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Abstract

How can we test AI performance? This question seems trivial, but it isn’t. Standard
benchmarks often have problems such as in-distribution and small-size test sets,
oversimplified metrics, unfair comparisons, and short-term outcome pressure. As
a consequence, good performance on standard benchmarks does not guarantee
success in real-world scenarios. To address these problems, we present Touchstone,
a large-scale collaborative segmentation benchmark of 9 types of abdominal organs.
This benchmark is based on 5,195 training CT scans from 76 hospitals around the
world and 5,903 testing CT scans from 11 additional hospitals. This diverse test set
enhances the statistical significance of benchmark results and rigorously evaluates
AI algorithms across out-of-distribution scenarios. We invited 14 inventors of 19
AI algorithms to train their algorithms, while our team, as a third party, indepen-
dently evaluated these algorithms. In addition, we also evaluated pre-existing AI
frameworks—which, differing from algorithms, are more flexible and can support
different algorithms—including MONAI from NVIDIA, nnU-Net from DKFZ, and
numerous other open-source frameworks. We are committed to expanding this
benchmark to encourage more innovation of AI algorithms for the medical domain.
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1 Introduction

The development of AI algorithms has led to enormous progress in medical segmentation, but few
algorithms are reliable enough for clinical use [3, 35, 10]. Most AI algorithms fall short of expert
radiologists, who are much more reliable and consistent when dealing with medical images from
multiple hospitals, varied in different scanners, clinical protocols, patient demographics, or disease
prevalences [68, 46, 33, 89]. Therefore, the question remains: How can we test medical AI in the
diverse scenarios that are encountered by radiologists? Establishing a trustworthy AI benchmark is
important but exceptionally challenging, and seldom achieved in the medical domain. Tougher tests,
like out-of-distribution evaluation on large, varied datasets, are needed.

Standard benchmarks have underlying problems that cause confusion in algorithm comparisons and
delay progress. First, in-distribution test sets. In the medical domain, CT scans in the test set often
share sources, scanners, and populations with the training set. As a result, AI algorithms may perform
well on the test set but generalize poorly to out-of-distribution (OOD) scenarios [21, 7, 8, 46, 33].
For example, Xia et al. [80] found that AI algorithms trained on data from Johns Hopkins Hospital
(Baltimore, USA) lose accuracy in pancreatic tumor detection when evaluated on CT scans from
Heidelberg Medical School (Heidelberg, Germany). Second, small-size test sets. Annotating medical
data is expensive and time-consuming, but training AI requires substantial annotated data [59, 60].
Therefore, most annotated data is used for training, leaving very little assigned for testing. Recent
CT datasets such as TotalSegmentator [77], WORD [52], and MSD [2], offered fewer than 100 CT
scans for testing. Even a single success or failure can skew results, reducing the statistical power and
potentially misleading conclusions. Third, over-simplified metrics. Most standard benchmarks only
compare average performance, failing to identify each AI algorithm’s strengths and weaknesses in
different scenarios. For instance, one algorithm might excel at segmenting small, circular structures
(like the gall bladder) while another performs better on long, tubular ones (such as the aorta). Average
performance across many classes can hide these nuances. Fourth, unfair comparisons. Almost every
paper reports that the newly ‘proposed AI’ outperforms existing ‘alternative AIs.’ The improvement
becomes more significant if alternative AIs are reproduced and evaluated on an unknown training/test
split. There are biases in comparison due to asymmetric efforts made in optimizing the proposed
and alternative AIs. Many independent studies have reported these comparison biases over the years
[35, 37] but remain unresolved. There is a need to have more widely adopted benchmarks (e.g.,
challenges) where all AI algorithms are trained by their inventors and evaluated by third parties.
Fifth, short-term outcome pressure. Standard benchmarks are often in short-term and non-recurring,
requiring a final solution within several months. For example, RSNA 2024 Abdominal Trauma
Detection [15] only opened for three months for data access and AI development & evaluation. The
short-term outcome pressure can discourage new classes of AI algorithms that need considerable
time and computational resources for a thorough investigation, as their vanilla versions (e.g., Mamba
[22, 85] in early 2024 and Transformers [16] in early 2021) might not outperform all the alternatives
judged. The benchmark must have long-term commitment and allowance.

