compression models contribute to inefficiency. In
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contrast, we take a structurally grounded approach that decomposes performance loss into three
key factors: variance estimation, quantization strategy, and context modeling. This decomposition
provides a clearer path to closing the gap between practice and theory.

3 THEORETICAL RATE-DISTORTION ANALYSIS

In this section, we aim to derive the theoretical R-D limits of modern learned image compression
systems. Instead of relying on empirical entropy coding, we propose a mathematically grounded
framework that simulates the optimal performance achievable under idealized assumptions. To this
end, we decompose the overall R-D performance into three analytically tractable components: vari-
ance modeling, quantization, and context prediction.

3.1 OVERVIEW OF THE PROPOSED THEORETICAL R-D SIMULATION FRAMEWORK

Analysis 
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Synthesis 
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Model
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Figure 1: Architecture of the Proposed Rate-Distortion Simulation Framework

Our proposed framework aims to emulate the best-case performance of VAE-based compression
models under idealized modeling assumptions. It is built around three core components:

• Optimal variance modeling: We replace the hyperprior-estimated variances with optimal
variances to match the true distribution.

• Gaussian quantization: We substitute the standard uniform scalar quantizer with a con-
tinuous Gaussian test channel, aligning with the assumptions of rate-distortion theory.

• Context modeling: We incorporate autoregressive mean prediction to capture local depen-
dencies and reduce conditional entropy.

In the following subsections, we analyze each component independently and then combine them
into a joint simulation of the theoretical R-D limit.

3.2 OPTIMAL VARIANCE MODELING

In the Hyperprior framework, each latent variable is modeled as a zero-mean Gaussian, i.e., yn ∼
N (0, σ2

n), where the variance σ2
n is predicted by a hyperprior network. This predicted variance is

used to construct an entropy model for arithmetic coding.

From an information-theoretic perspective, the expected number of bits required to encode a symbol
is given by the cross-entropy between the true and estimated distributions. Therefore, the accuracy
of variance estimation directly affects coding efficiency (see Appendix A.1).

Instead of relying on potentially biased hyperprior estimates, we consider an alternative: using the
second moment of each latent as its variance. This choice can be interpreted as the result of a
maximum likelihood estimation (MLE) procedure under a Gaussian assumption. The following
theorem justifies this approach from both an information-theoretic and statistical perspective.
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Theorem 3.1. Let y ∼ N (0, σ2) be a latent variable encoded under a Gaussian entropy model with
zero mean and predicted variance σ̂2. The expected code length is minimized when the predicted
variance equals the true second moment of y, i.e., σ̂2 = E[y2].

Proof. The expected code length for a single symbol is

E[R(y)] = E[− logP (y)] =
1

2
log(2πσ̂2) +

E[y2]
2σ̂2

. (1)

Differentiating with respect to σ̂2 and setting to zero:
d

dσ̂2
E[R(y)] =

1

2σ̂2
− E[y2]

2(σ̂2)2
= 0. (2)

Solving yields σ̂2 = E[y2], completing the proof.

In practice, only one sample of y is available at encoding time. Thus, the sample energy y2 serves
as an unbiased proxy for E[y2], consistent with entropy coding where each code length is computed
based on its own likelihood. Replacing the hyperprior-estimated variance with this optimal variance
reduces code length and provides a theoretically grounded improvement in coding efficiency.

Modeling latents as Gaussian provides an upper bound under the maximum-entropy principle, which
guarantees our rate estimates remain conservative for any E[y2]-constrained distribution. A detailed
discussion of the motivation and implications of this assumption is provided in Appendix E.

3.3 OPTIMAL QUANTIZATION VIA GAUSSIAN TEST CHANNEL

In addition to the suboptimal variance estimation discussed in Section 3.2, the choice of quantization
method also contributes significantly to the R-D gap in Hyperprior frameworks. In practice, each
latent variable yn is quantized using uniform scalar quantization, typically with unit step size: ŷn =
round(yn), which is often approximated during training by injecting additive uniform noise: ỹn =
yn+Un, Un ∼ U(−0.5, 0.5). However, to match the theoretical R-D limit for Gaussian sources with
MSE distortion (see Appendix A.2), the noise introduced by quantization must follow a Gaussian
distribution. The optimal test channel in this case satisfies:

yn = ỹn + Zn, Zn ∼ N (0, Dn), (3)
which clearly differs from the uniform noise assumption. As such, the actual R-D behavior under
uniform quantization cannot achieve the theoretical limit given by the Gaussian R(D) function.

To further quantify this mismatch, we compare the effective rate achieved under the actual entropy
model used in Hyperprior frameworks with the information-theoretic lower bound.

For each latent variable yn, assuming an estimated variance σ2
n = y2n, the probability mass within

the quantization bin [yn − 0.5, yn + 0.5] is computed under the Gaussian model N (0, y2n). The
negative logarithm of this probability gives an estimate of the code length:

Runiform = − log2

∫ yn+0.5

yn−0.5

N (y; 0, y2n) dy. (4)

To maintain a fair comparison, we fix the distortion to that of uniform quantization noise, i.e., D =
1
12 , and compute the theoretical rate using the Gaussian rate-distortion function:

Ropt =

{
1
2 log2

(
y2
n

D

)
, if y2n > D,

0, otherwise.
(5)

We conduct a simple simulation by encoding yn using both methods and compare the rates. As
illustrated in Figure 2, under uniform quantization, the coding rate is strictly positive for any non-
zero variance and increases monotonically with the variance. In contrast, for the optimal Gaussian
test channel, symbols with variance below a certain distortion threshold are not encoded (R = 0).
Only when the variance exceeds this threshold does the rate become positive (see Appendix A.2).
The rate discrepancy between the two schemes is most pronounced near the distortion threshold, and
gradually diminishes as the variance increases. Appendix B formally proves that this rate gap asymp-
totically converges to 0.254 bits (Zamir, 2014). For multiple independent Gaussian sources, the dis-
tortion allocation naturally follows the reverse water-filling principle, as detailed in Appendix A.3.
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Figure 2: Left (a): Rate-variance curves under uniform quantization and the optimal Gaussian test
channel. Right (b): Pointwise difference in coding rate between the two strategies, highlighting the
inefficiency of uniform quantization.

