
TurnBench-MS: A Benchmark for Evaluating Multi-Turn, Multi-Step
Reasoning in Large Language Models

Anonymous ACL submission

Abstract
Despite impressive advances in large language001
models (LLMs), existing benchmarks often fo-002
cus on single-turn or single-step tasks, failing003
to capture the kind of iterative reasoning re-004
quired in real-world settings. To address this005
limitation, we introduce TurnBench, a novel006
benchmark that evaluates multi-turn, multi-step007
reasoning through an interactive code-breaking008
task inspired by a “Turing Machine Board009
Game.” In each episode, a model must uncover010
hidden logical or arithmetic rules by making se-011
quential guesses, receiving structured feedback,012
and integrating clues across multiple rounds.013
This dynamic setup requires models to reason014
over time, adapt based on past information, and015
maintain consistency across steps—capabilities016
underexplored in current benchmarks. Turn-017
Bench includes two modes: Classic, which018
tests standard reasoning, and Nightmare, which019
introduces increased complexity and requires020
robust inferential chains. To support fine-021
grained analysis, we provide ground-truth an-022
notations for intermediate reasoning steps. Our023
evaluation of state-of-the-art LLMs reveals sig-024
nificant gaps: GPT-4-mini achieves 81.5% ac-025
curacy in Classic mode, but performance drops026
to 17.8% in Nightmare mode. In contrast, hu-027
man participants achieve 100% in both, under-028
scoring the challenge TurnBench poses to cur-029
rent models. By incorporating feedback loops030
and hiding task rules, TurnBench reduces con-031
tamination risks and provides a rigorous testbed032
for diagnosing and advancing multi-step, multi-033
turn reasoning in LLMs.1034

1 Introduction035

Reasoning is central to human cognition and a key036

benchmark for evaluating the capabilities of artifi-037

cial intelligence (AI) systems (Wason and Johnson-038

Laird, 1972; Dunbar and Klahr, 2012). In the039

context of large language models (LLMs), assess-040

ing reasoning ability is especially critical as these041

1See our code at: https://anonymous.4open.science/r/TurnBench-
2552/

models are increasingly deployed in complex, real- 042

world tasks. While a growing body of work has 043

proposed datasets and evaluation methods for prob- 044

ing LLM reasoning (Zeng et al., 2024; Wang et al., 045

2023a; Welleck et al., 2022), significant gaps re- 046

main in how we measure and interpret this abil- 047

ity—particularly in multi-step, multi-turn settings. 048

First, most existing evaluations focus on single- 049

turn or single-step reasoning tasks, overlooking 050

the iterative and interactive nature of real-world 051

problem-solving. Human reasoning often involves 052

cycles of information gathering, hypothesis testing, 053

and adaptation to feedback. This is especially true 054

in scenarios where information is incomplete or dis- 055

tributed across multiple interactions. While recent 056

benchmarks attempt to assess multi-step reasoning 057

(Tang et al., 2025; Zeng et al., 2024), they rarely 058

simulate settings that require reasoning across mul- 059

tiple turns. 060

Second, current evaluation metrics typically em- 061

phasize final-answer correctness, with little insight 062

into the model’s intermediate reasoning process 063

(Zhuang et al., 2023; Hao et al., 2024). As complex 064

reasoning often admits multiple valid paths, simply 065

scoring final outputs fails to distinguish between 066

genuine inference and lucky guesses. Though some 067

methods attempt process-level evaluation via man- 068

ual annotation or automated proxies (Zeng et al., 069

2024; Tang et al., 2025), these are limited by sub- 070

jectivity and the absence of reliable ground truth 071

for intermediate reasoning. 072

Third, data contamination poses a serious con- 073

cern. Static benchmarks—often sourced from pub- 074

lic datasets or templated questions—can overlap 075

with pretraining corpora, making it difficult to 076

disentangle memorization from actual reasoning 077

(Yang et al., 2025; Jain et al., 2024; Li et al., 2023). 078

This undermines the reliability of benchmark re- 079

sults and inflates perceived model performance. 080

To address these gaps, we introduce TurnBench, 081

a novel benchmark designed to evaluate multi-turn, 082

1

multi-step reasoning through an interactive code-083

breaking task inspired by the Turing Machine board084

game. In this game, a model must uncover a hidden085

three-digit code by engaging in multiple rounds of086

interaction with logical verifiers. Each verifier is087

governed by a hidden rule; only one rule per veri-088

fier is active in a given instance. To succeed, the089

model must iteratively guess codes, select verifiers,090

analyze feedback, and gradually infer the under-091

lying logical or arithmetic constraints—mirroring092

how humans perform exploratory reasoning.093

TurnBench explicitly addresses key shortcom-094

ings in existing benchmarks. First, it evaluates095

multi-turn, multi-step reasoning by requiring096

LLMs to adapt dynamically to feedback across097

multiple rounds and integrate partial clues to for-098

mulate and revise hypotheses over time. Second,099

it enables process-level evaluation through a rule-100

based mechanism that compares models’ interme-101

diate inferences—i.e., their identification of active102

rules in each verifier—against ground truth, allow-103

ing structured analysis of reasoning steps beyond104

final answer correctness. Finally, TurnBench of-105

fers strong contamination resistance due to its dy-106

namic rule configurations: even under fixed game107

setups, varying rule activations lead to distinct rea-108

soning trajectories, minimizing the risk of data109

leakage from LLM pretraining corpora. Our work110

makes the following key contributions:111

• We propose TurnBench, the first benchmark112

designed to evaluate multi-turn, multi-step rea-113

soning in LLMs through dynamic, interac-114

tive tasks. TurnBench includes 540 game in-115

stances across two modes—Classic and Night-116

mare—with three difficulty levels each.117

• We introduce a novel, automated evaluation118

method that leverages rule-based feedback to119

analyze intermediate reasoning steps, offering120

a grounded way to assess the internal thinking121

of LLMs.122

• We benchmark a range of open-source and123

proprietary models, including GPT-o4-mini124

and Gemini 2.5 Flash, alongside human par-125

ticipants. Results show a significant per-126

formance gap between humans (100%) and127

models (as low as 17.8% in Nightmare128

mode), highlighting the challenge TurnBench129

presents.130

• We release a new dataset comprising not only131

game settings and final answers, but also de- 132

tailed interaction logs and annotated reasoning 133

steps for both models and humans, providing 134

a valuable resource for future research. 135

2 Related Work 136

LLMs in Interactive Game Environments: Re- 137

cent work has explored the use of LLMs as 138

agents in interactive games to assess their plan- 139

ning, reasoning, and decision-making capabili- 140

ties across diverse domains such as board games, 141

card games, and social deduction settings (Schultz 142

et al., 2024; Xu et al., 2023; Akata et al., 2023; 143

Light et al., 2023; , FAIR; Wang et al., 2023b; 144

Zhuang et al., 2025; Tang et al., 2025). These 145

benchmarks typically present the game state in tex- 146

tual or structured formats and prompt LLMs to 147

make the next move using natural language gen- 148

eration. For instance, PokerBench (Zhuang et al., 149

2025) adopts classification-based decision scenar- 150

ios, while AvalonBench (Light et al., 2023) and 151

BALROG (Paglieri et al., 2025) evaluate agents 152

through multi-turn, interactive gameplay. Common 153

evaluation metrics include win rate, legality of ac- 154

tions, strategy optimality, and task completion. 155

Benchmarks for Multi-Step and Logical Rea- 156

soning: To more directly evaluate reasoning capa- 157

bilities, recent studies have proposed benchmarks 158

focused on multi-step logical and mathematical in- 159

ference. Multi-LogiEval (Patel et al., 2024) and 160

Belief-R1 (Wilie et al., 2024) reveal that even 161

advanced LLMs like GPT-4 and Claude struggle 162

with tasks involving deep reasoning and belief re- 163

vision. MuSR (Sprague et al., 2023) embeds multi- 164

step logic challenges in long-form narratives to 165

test long-context reasoning. Other efforts leverage 166

real-world tasks such as mathematics competitions 167

(e.g., AIME (AoPS, 2024)) to benchmark high- 168

level mathematical reasoning. CriticBench (Lin 169

et al., 2024) and MR-Ben (Zeng et al., 2024) fur- 170

ther highlight the potential of multi-round, self- 171

reflective prompting for improving LLM reasoning 172

through iterative critique and correction. 173

Rule-Based Inference and Tool-Augmented 174

Reasoning: Several benchmarks focus on rule- 175

based or structured inference tasks. GridPuzzle 176

and PuzzleEval (Tyagi et al., 2024) utilize logic 177

grid puzzles, while ZebraLogic (Lin et al., 2025) 178

frames reasoning as constraint satisfaction prob- 179

lems (CSPs). RuleArena (Zhou et al., 2024) eval- 180

uates models on dynamic policy reasoning. Tool- 181

2

Figure 1: Overview of the TurnBench game framework. The game consists of three iterative stages: Proposal Step,
where the LLMs proposes a candidate 3-digit code (represented by colored slots); Question Step, where the agent
selects up to three verifiers to evaluate the code and receive Pass/Fail feedback; and Deduce Step, where the agent
reasons over verifier responses to decide whether to Submit the code or Continue to the next round with a revised
proposal. The loop continues until the agent successfully deduces and submits the correct code..