To address this AI mismeasurement issue, we present the Touchstone benchmark, an effort towards
the objective of creating a fair, large-scale, and widely-adopted medical AI benchmark. Its scale
is large, featuring a training set of 5,195 publicly available CT scans from 76 hospitals and a test
set of 5,903 CT scans from additional 11 hospitals. Test sets were unknown to the participants of
the benchmark. All 11,098 scans are annotated per voxel for 9 anatomical structures. The training
set annotations were created by collaboration between AI specialists and radiologists followed by
manual revision [60], 5,160 out of 5,903 test scans are proprietary and manually annotated, and the
remaining test datasets are publicly available, annotated by AI-radiologist collaboration. As of May
2024, 14 global teams from eight countries have contributed to our benchmark. These teams are
known for inventing novel AI algorithms for medical segmentation. In summary, the Touchstone
benchmark explores an evaluation philosophy defined by the following five contributions:

1. Evaluating on out-of-distribution data: The JHH test set (Sec. 2.1) presents 5,160 CT scans
from an hospital never seen during training, introducing a new scale of external validation
for abdominal CT benchmarks. The test data distribution varies in contrast enhancement
(pre, venous, arterial, post-phases), disease condition (30% containing abdominal tumors
at varied stages), demographics (age, gender, race), image quality (e.g., slice thickness of
0.5–1.5 mm), and scanner types. We have collected metadata information for 72% of the
test set (N=5,160) and reported AI performance in each sub-group.
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2. Providing a large test set: Our test set (N=5,903) is much larger than the test sets of all
current public CT benchmarks combined. It can enhance the statistical significance of
the benchmark results: a 1% average accuracy increment across 5,000 CT scans is more
indicative of a genuine algorithmic improvement than a 1% variation across 50 CT scans.

3. Analyzing pros/cons from multiple perspectives: We evaluated segmentation performance
of 9 anatomical structures, comparing the average results and analyzing them by metadata
groups. We also reported per-class algorithm rankings and visualized worst-case perfor-
mance. Moreover, we assessed inference time and computational cost, key factors for the
clinical deployment of AI algorithms.

4. Inviting inventors to train their own algorithms: Each AI algorithm is configured by its own
inventors, who know it best and have the most interest in its success. In our benchmark,
each inventor trained their AI algorithm on 5,195 annotated CT scans in AbdomenAtlas
[60], and we, as a third party, independently evaluated these algorithms on 5,903 CT scans
that are unknown and inaccessible to the AI inventors. This setting protects the integrity of
our results (i.e., precluding the use of test data for hyperparameter tuning).

5. Evaluating new algorithms with long-term commitment: Our Touchstone benchmark not only
invited established AI algorithms that are already published in major conferences/journals,
but also invited newly developed algorithms appearing in recent pre-prints. We have a
long-term commitment to this benchmark by organizing recurring challenges for at least
five years, curating larger datasets, and improving label quality and task diversity. The first
edition was featured as an invitation-only challenge at ISBI-2024.

Related benchmarks/challenges & our innovations. In a general sense, we define a benchmark
as an algorithmic comparison. Accordingly, the most common type of benchmark are the standard
comparisons found in thousands of research papers [58, 90, 91, 12, 27, 26, 48, 79] where authors
present new algorithms and compare baselines. As previously explained, this type of benchmark
incurs the risk of unfairness, due to possible asymmetric efforts made in optimizing the proposed and
alternative algorithms. However, open challenges are a different type of benchmark, where developers
train their own algorithms and submit them for third-party evaluation, mitigating the risk of unfair
comparisons. For this reason, Table 1 contrasts our Touchstone benchmark to a non-exhaustive
list of the most influential abdominal CT segmentation challenges. Notably, our training dataset is
considerably larger and comes from more hospitals than any CT dataset ever used in a challenge.
Furthermore, the only challenge training datasets on a scale similar to AbdomenAtlas 1.0 have partial
labels and/or unlabeled portions [2, 53]. Our dataset is 17.3→ larger than the second-largest fully-
annotated CT dataset [29] in Table 1. Boosting our results’ statistical significance, our evaluation
dataset is 8.6→ larger than any CT segmentation challenge test dataset. Moreover, Touchstone is the
only benchmark in Table 1 to, simultaneously, explicitly analyze the performance of AI algorithms
controlled by age, sex, race, and other metadata information. Lastly, this work is the starting point of
a long-term benchmark, which we commit to maintain and improve over the years. Considering the
importance of long-term commitment, we must acclaim KiTS, an abdominal segmentation challenge
that had 3 editions since 2019 [31, 30, 28, 29] and FLARE, a challenge being consistently held yearly
since 2021 [57, 53, 55, 56].