3.4 JOINT SIMULATION OF VARIANCE AND QUANTIZATION UNDER IDEAL CONDITIONS

To establish a practical framework for the performance ceiling of learned image compression mod-
els, we construct a joint simulation that integrates the two previously derived components: optimal
variance estimation and Gaussian test channel quantization. This simulation assumes ideal entropy
modeling and bypasses actual bitstream generation by analytically computing expected rates and
distortions.

Specifically, we assume each latent variable yn follows an independent Gaussian distribution with
optimal variance y2n. Quantization is modeled using the optimal Gaussian test channel, and distortion
is allocated via the reverse water-filling algorithm to minimize total rate under a global distortion
constraint.

To simulate the test channel yn = ŷn + nn with nn ∼ N (0, Dn), we avoid injecting noise directly
into yn, which would incorrectly inflate the mutual information. Instead, we first apply a scaling
factor and then add noise, yielding:

ŷn = ηn · yn + zn, zn ∼ N (0, Dn). (6)

The scaling coefficient ηn is chosen such that the mutual information between yn and ŷn equals the
theoretical rate under the optimal Gaussian test channel. This is formalized below.
Theorem 3.2. Let yn ∼ N (0, y2n) and zn ∼ N (0, Dn) be independent. If ŷn = ηn · yn + zn, then

the mutual information I(yn, ŷn) equals 1
2 log2

(
y2
n

Dn

)
if and only if

ηn =

√
1− Dn

y2n
. (7)

The proof of Theorem 3.2 is provided in Appendix C.

Figure 3 illustrates the latent representation ŷ produced by the described simulation approach. We
observe that in low-variance regions (typically corresponding to smooth background areas such
as sky), the latent variables are suppressed to zero, resulting in zero rate allocation according to
the reverse water-filling principle. In contrast, under the uniform quantization scheme, all latent
variables are added uniform noise and encoded regardless of their variance.

The perturbed latent ŷ is passed to the synthesis decoder to reconstruct the image x̂. Training is
guided by a standard R-D objective:

L = D(x, x̂) + λR. (8)

where the distortion is measured by MSE, and the rate is estimated analytically:

R =
1

N

∑
n

1

2
log2

(
y2n
Dn

)
. (9)
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Figure 3: Visualization from left to right: original image, latent variables, uniform quantization
output and Gaussian test channel output. Latent variables in low-variance regions (e.g. sky) receive
zero rate allocation only under the Gaussian test channel.

3.5 INCORPORATING CONTEXT MODELING INTO THE THEORETICAL FRAMEWORK

In the previous analysis, we assumed that the latent variables {yn} are independent Gaussian
sources, without considering the correlations (e.g., spatial dependencies in y) that may exist be-
tween them. However, in practice, even after the analysis transform, local dependencies between
latent variables often persist. When correlations exist, the actual mutual information will be strictly
lower than the sum of individual rates in Eq. 9 (see Appendix D)

To further improve compression efficiency, modern learned compression frameworks widely adopt
context modeling, which predicts the local mean of each latent variable using its neighboring latents
to reduce the entropy required for encoding. Such context models are typically autoregressive, such
as PixelCNN (van den Oord et al., 2016), and effectively capture spatial dependencies in the latent
space.

From an information-theoretic perspective, the availability of context reduces uncertainty, as ex-
pressed by the following inequality:

H(ŷn | contextn) ≤ H(ŷn). (10)

This indicates that a well-designed context model can significantly reduce the conditional entropy
of latent variables, and thus lower the average bitrate.

In the idealized compression framework, context modeling is equivalent to introducing a local mean
prediction µ̂n for each latent. Instead of encoding yn directly, the system encodes the residual
yn − µ̂n. The corresponding theoretical encoding rate becomes:

Rn =
1

2
log2

(yn − µ̂n)
2

Dn
. (11)

This formulation naturally integrates the effect of context modeling into R-D estimation: the more
accurate the context prediction, the smaller the residual, and hence the lower the number of bits
required. It also reveals the functional difference between variance modeling and mean modeling in
neural compression systems:

• Variance modeling (e.g., via hyperprior networks) focuses on constructing predictive dis-
tributions that closely match the true latent distribution, thus reducing the cross-entropy
and redundant bitrate.

• Mean modeling (e.g., via context networks) lowers the intrinsic entropy of the latent rep-
resentation by predicting local means that capture spatial dependencies, thereby enabling
more efficient compression.

