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ABSTRACT

Offline reinforcement learning (Offline RL) has gained attention as a means of
training reinforcement learning models using pre-collected static data. To address
the issue of limited data and improve downstream Offline RL performance, recent
efforts have focused on broadening dataset coverage through data augmentation
techniques. However, most of these methods are tied to a specific policy (policy-
dependent), restricting the generated data to supporting only a specific downstream
Offline RL policy. Moreover, the return (quality) of synthetic data is often not well-
controlled, which limits the potential for further improving the downstream policy.
To tackle these issues, we propose HIgh-return POlicy-DEcoupled (HIPODE),
a novel data augmentation method for Offline RL. On the one hand, HIPODE
generates high-return synthetic data by selecting states near the dataset distribution
with potentially high value among candidate states using the negative sampling
technique. On the other hand, HIPODE is policy-decoupled, thus can be used as
a common plug-in method to support diverse downstream Offline RL processes.
We conduct experiments on the widely studied TD3BC, CQL and IQL algorithms,
and the results show that HIPODE outperforms or has competitive results to the
state-of-the-art policy-decoupled data augmentation method and most prevalent
model-based Offline RL methods on D4RL benchmarks.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018; Precup et al., 2001; Sutton, 1991) has achieved
remarkable success in various applications, including game playing (Mnih et al., 2013), robotics
(Singh et al., 2022), finance (Charpentier et al., 2021), and healthcare (Liu et al., 2020a). Nevertheless,
traditional RL algorithms necessitate real-time interaction with the environment. In many real-world
scenarios, such as autonomous driving (Kiran et al., 2021) and medical treatment (Liu et al., 2020a),
online learning is not feasible due to the high cost of failures, and collecting new data is often
expensive or even dangerous (Prudencio et al., 2023). Consequently, Offline RL (Offline RL) (Lange
et al., 2012; Levine et al., 2020) has garnered significant attention in recent years as it aims to learn
from a dataset of previously collected experiences without further interaction with the environment.

In the offline setting, prior off-policy RL methods are known to fail on fixed offline datasets (Haarnoja
et al., 2018; Fujimoto et al., 2018), even on expert demonstrations (Fujimoto et al., 2019). The main
reason of this could be the limited coverage of offline data. This can cause the policy visiting states
that are out of the distribution (OOD) of the dataset, and suffer from the extrapolation error on these
states (Fujimoto et al., 2019; Kumar et al., 2019). To alleviate extrapolation errors, most Offline RL
researches attempt to avoid out-of-distribution states or actions in actor-critic iterations, focusing on
policy constraint (Fujimoto et al., 2019; Wu et al., 2019; Liu et al., 2020b; Fujimoto & Gu, 2021),
support constraint (Kostrikov et al., 2022; Kumar et al., 2019), value regularization (Kumar et al.;
Ma et al., 2021b;a; Kumar et al., 2021; Kostrikov et al., 2021; An et al., 2021), and others. However,
these approaches face the problem of the loss of generalization capability (Lyu et al., 2022).

Different from mitigating the extrapolation error in actor-critic iterations, data augmentation has been
applied in Offline RL recently to expand the coverage of the dataset. The simplest approach is to add
noise to the original dataset to obtain augmented data (Sinha et al., 2022; Weissenbacher et al., 2022),
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which could result in inaccurate dynamics transition that may not match the real environment. In
contrast, dynamics models used in model-based RL can augment the dataset by rolling out synthetic
samples. Inspired by this, existing works use the forward or backward dynamics models (Yu et al.,
2021; 2020; Kidambi et al., 2020; Lyu et al., 2022; Wang et al., 2021; 2022; Lu et al., 2022; Guo
et al., 2022; Rigter et al., 2022; Fu et al.) to generate synthetic data and incorporate them into the
policy training process. However, most of these methods are policy-dependent since they have to
explicitly deal with unreliable data derived from inaccurate models to adapt to the downstream policy,
thus limiting their data’s application to augment other Offline RL algorithms. Among them, (Wang
et al., 2021; Lyu et al., 2022) achieve policy-decoupled data augmentation. However, these methods
lack explicit constraints to ensure the return of the generated data, making the underlying mechanism
by which they work unclear and limiting the potential of further improvement to the downstream
policy. On the other hand, previous research has indicated that RL algorithms derive advantages
from highly diverse data (Kumar et al., 2022; Yarats et al., 2022). However, these studies have been
conducted with the collection of accurate and diverse ground-truth data from the environment, which
is substantially different from our setting.

To overcome the above-mentioned issues, we investigate the data augmentation method that is not
dependent on the downstream Offline RL policy, while also ensuring the high-return of the generated
data. We first empirically analyze that high-return data is beneficial for enhancing Offline RL
performance. Then, we propose the HIgh-return POlicy-DEcoupled (HIPODE) data augmentation
approach.