augmented frameworks like LINC (Olausson et al.,182

2023) and MATHSENSEI (Das et al., 2024) en-183

able LLMs to perform formal reasoning through184

external tools. Meanwhile, self-reflection strate-185

gies such as Self-Refine (Madaan et al., 2023) and186

ReFlexion (Shinn et al., 2023) allow models to iter-187

atively revise incorrect or incomplete outputs via188

internal critique loops.189

While the above efforts have made significant190

strides in evaluating LLM reasoning, several impor-191

tant gaps remain. First, few benchmarks explicitly192

evaluate multi-step reasoning across multiple in-193

teraction rounds—a critical feature of real-world194

problem-solving. Most logic and tool-based tasks195

are static, single-shot evaluations that do not re-196

quire models to gather and integrate information197

over time. Second, existing benchmarks often lack198

ground truth for intermediate reasoning steps, lim-199

iting analysis to final-answer accuracy. This makes200

it difficult to determine whether a correct answer201

results from genuine reasoning or chance. Third,202

many datasets are vulnerable to data contamina-203

tion due to overlap with pretraining corpora. Fi-204

nally, while game-based settings are promising,205

they rarely focus on rule-discovery and hypothesis206

refinement under feedback constraints.207

TurnBench is designed to fill these gaps by208

offering a dynamic, interactive benchmark that209

simulates real-world multi-turn reasoning. It pro-210

vides ground-truth annotations for intermediate rea-211

soning, minimizes contamination risk through dy-212

namic rule configurations, and emphasizes logical213

consistency and rule inference across turns.214

3 TurnBench 215

3.1 Turing Machine Game Mechanics 216

Turing Machine is a logic-based deduction game 217

where the player’s objective is to identify a unique 218

three-digit code (digits 1–5), each digit associated 219

with a distinct color (e.g., blue, yellow, purple). 220

The challenge lies in interacting with a set of 4–6 221

verifiers, each governed by a single, hidden active 222

criterion selected from a predefined rule pool. Play- 223

ers must deduce these hidden criteria and submit a 224

code that satisfies all of them. 225

Each game unfolds in multiple rounds with four 226

key phases: First, the player composes a proposed 227

code (e.g., BLUE=2, YELLOW=4, PURPLE=3), 228

which remains fixed for the current round. Next, 229

the player queries up to three verifiers sequentially, 230

each returning a binary judgment (PASS/FAIL) 231

based on the verifier’s active rule. Using this feed- 232

back, the player can either attempt a final answer 233

or skip and continue to the next round for further 234

testing. The game ends once a final answer is sub- 235

mitted. 236

TurnBench supports two game modes: Classic 237

and Nightmare, each with Easy, Medium, and 238

Hard difficulty levels. In Classic mode, verifier 239

responses correspond directly to the selected ver- 240

ifier’s criterion. In Nightmare mode, verifiers are 241

secretly remapped; the player queries one verifier, 242

but the response corresponds to another verifier’s 243

logic, unknown to the player. This mapping must 244

be deduced as part of the reasoning process. 245

3

Dataset Multi-Turn Multi-Step No Knowledge Ground true Intermediate Eval Reasoning Domain
Avalonbench # # Game
Multi-LogiEval # # # Narrative
BoardgameQA # G # G Game
MuSR # # # Narrative
AIME 2024 # # Math
DSGBench # # # G G Game
MR-Ben # Science
LOGICGAME # # Game
Ours Game

Table 1: Comparison of multi-round reasoning benchmarks across six key criteria. A indicates presence of the
feature, a #means no presence of the feature, and a Gindicates partial. The "Domain" column shows the task type
of each benchmark.

Figure 2: Example of a verifier card used in the deduc-
tion game. This verifier compares the values assigned to
two colors (in this case, yellow and purple) and returns
one of three outcomes: less than, equal to, or greater
than. The true decision criterion is highlighted in the
middle red box—in this case, verifying whether yellow
equals purple.

3.2 TurnBench Construction246

3.2.1 Game Setups247

Each TurnBench game instance consists of a spe-248

cific verifier combination, one hidden active rule249

per verifier, and the unique correct code. For Night-250

mare mode, each game additionally includes a251

fixed or dynamically generated hidden mapping252

between verifiers. We curated 270 Classic and 270253

Nightmare game setups (90 per difficulty level),254

sourced from official materials2. All setups are re-255

producible, and Nightmare mappings are pre-fixed256

or regenerated at runtime to reduce memorization257

risk.258

3.2.2 Verifier Design259

Verifiers are central to TurnBench and encode sim-260

ple numerical rules (e.g., Figure 2). We incorporate261

48 official verifier types, each associated with 2 to262

9 potential rules. Since the physical game’s verifier263

logic isn’t directly compatible with a simulation264

2https://www.turingmachine.info/

environment, we designed a Hidden Condition Se- 265

lection Algorithm 3 that selects one active rule per 266

verifier to align with the game’s design and balance. 267

3.2.3 LLM Interaction Flow 268

At game start, the system presents the LLM with 269

the full game context: background, rules, objective, 270

and all verifier definitions. The model then interacts 271

turn-by-turn as described in Section 3.1, adhering 272

to a strict output protocol. In each round: 273

• In the Proposal step, the LLM outputs a 274

code in the format <CHOICE>: BLUE=X, 275

YELLOW=Y, PURPLE=Z. 276

• In the Verifier Query step, it selects verifiers 277

with <CHOICE>: [num]. Each returns 278

PASS or FAIL. 279

• In the Deduce step, the LLM either submits 280

the code again using the same format or skips 281

the round via <CHOICE>: SKIP. 282

• In Chain-of-Thought (CoT) mode, the LLM 283

also outputs reasoning before decisions using 284

<REASONING>. 285

If the LLM produces malformed output or illegal 286

actions (e.g., invalid verifier ID), a retry mecha- 287

nism prompts re-generation, while tracking error 288

frequency. Detailed prompts and retry protocols 289

are in the Appendix. 290

3.2.4 Evaluating Model Reasoning Process 291

While existing benchmarks focus solely on final an- 292

swers, TurnBench introduces an automated method 293

for evaluating intermediate reasoning. Specifically, 294

in Classic mode, a model’s reasoning involves two 295

phases: (1) inferring each verifier’s hidden crite- 296

rion, and (2) using these to deduce the final code. 297

3See our repo: criteria_detector.py

4

https://www.turingmachine.info/

Figure 3: Reasoning Evaluation Pipeline. The LLMs first performs reasoning over verifier results and outputs
natural language explanations. From these explanations, active criteria are automatically extracted, then compared
against the predefined ground truth verifier logic. The extracted conclusions are judged as Correct, Incorrect, or
Include based on semantic agreement with the ground truth.

Since both ground truths (criteria and final code)298

are known, we can semantically compare model299

inferences with them.300

Our evaluation pipeline (Figure 3) involves two301

LLM-based components. First, an Inference Ex-302

tractor (Gemini-2.5-Flash (Google, 2025)) parses303

the model’s <REASONING> output to identify its304

explicit claim about a verifier’s hidden rule (e.g.,305

“Verifier 1 uses ‘BLUE is odd’”). Second, a Judger,306

also Gemini-2.5-Flash, compares the extracted rule307

to the ground truth and classifies it as: Correct308

(semantically equivalent), Incorrect (completely309

wrong or missing the correct rule), or Include (par-310

tial overlap with the ground truth).311

We validated this automated process through312

manual inspection. Stratified sampling selected313

120 outputs (5% of total), prioritizing failed games314

for robustness. Manual checks revealed the infer-315

ence extractor missed 13.7% of applicable conclu-316

sions, but achieved 99.7% precision. The Judger317

reached 99.4% classification accuracy. These re-318

sults confirm that TurnBench provides a reliable319

mechanism for process-level evaluation of LLM320

reasoning.321

4 Experiment322

4.1 Experiment Setup323

To comprehensively explore the limitations of cur-324

rent large language models (LLMs) in multi-turn325

and multi-step reasoning tasks, we selected both326

commercial and widely-used open-source mod-327

els for evaluation, employing different prompting328

methods. The commercial models include gemini-329

2.5-flash-preview-04-17 (thinking) (Google, 2025), 330

gpt-o4-mini-high-0416 (thinking) (OpenAI, 2025), 331

and gpt-4.1-2025-04-14. The open-source mod- 332

els tested are deepseek-r1 (thinking) (DeepSeek- 333

AI, 2025), llama-4-maverick (Meta, 2025), mistral- 334

8b (team, 2025), llama-3.1-8b-instruct (AI@Meta, 335

2024), and qwen-2.5-7b-instruct (Yang et al., 2024). 336

We also evaluated two prompting strategies: An- 337

swer Only (AO) and Chain of Thought (CoT) (Wei 338

et al., 2022). 339

To thoroughly test the reasoning abilities of the 340

state-of-the-art models, all "Thinking" models had 341

their reasoning effort set to “high.” Additionally, to 342

compare the reasoning gap between the most ad- 343

vanced LLMs and humans, we invited five human 344

participants with no prior experience with the game 345

to take part in the experiment. 346

We evaluated two game modes: Classic and 347

Nightmare. Each mode’s scenarios were divided 348

equally into three difficulty levels: easy, standard, 349

and hard. For Classic mode, we constructed 270 350

benchmark scenarios (90 per difficulty). For Night- 351

mare mode, 45 scenarios were selected (15 per 352

difficulty). Human participants played 45 Classic 353

mode games (15 per difficulty), with the Nightmare 354

mode evaluation set matching the models’. 355

All models and human participants were tested 356

under identical conditions, with the same task 357

prompts and problem setups. To ensure parity in in- 358

formation access, we developed a user interface for 359

humans that displayed exactly the same text as the 360

models saw at each step. Humans were also asked 361

to record their reasoning and thought processes 362

throughout. 363

5

Models
Total Avg

Acc
Easy Avg

Acc
Medium Avg

Acc
Hard Avg

Acc
Win Avg

Turn
Win Avg

VER

OA CoT OA CoT OA CoT OA CoT OA CoT OA CoT

gpt-o4-mini-high (Thinking) 0.578 0.815 0.756 0.933 0.7 0.9 0.278 0.611 16 16 7 7