3.6 UNIFIED RATE-DISTORTION FORMULATION AND SIMULATION PROCEDURE

To summarize the theoretical framework, we present the final joint formulation of rate and distortion
that integrates three key components: optimal variance, optimal Gaussian quantization, and optional

6
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Algorithm 1 End-to-End Simulation of Theoretical R-D Limit

Require: Input image x, analysis transform ga, synthesis transform gs, context predictor fµ, dis-
tortion budget D, Lagrange multiplier λ

Ensure: Trained ga, gs and fµ that approximates theoretical R-D behavior
1: y ← ga(x) ▷ Encode image to latent
2: for all n in latent indices do
3: µ̂n ← fµ(ŷ<n) ▷ Predict mean using context
4: rn ← yn − µ̂n ▷ Compute residual
5: vn ← r2n ▷ Estimate variance of residual
6: {Dn} ← ReverseWaterFilling{vn} ▷ Bit allocation
7: ȳn ←

√
1−Dn/yn · yn ▷ Scale residual to preserve mutual information

8: ŷn ← ȳn +N (0, Dn) ▷ Simulate Gaussian test channel
9: end for

10: x̂← gs(ŷ) ▷ Decode perturbed latents
11: Compute distortion: D = MSE(x, x̂)
12: Compute rate estimate:

R =
1

N

∑
n

1

2
log2

(
vn
Dn

)
13: L ← D + λR
14: Update ga, gs and fµ by minimizing L via gradient descent

context-based mean prediction. This formulation reflects the idealized behavior of a learned image
compression system under information-theoretic assumptions. The complete simulation procedure
is detailed in Algorithm 1, while the corresponding analytical expressions for rate and distortion are
provided in Equation 12. Together, they offer a unified and executable framework for approximating
the R-D bound of modern variational compression architectures.

R =
1

N

N∑
n=1

1

2
log2

[
(ga(x)n − fµ(ŷ<n))

2

Dn

]

D =
1

|x|

|x|∑
i=1

(xi − gs(ŷ)i)
2

(12)

Here, ga(·) and gs(·) denote the analysis and synthesis transforms, fµ(·) is the context-based mean
predictor, and Dn is the distortion allocated through reverse water filling. The overall end-to-end
distortion D is by default measured as MSE, but can also be defined using other differentiable
metrics (e.g., MS-SSIM (Wang et al., 2003)), leveraging the expressive capacity of neural networks
to learn the corresponding mappings (see Appendix E for further discussion).

4 EXPERIMENT

In this section, we conduct a series of experiments to validate the proposed theoretical framework.
We compare the estimated variance and uniform quantization with optimal variance and Gaussian
test channel quantization to evaluate how much they contribute to the R-D gap. We then jointly sim-
ulate optimal variance and quantization to approximate the R-D limit of the Hyperprior framework
with context modeling. Finally, we compare our method with existing estimation approaches and
previous practical image codecs.

4.1 EXPERIMENTAL SETUP

All models are implemented in PyTorch (Paszke et al., 2019). The proposed framework adopts a
two-stage training strategy. First, we initialize the model parameters using a pre-trained Hyper-
prior network. Subsequently, we through an additional 200, 000 training iterations for our frame-
work. This fine-tuning phase employs Adam optimizer (Kingma & Ba, 2014) with a learning rate
of 6 × 10−5 and a batch size of 100 on a single NVIDIA RTX 4090 GPU. The two-stage training

7
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is adopted purely for efficiency; training the model from scratch yields equivalent performance but
requires longer convergence time. We use 100,000 randomly sampled images from the OpenImages
dataset (Google Inc.) for training, and evaluate on the Kodak dataset (Kodak, 1993). The Lagrange
multiplier λ varies from 5 to 700. Compression performance is reported in terms of average bits-per-
pixel (bpp), peak signal-to-noise ratio (PSNR, inversely related to MSE) and MS-SSIM. To compare
our approach with existing R(D) estimation methods, we additionally conduct experiments on the
MNIST dataset (LeCun et al., 1998), which offers a tractable setting for evaluating theoretical R-D
bounds. The complete implementation details are provided in Appendix F.

4.2 ISOLATING THE IMPACT OF VARIANCE ESTIMATION AND QUANTIZATION

We begin by isolating two key non-idealities in practical compression: inaccurate variance estima-
tion and non-Gaussian quantization noise. To assess the former, we replace the predicted variances
from the hyperprior with σ2

n = y2n. For quantization, we compare the default uniform scalar quan-
tizer with a simulated Gaussian test channel using fixed distortion D = 1
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Figure 4: Rate-distortion comparison of different components. Left (a): Comparison between the
Hyperprior baseline and variants enhanced with (i) optimal quantization (Gaussian test channel),
(ii) optimal variance estimation, and (iii) joint optimization of both. Right (b): Comparison between
Hyperprior baseline, the context-enhanced Minnen et al. (2018) model, joint optimization without
and with context modeling.

Figure 4(a) presents the R(D) curves comparing the baseline Hyperprior with three progressively
refined configurations: (1) optimal variance, (2) quantization via the optimal Gaussian test channel
instead of uniform scalar quantization, and (3) a joint simulation combining both components. Each
refinement brings the R-D performance closer to the theoretical limit, with the joint configuration
achieving the most significant improvement. The results clearly demonstrate that both variance
modeling and quantization strategy play critical roles in closing the gap between practical codecs
and information-theoretic bounds. These results validate the theoretical insights from Section 3.1
and 3.2, and quantify the individual contributions of each factor to the overall R-D gap.

4.3 JOINT SIMULATION RESULTS

Following the procedure described in Algorithm 1, we conduct joint simulation experiments that
compute the R-D under context-aware settings. The corresponding results are illustrated in Fig-
ure 4(b). The plotted curves reveal a clear performance gap between the baseline Hyperprior model
and the theoretical bounds estimated by our framework. Incorporating optimal variance estimation
and Gaussian test channel quantization already yields notable gains. Further integrating context-
based mean prediction results in an additional bitrate reduction, confirming the importance of cap-
turing spatial dependencies, which indicates that effective context modeling is critical for narrowing
the gap between practical codecs and the R-D bound. Similar trends are observed when training
with MS-SSIM as the distortion metric. We additionally visualize representative reconstructions
from these experiments in Appendix I.
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Figure 5: Left (a): Comparison of our theoretical R-D estimates with prior sample-driven estimators
and the actual performance of learned image compression models on the Kodak dataset measured by
PSNR. Middle (b): Comparison of ours with practical compression models measured by MS-SSIM.
Right (c): Comparison of different R-D estimation methods on the MNIST training set.