Specifically, we empirically show that high-return data can be more efficient for enhancing Offline
RL performance than high diversity data, by comparing data from two types of augmentation policies:
a noisy policy and an offline RL policy, and using the true environment as the data generator to
eliminate the influence of model inaccuracy. Our findings show that data from a noisy policy rarely
beneficial for downstream offline policy learning algorithms, and may even be harmful when the
noise is too violent. In contrast, high-return data can enhance the downstream policy.
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Figure 1: Outline of our data augmentation for Offline
RL.

We present the outline of our policy-
decoupled data augmentation process for Of-
fline RL in Fig.1, which involves using spe-
cific augmentation policy to generate syn-
thetic datasets based on the original dataset.
These synthetic datasets are then used to ex-
pand the training data for any downstream
Offline RL algorithm. In policy-dependent
methods, the augmentation policy is related to
the downstream policy (green arrow), which
we try to break (the red cross). Throughout
the process in Fig. 1, our key insight is to gen-
erate high-return synthetic augmented data
while ensuring authenticity (i.e. the proximity
level between the synthetic data and the real
data) as much as possible in such a policy-decoupled way. To summarize, the contributions of this
paper are:

• We investigate the impact of different types of augmented data on downstream Offline RL algo-
rithms. Our findings indicate that high-return data, as opposed to noisy data with high diversity,
benefits downstream offline policy learning performance more.

• We propose a novel policy-decoupled data augmentation method HIPODE for Offline RL. HIPODE
serves as a common plugin that can augment high-return synthetic data for any Offline RL algorithm,
and is decoupled with downstream offline policy learning process.

• We evaluate HIPODE on D4RL benchmarks and it significantly improves several widely used
model-free Offline RL baselines. Furthermore, HIPODE outperforms state-of-the-art (SOTA)
policy-decoupled data augmentation approaches for Offline RL.

2 RELATED WORK
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Table 1: Results of downstream Offline RL algorithm using dif-
ferent types of augmented data. Org denotes using the original
dataset; Org + Div σ and Org + Return denote using high-diversity
or high-return augmented data; -r and -m-r denotes -random-v0
and -medium-replay-v0.

Task Name Type TD3BC CQL IQL

halfcheetah-r

Org 12.8 ± 1.9 17.0 ± 9.3 16.5 ± 0.6
Org + Div 0.01 12.1 ± 0.6 2.0 ± 0.2 11.2 ± 4.0
Org + Div 0.1 12.0 ± 0.5 16.1 ± 5.5 14.3 ± 3.0
Org + Div 1.0 9.2 ± 0.7 3.0 ± 0.4 12.6 ± 6.2
Org + Return 25.8 ± 0.0 23.8 ± 0.3 21.2 ± 4.7

halfcheetah-m-r

Org 43.3 ± 0.6 42.5 ± 0.9 41.1 ± 1.1
Org + Div 0.01 44.6 ± 0.6 38.4 ± 6.7 43.3 ± 0.3
Org + Div 0.1 44.3 ± 0.3 1.8 ± 0.1 44.0 ± 0.2
Org + Div 1.0 41.8 ± 0.7 25.6 ± 19.2 40.1 ± 0.3
Org + Return 46.8 ± 0.1 52.6 ± 0.1 44.6 ± 0.2

Data augmentation in Offline
RL. To address the challenge
of limited data in Offline RL,
various methods have been pro-
posed to generate more sufficient
data. Most of these approaches
are policy-dependent, meaning
they generate data based on the
current policy and use it to re-
fine the training of the same pol-
icy (Wang et al., 2022). These
policy-dependent data augmenta-
tion methods can be divided into
two categories. The first cate-
gory seeks to generate pessimistic
synthetic data that would be pes-
simistic enough if it is OOD, thus expand the dataset’s coverage while mitigating the extrapolation
error caused by such OOD data. The literature (Yu et al., 2020; Kidambi et al., 2020) rely on the
disagreement of dynamics ensembles or Q ensembles to construct a pessimistic MDP, and (Yu et al.,
2021; Rigter et al., 2022; Guo et al., 2022) achieve the underestimation of synthetic data by unrolling
the current policy in the model. The second category does not explicitly pursue the underestimation
of synthetic data. Among them, (Fu et al.) generates and selected synthetic data with low model
disagreement, and BooT (Wang et al., 2022) augments TT (Janner et al., 2021) with the synthetic
data generated by itself. Besides, S4RL (Sinha et al., 2022) and KFC (Weissenbacher et al., 2022)
add noise in a local area of states to smooth the critic.