2 Touchstone Benchmark

2.1 Datasets – Annotations, Statistics, Distribution, & Characteristics

We used one training dataset and two test datasets to perform a comprehensive out-of-distribution
benchmark. The training and test datasets were collected from many hospitals worldwide. Figure
1 shows the demographics of the two test datasets, JHH and TotalSegmentator; Appendix Figures
3–4 provide examples of CT scans and per-voxel annotations for various demographic groups across
all datasets. The JHH dataset is proprietary and used for third-party evaluation; participants do not
have access to the CT scans or their annotations. TotalSegmentator is a publicly available dataset;
we did not inform the inventors beforehand of its use in our evaluation and confirmed that their AI
algorithms had not been trained on this dataset. We included this public dataset to enable future
participants to easily compare their algorithms with our benchmark.

AbdomenAtlas 1.0—N=5,195; publicly available for training purposes—is the largest multi-organ
fully-annotated CT dataset to date, encompassing 76 hospitals in 8 countries [60]. It leveraged a
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Table 1: Related benchmarks & our innovations. We compare Touchstone with influential CT
segmentation benchmarks in light of the five contributions presented in the introduction.

contribution
promoting superior OOD performance
with a large and diverse training dataset
(#1)

boosting results’ significance
& large-scale OOD test
(#1, #2)

multi-faceted
evaluation
(#3)

encouraging
innovative AI
(#4, #5)

benchmark # CT scans
train

# hospitals
train

# countries
train

# CT scans
test

AI consistency
analysis

targeted
invitation

MSD-CT [2] 947† 1 1 465 IID none no
FLARE’22 [54] 2,050† 22 5+ 200 IID, 600 OOD sex, age no
FLARE’23 [56] 4,000† 30 n/a n/a n/a no
KiTS21 [29] 300 50+ 1 100 OOD sex, race no
AMOS22-CT [38] 200 3 1 78 IID, 122 OOD none no
LiTS [9] 130 7 5 70 IID none no
BTCV [41] 30 1 1 20 IID none no
CHAOS-CT [72] 20 1 1 20 IID none no
Touchstone (ours) 5,195 76 8 5,903 OOD sex, age, race yes
†Partially labeled: annotations for each organ do not cover the entire dataset, and/or may contain unlabeled samples.

Figure 1: Summary of JHH and TotalSegmentator metadata. The diversity of data distribution
includes more than just the number of centers; it also includes age, sex, manufacturer, diagnosis, and
many other factors. JHH is the only dataset that provides race information, allowing us to compare
the results; the race information is unknown in TotalSegmentator and most publicly available datasets.
Therefore, the inclusion of JHH is value-added because it enabled the analysis on race. Races HL, W,
AS, AA, O, and U indicate Hispanic & Latino, White, Asian, African American, other and unknown,
respectively.

human-in-the-loop active learning strategy to empower radiologists to feasibly annotate 5,195 CT
scans from 16 public datasets (listed in Appendix Table 4) and is fully annotated for 9 anatomical
structures, i.e., spleen, liver, L&R kidneys, stomach, gallbladder, pancreas, aorta, and postcava.
AbdomenAtlas 1.0, under CC BY-NC 4.0 License, is derived from publicly available datasets, so
detailed metadata information is unfortunately not available.

JHH—N=5,160; reserved for out-of-distribution test purposes1—provides contrast-enhanced CT
scans in venous and arterial phases. Collected from Johns Hopkins Hospital using two Siemens
scanners, this dataset includes metadata on age, race, gender, and diagnosis. Notably, all per-voxel
annotations in JHH were manually created by radiologists [59, 80]. Annotation time for a single

1Out-of-distribution (OOD) test data (both images and annotations) must remain private, as public release
can lead to overfitting and compromise OOD evaluation integrity [21, 61]. If any OOD data is released, a new,
privately preserved test set will be required to ensure reliable evaluation.
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structure ranges from minutes to hours, depending on the size and complexity of the regions of
interest to annotate and the local surrounding anatomical structures. Each CT scan was annotated by
a team of radiologists, and confirmed by one of three additional experienced radiologists to ensure
the quality of the annotation. All personally identifiable information was removed and the use of
this dataset has received IRB approval from Johns Hopkins Medicine under IRB00403268. JHH is
considered here an OOD test set because no CT scan from the Johns Hopkins hospital is present in
the training dataset.