4.4 COMPARISON WITH THEORETICAL RATE-DISTORTION ESTIMATION METHODS

We further compare our proposed method with several representative sample-driven R-D estimation
frameworks, including the Sandwich Bound (Yang & Mandt, 2022), NERD (Lei et al., 2022), and
WGD (Yang et al., 2023). Figure 5(a) presents the estimated R(D) curves on the Kodak dataset.
Our method consistently yields tighter bounds, highlighting its superior accuracy in approximating
the information-theoretic limit.

To assess generalization to a different data domain, we also perform R(D) estimation on the MNIST
training dataset (LeCun et al., 1998), as shown in Figure 5(c). Notably, due to the small spatial
dimensions of MNIST images (28 × 28 pixels), downsampling eliminates nearly all spatial corre-
lations. As a result, the performance gain using context model becomes negligible in this scenario.
The results again demonstrate that our approach achieves the closest approximation to the theo-
retical lower bound among all evaluated methods, confirming the robustness and precision of our
estimation framework across datasets.

4.5 COMPARISON WITH PRACTICAL LEARNED IMAGE CODECS

Figure 5(a) also shows the empirical R-D curves alongside our theoretical lower bound. While
the latest models narrow the gap significantly, our bound remains higher. This suggests that even
recent state-of-the-art systems have not yet fully saturated the potential of their architectural priors,
especially in high-rate regimes. The proposed framework thus serves as a practical benchmark for
future model development.

5 DISCUSSION

In this work, we present a theoretical simulation framework based on the Hyperprior architecture to
approximate the R-D limit of learned image compression systems, which serves as a fundamental
tool for analyzing the performance gap and contributing factors between learned image compres-
sion systems and their R-D limits. Specifically, we isolate and quantify the impact of three core
components: variance estimation, quantization, and context modeling.

Compared to prior sample-driven estimators (e.g., Sandwich Bound, NERD, WGD), our approach
not only offers structural interpretability and actionable guidance, but also consistently achieves
lower estimated R-D curves in practice, providing a tighter bound to the theoretical optimum.

While our framework provides a theoretically grounded approximation to the R-D limit, its accuracy
still depends on the expressiveness and architecture of the underlying neural networks. Employing
more advanced network designs may further tighten the estimated bounds and push the limits of
learned compression closer to the information-theoretic optimum.

9
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Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational
image compression with a scale hyperprior. In International Conference on Learning Represen-
tations, 2018.
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ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019. URL https://arxiv.org/abs/1912.01703.

Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27
(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

Claude E. Shannon. Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of
Radio Engineers, International Convention Record, vol. 7, 1959., pp. 325–350. 1993. doi: 10.
1109/9780470544242.ch21.

Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy image compression with
compressive autoencoders. In International Conference on Learning Representations, 2017.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
International conference on machine learning, pp. 1747–1756, 2016.

Z. Wang, E.P. Simoncelli, and A.C. Bovik. Multiscale structural similarity for image quality as-
sessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems Computers, 2003,
volume 2, pp. 1398–1402 Vol.2, 2003. doi: 10.1109/ACSSC.2003.1292216.

Y Yang and S Mandt. Towards empirical sandwich bounds on the rate-distortion function. In
International Conference on Learning Representations, 2022.

Yibo Yang, Stephan Eckstein, Marcel Nutz, and Stephan Mandt. Estimating the rate-distortion
function by wasserstein gradient descent. Advances in Neural Information Processing Systems,
36:2768–2794, 2023.

Ram Zamir. Lattice coding for signals and networks: A structured coding approach to quantization,
modulation, and multiuser information theory. Cambridge University Press, 2014.

11

https://arxiv.org/abs/1412.6980
http://r0k.us/graphics/kodak/
https://arxiv.org/abs/1912.01703


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A THEORETICAL FOUNDATIONS OF RATE-DISTORTION ANALYSIS

This appendix provides detailed derivations and theoretical background supporting the main analysis
in Section 3.

A.1 CROSS-ENTROPY AND BITRATE UNDER MISMATCHED DISTRIBUTION

Let P (y) be the true distribution of a symbol and Q(y) be the predicted model used for encod-
ing. According to Shannon’s source coding theorem (Shannon, 1948), the average number of bits
required to encode a symbol drawn from P using model Q is given by the cross-entropy:

H(P,Q) = −
∑
y

P (y) logQ(y) (13)

In the case of continuous distributions p(y) and q(y), this generalizes to:

H(p, q) = −
∫

p(y) logQ(y) dy (14)

Minimizing this quantity is equivalent to minimizing the KL-divergence between P and Q (or p and
q) plus the constrained entropy of P . Therefore, improving the match between the estimated model
and the true distribution reduces the code length.

A.2 RATE-DISTORTION FUNCTION OF GAUSSIAN SOURCES

For a zero-mean Gaussian source X ∼ N (0, σ2) and squared-error distortion, the rate-distortion
function is:

R(D) =

{
1
2 log2

(
σ2

D

)
, if 0 < D < σ2

0, if D ≥ σ2
(15)

This expression represents the fundamental lower bound on the bitrate required to represent Gaus-
sian sources under mean squared error (MSE) distortion.