An obvious drawback of these aforementioned approaches, which are all policy-dependent, is that
the generated data is closely related on the policy itself, causing that applying the generated data
directly to the learning process of other policies is not guaranteed to perform well (Wang et al.,
2022). To overcome this limitation, recent studies have explored policy-decoupled data augmentation
techniques, which is the focus of this paper. Bi-directional rolling proposed in (Lyu et al., 2022)
induce the double-check mechanism into offline data augmentation ensure that the generated data is
within the distribution and avoids inauthentic samples. In (Wang et al., 2021), a reverse dynamics
model is proposed for Offline RL. These two methods use the behavioural policy as the augmentation
policy, thus achieving policy-decoupled data augmentation. However, these two methods only
consider the reliability of the synthetic data and neglect the return of generated data, which may
limit the performance. Another recent work SynthER (Lu et al., 2023) focuses on enhancing overall
performance by scaling up downstream networks and utilizing diffusion model data augmentation
to address overfitting issues, resulting in significant overall improvements. MOCODA (Pitis et al.,
2022) and GuDA (Corrado et al., 2023) propose two different frameworks for controlled distribution
of OOD data augmentation but both require additional given expert knowledge of the specific task
environment.

Different from the above methods, HIPODE’s focus is on strengthening offline RL algorithms
with minimal cost, particularly aiming to improve performance when downstream networks remain
unchanged and relatively small by generating high-return synthetic data.

Model-free Offline RL. Disregarding data augmentation, the model-free Offline RL algorithm
investigates how to constrain the policy to approach the behavioral policy or support in static offline
datasets. Existing methods implement this by policy constraint (Fujimoto et al., 2019; Wu et al.,
2019; Liu et al., 2020b; Fujimoto & Gu, 2021), support constraint (Kostrikov et al., 2022; Kumar
et al., 2019), value regularization (Kumar et al.; Ma et al., 2021b;a; Kumar et al., 2021; Kostrikov
et al., 2021; An et al., 2021), and others. Among them, we choose widely-used TD3BC (Fujimoto
& Gu, 2021) and CQL (Kumar et al.) to be the downstream policy learning algorithm to evaluate
different data augmentation methods.
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3 WHAT KIND OF DATA IS MORE APPROPRIATE FOR OFFLINE DATA
AUGMENTATION?

As mentioned before, data augmentation methods to a specific dataset in Offline RL often neglect
the data return (quality). However, high-return data are regarded as beneficial for learning (Fu
et al., 2020). Accordingly, we pose the question of whether the generation of high-return data is also
beneficial for Offline RL policies when compared to high-diversity data. We primarily investigate
this question in this section.

To fairly investigate the effect of high-diversity data and high-return data on the downstream Offline
algorithm, we generate two types of data from real environments, instead of generating from other
data augmentation techniques, to prevent potential bias due to inauthentic data impacting our findings.
Although we use the environment, we limit the data generated in this section to only those that are
not far away from the original dataset, to more closely match the offline setting.

Concretely, we choose the following two types of augmentation policies: (1) Policy of high diversity,
where random noise with different scales is added to the behavioral policy. Formally, πnoise :=
N (a, σI), s.t., a ∼ πβ , where πβ denotes the behavioural policy, N denotes the Gaussian distribution
and I denotes a identity matrix. The dataset after augmentation by this policy exhibits higher diversity
compared to the original dataset. We refer to this type of method as ‘Diversity σ’, where σ belongs to
0.01, 0.1, 1.0. (2) Policy of high-return, a well-trained Offline policy, to ensure the action return,
derived from the Offline policy that is similar to or higher than that of the actions in the dataset
overall. Meanwhile, the generated data is also ensured to be close to the dataset. We refer this as
‘Return’. We provide the experimental details in Appendix B.2.
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Figure 2: Action distributions of the original
dataset, noise-policy-augmented data and high-
return-policy-augmented data. Brighter color in-
dicates higher reward in a single time-step.

The augmented data and the original data are
together used to train the downstream Offline
algorithms. Normalized score reported in Table
1 shows that using Offline policy to augment
data can always benefit down stream offline pol-
icy learning performance while using random
noise policy may not. We further visualize the
distribution of the original dataset, the noise-
policy-augmented data, and the high-return-
policy-augmented data through t-Distributed
Stochastic Neighbor Embedding (t-SNE) (Hin-
ton & Roweis, 2002) in Fig.2. As we can
see from it, compared with the distribution of
the original data, the distribution of the noise-
policy-augmented data is similar to the origi-
nal dataset’s while the distribution of the high-
return-policy-augmented data is relatively con-
centrated in several clusters. In addition, the
high-return-policy-augmented data indeed has
higher rewards in a single time-step, as the color
of the most triangle points are brighter. Based on these observations, we present the following take-
away:

Takeaway: in the case that the augmented data is completely realistic, data with higher
return may be more beneficial than that of more diversity in improving downstream Offline
algorithm.