TotalSegmentatorV2—N=743; publicly available for out-of-distribution test purposes—is from 10
institutes within the University Hospital Basel (Switzerland) picture archiving and communication
system (PACS) [77]. Being one of the largest public CT datasets, TotalSegmentator, under Apache
License 2.0, was annotated by AI-assisted radiologists. It comprises both contrast-enhanced and
non-contrast images, with per-sample metadata including age, sex, scanner details, diagnosis, and
institution. We report AI performance on a subset of TotalSegmentator dataset2 in Table 3 and its
official test set in Appendix Tables 11–12.

2.2 Evaluation Protocols – Architectures, Frameworks, Metrics, & Statistical Analysis

In this study, we define an architecture as the overall design and structure of the entire neural network
model; and define a framework as a set of tools or protocols that can accommodate multiple AI
architectures. We evaluated 19 architectures and 3 frameworks trained by their inventors on our
AbdomenAtlas 1.03. We used Dice Similarity Coefficient (DSC) and Normalized Surface Distance
(NSD) to evaluate segmentation performance. We enforced that the inference speed must be faster
than 1e6 mm3 per second. The inference speed for each algorithm is summarized in Appendix
Table 6. We employed the same computer to evaluate all submitted algorithms. Its specifications are
CPU: AMD EPYC 7713 @ 2,0Ghz→64; GPU: NVIDIA Ampere A100 (80GB); RAM: 2TB. We
applied statistical hypothesis testing to each possible pair of algorithms to ensure their performance
differences are significant. Following Wiesenfarth et al. [78], we used the one-sided Wilcoxon signed
rank test with Holm’s adjustment for multiplicity at 5% significance level and summarized results
in significance maps. Per-group metadata analysis in Appendix D.5 considers Kruskal–Wallis tests,
followed by post-hoc Mann-Whitney U Tests with Bonferroni correction. More statistical analyses,
such as ranking stability [78], are presented in Appendix D.2.

3 Benchmark Results

3.1 Performances According to Out-of-distribution Evaluation on Large Datasets

We started by comparing the average DSC score over the 9 classes. MedNeXt and MedFormer are
the winners of the JHH dataset; STU-Net and ResEncL are the winners of the TotalSegmentator
dataset. Among these winners, three are CNNs (STU-Net, ResEncL and MedNeXt) and one is a CNN
Transformer hybrid (MedFormer). There is no significant difference among these winners at p = 0.05
level, evidenced by the statistical analysis in Tables 2–3. Regarding frameworks, nnU-Net [35] is
the winner since 3 out of 4 of the aforementioned winners were developed on the self-configuring
nnU-Net framework.

In addition to reporting the average performance ranking, we examined the per-class performance and
made the following findings. First, diversified OOD evaluation is necessary. For multiple algorithms,
the DSC score for a given organ varied 15% or more across diverse test sets. E.g., the SAM-Adapter,
a transformer-based 2D model, generalizes much better to JHH than to TotalSegmentator: in kidney
segmentation, its DSC score differs by more than 80% across the datasets (see Appendix D.3.5 for
explanations). Such stark performance variations reveal the importance of evaluating models on
diverse OOD test sets. Second, test dataset size matters. More test samples increase statistical power,
enabling benchmarks to more reliably detect differences between algorithms and produce stable,
trustworthy rankings. Higher statistical power allows us to better differentiate the best performing

2TotalSegmentator offers 1,228 CT scans, but 485 scans were included into FLARE and subsequently
inherited by AbdomenAtlas 1.0. As a result, we used only the remaining 743 scans for evaluation. Unlike JHH,
this evaluation set does not come from completely unseen hospitals. However, there is a significant distribution
shift between the TotalSegmentator data within AbdomenAtlas and the data in our test set (see Appendix A.2).