gemini-2.5-flash (Thinking) 0.652 0.785 0.844 0.9 0.756 0.867 0.356 0.589 13 13 6 6
deepseek-r1 (Thinking) 0.511 0.63 0.733 0.756 0.511 0.722 0.289 0.411 12 13 6 6

gpt-4.1 0.052 0.63 0.078 0.8 0.033 0.689 0.044 0.4 41 15 21 7

llama-4-maverick 0.07 0.326 0.133 0.444 0.056 0.367 0.022 0.167 28 17 12 8

llama-3.1-8b-instruct 0.007 0.015 0.011 0.022 0.011 0 0 0.022 23 13 11 6

mistral-8b 0 0.015 0 0.011 0 0.022 0 0.011 - 8 - 4

qwen-2.5-7b-instruct 0.015 0.022 0.011 0.067 0.022 0 0.011 0 34 6 17 3

Random Guess 0.0082 0.0084 0.008 0.0083 - - - -

Best Human 1 1 1 1 18 8

Human Average 0.96 0.983 0.947 0.947 20 11

Table 2: Performance of different models on the Classic Game setting. Metrics include total, easy, medium, and
hard average accuracy, as well as average number of turns and average number of verifiers used in successfully won
games. Models using Chain-of-Thought (CoT) prompting, especially “Thinking” models like gpt-o4-mini-high
and gemini-2.5-flash, consistently outperform standard baselines. Fewer average turns and verifier uses in winning
games suggest greater reasoning efficiency. Human and random guess baselines are included for comparison.

Thinking
Models

Total Avg
Accuracy

Easy Avg
Accuracy

Medium Avg
Accuracy

Hard Avg
Accuracy

Win Avg
Turns

Win Avg
Verifier Uses

gpt-o4-mini-high 0.111 0.133 0.200 0.000 21 8

gemini-2.5-flash 0.178 0.133 0.267 0.133 16 8

deepseek-r1 0.067 0.067 0.067 0.067 12 6

Random Guess 0.0076 0.0074 0.0079 0.0075 - -

Best Human 1 1 1 1 40 20

Human Average 0.942 0.96 0.933 0.933 38 17

Table 3: Performance of different models on the Night-
mare game setting. Metrics include total, easy, medium,
and hard average accuracy, as well as win rates mea-
sured by average successful turns and verifier-correct
final states. Compared to Classic mode, accuracy drops
significantly, highlighting the increased difficulty of
Nightmare mode. Human players maintain robust per-
formance, while models struggle to generalize under
this challenging scenario. Random guess and human
baselines are included for comparison.

4.2 Results and Findings364

Finding 1: LLMs significantly lag behind
humans in multi-turn, multi-step reasoning.

365

We analyzed overall performance using average366

accuracy metrics segmented by difficulty (overall,367

easy, medium, hard), as well as the average number368

of turns and verifier uses in games won successfully.369

Fewer turns and verifier uses indicate stronger rea-370

soning ability.371

First, we discuss Classic mode results (Table 2).372

Smaller standard models struggled significantly de-373

spite understanding game rules and response for-374

mat. They had difficulty leveraging verifier feed- 375

back to make effective inferences. Because Turn- 376

Bench requires no external knowledge and relies 377

solely on numerical rules, this suggests that com- 378

plex reasoning needs models of a certain size and 379

capacity. 380

Chain of Thought (CoT) prompting consistently 381

improved performance across accuracy metrics and 382

helped "Thinking" models as well. For example, 383

the best-performing gpt-o4-mini-high increased its 384

overall accuracy from 0.578 (AO) to 0.815 (CoT). 385

Larger standard models also showed notable gains, 386

e.g., gpt-4.1 rose from 0.052 (AO) to 0.63 (CoT), 387

and llama-4 from 0.07 to 0.326. 388

Across difficulty levels, "Thinking" models like 389

gpt-o4-mini-high significantly outperformed stan- 390

dard chat models. For example, the best standard 391

model, gpt-4.1, with CoT only matched the weak- 392

est "Thinking" model, DeepSeek, achieving 63% 393

accuracy. This trend was consistent across all diffi- 394

culties. 395

CoT prompting also helped models succeed with 396

fewer turns and verifier uses (e.g., gpt-4.1) dropped 397

from 41 to 15 turns and from 21 to 7 verifiers). 398

However, "Thinking" models showed little differ- 399

ence between AO and CoT for turns and verifier 400

use, possibly because they internally perform step- 401

wise reasoning. CoT may mainly help them articu- 402

late their reasoning process more clearly and use it 403

as memory for subsequent steps. 404

6

Despite improvements, a significant gap re-405

mains between LLMs and humans. The "Best406

Human" achieved 100% accuracy across all met-407

rics, whereas gpt-o4-mini-high (CoT) reached only408

81.5%. Humans also outperformed models in av-409

erage turns (20) and verifier uses (11). Analysis410

of reasoning logs showed that while models some-411

times integrated more clues, humans tended to take412

more turns (especially on hard tasks) but main-413

tained near-perfect accuracy.414

To further test limits, we compared "Thinking"415

models with CoT against humans in the more chal-416

lenging Nightmare mode (Table 3). All LLMs’417

accuracy dropped drastically compared to Classic418

mode. For example, gpt-o4-mini-high fell from419

0.815 to 0.111 overall, and failed completely on420

Hard difficulty (0 accuracy). The best perform-421

ing gemini-2.5-flash only reached 0.133. Humans422

maintained extremely high performance, with the423

"Best Human" at 100% accuracy and the average424

human still achieving 94.2%.425

These results clearly demonstrate that although426

"Thinking" models and CoT prompting improve427

performance, LLMs still lag far behind humans428

in complex multi-turn, multi-step reasoning tasks,429

especially under high difficulty. This highlights the430

substantial gap remaining between current models431

and human reasoning capabilities.432

Finding 2: Once LLMs make a mistake
in multi-turn reasoning, they struggle to re-
cover.

433

In this experiment, we conducted an in-depth434

analysis of the persistence and evolution of error435

states in LLMs during multi-turn reasoning. This436

analysis is based on the thinking process evalua-437

tion method described in Section 3.2.4. The results438

clearly demonstrate that in complex multi-turn rea-439

soning chains, once current LLMs make an initial440

error, they tend to “lose their way” and struggle to441

recover autonomously, significantly reducing their442

final task success rate.443

Path Divergence after Initial Errors. Using444

a Sankey diagram (Figure 4), we tracked model445

behavior following the First Incorrect Conclusion446

(FIC). The diagram shows that a large proportion of447

error paths led directly to “No Subsequent Conclu-448

sion,” indicating that models often cease reasoning449

along that path after an initial mistake. Another450

substantial fraction continued producing incorrect451

Figure 4: Flow analysis of verifier reasoning paths orig-
inating from a First Incorrect Conclusion (FIC). The
diagram traces these paths through the Next Conclu-
sion Status (NCS), the verifier’s final Conclusion Be-
fore Submit (CBS), and the ultimate Game Outcome.
A significant proportion of initial errors result in "No
subsequent conclusion" or an "Incorrect" NCS, leading
to an overwhelmingly "Incorrect" CBS and subsequent
"Game Lost" outcomes.

