TurnBench-MS: A Benchmark for Evaluating Multi-Turn, Multi-Step
Reasoning in Large Language Models

Anonymous ACL submission

Abstract

Despite impressive advances in large language
models (LLMs), existing benchmarks often fo-
cus on single-turn or single-step tasks, failing
to capture the kind of iterative reasoning re-
quired in real-world settings. To address this
limitation, we introduce TurnBench, a novel
benchmark that evaluates multi-turn, multi-step
reasoning through an interactive code-breaking
task inspired by a “Turing Machine Board
Game.” In each episode, a model must uncover
hidden logical or arithmetic rules by making se-
quential guesses, receiving structured feedback,
and integrating clues across multiple rounds.
This dynamic setup requires models to reason
over time, adapt based on past information, and
maintain consistency across steps—capabilities
underexplored in current benchmarks. Turn-
Bench includes two modes: Classic, which
tests standard reasoning, and Nightmare, which
introduces increased complexity and requires
robust inferential chains. To support fine-
grained analysis, we provide ground-truth an-
notations for intermediate reasoning steps. Our
evaluation of state-of-the-art LLMs reveals sig-
nificant gaps: GPT-4-mini achieves 81.5% ac-
curacy in Classic mode, but performance drops
to 17.8% in Nightmare mode. In contrast, hu-
man participants achieve 100% in both, under-
scoring the challenge TurnBench poses to cur-
rent models. By incorporating feedback loops
and hiding task rules, TurnBench reduces con-
tamination risks and provides a rigorous testbed
for diagnosing and advancing multi-step, multi-
turn reasoning in LLMs.!

1 Introduction

Reasoning is central to human cognition and a key
benchmark for evaluating the capabilities of artifi-
cial intelligence (AI) systems (Wason and Johnson-
Laird, 1972; Dunbar and Klahr, 2012). In the
context of large language models (LLMs), assess-
ing reasoning ability is especially critical as these

models are increasingly deployed in complex, real-
world tasks. While a growing body of work has
proposed datasets and evaluation methods for prob-
ing LLM reasoning (Zeng et al., 2024; Wang et al.,
2023a; Welleck et al., 2022), significant gaps re-
main in how we measure and interpret this abil-
ity—particularly in multi-step, multi-turn settings.

First, most existing evaluations focus on single-
turn or single-step reasoning tasks, overlooking
the iterative and interactive nature of real-world
problem-solving. Human reasoning often involves
cycles of information gathering, hypothesis testing,
and adaptation to feedback. This is especially true
in scenarios where information is incomplete or dis-
tributed across multiple interactions. While recent
benchmarks attempt to assess multi-step reasoning
(Tang et al., 2025; Zeng et al., 2024), they rarely
simulate settings that require reasoning across mul-
tiple turns.

Second, current evaluation metrics typically em-
phasize final-answer correctness, with little insight
into the model’s intermediate reasoning process
(Zhuang et al., 2023; Hao et al., 2024). As complex
reasoning often admits multiple valid paths, simply
scoring final outputs fails to distinguish between
genuine inference and lucky guesses. Though some
methods attempt process-level evaluation via man-
ual annotation or automated proxies (Zeng et al.,
2024; Tang et al., 2025), these are limited by sub-
jectivity and the absence of reliable ground truth
for intermediate reasoning.

Third, data contamination poses a serious con-
cern. Static benchmarks—often sourced from pub-
lic datasets or templated questions—can overlap
with pretraining corpora, making it difficult to
disentangle memorization from actual reasoning
(Yang et al., 2025; Jain et al., 2024; Li et al., 2023).
This undermines the reliability of benchmark re-
sults and inflates perceived model performance.

!See our code at: https://anonymous.4open.science/r/TurnBench- To address these gaps, we introduce TurnBench,

2552/

a novel benchmark designed to evaluate multi-turn,

multi-step reasoning through an interactive code-
breaking task inspired by the Turing Machine board
game. In this game, a model must uncover a hidden
three-digit code by engaging in multiple rounds of
interaction with logical verifiers. Each verifier is
governed by a hidden rule; only one rule per veri-
fier is active in a given instance. To succeed, the
model must iteratively guess codes, select verifiers,
analyze feedback, and gradually infer the under-
lying logical or arithmetic constraints—mirroring
how humans perform exploratory reasoning.

TurnBench explicitly addresses key shortcom-
ings in existing benchmarks. First, it evaluates
multi-turn, multi-step reasoning by requiring
LLMs to adapt dynamically to feedback across
multiple rounds and integrate partial clues to for-
mulate and revise hypotheses over time. Second,
it enables process-level evaluation through a rule-
based mechanism that compares models’ interme-
diate inferences—i.e., their identification of active
rules in each verifier—against ground truth, allow-
ing structured analysis of reasoning steps beyond
final answer correctness. Finally, TurnBench of-
fers strong contamination resistance due to its dy-
namic rule configurations: even under fixed game
setups, varying rule activations lead to distinct rea-
soning trajectories, minimizing the risk of data
leakage from LLM pretraining corpora. Our work
makes the following key contributions:

* We propose TurnBench, the first benchmark
designed to evaluate multi-turn, multi-step rea-
soning in LLMs through dynamic, interac-
tive tasks. TurnBench includes 540 game in-
stances across two modes—Classic and Night-
mare—with three difficulty levels each.

* We introduce a novel, automated evaluation
method that leverages rule-based feedback to
analyze intermediate reasoning steps, offering
a grounded way to assess the internal thinking
of LLMs.

* We benchmark a range of open-source and
proprietary models, including GPT-04-mini
and Gemini 2.5 Flash, alongside human par-
ticipants. Results show a significant per-
formance gap between humans (100%) and
models (as low as 17.8% in Nightmare
mode), highlighting the challenge TurnBench
presents.

* We release a new dataset comprising not only

game settings and final answers, but also de-
tailed interaction logs and annotated reasoning
steps for both models and humans, providing
a valuable resource for future research.

2 Related Work

LLMs in Interactive Game Environments: Re-
cent work has explored the use of LLMs as
agents in interactive games to assess their plan-
ning, reasoning, and decision-making capabili-
ties across diverse domains such as board games,
card games, and social deduction settings (Schultz
et al., 2024; Xu et al., 2023; Akata et al., 2023;
Light et al., 2023; , FAIR; Wang et al., 2023b;
Zhuang et al., 2025; Tang et al., 2025). These
benchmarks typically present the game state in tex-
tual or structured formats and prompt LLMs to
make the next move using natural language gen-
eration. For instance, PokerBench (Zhuang et al.,
2025) adopts classification-based decision scenar-
ios, while AvalonBench (Light et al., 2023) and
BALROG (Paglieri et al., 2025) evaluate agents
through multi-turn, interactive gameplay. Common
evaluation metrics include win rate, legality of ac-
tions, strategy optimality, and task completion.
Benchmarks for Multi-Step and Logical Rea-
soning: To more directly evaluate reasoning capa-
bilities, recent studies have proposed benchmarks
focused on multi-step logical and mathematical in-
ference. Multi-LogiEval (Patel et al., 2024) and
Belief-R1 (Wilie et al., 2024) reveal that even
advanced LLMs like GPT-4 and Claude struggle
with tasks involving deep reasoning and belief re-
vision. MuSR (Sprague et al., 2023) embeds multi-
step logic challenges in long-form narratives to
test long-context reasoning. Other efforts leverage
real-world tasks such as mathematics competitions
(e.g., AIME (AoPS, 2024)) to benchmark high-
level mathematical reasoning. CriticBench (Lin
et al., 2024) and MR-Ben (Zeng et al., 2024) fur-
ther highlight the potential of multi-round, self-
reflective prompting for improving LLM reasoning
through iterative critique and correction.
Rule-Based Inference and Tool-Augmented
Reasoning: Several benchmarks focus on rule-
based or structured inference tasks. GridPuzzle
and PuzzleEval (Tyagi et al., 2024) utilize logic
grid puzzles, while ZebralLogic (Lin et al., 2025)
frames reasoning as constraint satisfaction prob-
lems (CSPs). RuleArena (Zhou et al., 2024) eval-
uates models on dynamic policy reasoning. Tool-

2

& = {158

[Start Simulation J ’Tu rn Bench [Game End]
T Submit
[Proposal Step J [Question Step] ‘ [Deduce Step]
m [Verifiers [1 { 2E{ 3'] { Continue J
‘ 27>

P/E

@

| e<o| e-o |esm

&

)

New round start r

L End of the round |

\ Continue to next round

Figure 1: Overview of the TurnBench game framework. The game consists of three iterative stages: Proposal Step,
where the LLMs proposes a candidate 3-digit code (represented by colored slots); Question Step, where the agent
selects up to three verifiers to evaluate the code and receive Pass/Fail feedback; and Deduce Step, where the agent
reasons over verifier responses to decide whether to Submit the code or Continue to the next round with a revised
proposal. The loop continues until the agent successfully deduces and submits the correct code..

augmented frameworks like LINC (Olausson et al.,
2023) and MATHSENSEI (Das et al., 2024) en-
able LLMs to perform formal reasoning through
external tools. Meanwhile, self-reflection strate-
gies such as Self-Refine (Madaan et al., 2023) and
ReFlexion (Shinn et al., 2023) allow models to iter-
atively revise incorrect or incomplete outputs via
internal critique loops.

While the above efforts have made significant
strides in evaluating LLM reasoning, several impor-
tant gaps remain. First, few benchmarks explicitly
evaluate multi-step reasoning across multiple in-
teraction rounds—a critical feature of real-world
problem-solving. Most logic and tool-based tasks
are static, single-shot evaluations that do not re-
quire models to gather and integrate information
over time. Second, existing benchmarks often lack
ground truth for intermediate reasoning steps, lim-
iting analysis to final-answer accuracy. This makes
it difficult to determine whether a correct answer
results from genuine reasoning or chance. Third,
many datasets are vulnerable to data contamina-
tion due to overlap with pretraining corpora. Fi-
nally, while game-based settings are promising,
they rarely focus on rule-discovery and hypothesis
refinement under feedback constraints.