Gaussian Test Channel Interpretation. The rate-distortion function R(D) can be interpreted
through the lens of a Gaussian test channel:

X = X̂ + Z, (16)
where Z ∼ N (0, D) is independent Gaussian noise with variance equal to the allowed distortion
level D, and X̂ ∼ N (0, σ2−D). This model ensures that the expected distortion E[(X−X̂)2] = D.

The mutual information between X and X̂ in this setting is:

I(X; X̂) =
1

2
log2

(
σ2

D

)
, (17)

which matches the rate-distortion function R(D). This indicates that the Gaussian test channel
achieves the minimum rate required for a given distortion level, making it an optimal solution in the
rate-distortion sense.

This interpretation is foundational in information theory and is detailed in standard references such
as Cover and Thomas’s Elements of Information Theory (Cover & Thomas, 2006).

A.3 REVERSE WATER-FILLING FOR MULTIPLE GAUSSIAN SOURCES

Consider m independent Gaussian sources Xi ∼ N (0, σ2
i ) and a total distortion budget D. The

optimal allocation of distortion Di to each source minimizes the total rate:

R(D) = min∑
Di≤D

m∑
i=1

max

(
0,

1

2
log2

(
σ2
i

Di

))
. (18)
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The closed-form solution is found using the reverse water-filling algorithm:

• Choose a water level α.
• Set Di = min(σ2

i , α) for all i.
• Adjust α such that

∑
Di = D.

Only sources with σ2
i > α contribute nonzero rates.

A.4 ALIGNMENT OF LATENT AND PIXEL DOMAIN DISTORTIONS

We formalize the relation between distortions in the latent and pixel domains, drawing connections
to classical transform coding and the optimization process of learned compression models.

Connection to classical transforms. In transform coding, orthogonal linear transforms such as
the Karhunen–Loève Transform (KLT) preserve mean squared error (MSE) between the original
and transformed domains. This property ensures that distortion allocation in the transform domain
directly reflects distortion in the pixel domain.

Role of learned transforms. In our framework, the analysis and synthesis transforms ga(·) and
gs(·) are parameterized by neural networks. Although these transforms are nonlinear and not strictly
orthogonal, they are trained end-to-end with a pixel-domain distortion objective. This optimization
drives the learned transforms to approximate decorrelating mappings that preserve distortion across
domains.

Optimization-driven alignment. Equation 12 illustrates this principle: the reverse water-filling
procedure governs latent-domain allocations Dn, while the global distortion D is defined in the pixel
space. Because optimization explicitly minimizes D, the latent-domain allocations remain aligned
with the pixel-domain criterion. This mechanism justifies applying reverse water-filling in the latent
space as a tractable approximation to pixel-domain distortion. Moreover, the expressive capacity
of neural networks allows the same formulation to be extended beyond MSE, enabling alternative
differentiable distortion metrics (e.g., MS-SSIM) to be incorporated within the same framework.

B DERIVATION OF THE RATE GAP BETWEEN UNIFORM QUANTIZATION AND
THE SHANNON LIMIT

In high-rate quantization theory, it is known that uniform scalar quantization introduces a fixed gap
compared to the theoretical rate-distortion (R-D) lower bound given by Shannon’s formula. This
section derives the asymptotic rate gap of approximately 0.254 bits per sample, which arises when
using a unit-step uniform quantizer with Gaussian sources (Zamir, 2014).

B.1 SHANNON RATE-DISTORTION BOUND FOR GAUSSIAN SOURCE

For a zero-mean Gaussian source X ∼ N (0, σ2) and mean squared error (MSE) distortion D, the
Shannon lower bound on the minimum achievable rate is:

RShannon =
1

2
log2

(
σ2

D

)
. (19)

B.2 RATE OF HIGH-RESOLUTION UNIFORM SCALAR QUANTIZER

Let us consider a unit-step uniform scalar quantizer with interval size ∆ = 1. The quantization
noise can be modeled as a uniform distribution over [−∆/2,∆/2]. The corresponding quantization
distortion is:

Duniform =
∆2

12
=

1

12
. (20)

The rate required to code a Gaussian source using uniform quantization is given by the asymptotic
formula:

Runiform ≈
1

2
log2 (2πe ·G) , (21)
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where G is the normalized second moment of the quantizer, and for uniform quantization, G = 1/12.

B.3 GAP COMPUTATION

The rate gap between uniform quantization and the Shannon bound is therefore:

∆R = Runiform −RShannon =
1

2
log2(2πe ·G) =

1

2
log2

(πe
6

)
. (22)

Substituting values:

∆R =
1

2
log2

(πe
6

)
≈ 0.254 bits/sample. (23)

B.4 INTERPRETATION

This result implies that even under optimal entropy coding, a uniform scalar quantizer incurs an
irreducible rate penalty of approximately 0.254 bits/sample compared to the Shannon lower bound.
This is due to the shape mismatch between the uniform quantization noise and the optimal Gaussian
noise assumed in Shannon’s test channel model.