4 METHOD

According to the takeaway above, we propose HIPODE to generate augmented data that maximizes
its return, while maintaining as much authenticity as possible in a policy-decoupled way. We illustrate
HIPODE in Fig.3. Specifically, given any state s, we first generate several candidate next states
S̃′

cand = {s̃′1, ..., s̃′n} (Step 1 in Fig.3). Then we select the one with the highest value as s̃′ (Step 2).
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Figure 3: Illustration of HIPODE.

Finally, given s and s̃′, the action ã and the reward r̃ are produced using generative models (Step 3),
thus generating a transition {s, ã, r̃, s̃′}. In the following, we introduce Step 1 and 2 in Section 4.1
and Step 3 in Section 4.2.

4.1 NEXT STATE GENERATION WITH NEGATIVE SAMPLING

Given a state s, we generate the next state through a state transition model, and filter the high-return
data for our purpose. In the following, we describe these two steps in detail.

The forward state transition model. We first train a state transition model p̃ψ(s′|s) to generate
candidate next states. To guarantee the authenticity of generated next state, we model the state
transition within the dataset with a conditional variational auto-encoder (CVAE) following (Zhang
et al., 2022), to ensure the generated next states are near the distribution of the dataset. Specifically,
CVAE consists of an encoder and a decoder: the encoder takes the current state and the next state
as input and manages to output an latent variable z under the Gaussian distribution; the decoder
takes z and the current state as input and manages to map the latent variable z to the desired space.
We denote the encoder as Eψ(s, s′) and the decoder as Dψ(s, z). The state transition model is then
trained by maximizing its variational lower bound, which is equivalent to minimizing the following
loss:

L(ψ) = E(s,s′)∼Denv,z∼Eψ(s,s′)[(s
′ −Dψ(s, z))

2 +DKL(Eψ(s, s
′)∥N (0, I))]. (1)

where I represents an identity matrix and Denv represents the original dataset. The first term of
RHS of Eq.1 represents the reconstruction loss where the approximated next state is decoded
from z, given the current state. The second term of RHS represents the KL distance between the
distribution of z and the Gaussian distribution so that a sampled z from a Gaussian distribution can
be decoded to the desired state space when generating. Thus, given a state s, n candidate next states
S̃′

cand = {s̃′1, ..., s̃′n}, s.t., s̃′i ∼ Dψ(s̃
′
i|s, z) are sampled.

Value Approximation with Negative Sampling. To filter out the generated next states and form
synthetic transitions, a value approximator is trained using SARSA-style updating to predict the value
of different states. Since the generated next states may not be present in the dataset, the negative
sampling technique (Luo et al., 2020) is employed to avoid overestimation of states outside the
dataset. Specifically, for states within the dataset, standard TD-learning is performed as demonstrated
in Eq.2:

Ltd
θ (s) = E(s,r,s′)∼Denv [r + γVθ̄(s

′)− Vθ(s)]
2, (2)

where Vθ̄ is the target value function and γ is the discount factor. Furthermore, to conservatively
estimate the value of states outside the dataset distribution, we sample states around the dataset states
by adding Gaussian noise and evaluate the L2 distances between the sampled noisy states and the
original states. The greater the distance between the sampled state and the original state, the more
severe the penalties imposed on the sampled state, as shown in Eq.3:

Lns
θ (s) = Es∼N (sd,σI),(sd,r,s′)∼Denv [r + γVθ̄(s

′)− α∥s− sd∥ − Vθ(s)]
2, (3)
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where sd denotes the state sampled from the original dataset and α denotes the penalty weight. Thus,
the optimization objective of the value approximator to minimize is represented by Eq.4:

L(θ) = L(θ)td + L(θ)ns. (4)

After training, all the candidate next states S′
cand are input into the value approximator to obtain

their values. Then the candidate next state with the highest value estimation is selected, formally
s̃′ = argmaxs̃′cand∈S̃′

cand
V (s̃′cand) . Intuitively, a state can be selected in two cases:

• States within the dataset. This is because other candidate states that not in the dataset are severely
underestimated. In this case, the selected state can be considered reliable.

• States with high true value near the dataset distribution. Since its estimated value is significantly
penalized during training, there is a high probability that a selected state close to the distribution
has a high true value.

Therefore, by filtering the candidate next states generated by the state transition model using the
value approximator, we can obtain the augmented next state with similar or higher return than that in
the datasets while maintaining as much authenticity as possible.