TurnBench is designed to fill these gaps by
offering a dynamic, interactive benchmark that
simulates real-world multi-turn reasoning. It pro-
vides ground-truth annotations for intermediate rea-
soning, minimizes contamination risk through dy-
namic rule configurations, and emphasizes logical
consistency and rule inference across turns.

3 TurnBench

3.1 Turing Machine Game Mechanics

Turing Machine is a logic-based deduction game
where the player’s objective is to identify a unique
three-digit code (digits 1-5), each digit associated
with a distinct color (e.g., blue, yellow, purple).
The challenge lies in interacting with a set of 4-6
verifiers, each governed by a single, hidden active
criterion selected from a predefined rule pool. Play-
ers must deduce these hidden criteria and submit a
code that satisfies all of them.

Each game unfolds in multiple rounds with four
key phases: First, the player composes a proposed
code (e.g., BLUE=2, YELLOW=4, PURPLE=3),
which remains fixed for the current round. Next,
the player queries up to three verifiers sequentially,
each returning a binary judgment (PASS/FAIL)
based on the verifier’s active rule. Using this feed-
back, the player can either attempt a final answer
or skip and continue to the next round for further
testing. The game ends once a final answer is sub-
mitted.

TurnBench supports two game modes: Classic
and Nightmare, each with Easy, Medium, and
Hard difficulty levels. In Classic mode, verifier
responses correspond directly to the selected ver-
ifier’s criterion. In Nightmare mode, verifiers are
secretly remapped; the player queries one verifier,
but the response corresponds to another verifier’s
logic, unknown to the player. This mapping must
be deduced as part of the reasoning process.

Dataset Multi-Turn ~ Multi-Step No Knowledge Ground true Intermediate Eval Reasoning ~ Domain
Avalonbench [] [] [O ©) [] Game
Multi-LogiEval O) O () O () Narrative
BoardgameQA O) (| [) O q Game
MuSR O () @)] O () Narrative
AIME 2024 O [] [[] ©) [] Math
DSGBench) O O O q (] Game
MR-Ben O) [[® [Science
LOGICGAME @) () ° ° O ® Game
Ours ® ® [[o () Game

Table 1: Comparison of multi-round reasoning benchmarks across six key criteria. A @indicates presence of the
feature, a Omeans no presence of the feature, and a ¢ indicates partial. The "Domain" column shows the task type

of each benchmark.

z N
O This Verifier verifiers...
the D number

T 1—

o<

yellow is less

K than purple

compared to the

O number
o>U

yellow is greater

than purple /

O=0

yellow is equal
to purple

Figure 2: Example of a verifier card used in the deduc-
tion game. This verifier compares the values assigned to
two colors (in this case, yellow and purple) and returns
one of three outcomes: less than, equal to, or greater
than. The true decision criterion is highlighted in the
middle red box—in this case, verifying whether yellow
equals purple.

3.2 TurnBench Construction

3.2.1 Game Setups

Each TurnBench game instance consists of a spe-
cific verifier combination, one hidden active rule
per verifier, and the unique correct code. For Night-
mare mode, each game additionally includes a
fixed or dynamically generated hidden mapping
between verifiers. We curated 270 Classic and 270
Nightmare game setups (90 per difficulty level),
sourced from official materials®. All setups are re-
producible, and Nightmare mappings are pre-fixed
or regenerated at runtime to reduce memorization
risk.

3.2.2 Verifier Design

Verifiers are central to TurnBench and encode sim-
ple numerical rules (e.g., Figure 2). We incorporate
48 official verifier types, each associated with 2 to
9 potential rules. Since the physical game’s verifier
logic isn’t directly compatible with a simulation

https://www.turingmachine.info/

environment, we designed a Hidden Condition Se-
lection Algorithm 3 that selects one active rule per
verifier to align with the game’s design and balance.

3.2.3 LLM Interaction Flow

At game start, the system presents the LLM with
the full game context: background, rules, objective,
and all verifier definitions. The model then interacts
turn-by-turn as described in Section 3.1, adhering
to a strict output protocol. In each round:

* In the Proposal step, the LLM outputs a
code in the format <CHOICE>: BLUE=X,
YELLOW=Y, PURPLE=Z.

* In the Verifier Query step, it selects verifiers
with <CHOICE>: Each returns
PASS or FAIL.

[num].

* In the Deduce step, the LLM either submits
the code again using the same format or skips
the round via <CHOICE>: SKIP.

* In Chain-of-Thought (CoT) mode, the LLM
also outputs reasoning before decisions using
<REASONING>.

If the LLM produces malformed output or illegal
actions (e.g., invalid verifier ID), a retry mecha-
nism prompts re-generation, while tracking error
frequency. Detailed prompts and retry protocols
are in the Appendix.

3.2.4 Evaluating Model Reasoning Process

While existing benchmarks focus solely on final an-
swers, TurnBench introduces an automated method
for evaluating intermediate reasoning. Specifically,
in Classic mode, a model’s reasoning involves two
phases: (1) inferring each verifier’s hidden crite-
rion, and (2) using these to deduce the final code.

3See our repo: criteria_detector.py

https://www.turingmachine.info/

Model F /—[Extracted Conclusions]—\
I have completed two ... { Verifier 0: "PURPLE is odd™]
L. **Verifier 0%*: Tested with (3,3,1), result [LT N I L B e]
eSS RURELE 1 odd Dolucherd @ { Verifier 2: "BLUE is the smallest or is equal }
Active criterion is "PURPLE is odd". = Lo o
2. ¥ Verifier 1**: Tested with (33,1, result E“m:‘ to PURPLE and YELLOW 2
<PASS>. PURPLE=TI is less than 3. 7

o oo " Vi |

Deduction: Active criterion is "PURPLE is ([Verifer 3: "one 3" o “aero 4) erifier 0: Correct
less "'"“'3”' ¢ Verifier 1: Correct
3. **Verifier 2**: Tested with (3,3,1), result
<FATL>, PURPLE=1 was smallest/equal. pu— Ground Truth — Verifler 2: Correet
Deduction: Active criterion is NOT
"PURPLE is the smallest or is equal”. [Verifier 0: "PURPLE is odd" J Verifier 3: Include
Tested with (1,3,1), result <PASS>. BLUE=1
is smallest/equal. Deduction: Active criterion [Verifier 1: "PURPLE is less than 3" J
is "BLUE is the smallest or is equal to
PURPLE and YELLOW". Verifier 2: "BLUE is the smallest or is equal
4. **Verifier 3**: Tested with (1,3,1), result to PURPLE and YELLOW"
<PASS>, Code (1,3,1) contains one 3 and zero
4s, Possibilities are "one 3" or "zero 45", [Verifier 3: "one 3"]

Figure 3: Reasoning Evaluation Pipeline. The LLMs first performs reasoning over verifier results and outputs
natural language explanations. From these explanations, active criteria are automatically extracted, then compared
against the predefined ground truth verifier logic. The extracted conclusions are judged as Correct, Incorrect, or
Include based on semantic agreement with the ground truth.

Since both ground truths (criteria and final code)
are known, we can semantically compare model
inferences with them.

Our evaluation pipeline (Figure 3) involves two
LLM-based components. First, an Inference Ex-
tractor (Gemini-2.5-Flash (Google, 2025)) parses
the model’s <REASONING> output to identify its
explicit claim about a verifier’s hidden rule (e.g.,
“Verifier 1 uses ‘BLUE is odd’”’). Second, a Judger,
also Gemini-2.5-Flash, compares the extracted rule
to the ground truth and classifies it as: Correct
(semantically equivalent), Incorrect (completely
wrong or missing the correct rule), or Include (par-
tial overlap with the ground truth).

We validated this automated process through
manual inspection. Stratified sampling selected
120 outputs (5% of total), prioritizing failed games
for robustness. Manual checks revealed the infer-
ence extractor missed 13.7% of applicable conclu-
sions, but achieved 99.7% precision. The Judger
reached 99.4% classification accuracy. These re-
sults confirm that TurnBench provides a reliable
mechanism for process-level evaluation of LLM
reasoning.

4 Experiment

4.1 Experiment Setup

To comprehensively explore the limitations of cur-
rent large language models (LLMs) in multi-turn
and multi-step reasoning tasks, we selected both
commercial and widely-used open-source mod-
els for evaluation, employing different prompting
methods. The commercial models include gemini-

2.5-flash-preview-04-17 (thinking) (Google, 2025),
gpt-04-mini-high-0416 (thinking) (OpenAl, 2025),
and gpt-4.1-2025-04-14. The open-source mod-
els tested are deepseek-r1 (thinking) (DeepSeek-
Al 2025), llama-4-maverick (Meta, 2025), mistral-
8b (team, 2025), llama-3.1-8b-instruct (Al@Meta,
2024), and qwen-2.5-7b-instruct (Yang et al., 2024).
We also evaluated two prompting strategies: An-
swer Only (AO) and Chain of Thought (CoT) (Wei
et al., 2022).

To thoroughly test the reasoning abilities of the
state-of-the-art models, all "Thinking" models had
their reasoning effort set to “high.” Additionally, to
compare the reasoning gap between the most ad-
vanced LLMs and humans, we invited five human
participants with no prior experience with the game
to take part in the experiment.