C PROOF OF THEOREM 3.2 (SCALING FACTOR FOR GAUSSIAN TEST
CHANNEL)

Theorem 3.2 Let yn ∼ N (0, y2n) and zn ∼ N (0, Dn) be independent. If ŷn = ηn · yn + zn, then

the mutual information I(yn, ŷn) equals 1
2 log2

(
y2
n

Dn

)
if and only if

ηn =

√
1− Dn

y2n
. (24)

Proof. Since yn ∼ N (0, y2n) and zn ∼ N (0, Dn) are independent, the linear combination

ŷn = ηn · yn + zn (25)

is also Gaussian with zero mean. Its variance is given by:

Var[ŷn] = η2n ·Var[yn] + Var[zn] = η2ny
2
n +Dn. (26)

The mutual information between two jointly Gaussian random variables yn and ŷn is:

I(yn, ŷn) =
1

2
log2

(
Var[ŷn]

Var[ŷn | yn]

)
. (27)

Given ŷn = ηnyn + zn, the conditional variance Var[ŷn | yn] is simply the variance of zn, since zn
is independent noise:

Var[ŷn | yn] = Dn. (28)

Thus,

I(yn, ŷn) =
1

2
log2

(
η2ny

2
n +Dn

Dn

)
. (29)

To match the desired expression

I(yn, ŷn) =
1

2
log2

(
y2n
Dn

)
, (30)

we require:
η2ny

2
n +Dn

Dn
=

y2n
Dn

. (31)

14
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Solving for ηn:

η2ny
2
n = y2n −Dn ⇒ η2n = 1− Dn

y2n
⇒ ηn =

√
1− Dn

y2n
. (32)

This concludes the proof.

In addition to the direct derivation, we present an alternative proof that leverages the duality between
the rate-distortion function of a Gaussian source and the capacity of a Gaussian channel. This
formulation provides further intuition into the role of the scaling factor ηn in simulating the optimal
Gaussian test channel.

Proof (from Gaussian test channel perspective). We consider the classic setting of a Gaussian
source and a Gaussian test channel. Let the source yn ∼ N (0, σ2) and the distortion constraint
be Dn. According to rate-distortion theory, the minimum achievable rate under mean squared error
(MSE) distortion is:

R(Dn) =
1

2
log2

(
σ2

Dn

)
, for Dn ≤ σ2. (33)

On the other hand, the capacity of a Gaussian channel with signal-to-noise ratio SNR = P
N is given

by:

C =
1

2
log2

(
1 +

P

N

)
, (34)

where P is the power of the transmitted signal and N is the noise variance.

In our setting, we simulate a test channel of the form:
ŷn = ηnyn + zn, zn ∼ N (0, Dn), yn ∼ N (0, σ2), (35)

with yn and zn independent.

To ensure that this test channel mimics the optimal rate-distortion behavior, we must force the mutual
information between yn and ŷn to match the rate-distortion function:

I(yn; ŷn) = R(Dn) =
1

2
log2

(
σ2

Dn

)
. (36)

Now, note that the effective signal-to-noise ratio of the test channel is:

SNReff =
Var[ηnyn]

Var[zn]
=

η2nσ
2

Dn
. (37)

Thus, the mutual information is:

I(yn; ŷn) =
1

2
log2

(
1 +

η2nσ
2

Dn

)
. (38)

To make this equal to R(Dn), we equate:
1

2
log2

(
1 +

η2nσ
2

Dn

)
=

1

2
log2

(
σ2

Dn

)
. (39)

This implies:

1 +
η2nσ

2

Dn
=

σ2

Dn
⇒ η2nσ

2

Dn
=

σ2 −Dn

Dn
. (40)

Solving for η2n:

η2n =
σ2 −Dn

σ2
= 1− Dn

σ2
. (41)

Therefore,

ηn =

√
1− Dn

σ2
, (42)

which is the desired result.
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D EFFECT OF SOURCE CORRELATION ON RATE-DISTORTION ESTIMATION

In Section 3, we estimate the theoretical bitrate using the reverse water-filling principle, assuming
that latent variables are independent Gaussian sources. However, in practical scenarios, residual cor-
relation may exist between variables, which affects the accuracy of rate estimation. In this appendix,
we analyze the impact of such correlation on the total rate-distortion cost.

D.1 PROBLEM SETUP

Consider two zero-mean Gaussian random variables X and Y with identical variance σ2, and a fixed
distortion level D for each. The reconstructed variables X̂ and Ŷ are modeled using an additive
Gaussian test channel:

X̂ = X + ZX , ZX ∼ N (0, D), (43)

Ŷ = Y + ZY , ZY ∼ N (0, D), (44)
where ZX and ZY are independent of X and Y , respectively. The total rate is given by:

Rtotal = I(X; X̂) + I(Y ; Ŷ ). (45)

We now compare Rtotal under two different assumptions: (1) X and Y are independent, and (2) X
and Y are correlated with Pearson correlation coefficient ρ.

D.2 CASE 1: INDEPENDENT VARIABLES

If X ⊥ Y , then the mutual informations decompose as:

I(X; X̂) =
1

2
log2

(
1 +

σ2

D

)
, I(Y ; Ŷ ) =

1

2
log2

(
1 +

σ2

D

)
. (46)

Hence, the total rate is:

Rind = log2

(
1 +

σ2

D

)
. (47)

D.3 CASE 2: CORRELATED VARIABLES

Suppose X and Y have correlation coefficient ρ, i.e.,
E[XY ] = ρσ2. (48)

The joint distribution of (X,Y ) is now correlated, and so are their reconstructions (X̂, Ŷ ).