4.2 REPLENISHING TRANSITIONS WITH ACTION SELECTOR

Based on the selected high-return next state, in this section, we aim to generate an authentic action that
can lead the current state to the generated next state. Specifically, an inverse model Minv = p̃ϵ(a|s, s′)
is trained to generate actions conditioned on s and the selected s̃′. Similar to the state transition
model, we also use a CVAE for generating actions. We denote the encoder as Eϵ(a, s, s′) and the
decoder as Dϵ(s, s

′, z). The inverse model is then trained by maximizing its variational lower bound,
which is equivalent to minimizing the following loss shown as Eq.5:

L(ϵ) = E(a,s,s′)∼Denv,z∼Eϵ(a,s,s′)[(a−Dϵ(s, s
′, z))2 +DKL(Eϵ(a, s, s

′)∥N (0, I))]. (5)

Besides, rewards are generated the same way as actions, using another model with encoderEζ(r, s, s′)
and decoder Dζ(s, s

′, z).

Although the generated state have high return and authenticity as described in Section 4.1, the action
generated by the inverse dynamics model may be inauthentic, i.e. the generated action can not lead to
the selected next state. Therefore, a filtering mechanism is imposed on actions for their reliability. We
further draw on a forward dynamics model Mfor_dyna = p̃w(s̃

′
dyna|s, a) representing the probability of

the next state given the current state and action. The dynamics model is optimized by maximizing the
log-likelihood of the static dataset, formally shown in Eq.6:

L(w) = E(s,a,s′)∼Denv [−log p̃w(s
′|s, a)]. (6)

Combining the forward dynamics model Mfor_dyna and the inverse dynamics model Minv, an action is
assumed to be reliable to lead to the selected state s̃′ when the distance between the selected state s̃′
and the forward-predicted state s̃′dyna =Mfor_dyna(s, ã) is small enough. In practice, instead of setting
a threshold for measuring the distance between s̃′ and s̃′dyna, we pick up in a batch λ-portion of the
generated data with the lowest ∥s̃′dyna − s̃′∥ values and consider them the most reliable subset of the
batch. Then this subset of data is used as the final augmented data.

Although HIPODE consists of several modules, it is highly integrated. Thus it’s a common plug-
in method, which can be simply combined to diverse downstream Offline RL algorithms by only
merging the synthetic data of HIPODE and the original data. For the summary and the pseudocode of
HIPODE, please refer to Appendix A.

5 EXPERIMENTS

In this section, we evaluate HIPODE based on two representative and widely-used offline policy
learning algorithm: TD3BC (Fujimoto & Gu, 2021) and CQL (Kumar et al.).We aim to answer these
questions:

Q1: Can our proposed algorithm HIPODE improve existing Offline algorithms and exhibit consis-
tent superiority in comparison to other data augmentation technique?
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Table 2: Normalized average score and standard deviation over at least 3 seeds (5 seeds for
HIPODE+CQL) of HIPODE based on downstream Offline RL algorithms (CQL and TD3BC)
and baseline performance. In the table, -m-e, -m-r, -m, -r, -e denote -medium-expert, -medium-replay,
-medium, -random, -expert respectively. The numbers in blue represent the rate of enhancement from
HIPODE. The best result in each row is bolded.

Task Name CQL
+ HIPODE

CQL
+ CABI CQL TD3BC

+ HIPODE
TD3BC
+ CABI TD3BC COMBO MOPO

halfcheetah-m-e 101.8± 3.2 101.0±1.2 94.8±3.9 102.6±2.2 94.6±8.5 98.0±3.1 38.7 63.3
hopper-m-e 112.1± 0.1 112.0±0.1 111.9±0.1 112.4±0.3 102.8±16.0 112.0±0.1 75.1 23.7
walker2d-m-e 91.7± 7.1 92.3±13.8 70.3±5.7 105.3± 4.0 99.6±6.4 105.4±3.9 2.3 44.6
halfcheetah-m-r 44.8±0.4 42.8±2.0 42.5±0.9 44.0± 0.7 43.4±0.5 43.3±0.6 46.9 53.1
hopper-m-r 33.5± 2.9 29.7±2.7 28.2±1.2 36.2±0.8 32.7±2.3 32.7±0.5 19.7 67.5
walker2d-m-r 21.7± 6.5 12.7±6.7 5.1±3.6 36.4± 11.1 37.7±15.4 19.6±8.6 19.5 39.0
halfcheetah-m 39.3± 0.2 36.7±0.2 39.2±0.4 43.7±0.5 43.0±0.3 43.7±0.4 27.4 42.3
hopper-m 30.4± 0.9 30.5±0.3 30.3±0.7 99.9±0.3 99.7±0.2 99.9±0.9 71.6 28.0
walker2d-m 79.9± 3.2 46.8±16.1 66.9±9.3 80.1± 0.7 80.3±2.0 79.7±1.8 71.8 17.8
halfcheetah-r 22.9±2.7 2.8±0.9 17.0±5.7 15.5± 0.9 12.5±1.5 12.8±1.9 5.5 35.4
hopper-r 10.4± 0.1 10.2±0.1 10.4±0.1 10.9±0.2 10.9±0.0 10.9±0.2 7.5 11.7
walker2d-r 16.5±10.5 -0.1±0.0 1.7±0.9 6.6± 1.0 3.0±0.7 0.37±0.1 1.6 13.6