We evaluated two game modes: Classic and
Nightmare. Each mode’s scenarios were divided
equally into three difficulty levels: easy, standard,
and hard. For Classic mode, we constructed 270
benchmark scenarios (90 per difficulty). For Night-
mare mode, 45 scenarios were selected (15 per
difficulty). Human participants played 45 Classic
mode games (15 per difficulty), with the Nightmare
mode evaluation set matching the models’.

All models and human participants were tested
under identical conditions, with the same task
prompts and problem setups. To ensure parity in in-
formation access, we developed a user interface for
humans that displayed exactly the same text as the
models saw at each step. Humans were also asked
to record their reasoning and thought processes
throughout.

Total Avg Easy Avg Medium Avg Hard Avg Win Avg Win Avg
Models Acc Acc Acc Acc Turn VER
OA CoT OA CoT OA CoT OA CoT OA CoT OA CoT
gpt-o4-mini-high (Thinking) 0.578 0.815 0.756 0.933 0.7 09 0278 0.611 16 16 7 7
gemini-2.5-flash (Thinking) 0.652 0.785 0.844 09 0.756 0.867 0.356 0.589 13 13 6 6
deepseek-r1 (Thinking) 0511 0.63 0.733 0.756 0.511 0.722 0.289 0.411 12 13 6 6
gpt-4.1 0.052 0.63 0.078 0.8 0.033 0.689 0.044 04 41 15 21 7
llama-4-maverick 0.07 0326 0.133 0.444 0.056 0.367 0.022 0.167 28 17 12 8
llama-3.1-8b-instruct 0.007 0.015 0.011 0.022 0.011 0 0 0.022 23 13 11 6
mistral-8b 0 0.015 0 0.011 0 0.022 0 0.011 - 8 - 4
qwen-2.5-7b-instruct 0.015 0.022 0.011 0.067 0.022 0 0.011 0 34 6 17 3
Random Guess 0.0082 0.0084 0.008 0.0083 - - - -
Best Human 1 1 1 1 18 8
Human Average 0.96 0.983 0.947 0.947 20 11

Table 2: Performance of different models on the Classic Game setting. Metrics include total, easy, medium, and
hard average accuracy, as well as average number of turns and average number of verifiers used in successfully won
games. Models using Chain-of-Thought (CoT) prompting, especially “Thinking” models like gpt-o4-mini-high
and gemini-2.5-flash, consistently outperform standard baselines. Fewer average turns and verifier uses in winning
games suggest greater reasoning efficiency. Human and random guess baselines are included for comparison.

Thinking Total Avg Easy Avg Medium Avg Hard Avg Win Avg Win Avg
Models Accuracy Accuracy Accuracy Accuracy Turns Verifier Uses
gpt-04-mini-high 0.111 0.133 0.200 0.000 21 8
gemini-2.5-flash 0.178 0.133 0.267 0.133 16 8
deepseek-r1 0.067 0.067 0.067 0.067 12 6
Random Guess 0.0076 0.0074 0.0079 0.0075
Best Human 1 1 1 1 40 20
Human Average 0.942 0.96 0.933 0.933 38 17

Table 3: Performance of different models on the Night-
mare game setting. Metrics include total, easy, medium,
and hard average accuracy, as well as win rates mea-
sured by average successful turns and verifier-correct
final states. Compared to Classic mode, accuracy drops
significantly, highlighting the increased difficulty of
Nightmare mode. Human players maintain robust per-
formance, while models struggle to generalize under
this challenging scenario. Random guess and human
baselines are included for comparison.

4.2 Results and Findings

Finding 1: LLMs significantly lag behind
humans in multi-turn, multi-step reasoning.

We analyzed overall performance using average
accuracy metrics segmented by difficulty (overall,
easy, medium, hard), as well as the average number
of turns and verifier uses in games won successfully.
Fewer turns and verifier uses indicate stronger rea-
soning ability.

First, we discuss Classic mode results (Table 2).
Smaller standard models struggled significantly de-
spite understanding game rules and response for-

mat. They had difficulty leveraging verifier feed-
back to make effective inferences. Because Turn-
Bench requires no external knowledge and relies
solely on numerical rules, this suggests that com-
plex reasoning needs models of a certain size and
capacity.

Chain of Thought (CoT) prompting consistently
improved performance across accuracy metrics and
helped "Thinking" models as well. For example,
the best-performing gpt-o4-mini-high increased its
overall accuracy from 0.578 (AO) to 0.815 (CoT).
Larger standard models also showed notable gains,
e.g., gpt-4.1 rose from 0.052 (AO) to 0.63 (CoT),
and llama-4 from 0.07 to 0.326.

Across difficulty levels, "Thinking" models like
gpt-o4-mini-high significantly outperformed stan-
dard chat models. For example, the best standard
model, gpt-4.1, with CoT only matched the weak-
est "Thinking" model, DeepSeek, achieving 63%
accuracy. This trend was consistent across all diffi-
culties.

CoT prompting also helped models succeed with
fewer turns and verifier uses (e.g., gpt-4.1) dropped
from 41 to 15 turns and from 21 to 7 verifiers).
However, "Thinking" models showed little differ-
ence between AO and CoT for turns and verifier
use, possibly because they internally perform step-
wise reasoning. CoT may mainly help them articu-
late their reasoning process more clearly and use it
as memory for subsequent steps.

Despite improvements, a significant gap re-
mains between LLMs and humans. The "Best
Human" achieved 100% accuracy across all met-
rics, whereas gpt-o4-mini-high (CoT) reached only
81.5%. Humans also outperformed models in av-
erage turns (20) and verifier uses (11). Analysis
of reasoning logs showed that while models some-
times integrated more clues, humans tended to take
more turns (especially on hard tasks) but main-
tained near-perfect accuracy.

To further test limits, we compared "Thinking"
models with CoT against humans in the more chal-
lenging Nightmare mode (Table 3). All LLMs’
accuracy dropped drastically compared to Classic
mode. For example, gpt-o4-mini-high fell from
0.815 to 0.111 overall, and failed completely on
Hard difficulty (0 accuracy). The best perform-
ing gemini-2.5-flash only reached 0.133. Humans
maintained extremely high performance, with the
"Best Human" at 100% accuracy and the average
human still achieving 94.2%.

These results clearly demonstrate that although
"Thinking" models and CoT prompting improve
performance, LLMs still lag far behind humans
in complex multi-turn, multi-step reasoning tasks,
especially under high difficulty. This highlights the
substantial gap remaining between current models
and human reasoning capabilities.

Finding 2: Once LLMs make a mistake
in multi-turn reasoning, they struggle to re-
cover.

In this experiment, we conducted an in-depth
analysis of the persistence and evolution of error
states in LLMSs during multi-turn reasoning. This
analysis is based on the thinking process evalua-
tion method described in Section 3.2.4. The results
clearly demonstrate that in complex multi-turn rea-
soning chains, once current LLMs make an initial
error, they tend to “lose their way” and struggle to
recover autonomously, significantly reducing their
final task success rate.

Path Divergence after Initial Errors. Using
a Sankey diagram (Figure 4), we tracked model
behavior following the First Incorrect Conclusion
(FIC). The diagram shows that a large proportion of
error paths led directly to “No Subsequent Conclu-
sion,” indicating that models often cease reasoning
along that path after an initial mistake. Another
substantial fraction continued producing incorrect

First Incorrect Conclusion -> Next Conclusion Status -> Conclusion Before Submit -> Game Outcome

Figure 4: Flow analysis of verifier reasoning paths orig-
inating from a First Incorrect Conclusion (FIC). The
diagram traces these paths through the Next Conclu-
sion Status (NCS), the verifier’s final Conclusion Be-
fore Submit (CBS), and the ultimate Game Outcome.
A significant proportion of initial errors result in "No
subsequent conclusion” or an "Incorrect” NCS, leading
to an overwhelmingly "Incorrect” CBS and subsequent
"Game Lost" outcomes.

Probability of Staying Incorrect in Subsequent Rounds (Given Still Incorrect)

orrect at N-1)

Plincorrect at N | Inc:

1 2 3 4 5 6 7 8 9 10
Relative Round (N) After Initial Error (Error at Round 0)

Figure 5: Probability of a model remaining incorrect in
each subsequent round after its initial error, conditioned
on it being incorrect in the previous round. The likeli-
hood of continuing in an incorrect state increases with
each turn, approaching near certainty beyond the fifth
round. This trend highlights the models’ limited capac-
ity for self-correction once they enter an error state.

conclusions. In contrast, paths that quickly shifted
to “Include Correct Components” or “Completely
Correct” were relatively rare. Examining how these
paths evolved to the Final Conclusion State Before
Submission (CBS), we found that those with ei-
ther “No Subsequent Conclusion” or “Subsequent
Incorrect Conclusion” overwhelmingly ended in
an incorrect final conclusion. Consequently, these
error paths almost always resulted in “Game Lost.”
Only a small minority of paths that rapidly ad-
justed to correct or partially correct conclusions
after the first error were associated with a higher
likelihood of “Game Won.” This divergence visu-
ally confirms that after the first mistake, models

llama-3.1-8b gemini-2.5-flash gpt-o4-mini-high gpt-4.1

mistral-8b llama-4-maverick qwen-2.5-7b deepseek-rl

Initial verifier errors 368 96
Persistence of initial errors (%) 89.94 91.67
Ended with no final conclusion (%) 74.18 71.87
Next-turn still incorrect (%) 17.66 19.79
Success despite persistent errors (%) 1.08 12.72
Success when no / fixed errors (%) 1.75 95.34

66
53.03
34.85
27.27
32.14
87.55

141
86.52
54.61
33.33
13.41
84.57

255
90.20
53.33
38.82

0.66

3.13

142
63.38
4571
25.35

8.11
41.75

318
99.06
96.23

3.14

0.54

8.00

144
93.06
86.11

6.94
7.87
90.56

Table 4: Comparison of large language models on their ability to handle verifier errors during multi-turn reasoning.
Metrics include the number of initial verifier errors, error persistence rate, likelihood of remaining incorrect in the
next turn, and task success rates depending on error persistence or correction. The table highlights key differences
in robustness and recovery among models such as GPT-4.1, LLaMA-3.1-8B, and Gemini-2.5-Flash.

rarely self-correct and tend either to halt reason-
ing or perpetuate errors—an initial indication of
“losing their way.”