Let us compute the mutual information between (X,Y ) and (X̂, Ŷ ):

Rcorr = I((X,Y ); (X̂, Ŷ )). (49)

Since the system is jointly Gaussian, the mutual information is given by:

Rcorr =
1

2
log2

(
|ΣX̂,Ŷ |
|ΣX̂,Ŷ |X,Y |

)
, (50)

where:

ΣX,Y =

[
σ2 ρσ2

ρσ2 σ2

]
, ΣX̂,Ŷ = ΣX,Y +D · I2, (51)

ΣX̂,Ŷ |X,Y = D · I2. (52)

Then:

|ΣX̂,Ŷ | =
∣∣∣∣[σ2 +D ρσ2

ρσ2 σ2 +D

]∣∣∣∣ = (σ2 +D)2 − ρ2σ4, (53)

|ΣX̂,Ŷ |X,Y | = D2. (54)

Therefore, the total mutual information is:

Rcorr =
1

2
log2

(
(σ2 +D)2 − ρ2σ4

D2

)
. (55)
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D.4 COMPARISON AND INTERPRETATION

Comparing the two rates:

Rind = log2

(
1 +

σ2

D

)
, (56)

Rcorr =
1

2
log2

(σ2 +D)2 − ρ2σ4

D2
. (57)

Since ρ2σ4 > 0 for any ρ ̸= 0, we have:

Rcorr < Rind. (58)

This shows that treating correlated variables as independent overestimates the total rate. Thus, re-
verse water-filling performed under the independence assumption yields a conservative upper bound
on the achievable bitrate.

E ON THE GAUSSIAN ASSUMPTION IN THEORETICAL ANALYSIS

In this section, we discuss the Gaussian assumption adopted in our theoretical framework. We
first discuss the motivation for modeling latents as Gaussian variables, a common modeling choice
adopted by both Hyperprior-based frameworks and our proposed approach. We then analyze how
this assumption influences rate estimation in both Hyperprior-based and reverse water-filling formu-
lations. Finally, we provide a maximum-entropy perspective that formalizes the conservativeness of
Gaussian-based estimates.

E.1 WHY MODEL LATENTS AS GAUSSIAN?

Although the true marginal distribution p∗(y) of the latent representation is generally unknown, there
are both practical and theoretical motivations for adopting a Gaussian assumption in our framework.

Analytical tractability. Our analysis employs mean squared error (MSE) as the distortion metric,
which naturally aligns with Gaussian test channels in classical rate-distortion theory. This choice
enables closed-form expressions and makes it possible to apply the reverse water-filling theorem.
While we primarily focus on MSE for its prevalence and analytical clarity, the framework is not
inherently limited to MSE and can in principle be extended to other differentiable metrics.

Maximum-entropy justification. From an information-theoretic perspective, the Gaussian distri-
bution maximizes entropy among all distributions with the same variance. Consequently, assuming
Gaussian latents leads to conservative rate estimates that serve as valid upper bounds, ensuring the
analysis remains meaningful even when the actual latent distribution deviates from Gaussian. We
will provide a more detailed discussion later.

Transform-domain perspective. Classical signal processing provides additional support for Gaus-
sian modeling. If natural images are approximated as Gaussian mixture models (GMMs), an ideal
Karhunen–Loève Transform (KLT) decorrelates the components and maps them into uncorrelated
Gaussian variables. However, the ideal KLT is data-dependent and difficult to realize in practice, es-
pecially for high-dimensional and non-stationary image distributions. Therefore, we adopt a neural
network as a nonlinear and learnable transform to approximate the behavior of the optimal KLT. The
latent representation produced by the encoder can be interpreted as a generalized KLT output, which
can be reasonably interpreted as approximately Gaussian. Residual dependencies that remain after
analysis transforms are explicitly handled by the context model, which captures local correlations
through autoregressive mean prediction.

E.2 RATE ESTIMATION IN THE HYPERPRIOR FRAMEWORK

In the Hyperprior model, each latent variable is encoded using an entropy model qθ(y), typically
a zero-mean Gaussian with learned variance. The estimated rate corresponds to the expected code
length:

RHyperprior = Ep∗(y) [− log qθ(y)] , (59)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

which can be decomposed as:

RHyperprior = H(p∗) +DKL(p
∗ ∥ qθ), (60)

where H(p∗) is the true entropy of the latent variable and DKL is the Kullback-Leibler divergence
between the true distribution and the assumed Gaussian model. This decomposition highlights that
Hyperprior-based estimation intrinsically accounts for distribution mismatch via the KL term, yield-
ing a pessimistic (upper-bound) rate.

E.3 RATE ESTIMATION VIA REVERSE WATER-FILLING

In contrast, our framework directly invokes the analytical rate-distortion function for Gaussian
sources:

RRWF =
1

2
log2

σ2
y

D
, (61)

where σ2
y denotes the second moment of the latent variable, and D is the distortion allocation. This

expression assumes that y ∼ N (0, σ2
y), and does not include a divergence term that reflects modeling

error. As such, the accuracy of this rate depends on how well the true distribution aligns with the
Gaussian assumption.

E.4 THEORETICAL JUSTIFICATION VIA MAXIMUM ENTROPY PRINCIPLE

According to the maximum entropy theorem (Cover & Thomas, 2006, Theorem 8.6.5), among all
distributions with a given variance, the Gaussian distribution achieves the highest differential en-
tropy:

H(p∗) ≤ H(N (0, σ2
y)) =

1

2
log(2πeσ2

y). (62)

Therefore, for any p∗(y) with fixed second moment, the corresponding Gaussian-based rate estima-
tion provides an upper bound:

Rtrue ≤
1

2
log2

σ2
y

D
= RRWF. (63)

Similarly, in the Hyperprior framework, the presence of DKL(p
∗ ∥ qθ) ensures that

RHyperprior ≥ H(p∗) ≥ Rtrue. (64)

In conclusion, the Gaussian assumption leads to worst-case (maximum entropy) rate estimates, pro-
viding a safety margin when the true distribution is unknown. Overestimated rates reduce the risk
of underprovisioning in channel or storage resource planning. Both Hyperprior and our methods
align with information-theoretic principles, ensuring that rate estimates remain valid even under
distributional uncertainty.