Figure 5: Probability of a model remaining incorrect in
each subsequent round after its initial error, conditioned
on it being incorrect in the previous round. The likeli-
hood of continuing in an incorrect state increases with
each turn, approaching near certainty beyond the fifth
round. This trend highlights the models’ limited capac-
ity for self-correction once they enter an error state.

conclusions. In contrast, paths that quickly shifted 452

to “Include Correct Components” or “Completely 453

Correct” were relatively rare. Examining how these 454

paths evolved to the Final Conclusion State Before 455

Submission (CBS), we found that those with ei- 456

ther “No Subsequent Conclusion” or “Subsequent 457

Incorrect Conclusion” overwhelmingly ended in 458

an incorrect final conclusion. Consequently, these 459

error paths almost always resulted in “Game Lost.” 460

Only a small minority of paths that rapidly ad- 461

justed to correct or partially correct conclusions 462

after the first error were associated with a higher 463

likelihood of “Game Won.” This divergence visu- 464

ally confirms that after the first mistake, models 465

7

llama-3.1-8b gemini-2.5-flash gpt-o4-mini-high gpt-4.1 mistral-8b llama-4-maverick qwen-2.5-7b deepseek-r1

Initial verifier errors 368 96 66 141 255 142 318 144

Persistence of initial errors (%) 89.94 91.67 53.03 86.52 90.20 63.38 99.06 93.06

Ended with no final conclusion (%) 74.18 71.87 34.85 54.61 53.33 45.77 96.23 86.11

Next-turn still incorrect (%) 17.66 19.79 27.27 33.33 38.82 25.35 3.14 6.94

Success despite persistent errors (%) 1.08 12.72 32.14 13.41 0.66 8.11 0.54 7.87

Success when no / fixed errors (%) 1.75 95.34 87.55 84.57 3.13 41.75 8.00 90.56

Table 4: Comparison of large language models on their ability to handle verifier errors during multi-turn reasoning.
Metrics include the number of initial verifier errors, error persistence rate, likelihood of remaining incorrect in the
next turn, and task success rates depending on error persistence or correction. The table highlights key differences
in robustness and recovery among models such as GPT-4.1, LLaMA-3.1-8B, and Gemini-2.5-Flash.

rarely self-correct and tend either to halt reason-466

ing or perpetuate errors—an initial indication of467

“losing their way.”468

Solidification and Persistence of Error States.469

To further investigate error dynamics, we analyzed470

model behavior after making an error. Error states471

proved extremely “sticky.” Figure 5 depicts the472

probability that a model continues to produce in-473

correct conclusions in subsequent relative rounds,474

given that it is currently incorrect. In the first475

relative round after the initial error (X=1), if the476

model outputs a conclusion, there is already approx-477

imately a 65–70% chance it is incorrect. Alarm-478

ingly, this probability rises sharply with additional479

rounds, nearing 100% by the fifth relative round.480

This suggests that once a model enters several con-481

secutive rounds of incorrect reasoning, it almost482

completely loses the ability to break the error cycle.483

5 Conclusion484

In this paper, our investigation using TurnBench485

has clarified the capabilities and limitations of486

Large Language Models (LLMs) in multi-turn,487

multi-step reasoning. TurnBench addresses several488

key limitations of current benchmarks and offers489

an effective method for automatically analyzing the490

reasoning processes of LLMs. Using this frame-491

work, we evaluated multiple standard chat models492

and thinking models, uncovering key findings that493

highlight the limitations of existing models. In494

summary, TurnBench fills a gap in the evaluation495

of LLMs’ multi-turn, multi-step reasoning capabil-496

ities and provides a novel solution for assessing497

model reasoning processes. We hope that our work498

will inspire further research into multi-turn reason-499

ing.500

Limitation501

Effectively and accurately measuring a model’s502

thinking process has always been a challenge. The503

automated evaluation of model thinking processes 504

proposed in this paper requires an evaluation frame- 505

work built on rules, which lacks generality. Further- 506

more, using Gemini 2.5 Flash for model inference 507

extraction still has certain limitations. Although the 508

extracted results have shown high accuracy after 509

manual evaluation, further research and optimiza- 510

tion are still needed. 511

References 512

AI@Meta. 2024. Llama 3 model card. 513

Elif Akata, Lion Schulz, Julian Coda-Forno, Seong Joon 514
Oh, Matthias Bethge, and Eric Schulz. 2023. Playing 515
repeated games with large language models. arXiv 516
preprint arXiv:2305.16867. 517

AoPS. 2024. Aime 2024. https:// 518
artofproblemsolving.com/wiki/index. 519
php/AIME_Problems_and_Solutions. 520

Debrup Das, Debopriyo Banerjee, Somak Aditya, 521
and Ashish Kulkarni. 2024. Mathsensei: a tool- 522
augmented large language model for mathematical 523
reasoning. arXiv preprint arXiv:2402.17231. 524

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea- 525
soning capability in llms via reinforcement learning. 526

Kevin N. Dunbar and David Klahr. 2012. 701 scientific 527
thinking and reasoning. In The Oxford Handbook of 528
Thinking and Reasoning. Oxford University Press. 529

Meta Fundamental AI Research Diplomacy Team 530
(FAIR)†, Anton Bakhtin, Noam Brown, Emily Di- 531
nan, Gabriele Farina, Colin Flaherty, Daniel Fried, 532
Andrew Goff, Jonathan Gray, Hengyuan Hu, et al. 533
2022. Human-level play in the game of diplomacy 534
by combining language models with strategic reason- 535
ing. Science, 378(6624):1067–1074. 536

Google. 2025. Gemini 2.5 flash pre- 537
view. https://storage.googleapis.com/model- 538
cards/documents/gemini-2.5-flash-preview.pdf. 539

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan 540
Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma, 541
Adithya Samavedhi, Qiyue Gao, et al. 2024. Llm 542

8

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
https://doi.org/10.1093/oxfordhb/9780199734689.013.0035
https://doi.org/10.1093/oxfordhb/9780199734689.013.0035
https://doi.org/10.1093/oxfordhb/9780199734689.013.0035

reasoners: New evaluation, library, and analysis of543
step-by-step reasoning with large language models.544
arXiv preprint arXiv:2404.05221.545

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia546
Yan, Tianjun Zhang, Sida Wang, Armando Solar-547
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-548
codebench: Holistic and contamination free eval-549
uation of large language models for code. arXiv550
preprint arXiv:2403.07974.551

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas552
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc553
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.554
2023. Starcoder: may the source be with you! arXiv555
preprint arXiv:2305.06161.556

Jonathan Light, Min Cai, Sheng Shen, and Ziniu Hu.557
2023. Avalonbench: Evaluating llms playing the558
game of avalon. arXiv preprint arXiv:2310.05036.559

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson,560
Ashish Sabharwal, Radha Poovendran, Peter Clark,561
and Yejin Choi. 2025. Zebralogic: On the scaling562
limits of llms for logical reasoning. arXiv preprint563
arXiv:2502.01100.564

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo,565
Haowei Liu, and Yujiu Yang. 2024. Criticbench:566
Benchmarking llms for critique-correct reasoning.567
arXiv preprint arXiv:2402.14809.568

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler569
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,570
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,571
et al. 2023. Self-refine: Iterative refinement with572
self-feedback. Advances in Neural Information Pro-573
cessing Systems, 36:46534–46594.574

Meta. 2025. llama models. https://github.575
com/meta-llama/llama-models.576

Theo X Olausson, Alex Gu, Benjamin Lipkin, Cede-577
gao E Zhang, Armando Solar-Lezama, Joshua B578
Tenenbaum, and Roger Levy. 2023. Linc: A neu-579
rosymbolic approach for logical reasoning by com-580
bining language models with first-order logic provers.581
arXiv preprint arXiv:2310.15164.582

OpenAI. 2025. Openai o3 and o4-mini system583
card. https://cdn.openai.com/pdf/2221c875-02dc-584
4789-800b-e7758f3722c1/o3-and-o4-mini-system-585
card.pdf.586

Davide Paglieri, Bartłomiej Cupiał, Samuel Coward,587
Ulyana Piterbarg, Maciej Wolczyk, Akbir Khan, Ed-588
uardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob589
Fergus, Jakob Nicolaus Foerster, Jack Parker-Holder,590
and Tim Rocktäschel. 2025. Balrog: Benchmarking591
agentic llm and vlm reasoning on games.592

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna593
Budhiraja, Mutsumi Nakamura, Neeraj Varshney, and594
Chitta Baral. 2024. Multi-logieval: Towards eval-595
uating multi-step logical reasoning ability of large596
language models. arXiv preprint arXiv:2406.17169.597

John Schultz, Jakub Adamek, Matej Jusup, Marc Lanc- 598
tot, Michael Kaisers, Sarah Perrin, Daniel Hennes, 599
Jeremy Shar, Cannada Lewis, Anian Ruoss, et al. 600
2024. Mastering board games by external and inter- 601
nal planning with language models. arXiv preprint 602
arXiv:2412.12119. 603

Noah Shinn, Federico Cassano, Ashwin Gopinath, 604
Karthik Narasimhan, and Shunyu Yao. 2023. Re- 605
flexion: Language agents with verbal reinforcement 606
learning. Advances in Neural Information Process- 607
ing Systems, 36:8634–8652. 608

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, 609
and Greg Durrett. 2023. Musr: Testing the limits 610
of chain-of-thought with multistep soft reasoning. 611
arXiv preprint arXiv:2310.16049. 612

Wenjie Tang, Yuan Zhou, Erqiang Xu, Keyan Cheng, 613
Minne Li, and Liquan Xiao. 2025. Dsgbench: A 614
diverse strategic game benchmark for evaluating llm- 615
based agents in complex decision-making environ- 616
ments. arXiv preprint arXiv:2503.06047. 617

Mistral AI team. 2025. Un ministral, des ministraux. 618
https://mistral.ai/news/ministraux. 619