Solidification and Persistence of Error States.
To further investigate error dynamics, we analyzed
model behavior after making an error. Error states
proved extremely “sticky.” Figure 5 depicts the
probability that a model continues to produce in-
correct conclusions in subsequent relative rounds,
given that it is currently incorrect. In the first
relative round after the initial error (X=1), if the
model outputs a conclusion, there is already approx-
imately a 65-70% chance it is incorrect. Alarm-
ingly, this probability rises sharply with additional
rounds, nearing 100% by the fifth relative round.
This suggests that once a model enters several con-
secutive rounds of incorrect reasoning, it almost
completely loses the ability to break the error cycle.

5 Conclusion

In this paper, our investigation using TurnBench
has clarified the capabilities and limitations of
Large Language Models (LLMs) in multi-turn,
multi-step reasoning. TurnBench addresses several
key limitations of current benchmarks and offers
an effective method for automatically analyzing the
reasoning processes of LLMs. Using this frame-
work, we evaluated multiple standard chat models
and thinking models, uncovering key findings that
highlight the limitations of existing models. In
summary, TurnBench fills a gap in the evaluation
of LLMs’ multi-turn, multi-step reasoning capabil-
ities and provides a novel solution for assessing
model reasoning processes. We hope that our work
will inspire further research into multi-turn reason-
ing.

Limitation

Effectively and accurately measuring a model’s
thinking process has always been a challenge. The

automated evaluation of model thinking processes
proposed in this paper requires an evaluation frame-
work built on rules, which lacks generality. Further-
more, using Gemini 2.5 Flash for model inference
extraction still has certain limitations. Although the
extracted results have shown high accuracy after
manual evaluation, further research and optimiza-
tion are still needed.

References
Al@Meta. 2024. Llama 3 model card.

Elif Akata, Lion Schulz, Julian Coda-Forno, Seong Joon
Oh, Matthias Bethge, and Eric Schulz. 2023. Playing
repeated games with large language models. arXiv
preprint arXiv:2305.16867.

AoPS. 2024. Aime 2024. https://
artofproblemsolving.com/wiki/index.
php/AIME_Problems_and_Solutions.

Debrup Das, Debopriyo Banerjee, Somak Aditya,
and Ashish Kulkarni. 2024. Mathsensei: a tool-
augmented large language model for mathematical
reasoning. arXiv preprint arXiv:2402.17231.

DeepSeek-Al. 2025. Deepseek-rl: Incentivizing rea-
soning capability in llms via reinforcement learning.

Kevin N. Dunbar and David Klahr. 2012. 701 scientific
thinking and reasoning. In The Oxford Handbook of
Thinking and Reasoning. Oxford University Press.

Meta Fundamental AI Research Diplomacy Team
(FAIR)T, Anton Bakhtin, Noam Brown, Emily Di-
nan, Gabriele Farina, Colin Flaherty, Daniel Fried,
Andrew Goff, Jonathan Gray, Hengyuan Hu, et al.
2022. Human-level play in the game of diplomacy
by combining language models with strategic reason-
ing. Science, 378(6624):1067-1074.

Google. 2025. Gemini 2.5 flash pre-
view. https://storage.googleapis.com/model-
cards/documents/gemini-2.5-flash-preview.pdf.

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan
Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma,
Adithya Samavedhi, Qiyue Gao, et al. 2024. Llm

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
https://doi.org/10.1093/oxfordhb/9780199734689.013.0035
https://doi.org/10.1093/oxfordhb/9780199734689.013.0035
https://doi.org/10.1093/oxfordhb/9780199734689.013.0035

reasoners: New evaluation, library, and analysis of
step-by-step reasoning with large language models.
arXiv preprint arXiv:2404.05221.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint arXiv:2403.07974.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Jonathan Light, Min Cai, Sheng Shen, and Ziniu Hu.
2023. Avalonbench: Evaluating llms playing the
game of avalon. arXiv preprint arXiv:2310.05036.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson,
Ashish Sabharwal, Radha Poovendran, Peter Clark,
and Yejin Choi. 2025. Zebralogic: On the scaling
limits of 1lms for logical reasoning. arXiv preprint
arXiv:2502.01100.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo,
Haowei Liu, and Yujiu Yang. 2024. Criticbench:
Benchmarking 1lms for critique-correct reasoning.
arXiv preprint arXiv:2402.14809.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36:46534—-46594.

Meta. 2025. 1llama models.
com/meta-llama/llama-models.

Theo X Olausson, Alex Gu, Benjamin Lipkin, Cede-
gao E Zhang, Armando Solar-Lezama, Joshua B
Tenenbaum, and Roger Levy. 2023. Linc: A neu-
rosymbolic approach for logical reasoning by com-
bining language models with first-order logic provers.
arXiv preprint arXiv:2310.15164.

OpenAl. 2025. Openai 03 and o4-mini system
card. hitps://cdn.openai.com/pdf/2221c875-02dc-
4789-800b-e7758f3722c1/03-and-o04-mini-system-
card.pdf.

Davide Paglieri, Barttomiej Cupiat, Samuel Coward,
Ulyana Piterbarg, Maciej Wolczyk, Akbir Khan, Ed-
uardo Pignatelli, Lukasz Kucinski, Lerrel Pinto, Rob
Fergus, Jakob Nicolaus Foerster, Jack Parker-Holder,
and Tim Rocktischel. 2025. Balrog: Benchmarking
agentic llm and vlm reasoning on games.

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna
Budhiraja, Mutsumi Nakamura, Neeraj Varshney, and
Chitta Baral. 2024. Multi-logieval: Towards eval-
uating multi-step logical reasoning ability of large
language models. arXiv preprint arXiv:2406.17169.

https://github.

John Schultz, Jakub Adamek, Matej Jusup, Marc Lanc-
tot, Michael Kaisers, Sarah Perrin, Daniel Hennes,
Jeremy Shar, Cannada Lewis, Anian Ruoss, et al.
2024. Mastering board games by external and inter-
nal planning with language models. arXiv preprint
arXiv:2412.12119.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36:8634-8652.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri,
and Greg Durrett. 2023. Musr: Testing the limits
of chain-of-thought with multistep soft reasoning.
arXiv preprint arXiv:2310.16049.

Wenjie Tang, Yuan Zhou, Erqgiang Xu, Keyan Cheng,
Minne Li, and Liquan Xiao. 2025. Dsgbench: A
diverse strategic game benchmark for evaluating llm-
based agents in complex decision-making environ-
ments. arXiv preprint arXiv:2503.06047.

Mistral Al team. 2025. Un ministral, des ministraux.
https://mistral.ai/news/ministraux.

Nemika Tyagi, Mihir Parmar, Mohith Kulkarni, Aswin
Rrv, Nisarg Patel, Mutsumi Nakamura, Arindam Mi-
tra, and Chitta Baral. 2024. Step-by-step reasoning
to solve grid puzzles: Where do llms falter? arXiv
preprint arXiv:2407.14790.

Boshi Wang, Xiang Yue, and Huan Sun. 2023a. Can
chatgpt defend its belief in truth? evaluating 1lm rea-
soning via debate. arXiv preprint arXiv:2305.13160.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu,
Xiaojian Ma, and Yitao Liang. 2023b. Describe,
explain, plan and select: Interactive planning with
large language models enables open-world multi-task
agents. arXiv preprint arXiv:2302.01560.

Peter Cathcart Wason and Philip Nicholas Johnson-
Laird. 1972. Psychology of Reasoning: Structure
and Content. Harvard University Press, Cambridge,
MA, USA.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh
Hajishirzi, and Yejin Choi. 2022. Naturalprover:
Grounded mathematical proof generation with lan-
guage models. Advances in Neural Information Pro-
cessing Systems, 35:4913-4927.

Bryan Wilie, Samuel Cahyawijaya, Etsuko Ishii, Junx-
ian He, and Pascale Fung. 2024. Belief revision:
The adaptability of large language models reasoning.
arXiv preprint arXiv:2406.19764.

https://github.com/meta-llama/llama-models
https://github.com/meta-llama/llama-models
https://github.com/meta-llama/llama-models
http://arxiv.org/abs/2411.13543
http://arxiv.org/abs/2411.13543
http://arxiv.org/abs/2411.13543
https://mistral.ai/news/ministraux

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xi-
aolong Wang, Weidong Liu, and Yang Liu. 2023.
Exploring large language models for communica-
tion games: An empirical study on werewolf. arXiv
preprint arXiv:2309.04658.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian-
hao Li, Tingyu Xia, Xingzhang Ren, Xuancheng
Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan
Qiu. 2024. Qwen?2.5 technical report. arXiv preprint
arXiv:2412.15115.

Yue Yang, Shuibo Zhang, Kaipeng Zhang, Yi Bin,
Yu Wang, Ping Luo, and Wenqi Shao. 2025. Dy-
namic multimodal evaluation with flexible complex-
ity by vision-language bootstrapping. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Zhongshen Zeng, Yinhong Liu, Yingjia Wan, Jingyao Li,
Pengguang Chen, Jianbo Dai, Yuxuan Yao, Rongwu
Xu, Zehan Qi, Wanru Zhao, et al. 2024. Mr-ben: A
meta-reasoning benchmark for evaluating system-2
thinking in llms. arXiv preprint arXiv:2406.13975.