Total 605.0 ↑16.7% 517.4 518.3 693.6 ↑5.4% 660.2 658.3 387.5 440.0

halfcheetah-e 108.5± 1.4 109.1±0.3 109.8±0.3 106.5± 0.5 106.3±1.0 107.0±0.9 44.2 102.1
hopper-e 112.2± 0.2 112.3±0.2 112.0±0.3 112.3±0.5 110.8±0.3 107.3±8.7 112.3 0.7
walker2d-e 109.9±3.6 98.7±19.6 104.7±5.0 106.6± 5.2 102.5±5.2 98.7±6.0 37.3 2.1

Total 935.6 837.5 844.9 1019.0 979.8 971.5 581.3 544.9

Avg 62.4 ↑10.8% 55.8 56.3 67.9 ↑4.8% 65.3 64.8 38.8 36.3

Q2: Is augmenting synthetic data or high-return synthetic data critical for Offline policy?

Q3: Does our policy-decoupled data augmentation algorithm HIPODE outperform the conventional
policy-dependent data augmentation methods?

Q4: In HIPODE, what roles do the negative sampling and transition selector components play?

In the following, we answer Q1 in Section 5.1, showing the effectiveness and superiority of HIPODE
by combining it with offline RL algorithms on MuJoCo (Todorov et al., 2012) tasks. Then, we present
an ablation study in details in Section 5.2 to answer Q2. We answer Q3 in Section 5.3 by comparing
HIPODE with policy-dependent data augmentation methods. Finally, we answer Q4 in Appendix
C.6.

5.1 PERFORMANCE ON MUJOCO

Evaluation settings. We demonstrate the benefits of HIPODE on D4RL MuJoCo-v0 tasks (Fu et al.,
2020), comparing with several baselines that generate augmented data for policy training, including
CABI (Lyu et al., 2022), MOPO (Yu et al., 2020) and COMBO (Yu et al., 2021). Experimental details
of baselines can be found in Appendix B.2.

Main results. Table 2 shows the results on 15 MuJoCo tasks comparing between the above-
mentioned algorithms. HIPODE achieves remarkable improvements over baselines (TD3BC, CQL),
and also significant gain outperforming SOTA data augmentation method (CABI), which confirm
the effectiveness of HIPODE in handling these offline tasks. In this experiment, in order to make a
fair comparison, we reproduce the CABI algorithm based on the same downstream policy learning
process and the same hyper-parameters to demonstrate HIPODE’s superiority. Under the premise of
controlling downstream implementation and consistent hyper-parameters, the advantage of HIPODE
performance all comes from the data augmentation process. On the other hand, compared to the
reported results in (Lyu et al., 2022), our advantage remains consistent, as detailed in Appendix
C.4. To show that HIPODE is extremely general, we significantly enhance IQL on Mujoco -v0 and
Mujoco -v2 tasks and beat CABI as detailed in Appendix C.1 and Appendix C.2. HIPODE is also
effective in the Adroit tasks and its details are presented in Appendix C.3.

HIPODE and policy-dependent methods, including previouse model-based Offline RL methods have
different objectives: while policy-dependent methods aim to enhance specific policies, HIPODE
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focuses on strengthening various offline RL algorithms with minimal cost, which may sacrifice
the enhancement effect on a specific policy. However, in order to gain a more comprehensive
understanding of HIPODE’s performance, we sill compare it to the model-based Offline RL methods.
HIPODE’s predominance over the model-based policy-dependent baseline algorithms (COMBO,
MOPO) demonstrates its strength, as shown in Table 2. Noting that COMBO and MOPO need to
access the true terminal function to ensure algorithm performance, whereas HIPODE achieves better
performance without the need for such a function, by uniformly setting terminal flag of HIPODE’s
synthetic data to False. Since most recent Offline RL methods is evaluated on Mujoco -v2 tasks, we
also combine HIPODE with IQL on 9 Mujoco -v2 tasks to compare the performance to the recent
SOTA RAMBO-RL (Rigter et al., 2022). We find that HIPODE can enhance IQL on Mujoco -v2
tasks and has competitive total performance to RAMBO-RL. The details of experiments on Mujoco
-v2 tasks can be find in Table 8 of Appendix C.2.
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Figure 4: Density of different syn-
thetic data and the original dataset.