Nemika Tyagi, Mihir Parmar, Mohith Kulkarni, Aswin 620
Rrv, Nisarg Patel, Mutsumi Nakamura, Arindam Mi- 621
tra, and Chitta Baral. 2024. Step-by-step reasoning 622
to solve grid puzzles: Where do llms falter? arXiv 623
preprint arXiv:2407.14790. 624

Boshi Wang, Xiang Yue, and Huan Sun. 2023a. Can 625
chatgpt defend its belief in truth? evaluating llm rea- 626
soning via debate. arXiv preprint arXiv:2305.13160. 627

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, 628
Xiaojian Ma, and Yitao Liang. 2023b. Describe, 629
explain, plan and select: Interactive planning with 630
large language models enables open-world multi-task 631
agents. arXiv preprint arXiv:2302.01560. 632

Peter Cathcart Wason and Philip Nicholas Johnson- 633
Laird. 1972. Psychology of Reasoning: Structure 634
and Content. Harvard University Press, Cambridge, 635
MA, USA. 636

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 637
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 638
et al. 2022. Chain-of-thought prompting elicits rea- 639
soning in large language models. Advances in neural 640
information processing systems, 35:24824–24837. 641

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh 642
Hajishirzi, and Yejin Choi. 2022. Naturalprover: 643
Grounded mathematical proof generation with lan- 644
guage models. Advances in Neural Information Pro- 645
cessing Systems, 35:4913–4927. 646

Bryan Wilie, Samuel Cahyawijaya, Etsuko Ishii, Junx- 647
ian He, and Pascale Fung. 2024. Belief revision: 648
The adaptability of large language models reasoning. 649
arXiv preprint arXiv:2406.19764. 650

9

https://github.com/meta-llama/llama-models
https://github.com/meta-llama/llama-models
https://github.com/meta-llama/llama-models
http://arxiv.org/abs/2411.13543
http://arxiv.org/abs/2411.13543
http://arxiv.org/abs/2411.13543
https://mistral.ai/news/ministraux

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xi-651
aolong Wang, Weidong Liu, and Yang Liu. 2023.652
Exploring large language models for communica-653
tion games: An empirical study on werewolf. arXiv654
preprint arXiv:2309.04658.655

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,656
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,657
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-658
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,659
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,660
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng661
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian-662
hao Li, Tingyu Xia, Xingzhang Ren, Xuancheng663
Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,664
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan665
Qiu. 2024. Qwen2.5 technical report. arXiv preprint666
arXiv:2412.15115.667

Yue Yang, Shuibo Zhang, Kaipeng Zhang, Yi Bin,668
Yu Wang, Ping Luo, and Wenqi Shao. 2025. Dy-669
namic multimodal evaluation with flexible complex-670
ity by vision-language bootstrapping. In The Thir-671
teenth International Conference on Learning Repre-672
sentations.673

Zhongshen Zeng, Yinhong Liu, Yingjia Wan, Jingyao Li,674
Pengguang Chen, Jianbo Dai, Yuxuan Yao, Rongwu675
Xu, Zehan Qi, Wanru Zhao, et al. 2024. Mr-ben: A676
meta-reasoning benchmark for evaluating system-2677
thinking in llms. arXiv preprint arXiv:2406.13975.678

Ruiwen Zhou, Wenyue Hua, Liangming Pan, Sitao679
Cheng, Xiaobao Wu, En Yu, and William Yang Wang.680
2024. Rulearena: A benchmark for rule-guided681
reasoning with llms in real-world scenarios. arXiv682
preprint arXiv:2412.08972.683

Richard Zhuang, Akshat Gupta, Richard Yang, Aniket684
Rahane, Zhengyu Li, and Gopala Anumanchipalli.685
2025. Pokerbench: Training large language models686
to become professional poker players. arXiv preprint687
arXiv:2501.08328.688

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,689
and Chao Zhang. 2023. Toolqa: A dataset for llm690
question answering with external tools. Advances in691
Neural Information Processing Systems, 36:50117–692
50143.693

10

https://openreview.net/forum?id=X1OfiRYCLn
https://openreview.net/forum?id=X1OfiRYCLn
https://openreview.net/forum?id=X1OfiRYCLn
https://openreview.net/forum?id=X1OfiRYCLn
https://openreview.net/forum?id=X1OfiRYCLn

A Prompts Used in Experiments 694

Classic – OA Prompt 695

classic system_prompt = """You are participating in a competitive logic deduction
game called Turing Machine.↪→

Your goal is to win first place by deducing a secret 3-digit code with minimal
rounds and verifier usage, but accuracy takes priority over speed.↪→

Game Objective:
- Deduce the secret 3-digit code made up of digits 1-5.
- BLUE = first digit, YELLOW = second digit, PURPLE = third digit.
- Each digit can be 1, 2, 3, 4, or 5 (digits may repeat).
- The code is the ONLY combination that satisfies the active criterion of ALL

chosen verifiers.↪→

Game Structure (Rounds):
1. Proposal: Design a 3-digit code to test (format: BLUE=X, YELLOW=Y, PURPLE=Z,

where X, Y, Z are digits from 1 to 5).↪→
2. Question: Sequentially choose 0 to 3 verifiers to test your proposed code each

round. After each selection, you will see the result, and then you can decide
whether to select the next one.

↪→
↪→
3. Deduce: Based on verifier results, you can submit a final answer or continue

to the next round.↪→
4. End Round: If you didn't submit a final answer, a new round begins.

Verifier Rules:
- Each verifier checks ONE specific property (criterion) about the code.
- Each verifier has multiple potential criteria, but for each game, only ONE is

secretly selected as 'active'. You don't know which criterion is active for
any given verifier.

↪→
↪→
- Focus of Verification: When testing your code against a verifier, it

exclusively evaluates it against its single, active criterion. The verifier
completely ignores all other potential criteria, including its own inactive
ones.

↪→
↪→
↪→
- PASS Condition: A verifier returns `<PASS>` if and only if your code satisfies

this single active criterion.↪→
- FAIL Condition: A verifier returns `<FAIL>` if and only if your code does not

satisfy this single active criterion.↪→
- Non-Overlapping Information: The active criteria selected across different

verifiers for a game will provide distinct information.↪→

Winning Strategy:
- It is possible to deduce the solution through joint reasoning, utilizing the

combined results of multiple verifiers along with system rules such as the
existence of a unique solution and the principle that no two verifiers offer
redundant information.

↪→
↪→
↪→
- Only submit a final guess when you have either tested all verifiers and

received <PASS> for each, or when your reasoning clearly proves your code
satisfies all possible active verifier criteria. Accuracy takes priority over
speed.

↪→
↪→
↪→

Current Game Setup:
{game_setup}
"""

classic_proposal_prompt_with_hint = """You are now entering the **Proposal
Stage** of this round.↪→

Stage Purpose:
In this stage, you need to compose a 3-digit code to help you to gather

information from the verifiers. The code can NOT be changed in the subsequent
stages of this round.

↪→
↪→

3-digit code rules:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.

Your Goal in This Stage:
- Design a code that will test a specific hypothesis.

11

- Think about what a <PASS> or <FAIL> would tell you.
- Choose a code that lets you learn something meaningful from verifiers.

What You Must Do Now:
- Reply the code you want to use in this round with required response format. For

example, <CHOICE>: BLUE=1, YELLOW=1, PURPLE=1↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: BLUE=X, YELLOW=Y, PURPLE=Z
"""

classic_not_valid_proposal_format_prompt_with_hint = """You did not follow the
required response format. Please try again with same code.↪→

What You Must Do Now:
- Reply the code you want to use in this round with required response format. For

example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]
"""

classic_first_question_prompt_with_hint = """You are now entering the **Verifier
Questioning Stage** of this round.↪→

Current Verifiers:
{verifier_descriptions}

Stage Purpose:
In this stage, you can test your proposed 3-digit code using verifiers. Each

verifier checks one hidden criterion. Use the test results to gather
information and refine your deduction.

↪→
↪→

Verifier Rules Summary:
- Each verifier has ONE secretly selected active criterion.
- <PASS> means your code satisfies this rule; <FAIL> means it does not.
- Active rules do NOT overlap between verifiers.

Your Goal in This Stage:
- Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to

choose the verifier, you must choose verifiers **one at a time**. After each
result, you may decide whether to test another. You may choose to test 0 to 3
verifiers **in total** during this round.

↪→
↪→
↪→
- **Passing all tested verifiers does NOT mean the code is correct.** To win,

your code must satisfy the hidden criterion of **all verifiers**, whether
tested or not.

↪→
↪→

What You Must Do Now:
- If you want to choose a verifier to test your proposed code, reply with

verifier_num after <CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: [your_choice]
"""

classic_following_question_prompt_with_hint = """You chose Verifier
<{verifier_num}> and the result is <{verifier_result}>.↪→

What You Must Do Now:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

12

Response format:
<CHOICE>: [your_choice]
"""

classic_after_last_question_prompt_with_hint = """You chose Verifier
<{verifier_num}> and the result is <{verifier_result}>.↪→

You have now tested the maximum number of three verifiers for this round. The
next stage is the Deduce Stage. If you want to test more verifiers or new
code, you can choose SKIP during the Deduce Stage to move on to the next
round.