Ruiwen Zhou, Wenyue Hua, Liangming Pan, Sitao
Cheng, Xiaobao Wu, En Yu, and William Yang Wang.
2024. Rulearena: A benchmark for rule-guided
reasoning with 1lms in real-world scenarios. arXiv
preprint arXiv:2412.08972.

Richard Zhuang, Akshat Gupta, Richard Yang, Aniket
Rahane, Zhengyu Li, and Gopala Anumanchipalli.
2025. Pokerbench: Training large language models
to become professional poker players. arXiv preprint
arXiv:2501.08328.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2023. Toolqa: A dataset for llm
question answering with external tools. Advances in
Neural Information Processing Systems, 36:50117—
50143.

10

https://openreview.net/forum?id=X1OfiRYCLn
https://openreview.net/forum?id=X1OfiRYCLn
https://openreview.net/forum?id=X1OfiRYCLn
https://openreview.net/forum?id=X1OfiRYCLn
https://openreview.net/forum?id=X1OfiRYCLn

A Prompts Used in Experiments

Classic — OA Prompt

classic system_prompt = """You are participating in a competitive logic deduction
— game called Turing Machine.

Your goal is to win first place by deducing a secret 3-digit code with minimal

— rounds and verifier usage, but accuracy takes priority over speed.

Game Objective:

— Deduce the secret 3-digit code made up of digits 1-5.

- BLUE = first digit, YELLOW = second digit, PURPLE = third digit.

- Each digit can be 1, 2, 3, 4, or 5 (digits may repeat).

— The code is the ONLY combination that satisfies the active criterion of ALL
— chosen verifiers.

Game Structure (Rounds):

1. Proposal: Design a 3-digit code to test (format: BLUE=X, YELLOW=Y, PURPLE=Z,
— where X, Y, Z are digits from 1 to 5).

2. Question: Sequentially choose 0 to 3 verifiers to test your proposed code each
— round. After each selection, you will see the result, and then you can decide
— whether to select the next one.

3. Deduce: Based on verifier results, you can submit a final answer or continue
— to the next round.

4. End Round: If you didn't submit a final answer, a new round begins.

Verifier Rules:

- Each verifier checks ONE specific property (criterion) about the code.

- Each verifier has multiple potential criteria, but for each game, only ONE is
— secretly selected as 'active'. You don't know which criterion is active for
— any given verifier.

— Focus of Verification: When testing your code against a verifier, it

— exclusively evaluates it against its single, active criterion. The verifier
— completely ignores all other potential criteria, including its own inactive
<» ones.

- PASS Condition: A verifier returns “<PASS>" if and only if your code satisfies
— this single active criterion.

- FAIL Condition: A verifier returns “<FAIL>" if and only if your code does not

— satisfy this single active criterion.

— Non-Overlapping Information: The active criteria selected across different

— verifiers for a game will provide distinct information.

Winning Strategy:

- It is possible to deduce the solution through joint reasoning, utilizing the

— combined results of multiple verifiers along with system rules such as the

— existence of a unique solution and the principle that no two verifiers offer
— redundant information.

- Only submit a final guess when you have either tested all verifiers and

— received <PASS> for each, or when your reasoning clearly proves your code

— satisfies all possible active verifier criteria. Accuracy takes priority over
— speed.

Current Game Setup:

{game_setup}
nnn

classic_proposal_prompt_with_hint = """You are now entering the xxProposal
— Stagexx of this round.

*xStage Purposexx:

In this stage, you need to compose a 3-digit code to help you to gather

— information from the verifiers. The code can NOT be changed in the subsequent
— stages of this round.

**%3-digit code rulesxx:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z2).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.

**Your Goal in This Stagexx:
- Design a code that will test a specific hypothesis.

11

— Think about what a <PASS> or <FAIL> would tell you.
— Choose a code that lets you learn something meaningful from verifiers.

**What You Must Do Nowxx:

— Reply the code you want to use in this round with required response format. For
— example, <CHOICE>: BLUE=1, YELLOW=1, PURPLE=1

— DO NOT include any explanation, only follow the response format.

**Response formatxx:
<CHOICE>: BLUE=X, YELLOW=Y, PURPLE=Z

classic_not_valid_proposal_format_prompt_with_hint = """You did not follow the
— required response format. Please try again with same code.

**What You Must Do Nowxx:

- Reply the code you want to use in this round with required response format. For
— example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1

— DO NOT include any explanation, only follow the response format.

**Response formatxx:
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]

classic_first_qgquestion_prompt_with_hint = """You are now entering the xxVerifier
— Questioning Stagex* of this round.

**Current Verifiersxx:
{verifier_descriptions}

*xStage Purposexx:

In this stage, you can test your proposed 3-digit code using verifiers. Each
— verifier checks one hidden criterion. Use the test results to gather

— information and refine your deduction.

+**xVerifier Rules Summaryxx*:

- Each verifier has ONE secretly selected active criterion.

— <PASS> means your code satisfies this rule; <FAIL> means it does not.
- Active rules do NOT overlap between verifiers.

**Your Goal in This Stagexx:

— Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to
— choose the verifier, you must choose verifiers xxone at a timexx. After each
— result, you may decide whether to test another. You may choose to test 0 to 3
— verifiers xxin total*x during this round.

- xxPassing all tested verifiers does NOT mean the code is correct.xx To win,

— your code must satisfy the hidden criterion of xxall verifiersxx, whether

— tested or not.

**What You Must Do Nowxx:

- If you want to choose a verifier to test your proposed code, reply with

— verifier_num after <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after
— <CHOICE> tag, such as <CHOICE>: SKIP.

— DO NOT include any explanation, only follow the response format.

**Response formatxx:
<CHOICE>: [your_choice]

wnn

classic_following_question_prompt_with_hint = """You chose Verifier
— <{verifier_num}> and the result is <{verifier_result}>.

**What You Must Do Nowxx:

- If you want to choose the next verifier to test, reply with verifier_num after
— <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

— <CHOICE> tag, such as <CHOICE>: SKIP.

— DO NOT include any explanation, only follow the response format.

12

**Response formatx*x:
<CHOICE>: [your_choice]

wnn

classic_after_last_question_prompt_with_hint = """You chose Verifier
< <{verifier_num}> and the result is <{verifier_ result}>.

You have now tested the maximum number of three verifiers for this round. The
— next stage is the Deduce Stage. If you want to test more verifiers or new
— code, you can choose SKIP during the Deduce Stage to move on to the next

— round.
nmnn

classic_not_valid_question_format_prompt_with_hint = """You did not follow the
— required response format. Please try again with same choice.

**What You Must Do Nowxx:

- If you want to choose the next verifier to test, reply with verifier_num after
— <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

— <CHOICE> tag, such as <CHOICE>: SKIP.

— DO NOT include any explanation, only follow the response format.

**Response formatxx:
<CHOICE>: [your_choice]

wnn

classic_not_valid_verifier_ choice_prompt_with_hint = """You selected Verifier
— <{verifier_num}>, which is not a wvalid verifier number.

Please choose a valid verifier or SKIP to next stage.

*xWhat You Must Do Nowxx:

- If you want to choose the next verifier to test, reply with verifier_num after
— <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

— <CHOICE> tag, such as <CHOICE>: SKIP.

— DO NOT include any explanation, only follow the response format.

**Response formatx*x*:
<CHOICE>: [your_choice]

classic_deduce_prompt_with_hint = """You are now entering the *xDeduce Stagex* of
< this round.

*xStage Purposexx:
In this stage, you can analyze all the information gathered then decide whether
— to continue to the next round or submit a final guess.

xHintxx:

— Passing all tested verifiers does not mean the code is correct if not all

— verifiers were tested. To be correct, the code must satisfy the hidden

— criteria of all verifiers, not just the ones you tested.

- You may choose not to test some verifiers if you can clearly reason that your
— code meets their requirements. But you must ensure every verifier is either
— tested and passed, or clearly justified through reasoning. Testing and

— passing only part of the verifiers is not enough if others are ignored.

- This stage #*xis not for testingxx, you don't have to submit an answer; you can
— proceed to the next round to continue gathering information.

- Accuracy takes priority over speed. If you submit, the game will end, and an
— incorrect guess will result in immediate failure.

**Your Goal in This Stagexx:

— Decide whether to submit the final guess or continue to the next round. Submit
— the final guess will end the game, continue to the next round will help you
— gather more information.

- Submission is not mandatory, you must make this decision based on your own

< reasoning.

13

**What You Must Do Nowxx:

- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,
— such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,

— YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
— PURPLE=1.

— DO NOT include any explanation, only follow the response format.

**Response formatxx:
<CHOICE>: [your_choice]

classic_deduce_result_prompt_with_hint = "The final guess is {submitted_code}.
— The answer is {answer}, the guess is {is_correct}."

classic_not_valid_deduce_format_prompt_with_hint = """You did NOT follow the
— response format. Please try again.

**What You Must Do Nowxx:

- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,
— such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,

— YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
— PURPLE=1.

— DO NOT include any explanation, only follow the response format.

**Response formatxx:
<CHOICE>: [your_choice]

wnn

Nightmare — OA Prompt

nightmare_system_prompt = """You are participating in a competitive logic

— deduction game called Turing Machine.

Your goal is to win first place by deducing a secret 3-digit code with minimal
— rounds and verifier usage, but accuracy takes priority over speed.

Game Objective:

— Deduce the secret 3-digit code made up of digits 1-5.

- BLUE = first digit, YELLOW = second digit, PURPLE = third digit.

- Each digit can be 1, 2, 3, 4, or 5 (digits may repeat).

- The code is the ONLY combination that satisfies the active criterion of ALL
— chosen verifiers.