To show HIPODE indeed generates high-return transitions,
we visualize the distribution of estimated discounted cu-
mulative rewards of trajectories in the original dataset and
synthetic data generated by HIPODE and CABI. Specifi-
cally, we train online SAC to converge to obtain the optimal
value function V ∗ as authoritative value function. For each
state-action pair (s, a), we use r + V ∗(s′) to represent the
discounted cumulative reward, where r, s′ ∼ p(r, s′|s, a) are
the true reward and next state in the environment respectively.
Fig.4 illustrates the density of synthetic data generated by
CABI and HIPODE on halfcheetah-medium-replay-v0, as
well as the original dataset, where X axis represents V ∗ and
Y represents the density of synthetic transitions on V ∗. Form
the figure, the green shadow almost coincide with the red
one, showing that CABI’s data distribution almost coincide
with the original dataset, while HIPODE indeed generates more high-return data. In conjunction with
the results in Table 2, the advantage of HIPIDE performance comes from more high-return data in
augmentation process, which sequentially demonstrates that high-return data is more suitable rather
than high diversity data as augmented data for Offline RL.

5.2 ABLATION STUDY

Table 3: Normalized average score and standard devi-
atio of generating different types of augmented data
over 3 seeds on MuJoCo -v0 tasks.

Task Name Repeat
+TD3BC

NoV
+TD3BC

HIPODE
+TD3BC TD3BC

halfcheetah-m-e 97.4±3.6 99.1±4.2 102.6±2.2 98.0±3.7
hopper-m-e 111.9±0.5 110.5±3.5 112.4±0.3 112±0.1
walker2d-m-e 38.0±64.4 102.5±5.6 105.3±4.0 105.4±3.9
halfcheetah-m-r 42.5±1.6 44.0±0.2 44.0±0.7 43.3±0.6
hopper-m-r 36.5±4.2 36.2±8.0 36.2±0.8 32.7±0.9
walker2d-m-r 18.0±14.4 30.0±4.1 36.4±11.1 19.6±8.6
halfcheetah-m 43.6±0.8 43.1±0.5 43.7±0.5 43.7±0.4
hopper-m 99.8±0.1 99.7±0.3 99.9±0.3 99.9±0.5
walker2d-m 79.5±2.7 79.7±3.1 80.1±0.7 79.7±1.8
halfcheetah-r 11.7±0.3 13.1±1.4 15.5±0.9 12.8±1.9
hopper-r 11.1±0.0 10.9±0.1 10.9±0.2 10.9±0.2
walker2d-r 1.9±0.4 2.1±0.7 6.6±1.0 0.4±0.1
halfcheetah-e 104.2±3.3 105.3±0.7 106.5±0.5 107.0±0.9
hopper-e 112.5±0.5 112.3±0.2 112.3±0.5 107.3±8.7
walker2d-e 78.1±48.5 104.9±5.8 106.6±5.2 98.7±6.0

Avg 59.1±9.7 66.2±2.6 67.9±1.9 64.7±2.6

In this section, we aim to further investi-
gate how the generated data improves down-
stream offline policy. We conduct ablation
experiments from three perspectives: not
generating synthetic data (Repeat), generat-
ing vanilla synthetic data (NoV), and gener-
ating high-return synthetic data (HIPODE).
and the results are shown in Table 3.

Specifically, the difference of Repeat and
HIPODE is that the synthetic data is replaced
by 10% high-return data from the original
dataset in Repeat. The difference between
NoV and HIPODE is that the value max-
imization mechanism is removed in NoV,
i.e., the return of generated data is not con-
trolled. Generating high-return synthetic
data is exactly HIPODE. Normalized score
of enhancing TD3BC with these perspec-
tives is shown as Repeat+TD3BC, NoV+
TD3BC, HIPODE+TD3BC in Table 3.

As the results in Table 3, Repeat+TD3BC,
i.e., repeating high-return data in the dataset, brings little performance gain and even hurts perfor-
mance on walker2d-medium-expert and walker2d-expert. Thus it’s not effective for improving Offline

8
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Table 4: Normalized score comparison of policy-dependent methods for data augmentation v.s.
HIPODE and the baseline on MuJoCo -v0 tasks. We report average normalized score over 3 random
seeds each task. Full results consists of -random and -expert tasks are presented in Appendix C.5.