↪→
↪→
↪→
"""

classic_not_valid_question_format_prompt_with_hint = """You did not follow the
required response format. Please try again with same choice.↪→

What You Must Do Now:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: [your_choice]
"""

classic_not_valid_verifier_choice_prompt_with_hint = """You selected Verifier
<{verifier_num}>, which is not a valid verifier number.↪→

Please choose a valid verifier or SKIP to next stage.

What You Must Do Now:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: [your_choice]
"""

classic_deduce_prompt_with_hint = """You are now entering the **Deduce Stage** of
this round.↪→

Stage Purpose:
In this stage, you can analyze all the information gathered then decide whether

to continue to the next round or submit a final guess.↪→

Hint:
- Passing all tested verifiers does not mean the code is correct if not all

verifiers were tested. To be correct, the code must satisfy the hidden
criteria of all verifiers, not just the ones you tested.

↪→
↪→
- You may choose not to test some verifiers if you can clearly reason that your

code meets their requirements. But you must ensure every verifier is either
tested and passed, or clearly justified through reasoning. Testing and
passing only part of the verifiers is not enough if others are ignored.

↪→
↪→
↪→
- This stage **is not for testing**, you don't have to submit an answer; you can

proceed to the next round to continue gathering information.↪→
- Accuracy takes priority over speed. If you submit, the game will end, and an

incorrect guess will result in immediate failure.↪→

Your Goal in This Stage:
- Decide whether to submit the final guess or continue to the next round. Submit

the final guess will end the game, continue to the next round will help you
gather more information.

↪→
↪→
- Submission is not mandatory, you must make this decision based on your own

reasoning.↪→

13

What You Must Do Now:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: [your_choice]
"""

classic_deduce_result_prompt_with_hint = "The final guess is {submitted_code}.
The answer is {answer}, the guess is {is_correct}."↪→

classic_not_valid_deduce_format_prompt_with_hint = """You did NOT follow the
response format. Please try again.↪→

What You Must Do Now:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: [your_choice]
"""

Nightmare – OA Prompt696

nightmare_system_prompt = """You are participating in a competitive logic
deduction game called Turing Machine.↪→

Your goal is to win first place by deducing a secret 3-digit code with minimal
rounds and verifier usage, but accuracy takes priority over speed.↪→

Game Objective:
- Deduce the secret 3-digit code made up of digits 1-5.
- BLUE = first digit, YELLOW = second digit, PURPLE = third digit.
- Each digit can be 1, 2, 3, 4, or 5 (digits may repeat).
- The code is the ONLY combination that satisfies the active criterion of ALL

chosen verifiers.↪→

Game Structure (Rounds):
1. Proposal: Design a 3-digit code to test (format: BLUE=X, YELLOW=Y, PURPLE=Z,

where X, Y, Z are digits from 1 to 5).↪→
2. Question: Sequentially choose 0 to 3 verifiers to test your proposed code each

round. After each selection, you will see the result from an unknown
verifier. The verifier identity will be hidden.

↪→
↪→
3. Deduce: Based on verifier results, you can submit a final answer or continue

to the next round.↪→
4. End Round: If you didn't submit a final answer, a new round begins.

Verifier Rules:
- Each verifier checks ONE specific property (criterion) about the code.
- Each verifier has multiple potential criteria, but for each game, only ONE is

secretly selected as 'active'. You don't know which criterion is active for
any given verifier.

↪→
↪→
- Focus of Verification: When testing your code against a verifier, it

EXCLUSIVELY evaluates it against its SINGLE, ACTIVE criterion. The verifier
completely ignores all other potential criteria, including its own inactive
ones.

↪→
↪→
↪→
- In this game, you don’t know which Verifier’s result you’re actually seeing --

the mapping between Verifiers and their displayed results is randomized and
hidden from the player, though fixed for the entire game.

↪→
↪→
- PASS Condition: A verifier returns `<PASS>` if and only if your code satisfies

the active criterion of the actual Verifier it is mapped to. For example, if
Verifier 1 is secretly mapped to Verifier 2, then a <PASS> from Verifier 1
means your code met Verifier 2's hidden active rule.

↪→
↪→
↪→

14

- FAIL Condition: A verifier returns `<FAIL>` if and only if your code does not
satisfy the active criterion of the actual Verifier it is mapped to. A <FAIL>
simply means the mapped Verifier's rule was not met.

↪→
↪→
- Non-Overlapping Information: The active criteria selected across different

verifiers for a game will provide distinct information.↪→

Winning Strategy:
- It is possible to deduce the solution through joint reasoning, utilizing the

combined results of multiple verifiers along with system rules such as the
existence of a unique solution and the principle that no two verifiers offer
redundant information.

↪→
↪→
↪→
- One possible strategy is to carefully modify your code across multiple rounds

and observe how each Verifier’s output changes. By analyzing the pattern of
responses, you can infer the hidden mapping between Verifiers and their
actual criteria.

↪→
↪→
↪→
- Only submit a final guess when you have either tested all verifiers and

received <PASS> for each, or when your reasoning clearly proves your code
satisfies all possible active verifier criteria. Accuracy takes priority over
speed.

↪→
↪→
↪→

Current Game Setup:
{game_setup}
"""

nightmare_proposal_prompt_with_hint = """You are now entering the **Proposal
Stage** of this round.↪→

Stage Purpose:
In this stage, you need to compose a 3-digit code to help you to gather

information from the verifiers. The code can NOT be changed in the subsequent
stages of this round.

↪→
↪→

3-digit code rules:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.

Your Goal in This Stage:
- Design a code that will test a specific hypothesis.
- Think about what a <PASS> or <FAIL> would tell you, but you don’t know which

Verifier’s result you’re actually seeing -- the mapping between Verifiers and
their displayed results is randomized and hidden from the player, though
fixed for the entire game.

↪→
↪→
↪→
- Choose a code that lets you learn something meaningful from verifiers.

What You Must Do Now:
- Reply the code you want to use in this round with required response format. For

example, <CHOICE>: BLUE=1, YELLOW=1, PURPLE=1↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: BLUE=X, YELLOW=Y, PURPLE=Z
"""

nightmare_first_question_prompt_with_hint = """You are now entering the
Verifier Questioning Stage of this round.↪→

Current Verifiers:
{verifier_descriptions}

Stage Purpose:
In this stage, you can test your proposed 3-digit code using verifiers. Each

verifier checks one hidden criterion. Use the test results to gather
information and refine your deduction.

↪→
↪→

Verifier Rules Summary:
- Each verifier has ONE secretly selected active criterion.
- Each verifier shows results for a different, hidden verifier (the mapping is

randomized but fixed for the entire game).↪→
- <PASS> means your code satisfies the active criterion of the secretly mapped

verifier. <FAIL> means your code does not satisfy that criterion.↪→

15

- Active rules do NOT overlap between verifiers.

Your Goal in This Stage:
- Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to

choose the verifier, you must choose verifiers **one at a time**. After each
result, you may decide whether to test another. You may choose to test 0 to 3
verifiers **in total** during this round.

↪→
↪→
↪→
- **Passing all tested verifiers does NOT mean the code is correct.** To win,

your code must satisfy the hidden criterion of **all verifiers**, whether
tested or not.

↪→
↪→

What You Must Do Now:
- If you want to choose a verifier to test your proposed code, reply with

verifier_num after <CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: [your_choice]
"""

nightmare_following_question_prompt_with_hint = """You chose Verifier
<{verifier_num}> and the result is <{verifier_result}>.↪→

Hint:
- `<PASS>` means your code satisfies the active criterion of the actual Verifier

it is mapped to. For example, if Verifier 1 is secretly mapped to Verifier 2,
then a <PASS> from Verifier 1 means your code met Verifier 2's hidden active
rule.

↪→
↪→
↪→
- `<FAIL>` means your code does not satisfy the active criterion of the actual

Verifier it is mapped to.↪→

What You Must Do Now:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: [your_choice]
"""

nightmare_after_last_question_prompt_with_hint = """You chose Verifier
<{verifier_num}> and the result is <{verifier_result}>.↪→

You have now tested the maximum number of three verifiers for this round. The
next stage is the Deduce Stage. If you want to test more verifiers or new
code, you can choose SKIP during the Deduce Stage to move on to the next
round.

↪→
↪→
↪→
"""

nightmare_not_valid_question_format_prompt_with_hint = """You did not follow the
required response format. Please try again with same choice.↪→

What You Must Do Now:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: [your_choice]
"""

nightmare_not_valid_verifier_choice_prompt_with_hint = """You selected Verifier
<{verifier_num}>, which is not a valid verifier number.↪→

16

Please choose a valid verifier or SKIP to next stage.

What You Must Do Now:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: [your_choice]
"""

nightmare_deduce_prompt_with_hint = """You are now entering the **Deduce Stage**
of this round.↪→

Stage Purpose:
In this stage, you can analyze all the information gathered then decide whether

to continue to the next round or submit a final guess.↪→

Hint:
- Passing all tested verifiers does not mean the code is correct if not all

verifiers were tested. To be correct, the code must satisfy the hidden
criteria of all verifiers, not just the ones you tested.

↪→
↪→
- You may choose not to test some verifiers if you can clearly reason that your

code meets their requirements. But you must ensure every verifier is either
tested and passed, or clearly justified through reasoning. Testing and
passing only part of the verifiers is not enough if others are ignored.