Game Structure (Rounds):

1. Proposal: Design a 3-digit code to test (format: BLUE=X, YELLOW=Y, PURPLE=Z,
— where X, Y, Z are digits from 1 to 5).

2. Question: Sequentially choose 0 to 3 verifiers to test your proposed code each
— round. After each selection, you will see the result from an unknown

— verifier. The verifier identity will be hidden.

3. Deduce: Based on verifier results, you can submit a final answer or continue
— to the next round.

4. End Round: If you didn't submit a final answer, a new round begins.

Verifier Rules:

- Each verifier checks ONE specific property (criterion) about the code.

- Each verifier has multiple potential criteria, but for each game, only ONE is
— secretly selected as 'active'. You don't know which criterion is active for
— any given verifier.

- Focus of Verification: When testing your code against a verifier, it

— EXCLUSIVELY evaluates it against its SINGLE, ACTIVE criterion. The verifier
— completely ignores all other potential criteria, including its own inactive
< ones.

— In this game, you don’t know which Verifier’s result you’re actually seeing —-
— the mapping between Verifiers and their displayed results is randomized and
— hidden from the player, though fixed for the entire game.

- PASS Condition: A verifier returns “<PASS>" if and only if your code satisfies
— the active criterion of the actual Verifier it is mapped to. For example, if
— Verifier 1 is secretly mapped to Verifier 2, then a <PASS> from Verifier 1
— means your code met Verifier 2's hidden active rule.

14

— FAIL Condition: A verifier returns “<FAIL>" if and only if your code does not
— satisfy the active criterion of the actual Verifier it is mapped to. A <FAIL>
— simply means the mapped Verifier's rule was not met.

- Non-Overlapping Information: The active criteria selected across different

— verifiers for a game will provide distinct information.

Winning Strategy:

- It is possible to deduce the solution through joint reasoning, utilizing the
— combined results of multiple verifiers along with system rules such as the
— existence of a unique solution and the principle that no two verifiers offer
— redundant information.

— One possible strategy is to carefully modify your code across multiple rounds
— and observe how each Verifier’s output changes. By analyzing the pattern of
— responses, you can infer the hidden mapping between Verifiers and their

— actual criteria.

- Only submit a final guess when you have either tested all verifiers and

— received <PASS> for each, or when your reasoning clearly proves your code

— satisfies all possible active verifier criteria. Accuracy takes priority over
— speed.

Current Game Setup:
{game_setup}

nightmare_proposal_prompt_with_hint = """You are now entering the xxProposal
— Stagexx of this round.

*xStage Purposex*x*:

In this stage, you need to compose a 3-digit code to help you to gather

— information from the verifiers. The code can NOT be changed in the subsequent
— stages of this round.

**3-digit code rulesxx:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.

**Your Goal in This Stagexx:

- Design a code that will test a specific hypothesis.

— Think about what a <PASS> or <FAIL> would tell you, but you don’t know which

— Verifier’s result you’re actually seeing —- the mapping between Verifiers and
— their displayed results is randomized and hidden from the player, though

— fixed for the entire game.

— Choose a code that lets you learn something meaningful from verifiers.

**What You Must Do Nowxx:

— Reply the code you want to use in this round with required response format. For
— example, <CHOICE>: BLUE=1, YELLOW=1, PURPLE=1

— DO NOT include any explanation, only follow the response format.

**Response formatxx:
<CHOICE>: BLUE=X, YELLOW=Y, PURPLE=Z

nightmare_first_question_prompt_with_hint = """You are now entering the
— xxVerifier Questioning Stagexx of this round.

**Current Verifiersxx:
{verifier_descriptions}

*xStage Purposexx:

In this stage, you can test your proposed 3-digit code using verifiers. Each
— verifier checks one hidden criterion. Use the test results to gather

— information and refine your deduction.

**xVerifier Rules Summaryxx*:

- Each verifier has ONE secretly selected active criterion.

- Each verifier shows results for a different, hidden verifier (the mapping is
— randomized but fixed for the entire game).

- <PASS> means your code satisfies the active criterion of the secretly mapped
— verifier. <FAIL> means your code does not satisfy that criterion.

15

— Active rules do NOT overlap between verifiers.

**Your Goal in This Stagexx:

- Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to
— choose the verifier, you must choose verifiers xxone at a timexx. After each
— result, you may decide whether to test another. You may choose to test 0 to 3
— verifiers xxin total*x during this round.

- **Passing all tested verifiers does NOT mean the code is correct.xx To win,

— your code must satisfy the hidden criterion of xxall verifiersxx, whether

— tested or not.

**What You Must Do Nowxx:

- If you want to choose a verifier to test your proposed code, reply with

— verifier_num after <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after
— <CHOICE> tag, such as <CHOICE>: SKIP.

— DO NOT include any explanation, only follow the response format.

**Response formatxx:
<CHOICE>: [your_choice]

nightmare_following_gquestion_prompt_with_hint = """You chose Verifier
< <{verifier_num}> and the result i1s <{verifier_ result}>.

xHintxx:
— "<PASS>" means your code satisfies the active criterion of the actual Verifier
— it is mapped to. For example, if Verifier 1 is secretly mapped to Verifier 2,
— then a <PASS> from Verifier 1 means your code met Verifier 2's hidden active
— rule.

"<FAIL>" means your code does not satisfy the active criterion of the actual
— Verifier it is mapped to.

**What You Must Do Nowxx:

- If you want to choose the next verifier to test, reply with verifier num after
< <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

— <CHOICE> tag, such as <CHOICE>: SKIP.

— DO NOT include any explanation, only follow the response format.

**Response formatxx:
<CHOICE>: [your_choice]

wnn

nightmare_after_last_question_prompt_with_hint = """You chose Verifier
— <{verifier_num}> and the result is <{verifier_result}>.

You have now tested the maximum number of three verifiers for this round. The
— next stage is the Deduce Stage. If you want to test more verifiers or new
— code, you can choose SKIP during the Deduce Stage to move on to the next

— round.
nnn

nightmare_not_valid_question_format_prompt_with_hint = """You did not follow the
— required response format. Please try again with same choice.

**What You Must Do Nowxx:

- If you want to choose the next verifier to test, reply with verifier num after
— <CHOICE> tag, such as <CHOICE>: 1.

— If you want to skip verifier testing for this round, reply with SKIP after

— <CHOICE> tag, such as <CHOICE>: SKIP.

— DO NOT include any explanation, only follow the response format.

**Response formatxx:
<CHOICE>: [your_choice]

nightmare_not_valid_verifier choice_prompt_with_hint = """You selected Verifier
« <{verifier_num}>, which is not a valid verifier number.

16

Please choose a valid verifier or SKIP to next stage.

**What You Must Do Nowxx:

- If you want to choose the next verifier to test, reply with verifier_num after
— <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

— <CHOICE> tag, such as <CHOICE>: SKIP.

- DO NOT include any explanation, only follow the response format.

**Response formatxx:
<CHOICE>: [your_choice]

wnn

nightmare_deduce_prompt_with_hint = """You are now entering the *xDeduce Stagexx
— of this round.

*xStage Purposexx:
In this stage, you can analyze all the information gathered then decide whether
— to continue to the next round or submit a final guess.

**xHintxx*:

- Passing all tested verifiers does not mean the code is correct if not all

— verifiers were tested. To be correct, the code must satisfy the hidden

— criteria of all verifiers, not just the ones you tested.

- You may choose not to test some verifiers if you can clearly reason that your
— code meets their requirements. But you must ensure every verifier is either
— tested and passed, or clearly justified through reasoning. Testing and

— passing only part of the verifiers is not enough if others are ignored.

- This stage *xxis not for testingx+, you don't have to submit an answer; you can
— proceed to the next round to continue gathering information.

— Accuracy takes priority over speed. If you submit, the game will end, and an
— incorrect guess will result in immediate failure.

**xYour Goal in This Stagexx:

— Decide whether to submit the final guess or continue to the next round. Submit
— the final guess will end the game, continue to the next round will help you
— gather more information.

- Submission is not mandatory, you must make this decision based on your own

— reasoning.

**What You Must Do Nowx*x*:

- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,
— such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,

— YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
<« PURPLE=1.

— DO NOT include any explanation, only follow the response format.

*x*Response formatxx:
<CHOICE>: [your_choice]

wnn

nightmare_deduce_result_prompt_with_hint = "The final guess is {submitted_code}.
— The answer is {answer}, the guess is {is_correct}."
nightmare_not_valid_deduce_format_prompt_with_hint = """You did NOT follow the

— response format. Please try again.

**What You Must Do Nowxx:

- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,
— such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,

— YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
— PURPLE=1.

— DO NOT include any explanation, only follow the response format.

**Response formatxx:
<CHOICE>: [your_choice]

wnn

17

Classic — CoT Prompt

classic_system_prompt = """You are participating in a competitive logic deduction
— game called Turing Machine.

Your goal is to win first place by deducing a secret 3-digit code with minimal

— rounds and verifier usage, but accuracy takes priority over speed.

Game Objective:

— Deduce the secret 3-digit code made up of digits 1-5.

- BLUE = first digit, YELLOW = second digit, PURPLE = third digit.

- Each digit can be 1, 2, 3, 4, or 5 (digits may repeat).

— The code is the ONLY combination that satisfies the active criterion of ALL
— chosen verifiers.

Game Structure (Rounds) :

1. Proposal: Design a 3-digit code to test (format: BLUE=X, YELLOW=Y, PURPLE=Z,
— where X, Y, Z are digits from 1 to 5).

2. Question: Sequentially choose 0 to 3 verifiers to test your proposed code each
— round. After each selection, you will see the result, and then you can decide
— whether to select the next one.