Task Name MB+2.5
TD3BC

MB+0.001
TD3BC MBPO HIPODE+

TD3BC TD3BC BooT
+CQL CQL

halfcheetah-m-e 26.0 73.0 9.7 102.6 98.0 5.0 94.8
hopper-m-e 1.1 42.6 56 112.4 112.0 0.8 111.9
walker2d-m-e 42.9 8.5 7.6 105.3 105.4 26.4 70.3
halfcheetah-m-r 45.8 23.1 47.3 44 43.3 4.3 42.5
hopper-m-r 4.8 20.9 49.8 36.8 32.7 5.0 28.2
walker2d-m-r 0.0 7.5 22.2 36.4 19.6 5.8 5.1
halfcheetah-m 45.4 36.7 28.3 43.7 43.7 30.0 39.2
hopper-m 0.7 30.2 4.9 99.9 99.9 79.8 30.3
walker2d-m 4.3 16.9 12.7 80.1 79.7 6.4 66.9

Total 171.0 259.4 238.5 661.2 634.3 163.5 489.2

RL performance. Besides, NoV+TD3BC achieves an improvement over TD3BC, indicating the
importance of generating new synthetic data for data augmentation. However, the performance of
NoV+TD3BC is worse than HIPODE, indicating the importance of generating high-return data. To
summarize, the result suggests that generating synthetic data is more effective than simply repeat
data, but the pursuit of generating higher return synthetic data can bring more significant performance
improvements for downstream Offline RL performance.

5.3 COMPARISON WITH POLICY-DEPENDENT DATA AUGMENTATION METHODS

In policy-dependent data augmentation methods, the data generation process is tightly tied to the
downstream Offline RL policy, which limits the applicability of the generated data. In this section we
aim to illustrate the strength of our policy-decoupled data augmentation method, compared to policy-
dependent methods on different downstream Offline RL policies. Specifically, on the downstream
TD3BC algorithm, we evaluate the effect of data generated with some model-based policy dependent
algorithms; on the downstream CQL algorithm, we analyze the effect of the more advanced policy
dependent algorithm Boot (Wang et al., 2022).

We first evaluate the performance of dynamics-model-enhanced TD3BC based on the data generated
by a previously trained dynamics model, by rolling-out current TD3BC policy on the dynamics
model. The results are reported as MB+αTD3BC in Table 4, where α is a hyper-parameter in
TD3BC (Fujimoto & Gu, 2021). We also compare offline MBPO with HIPODE since it can also be
seen as a method directly using dynamics-model-generated data as augmented data. The difference
between model based TD3BC and MBPO is that TD3BC has a behaviour cloning restrict on it’s
critic (Fujimoto & Gu, 2021) while MBPO (Janner et al., 2019) dose not. Results in Table 4 indicate
that using dynamics-model-generated data as augmentation will damage the offline agent, and such
damage can be mitigated when the policy of the offline agent is closed to the behavioural policy of the
dataset. This suggests that the damage is caused by the difference between the policy the dynamics
model trained on and the policy it generates data on, which these model-based policy-dependent
methods fail to address.

We then directly take results report in (Wang et al., 2022) to form the BooT+CQL column in Table
4. BooT+CQL means directly using synthetic data generated by BooT on CQL. The results show
that synthetic data generated by Boot has poor results as augmented data combined with CQL. This
indicates that synthetic data generated by a policy-dependent data augmentation method can damage
another offline agent. In contrast, HIPODE is policy-decoupled and our augmented data can benefit
different offline agent without changing, as shown in Table 2.

In summary, synthetic data generated by policy-dependent data augmentation methods may have
a detrimental effect on Offline RL processes, while the synthetic data generated by HIPODE can
improve their performance, demonstrating the superiority of HIPODE.
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6 CONCLUSIONS AND LIMITATIONS

In this paper, we investigate the issues of data augmentation for Offline RL. We conduct extensive
experiments to demonstrate that, in the context of Offline RL, high-return data is a more suitable
choice for augmented data than high-diversity data when the authority of the data is the same. Based
on this observation, we propose a novel data augmentation method called HIPODE, which selects
states with higher values as augmented data. This ensures that the synthetic data is both authentic
and of high-return and is generated in a policy-decoupled manner. Our experimental results on
D4RL benchmarks demonstrate that HIPODE significantly improves the performance of several
widely used model-free Offline RL baselines without changing the augmented data, thereby achieving
policy-decoupled data augmentation and demonstrating superiority over policy-dependent methods.
Furthermore, HIPODE outperforms SOTA policy-decoupled data augmentation methods for Offline
RL, demonstrating the benefits by generating high-return data.

However, HIPODE is outperformed by vanilla model-based Offline RL methods (e.g., MBPO) on
-random datasets because the value penalty is excessively strict on those datasets. We believe that
adjusting the penalty weight to be state-dependent instead of initially setting it to a fixed value is a
potential solution to this issue, which we leave for future work.
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