↪→
↪→
↪→
- This stage **is not for testing**, you don't have to submit an answer; you can

proceed to the next round to continue gathering information.↪→
- Accuracy takes priority over speed. If you submit, the game will end, and an

incorrect guess will result in immediate failure.↪→

Your Goal in This Stage:
- Decide whether to submit the final guess or continue to the next round. Submit

the final guess will end the game, continue to the next round will help you
gather more information.

↪→
↪→
- Submission is not mandatory, you must make this decision based on your own

reasoning.↪→

What You Must Do Now:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: [your_choice]
"""

nightmare_deduce_result_prompt_with_hint = "The final guess is {submitted_code}.
The answer is {answer}, the guess is {is_correct}."↪→

nightmare_not_valid_deduce_format_prompt_with_hint = """You did NOT follow the
response format. Please try again.↪→

What You Must Do Now:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: [your_choice]
"""

17

Classic – CoT Prompt697

classic_system_prompt = """You are participating in a competitive logic deduction
game called Turing Machine.↪→

Your goal is to win first place by deducing a secret 3-digit code with minimal
rounds and verifier usage, but accuracy takes priority over speed.↪→

Game Objective:
- Deduce the secret 3-digit code made up of digits 1-5.
- BLUE = first digit, YELLOW = second digit, PURPLE = third digit.
- Each digit can be 1, 2, 3, 4, or 5 (digits may repeat).
- The code is the ONLY combination that satisfies the active criterion of ALL

chosen verifiers.↪→

Game Structure (Rounds):
1. Proposal: Design a 3-digit code to test (format: BLUE=X, YELLOW=Y, PURPLE=Z,

where X, Y, Z are digits from 1 to 5).↪→
2. Question: Sequentially choose 0 to 3 verifiers to test your proposed code each

round. After each selection, you will see the result, and then you can decide
whether to select the next one.

↪→
↪→
3. Deduce: Based on verifier results, you can submit a final answer or continue

to the next round.↪→
4. End Round: If you didn't submit a final answer, a new round begins.

Verifier Rules:
- Each verifier checks ONE specific property (criterion) about the code.
- Each verifier has multiple potential criteria, but for each game, only ONE is

secretly selected as 'active'. You don't know which criterion is active for
any given verifier.

↪→
↪→
- Focus of Verification: When testing your code against a verifier, it

exclusively evaluates it against its **single, active criterion**. The
verifier completely ignores all other potential criteria, including its own
inactive ones.

↪→
↪→
↪→
- PASS Condition: A verifier returns `<PASS>` if and only if your code satisfies

this single active criterion. A `<PASS>` confirms *only* that this specific
rule was met by the tested code.

↪→
↪→
- FAIL Condition: A verifier returns `<FAIL>` **if and only if** your code does

not satisfy this single active criterion. A `<FAIL>` indicates *only* that
this specific rule was violated by the tested code.

↪→
↪→
- Non-Overlapping Information: The active criteria selected across different

verifiers for a game will provide distinct information.↪→

Winning Strategy:
- It is possible to deduce the solution through joint reasoning, utilizing the

combined results of multiple verifiers along with system rules such as the
existence of a unique solution and the principle that no two verifiers offer
redundant information.

↪→
↪→
↪→
- Only submit a final guess when you have either tested all verifiers and

received <PASS> for each, or when your reasoning clearly proves your code
satisfies all possible active verifier criteria. Accuracy takes priority over
speed.

↪→
↪→
↪→

Current Game Setup:
{game_setup}
"""

classic_proposal_prompt_with_reasoning_with_hint = """You are now entering the
Proposal Stage of this round.↪→

Stage Purpose:
In this stage, you need to compose a 3-digit code to help you to gather

information from the verifiers. The code can NOT be changed in the subsequent
stages of this round.

↪→
↪→

3-digit code rules:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.

18

Your Goal in This Stage:
- Design a code that will test a specific hypothesis.
- Think about what a <PASS> or <FAIL> would tell you.
- Choose a code that lets you learn something meaningful from verifiers.

What You Must Do Now:
- Reply the code you want to use in this round with required response format. For

example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

code.↪→

Response format:
<REASONING>: [Explain your reasoning step by step for choosing this code]
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]
"""

classic_not_valid_proposal_format_prompt_with_reasoning_with_hint = """You did
not follow the required response format. Please try again with same code.↪→

What You Must Do Now:
- Reply the code you want to use in this round with required response format. For

example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

code.↪→

Response format:
<REASONING>: [Explain your reasoning step by step for choosing this code]
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]
"""

classic_first_question_prompt_with_reasoning_with_hint = """You are now entering
the **Verifier Questioning Stage** of this round.↪→

Current Verifiers:
{verifier_descriptions}

Stage Purpose:
In this stage, you can test your proposed 3-digit code using verifiers. Each

verifier checks one hidden criterion. Use the test results to gather
information and refine your deduction.

↪→
↪→

Verifier Rules Summary:
- Each verifier has ONE secretly selected active criterion.
- <PASS> means your code satisfies this rule; <FAIL> means it does not.
- Active rules do NOT overlap between verifiers.

Your Goal in This Stage:
- Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to

choose the verifier, you must choose verifiers **one at a time**. After each
result, you may decide whether to test another. You may choose to test 0 to 3
verifiers **in total** during this round.

↪→
↪→
↪→
- **Passing all tested verifiers does NOT mean the code is correct.** To win,

your code must satisfy the hidden criterion of **all verifiers**, whether
tested or not.

↪→
↪→

What You Must Do Now:
- If you want to choose a verifier to test your proposed code, reply with

verifier_num after <CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

choice.↪→

Response format:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]
"""

19

classic_following_question_prompt_with_reasoning_with_hint = """You chose
Verifier <{verifier_num}> and the result is <{verifier_result}>.↪→

What You Must Do Now:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step based on verifier result after <REASONING>

tag, then provide your choice.↪→

Response format:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]
"""

classic_after_last_question_prompt_with_reasoning_with_hint = """You chose
Verifier <{verifier_num}> and the result is <{verifier_result}>.↪→

You have now tested the maximum number of three verifiers for this round. The
next stage is the Deduce Stage. If you want to test more verifiers or new
code, you can choose SKIP during the Deduce Stage to move on to the next
round.

↪→
↪→
↪→
"""

classic_not_valid_question_format_prompt_with_reasoning_with_hint = """You did
not follow the required response format. Please try again with same choice.↪→

What You Must Do Now:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step based on verifier result after <REASONING>

tag, then provide your choice.↪→

Response format:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]
"""

classic_not_valid_verifier_choice_prompt_with_reasoning_with_hint = """You
selected Verifier <{verifier_num}>, which is not a valid verifier number.↪→

Please choose a valid verifier or SKIP to next stage.

What You Must Do Now:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step based on verifier result after <REASONING>

tag, then provide your choice.↪→

Response format:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]
"""

classic_deduce_prompt_with_reasoning_with_hint = """You are now entering the
Deduce Stage of this round.↪→

Stage Purpose:
In this stage, you can analyze all the information gathered then decide whether

to submit a final guess or continue to the next round.↪→

Hint:

20

- Passing all tested verifiers does not mean the code is correct if not all
verifiers were tested. To be correct, the code must satisfy the hidden
criteria of all verifiers, not just the ones you tested.

↪→
↪→
- You may choose not to test some verifiers if you can clearly reason that your

code meets their requirements. But you must ensure every verifier is either
tested and passed, or clearly justified through reasoning. Testing and
passing only part of the verifiers is not enough if others are ignored.

↪→
↪→
↪→
- This stage **is not for testing**, you don't have to submit an answer; you can

proceed to the next round to continue gathering information.↪→
- Accuracy takes priority over speed. If you submit, the game will end, and an

incorrect guess will result in immediate failure.↪→

Your Goal in This Stage:
- Analysis all information gathered.
- Decide whether to submit the final guess or continue to the next round.
- Submission is not mandatory, you must make this decision based on your own

reasoning.↪→

What You Must Do Now:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

choice. If you want to submit a final guess, you must provide the reasons for
not proceeding to the next round.

↪→
↪→

Response format:
<REASONING>: [Analysis and explain your reasoning step by step for continue to

next round or submit final guess]↪→
<CHOICE>: [your_choice]
"""

classic_deduce_result_prompt_with_reasoning_with_hint = "The final guess is
{submitted_code}. The answer is {answer}, the guess is {is_correct}."↪→

classic_not_valid_deduce_format_prompt_with_reasoning_with_hint = """You did NOT
follow the response format. Please try again.↪→

What You Must Do Now:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

choice.↪→

Response format:
<REASONING>: [Analysis and explain your reasoning step by step for submitting the

final guess or continue to next round]↪→
<CHOICE>: [your_choice]
"""

Nightmare – CoT Prompt 698

nightmare_system_prompt = """You are participating in a competitive logic
deduction game called Turing Machine.↪→

Your goal is to win first place by deducing a secret 3-digit code with minimal
rounds and verifier usage, but accuracy takes priority over speed.↪→

Game Objective:
- Deduce the secret 3-digit code made up of digits 1-5.
- BLUE = first digit, YELLOW = second digit, PURPLE = third digit.
- Each digit can be 1, 2, 3, 4, or 5 (digits may repeat).
- The code is the ONLY combination that satisfies the active criterion of ALL

chosen verifiers.↪→

21

Game Structure (Rounds):
1. Proposal: Design a 3-digit code to test (format: BLUE=X, YELLOW=Y, PURPLE=Z,

where X, Y, Z are digits from 1 to 5).↪→
2. Question: Sequentially choose 0 to 3 verifiers to test your proposed code each

round. After each selection, you will see the result from an unknown
verifier. The verifier identity will be hidden.