3. Deduce: Based on verifier results, you can submit a final answer or continue
< to the next round.

4. End Round: If you didn't submit a final answer, a new round begins.

Verifier Rules:

- Each verifier checks ONE specific property (criterion) about the code.

— Each verifier has multiple potential criteria, but for each game, only ONE is
— secretly selected as 'active'. You don't know which criterion is active for
— any given verifier.

- Focus of Verification: When testing your code against a verifier, it

— xxexclusively** evaluates it against its *x*single, active criterionxx. The
— verifier completely ignores all other potential criteria, including its own
— 1nactive ones.

- PASS Condition: A verifier returns “<PASS>" if and only if your code satisfies
— this single active criterion. A “<PASS>" confirms xonlyx that this specific
— rule was met by the tested code.

- FAIL Condition: A verifier returns “<FAIL>" xxif and only ifxx your code does
— not satisfy this single active criterion. A “<FAIL>" indicates #*onlyx that
— this specific rule was violated by the tested code.

- Non-Overlapping Information: The active criteria selected across different

— verifiers for a game will provide distinct information.

Winning Strategy:

- It is possible to deduce the solution through joint reasoning, utilizing the

— combined results of multiple verifiers along with system rules such as the

— existence of a unique solution and the principle that no two verifiers offer
— redundant information.

- Only submit a final guess when you have either tested all verifiers and

— received <PASS> for each, or when your reasoning clearly proves your code

— satisfies all possible active verifier criteria. Accuracy takes priority over
— speed.

Current Game Setup:

{game_setup}
nnn

classic_proposal_prompt_with_reasoning_with_hint = """You are now entering the
— *xxProposal Stagexx of this round.

*xStage Purposex*x*:

In this stage, you need to compose a 3-digit code to help you to gather

— information from the verifiers. The code can NOT be changed in the subsequent
— stages of this round.

*%3-digit code rulesxx:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.

18

**Your Goal in This Stagexx:

— Design a code that will test a specific hypothesis.

— Think about what a <PASS> or <FAIL> would tell you.

- Choose a code that lets you learn something meaningful from verifiers.

**What You Must Do Nowxx:

— Reply the code you want to use in this round with required response format. For
— example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1

— Explain your reasoning step by step with <REASONING> tag, then provide your

— code.

**Response formatxx:
<REASONING>: [Explain your reasoning step by step for choosing this code]
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]

classic_not_valid_proposal_format_prompt_with_ reasoning with_hint = """You did
— not follow the required response format. Please try again with same code.

**What You Must Do Nowxx:

- Reply the code you want to use in this round with required response format. For
— example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1

- Explain your reasoning step by step with <REASONING> tag, then provide your

— code.

**Response formatxx:
<REASONING>: [Explain your reasoning step by step for choosing this code]
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]

wnn

classic_first_question_prompt_with_reasoning with_hint = """You are now entering
— the xxVerifier Questioning Stagexx of this round.

Current Verifiers:
{verifier_descriptions}

*xStage Purposexx:

In this stage, you can test your proposed 3-digit code using verifiers. Each
— verifier checks one hidden criterion. Use the test results to gather

— information and refine your deduction.

**Verifier Rules Summaryxx:

- Each verifier has ONE secretly selected active criterion.

— <PASS> means your code satisfies this rule; <FAIL> means it does not.
— Active rules do NOT overlap between verifiers.

**Your Goal in This Stagex=:

— Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to
— choose the verifier, you must choose verifiers xxone at a timexx. After each
— result, you may decide whether to test another. You may choose to test 0 to 3
— verifiers *xin total** during this round.

- xxPassing all tested verifiers does NOT mean the code is correct.xx To win,

— your code must satisfy the hidden criterion of *xall verifiersxx, whether

— tested or not.

**What You Must Do Nowxx:

- If you want to choose a verifier to test your proposed code, reply with

— verifier_num after <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after
— <CHOICE> tag, such as <CHOICE>: SKIP.

- Explain your reasoning step by step with <REASONING> tag, then provide your
— choice.

**Response formatxx:

<REASONING>: [Explain your reasoning step by step for choosing the verifier or
— skipping verifiers]

<CHOICE>: [your_choice]

19

classic_following_question_prompt_with_reasoning_with_hint = """You chose
<« Verifier <{verifier num}> and the result is <{verifier_result}>.

*xWhat You Must Do Nowxx:

- If you want to choose the next verifier to test, reply with verifier num after
— <CHOICE> tag, such as <CHOICE>: 1.

— If you want to skip verifier testing for this round, reply with SKIP after

— <CHOICE> tag, such as <CHOICE>: SKIP.

— Explain your reasoning step by step based on verifier result after <REASONING>
— tag, then provide your choice.

**Response formatxx:

<REASONING>: [Explain your reasoning step by step for choosing the verifier or
— skipping verifiers]

<CHOICE>: [your_choice]

wnn

classic_after_last_question_prompt_with_reasoning_with_hint = """You chose
<« Verifier <{verifier num}> and the result is <{verifier_result}>.

You have now tested the maximum number of three verifiers for this round. The
— next stage is the Deduce Stage. If you want to test more verifiers or new
— code, you can choose SKIP during the Deduce Stage to move on to the next
— round.

classic_not_valid_question_format_prompt_with_ reasoning with_hint = """You did
— not follow the required response format. Please try again with same choice.

**What You Must Do Nowxx:

- If you want to choose the next verifier to test, reply with verifier num after
— <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

— <CHOICE> tag, such as <CHOICE>: SKIP.

- Explain your reasoning step by step based on verifier result after <REASONING>
— tag, then provide your choice.

**Response formatxx:

<REASONING>: [Explain your reasoning step by step for choosing the verifier or
< skipping verifiers]

<CHOICE>: [your_choice]

wnn

classic_not_valid _verifier_choice_prompt_with_reasoning with_hint = """You
<« selected Verifier <{verifier_num}>, which is not a valid verifier number.

Please choose a valid verifier or SKIP to next stage.

*xWhat You Must Do Nowxx:

- If you want to choose the next verifier to test, reply with verifier_ num after
— <CHOICE> tag, such as <CHOICE>: 1.

— If you want to skip verifier testing for this round, reply with SKIP after

— <CHOICE> tag, such as <CHOICE>: SKIP.

— Explain your reasoning step by step based on verifier result after <REASONING>
— tag, then provide your choice.

**Response formatxx:

<REASONING>: [Explain your reasoning step by step for choosing the verifier or
— skipping verifiers]

<CHOICE>: [your_choice]

wnn

classic_deduce_prompt_with_reasoning with_hint = """You are now entering the
— xxDeduce Stagexx of this round.

*xStage Purposexx:
In this stage, you can analyze all the information gathered then decide whether

— to submit a final guess or continue to the next round.

*xHint*x*:

20

— Passing all tested verifiers does not mean the code is correct if not all

— verifiers were tested. To be correct, the code must satisfy the hidden

— criteria of all verifiers, not just the ones you tested.

- You may choose not to test some verifiers if you can clearly reason that your
— code meets their requirements. But you must ensure every verifier is either
— tested and passed, or clearly justified through reasoning. Testing and

— passing only part of the verifiers is not enough if others are ignored.

- This stage #*xis not for testingxx, you don't have to submit an answer; you can
— proceed to the next round to continue gathering information.

— Accuracy takes priority over speed. If you submit, the game will end, and an
— incorrect guess will result in immediate failure.

**Your Goal in This Stagexx:

- Analysis all information gathered.

— Decide whether to submit the final guess or continue to the next round.

- Submission is not mandatory, you must make this decision based on your own
— reasoning.

**What You Must Do Nowxx*:

- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,
— such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,

— YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,

— PURPLE=1.

- Explain your reasoning step by step with <REASONING> tag, then provide your

— choice. If you want to submit a final guess, you must provide the reasons for
— not proceeding to the next round.

*+*Response formatxx:

<REASONING>: [Analysis and explain your reasoning step by step for continue to
— next round or submit final guess]

<CHOICE>: [your_choice]

wnn

classic_deduce_result_prompt_with_reasoning _with_hint = "The final guess is
— {submitted_code}. The answer is {answer}, the guess is {is_correct}."

classic_not_valid_deduce_format_prompt_with_reasoning _with_hint = """You did NOT
— follow the response format. Please try again.

**What You Must Do Nowx*x*:

- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,
— such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,

— YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
<« PURPLE=1.

- Explain your reasoning step by step with <REASONING> tag, then provide your

— choice.

**Response formatxx:

<REASONING>: [Analysis and explain your reasoning step by step for submitting the
— final guess or continue to next round]

<CHOICE>: [your_choice]

Ni

ghtmare — CoT Prompt

nightmare_system_prompt = """You are participating in a competitive logic

— deduction game called Turing Machine.

Your goal is to win first place by deducing a secret 3-digit code with minimal
— rounds and verifier usage, but accuracy takes priority over speed.

Game Objective:

— Deduce the secret 3-digit code made up of digits 1-5.

- BLUE = first digit, YELLOW = second digit, PURPLE = third digit.

- Each digit can be 1, 2, 3, 4, or 5 (digits may repeat).

- The code is the ONLY combination that satisfies the active criterion of ALL
— chosen verifiers.

21

Game Structure (Rounds):

1. Proposal: Design a 3-digit code to test (format: BLUE=X, YELLOW=Y, PURPLE=Z,
— where X, Y, Z are digits from 1 to 5).

2. Question: Sequentially choose 0 to 3 verifiers to test your proposed code each
— round. After each selection, you will see the result from an unknown

— verifier. The verifier identity will be hidden.

3. Deduce: Based on verifier results, you can submit a final answer or continue
— to the next round.

4. End Round: If you didn't submit a final answer, a new round begins.

Verifier Rules:

- Each verifier checks ONE specific property (criterion) about the code.