F MODEL IMPLEMENTATION DETAILS

The detailed architectures of each sub-network in our model are summarized in Table 1. While our
theoretical framework is agnostic to specific network designs, we adopt a unified architecture for fair
comparison, closely following the configurations used in the Hyperprior (Ballé et al., 2018) model
and Minnen et al. (2018).

For experiments conducted on the MNIST dataset, we further introduce a lightweight variant with
substantially fewer parameters to prevent overfitting due to the limited data size. The architecture of
this compact model is provided in Table 2.
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Table 1: Network architecture of the learned compression model and our framework. Each convo-
lution is denoted as “kernel size k × k, c channels, stride s”.

Encoder Decoder Context Prediction

Conv: 5×5 c192 s2 Deconv: 5×5 cM s2 Masked: 5×5 cM s1
GDN (Ballé et al., 2016a) IGDN

Conv: 5×5 c192 s2 Deconv: 5×5 c192 s2
GDN IGDN

Conv: 5×5 c192 s2 Deconv: 5×5 c192 s2
GDN IGDN

Conv: 5×5 cM s2 Deconv: 5×5 c3 s2

Hyper Encoder Hyper Decoder Entropy Parameters

Conv: 3×3 c192 s1 Deconv: 5×5 c192 s2 Conv: 1×1 c640 s1
Leaky ReLU Leaky ReLU Leaky ReLU

Conv: 5×5 c192 s2 Deconv: 5×5 c192 s2 Conv: 1×1 c512 s1
Leaky ReLU Leaky ReLU Leaky ReLU

Conv: 5×5 c192 s2 Deconv: 3×3 c192 s1 Conv: 1×1 c384 s1

Table 2: The lightweight network architecture of our framework trained on MNIST. Each convolu-
tion is denoted as “kernel size k × k, c channels, stride s”.

Encoder Decoder

Conv: 5×5 c36 s1 Deconv: 5×5 c36 s2
GDN IGDN

Conv: 5×5 c36 s2 Deconv: 5×5 c36 s2
GDN IGDN

Conv: 5×5 c36 s2 Deconv: 5×5 c36 s2
GDN IGDN

Conv: 5×5 c36 s2 Deconv: 5×5 c1 s1

To accommodate different compression regimes, we set the bottleneck channel capacity M based
on the target bitrate. Specifically, we use M=192 for low-rate training scenarios (i.e., bpp < 0.8),
and increase to M=320 for high-rate regimes to ensure sufficient representational capacity.

G BROADER IMPACTS

This work develops a theoretical framework for analyzing the rate-distortion performance of learned
image compression models. While the primary focus is methodological and analytical, the results
may inform the design of more efficient compression systems for visual data. Improvements in
compression can benefit applications such as image storage, transmission, and on-device processing,
particularly in resource-constrained environments.

Our framework does not directly involve human subjects, user data, or social decision-making. As
such, we do not foresee immediate negative societal impacts. However, as with any work that opti-
mizes data representation, downstream applications—such as media delivery, surveillance, or gen-
erative content—may introduce ethical concerns if used irresponsibly. These broader implications
depend on the context of deployment rather than the methodology itself.

The framework may also be extended to other data modalities such as audio, video, or text, which
could introduce domain-specific considerations related to perceptual quality, fairness, or privacy.
These extensions would require careful adaptation and responsible evaluation.
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H USE OF LARGE LANGUAGE MODELS

We declare that large language models (LLMs) were employed exclusively to aid in language polish-
ing of this paper. Specifically, the LLM was used for minor improvements in grammar, word choice,
sentence fluency and readability. Importantly, no part of the technical content—including the for-
mulation of ideas, theoretical analysis, experimental design, implementation, or interpretation of
results—was generated by an LLM. The research contributions, methodology, and conclusions are
entirely the work of the authors. The authors take full responsibility for the accuracy and integrity
of the paper’s content.

I QUALITATIVE RESULTS ON KODAK

We visualize five images from the Kodak dataset, each compressed using three different methods:
(1) Hyperprior baseline, (2) Joint optimal variance and quantization, and (3) Joint optimization with
context prediction. Below each image, we report the corresponding PSNR (in dB) and bitrate (in
bits per pixel).
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Hyperprior: PSNR = 26.1595, bpp = 0.2675

Ours (w/o context): PSNR = 27.7611, bpp = 0.22425

Ours (w/ context): PSNR = 29.0142, bpp = 0.1863

Figure 6: Compression results on kodim 01.png using three methods.
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Hyperprior: PSNR = 31.0668, bpp = 0.10352

Ours (w/o context): PSNR = 32.6676, bpp = 0.08424

Ours (w/ context): PSNR = 33.9723, bpp = 0.05395

Figure 7: Compression results on kodim 03.png using three methods.
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Hyperprior: PSNR = 30.1220, bpp = 0.1587

Ours (w/o context): PSNR = 31.9423, bpp = 0.1231

Ours (w/ context): PSNR = 33.2217, bpp = 0.0818

Figure 8: Compression results on kodim 07.png using three methods.
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Hyperprior: PSNR = 30.3555, bpp = 0.12093

Ours (w/o context): PSNR = 31.8410, bpp = 0.10125

Ours (w/ context): PSNR = 33.1759, bpp = 0.06525

Figure 9: Compression results on kodim 20.png using three methods.
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Hyperprior: PSNR = 26.1595, bpp = 0.22485

Ours (w/o context): PSNR = 27.8055, bpp = 0.18445

Ours (w/ context): PSNR = 29.3552, bpp = 0.16528

Figure 10: Compression results on kodim 24.png using three methods.
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