↪→
↪→
3. Deduce: Based on verifier results, you can submit a final answer or continue

to the next round.↪→
4. End Round: If you didn't submit a final answer, a new round begins.

Verifier Rules:
- Each verifier checks ONE specific property (criterion) about the code.
- Each verifier has multiple potential criteria, but for each game, only ONE is

secretly selected as 'active'. You don't know which criterion is active for
any given verifier.

↪→
↪→
- Focus of Verification: When testing your code against a verifier, it

EXCLUSIVELY evaluates it against its SINGLE, ACTIVE criterion. The verifier
completely ignores all other potential criteria, including its own inactive
ones.

↪→
↪→
↪→
- In this game, you don’t know which Verifier’s result you’re actually seeing --

the mapping between Verifiers and their displayed results is randomized and
hidden from the player, though fixed for the entire game.

↪→
↪→
- PASS Condition: A verifier returns `<PASS>` if and only if your code satisfies

the active criterion of the actual Verifier it is mapped to. For example, if
Verifier 1 is secretly mapped to Verifier 2, then a <PASS> from Verifier 1
means your code met Verifier 2's hidden active rule.

↪→
↪→
↪→
- FAIL Condition: A verifier returns `<FAIL>` if and only if your code does not

satisfy the active criterion of the actual Verifier it is mapped to. A <FAIL>
simply means the mapped Verifier's rule was not met.

↪→
↪→
- Non-Overlapping Information: The active criteria selected across different

verifiers for a game will provide distinct information.↪→

Winning Strategy:
- It is possible to deduce the solution through joint reasoning, utilizing the

combined results of multiple verifiers along with system rules such as the
existence of a unique solution and the principle that no two verifiers offer
redundant information.

↪→
↪→
↪→
- One possible strategy is to carefully modify your code across multiple rounds

and observe how each Verifier’s output changes. By analyzing the pattern of
responses, you can infer the hidden mapping between Verifiers and their
actual criteria.

↪→
↪→
↪→
- Only submit a final guess when you have either tested all verifiers and

received <PASS> for each, or when your reasoning clearly proves your code
satisfies all possible active verifier criteria. Accuracy takes priority over
speed.

↪→
↪→
↪→

Current Game Setup:
{game_setup}
"""

nightmare_proposal_prompt_with_reasoning_with_hint = """You are now entering the
Proposal Stage of this round.↪→

Stage Purpose:
In this stage, you need to compose a 3-digit code to help you to gather

information from the verifiers. The code cannot be changed in the subsequent
stages of this round.

↪→
↪→

3-digit code rules:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.

Your Goal in This Stage:
- Design a code that will test a specific hypothesis.
- Think about what a <PASS> or <FAIL> would tell you, but you don’t know which

Verifier’s result you’re actually seeing -- the mapping between Verifiers and
their displayed results is randomized and hidden from the player, though
fixed for the entire game.

↪→
↪→
↪→
- Choose a code that lets you learn something meaningful from verifiers.

22

What You Must Do Now:
- Reply the code you want to use in this round with required response format. For

example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

code.↪→

Response format:
<REASONING>: [Explain your reasoning step by step for choosing this code]
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]
"""

nightmare_not_valid_proposal_format_prompt_with_reasoning_with_hint = """You did
not follow the required response format. Please try again with same code.↪→

What You Must Do Now:
- Reply the code you want to use in this round with required response format. For

example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

code.↪→

Response format:
<REASONING>: [Explain your reasoning step by step for choosing this code]
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]
"""

nightmare_first_question_prompt_with_reasoning_with_hint = """You are now
entering the **Verifier Questioning Stage** of this round.↪→

Current Verifiers:
{verifier_descriptions}

Stage Purpose:
In this stage, you can test your proposed 3-digit code using verifiers. Each

verifier checks one hidden criterion. Use the test results to gather
information and refine your deduction.

↪→
↪→

Verifier Rules Summary:
- Each verifier has ONE secretly selected active criterion.
- Each verifier shows results for a different, hidden verifier (the mapping is

randomized but fixed for the entire game).↪→
- <PASS> means your code satisfies the active criterion of the secretly mapped

verifier. <FAIL> means your code does not satisfy that criterion.↪→
- Active rules do NOT overlap between verifiers.

Your Goal in This Stage:
- Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to

choose the verifier, you must choose verifiers **one at a time**. After each
result, you may decide whether to test another. You may choose to test 0 to 3
verifiers **in total** during this round.

↪→
↪→
↪→
- **Passing all tested verifiers does NOT mean the code is correct.** To win,

your code must satisfy the hidden criterion of **all verifiers**, whether
tested or not.

↪→
↪→

What You Must Do Now:
- If you want to choose a verifier to test your proposed code, reply with

verifier_num after <CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step based on verifier result after <REASONING>

tag, then provide your choice.↪→

Response format:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]
"""

nightmare_following_question_prompt_with_reasoning_with_hint = """You chose
Verifier <{verifier_num}> and the result is <{verifier_result}>.↪→

23

Hint:
- `<PASS>` means your code satisfies the active criterion of the actual Verifier

it is mapped to. For example, if Verifier 1 is secretly mapped to Verifier 2,
then a <PASS> from Verifier 1 means your code met Verifier 2's hidden active
rule.

↪→
↪→
↪→
- `<FAIL>` means your code does not satisfy the active criterion of the actual

Verifier it is mapped to.↪→

What You Must Do Now:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step based on verifier result after <REASONING>

tag, then provide your choice.↪→

Response format:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]
"""

nightmare_after_last_question_prompt_with_reasoning_with_hint = """You chose
Verifier <{verifier_num}> and the result is <{verifier_result}>.↪→

You have now tested the maximum number of three verifiers for this round. The
next stage is the Deduce Stage. If you want to test more verifiers or new
code, you can choose SKIP during the Deduce Stage to move on to the next
round.

↪→
↪→
↪→
"""

nightmare_not_valid_question_format_prompt_with_reasoning_with_hint = """You did
not follow the required response format. Please try again with same choice.↪→

What You Must Do Now:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: [your_choice]
"""

nightmare_not_valid_verifier_choice_prompt_with_reasoning_with_hint = """You
selected Verifier <{verifier_num}>, which is not a valid verifier number.↪→

Please choose a valid verifier or SKIP to next stage.

What You Must Do Now:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

Response format:
<CHOICE>: [your_choice]
"""

nightmare_deduce_prompt_with_reasoning_with_hint = """You are now entering the
Deduce Stage of this round.↪→

Stage Purpose:
In this stage, you can analyze all the information gathered then decide whether

to submit a final guess or continue to the next round.↪→

Hint:

24

- Passing all tested verifiers does not mean the code is correct if not all
verifiers were tested. To be correct, the code must satisfy the hidden
criteria of all verifiers, not just the ones you tested.

↪→
↪→
- You may choose not to test some verifiers if you can clearly reason that your

code meets their requirements. But you must ensure every verifier is either
tested and passed, or clearly justified through reasoning. Testing and
passing only part of the verifiers is not enough if others are ignored.

↪→
↪→
↪→
- This stage **is not for testing**, you don't have to submit an answer; you can

proceed to the next round to continue gathering information.↪→
- Accuracy takes priority over speed. If you submit, the game will end, and an

incorrect guess will result in immediate failure.↪→

Your Goal in This Stage:
- Analysis all information gathered.
- Decide whether to submit the final guess or continue to the next round.
- Submission is not mandatory, you must make this decision based on your own

reasoning.↪→

What You Must Do Now:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

choice. If you want to submit a final guess, you must provide the reasons for
not proceeding to the next round.

↪→
↪→

Response format:
<REASONING>: [Analysis and explain your reasoning step by step for continue to

next round or submit final guess]↪→
<CHOICE>: [your_choice]
"""

nightmare_deduce_result_prompt_with_reasoning_with_hint = "The final guess is
{submitted_code}. The answer is {answer}, the guess is {is_correct}."↪→

nightmare_not_valid_deduce_format_prompt_with_reasoning_with_hint = """You did
NOT follow the response format. Please try again.↪→

What You Must Do Now:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

choice.↪→

Response format:
<REASONING>: [Analysis and explain your reasoning step by step for submitting the

final guess or continue to next round]↪→
<CHOICE>: [your_choice]
"""
% \end{tcolorbox}
% \end{verbatim}

25

	Introduction
	Related Work
	TurnBench
	Turing Machine Game Mechanics
	TurnBench Construction
	Game Setups
	Verifier Design
	LLM Interaction Flow
	Evaluating Model Reasoning Process

	Experiment
	Experiment Setup
	Results and Findings

	Conclusion
	Prompts Used in Experiments