— Each verifier has multiple potential criteria, but for each game, only ONE is
— secretly selected as 'active'. You don't know which criterion is active for
— any given verifier.

- Focus of Verification: When testing your code against a verifier, it

— EXCLUSIVELY evaluates it against its SINGLE, ACTIVE criterion. The verifier
— completely ignores all other potential criteria, including its own inactive
— ones.

— In this game, you don’t know which Verifier’s result you’re actually seeing —--
— the mapping between Verifiers and their displayed results is randomized and
— hidden from the player, though fixed for the entire game.

- PASS Condition: A verifier returns “<PASS>" if and only if your code satisfies
— the active criterion of the actual Verifier it is mapped to. For example, if
— Verifier 1 is secretly mapped to Verifier 2, then a <PASS> from Verifier 1
— means your code met Verifier 2's hidden active rule.

- FAIL Condition: A verifier returns “<FAIL>" if and only if your code does not
— satisfy the active criterion of the actual Verifier it is mapped to. A <FAIL>
— simply means the mapped Verifier's rule was not met.

- Non-Overlapping Information: The active criteria selected across different

— verifiers for a game will provide distinct information.

Winning Strategy:

- It is possible to deduce the solution through joint reasoning, utilizing the
— combined results of multiple verifiers along with system rules such as the
— existence of a unique solution and the principle that no two verifiers offer
— redundant information.

— One possible strategy is to carefully modify your code across multiple rounds
— and observe how each Verifier’s output changes. By analyzing the pattern of
— responses, you can infer the hidden mapping between Verifiers and their

— actual criteria.

— Only submit a final guess when you have either tested all verifiers and

— received <PASS> for each, or when your reasoning clearly proves your code

— satisfies all possible active verifier criteria. Accuracy takes priority over
— speed.

Current Game Setup:

{game_setup}
nmnn

nightmare_proposal_prompt_with_reasoning _with_hint = """You are now entering the
— *xxProposal Stagexx of this round.

*xStage Purposex*x*:

In this stage, you need to compose a 3-digit code to help you to gather

— information from the verifiers. The code cannot be changed in the subsequent
— stages of this round.

**x3-digit code rulesxx:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.

**xYour Goal in This Stagexx:

— Design a code that will test a specific hypothesis.

— Think about what a <PASS> or <FAIL> would tell you, but you don’t know which

— Verifier’s result you’re actually seeing —-- the mapping between Verifiers and
— their displayed results is randomized and hidden from the player, though

— fixed for the entire game.

— Choose a code that lets you learn something meaningful from verifiers.

22

**What You Must Do Nowxx:

- Reply the code you want to use in this round with required response format. For
— example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1

- Explain your reasoning step by step with <REASONING> tag, then provide your

— code.

**Response formatxx:
<REASONING>: [Explain your reasoning step by step for choosing this code]
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]

wnn

nightmare_not_valid_proposal_format_prompt_with_ reasoning with_hint = """You did
— not follow the required response format. Please try again with same code.

**What You Must Do Nowxx:

- Reply the code you want to use in this round with required response format. For
— example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1

- Explain your reasoning step by step with <REASONING> tag, then provide your

— code.

**Response formatxx:
<REASONING>: [Explain your reasoning step by step for choosing this code]
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]

wnn

nightmare_first_question_prompt_with_reasoning_with_hint = """You are now
— entering the x*Verifier Questioning Stagexx of this round.

*xCurrent Verifiers*x:
{verifier_descriptions}

*xStage Purposex*x*:

In this stage, you can test your proposed 3-digit code using verifiers. Each
— verifier checks one hidden criterion. Use the test results to gather

— information and refine your deduction.

*+Verifier Rules Summaryxx:

- Each verifier has ONE secretly selected active criterion.

— Each verifier shows results for a different, hidden verifier (the mapping is
— randomized but fixed for the entire game).

— <PASS> means your code satisfies the active criterion of the secretly mapped
— verifier. <FAIL> means your code does not satisfy that criterion.

— Active rules do NOT overlap between verifiers.

**Your Goal in This Stagexx:

— Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to
— choose the verifier, you must choose verifiers xxone at a timexx. After each
— result, you may decide whether to test another. You may choose to test 0 to 3
— verifiers xxin total*x during this round.

- xxPassing all tested verifiers does NOT mean the code is correct.xx To win,

— your code must satisfy the hidden criterion of xxall verifiersxx, whether

— tested or not.

**What You Must Do Nowxx:

- If you want to choose a verifier to test your proposed code, reply with

— verifier_num after <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

— <CHOICE> tag, such as <CHOICE>: SKIP.

- Explain your reasoning step by step based on verifier result after <REASONING>
— tag, then provide your choice.

**Response format*x:

<REASONING>: [Explain your reasoning step by step for choosing the verifier or
— skipping verifiers]

<CHOICE>: [your_choice]

nightmare_following_question_prompt_with_reasoning_with_hint = """You chose
s Verifier <{verifier num}> and the result 1is <{verifier_result}>.

23

*+Hintxx:
— "<PASS>" means your code satisfies the active criterion of the actual Verifier
— 1t is mapped to. For example, if Verifier 1 is secretly mapped to Verifier 2,
— then a <PASS> from Verifier 1 means your code met Verifier 2's hidden active
— rule.

"<FAIL>" means your code does not satisfy the active criterion of the actual
— Verifier it is mapped to.

**What You Must Do Nowxx:

- If you want to choose the next verifier to test, reply with verifier_num after
— <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

— <CHOICE> tag, such as <CHOICE>: SKIP.

- Explain your reasoning step by step based on verifier result after <REASONING>
— tag, then provide your choice.

**Response formatx*x:

<REASONING>: [Explain your reasoning step by step for choosing the verifier or
— skipping verifiers]

<CHOICE>: [your_choice]

nightmare_after_ last_question_prompt_with_reasoning with_hint = """You chose
<y Verifier <{verifier num}> and the result 1is <{verifier_result}>.

You have now tested the maximum number of three verifiers for this round. The
— next stage is the Deduce Stage. If you want to test more verifiers or new
— code, you can choose SKIP during the Deduce Stage to move on to the next

— round.
nnn

nightmare_not_valid_question_format_prompt_with_reasoning with_hint = """You did
— not follow the required response format. Please try again with same choice.

*xWhat You Must Do Nowxx:

- If you want to choose the next verifier to test, reply with verifier_num after
— <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

— <CHOICE> tag, such as <CHOICE>: SKIP.

- DO NOT include any explanation, only follow the response format.

**Response formatxx:
<CHOICE>: [your_choice]

nightmare_not_valid_verifier_ choice_prompt_with_reasoning_with_hint = """You
<« selected Verifier <{verifier_num}>, which is not a valid verifier number.

Please choose a valid verifier or SKIP to next stage.

*xWhat You Must Do Nowxx:

- If you want to choose the next verifier to test, reply with verifier num after
— <CHOICE> tag, such as <CHOICE>: 1.

— If you want to skip verifier testing for this round, reply with SKIP after

— <CHOICE> tag, such as <CHOICE>: SKIP.

— DO NOT include any explanation, only follow the response format.

**Response formatx*x:
<CHOICE>: [your_choice]

nightmare_deduce_prompt_with_reasoning with_hint = """You are now entering the
— xxDeduce Stagex* of this round.

*xStage Purposex*x*:
In this stage, you can analyze all the information gathered then decide whether

— to submit a final guess or continue to the next round.

**Hintxx:

24

— Passing all tested verifiers does not mean the code is correct if not all

— verifiers were tested. To be correct, the code must satisfy the hidden

— criteria of all verifiers, not just the ones you tested.

- You may choose not to test some verifiers if you can clearly reason that your
— code meets their requirements. But you must ensure every verifier is either
— tested and passed, or clearly justified through reasoning. Testing and

— passing only part of the verifiers is not enough if others are ignored.

- This stage #*xis not for testingxx, you don't have to submit an answer; you can
— proceed to the next round to continue gathering information.

— Accuracy takes priority over speed. If you submit, the game will end, and an
— incorrect guess will result in immediate failure.

**Your Goal in This Stagexx:

- Analysis all information gathered.

— Decide whether to submit the final guess or continue to the next round.

- Submission is not mandatory, you must make this decision based on your own
— reasoning.

**What You Must Do Nowxx*:

- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,
— such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,

— YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,

— PURPLE=1.

- Explain your reasoning step by step with <REASONING> tag, then provide your

— choice. If you want to submit a final guess, you must provide the reasons for
— not proceeding to the next round.

*+*Response formatxx:

<REASONING>: [Analysis and explain your reasoning step by step for continue to
— next round or submit final guess]

<CHOICE>: [your_choice]

wnn

nightmare_deduce_result_prompt_with_reasoning_with_hint = "The final guess is
— {submitted_code}. The answer is {answer}, the guess is {is_correct}."

nightmare_not_valid_deduce_format_prompt_with_reasoning _with_hint = """You did
— NOT follow the response format. Please try again.

**What You Must Do Nowx*x*:

- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,
— such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,

— YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
<« PURPLE=1.

- Explain your reasoning step by step with <REASONING> tag, then provide your

— choice.

**Response formatxx:

<REASONING>: [Analysis and explain your reasoning step by step for submitting the
— final guess or continue to next round]

<CHOICE>: [your_choice]

mwnw

% \end{tcolorbox}

% \end{verbatim}

25

	Introduction
	Related Work
	TurnBench
	Turing Machine Game Mechanics
	TurnBench Construction
	Game Setups
	Verifier Design
	LLM Interaction Flow
	Evaluating Model Reasoning Process

	Experiment
	Experiment Setup
	Results and Findings

	Conclusion
	Prompts Used in Experiments