3Appendix B.1–B.3 describe in-depth the description and configuration of each architecture/framework.
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Table 2: External validation on proprietary JHH dataset (N=5,160). Performance is given
as DSC score (mean±s.d.). For each class, we bold the best-performing results and highlight the
runners-up, which show no significant difference from the best results at p = 0.05 level, in red.
Architectures are grouped by their frameworks and sorted in ascending order based on the number of
parameters. CNNs based on the nnU-Net framework have the best performance on most classes, but
other models excel at specific structures (e.g., the graph neural network-based NeXToU for aorta, and
the diffusion-based Diff-UNet for kidneys). The NSD results are reported in Appendix Table 9. We
measured inference speed in cm3/s (see Table 6 for details).

framework architecture param spleen kidneyR kidneyL gallbladder liver

nnU-Net

UniSeg† [84] 31.0M 94.9±6.0 92.2±7.2 91.5±7.0 84.7±12.6 96.1±4.4
MedNeXt [65] 61.8M 95.2±6.3 92.6±7.4 91.8±7.3 85.3±12.9 96.3±4.5
NexToU [67] 81.9M 94.7±8.1 90.1±9.5 89.6±9.3 82.3±17.0 95.7±5.5
STU-Net-B [34] 58.3M 95.1±6.4 92.5±7.3 91.9±7.2 85.5±12.3 96.2±4.8
STU-Net-L [34] 440.3M 95.2±6.1 92.5±7.1 91.8±7.1 85.7±11.8 96.3±4.4
STU-Net-H [34] 1457.3M 95.2±5.9 92.6±6.9 91.9±7.1 86.0±11.6 96.3±4.4
U-Net [63] 31.1M 95.1±6.3 92.7±6.9 91.9±7.2 84.7±13.1 96.2±4.5
ResEncL [35, 37] 102.0M 95.2±6.3 92.6±7.0 91.9±6.9 84.9±13.0 96.3±4.5
ResEncL↭ 102.0M 95.1±6.2 92.7±6.9 91.9±7.1 84.9±12.8 96.3±4.5

Vision-Language U-Net & CLIP [47] 19.1M 94.3±6.9 91.9±7.8 91.1±8.8 82.1±15.4 96.0±4.3
Swin UNETR & CLIP [47] 62.2M 94.1±7.7 91.7±9.1 91.0±9.1 80.2±18.3 95.8±5.6

MONAI

LHU-Net [66] 8.6M 94.9±6.3 92.5±7.0 91.8±7.4 83.9±14.5 96.2±4.3
UCTransNet [73] 68.0M 90.2±11.9 86.5±14.6 86.9±12.8 77.8±19.5 93.6±6.4
Swin UNETR [69] 72.8M 92.7±8.8 89.8±11.1 89.7±10.2 76.9±20.7 95.2±5.3
UNesT [86] 87.2M 93.2±7.1 90.9±8.1 90.1±8.2 75.1±21.2 95.3±5.0
UNETR [25] 101.8M 91.7±10.1 90.1±9.4 89.2±9.6 74.7±20.4 95.0±5.3
SegVol† [18] 181.0M 94.5±6.9 92.5±7.1 91.8±7.3 79.3±18.8 96.0±4.7

n/a
SAM-Adapter† [23] 11.6M 90.5±8.8 90.4±7.9 87.3±9.6 49.4±22.9 94.1±5.3
MedFormer [19] 38.5M 95.5±6.1 92.8±7.3 91.9±7.4 85.3±13.6 96.4±4.4
Diff-UNet [82] 434.0M 95.0±6.9 92.8±7.4 91.9±7.5 83.8±14.8 96.2±4.7

framework architecture speed stomach aorta postcava pancreas average

nnU-Net

UniSeg† [84] 198 93.3±6.0 82.3±10.3 81.2±8.1 82.7±10.4 88.8±8.0
MedNeXt [65] 308 93.5±6.0 83.1±10.2 81.3±8.3 83.3±11.0 89.2±8.2
NexToU [67] 654 92.7±7.5 86.4±8.7 78.1±9.1 80.2±13.5 87.8±9.8
STU-Net-B [34] 418 93.5±6.0 82.1±10.5 81.3±8.2 83.2±10.7 89.0±8.1
STU-Net-L [34] 179 93.7±5.6 81.0±10.9 81.3±8.2 83.4±10.7 89.0±8.0
STU-Net-H [34] 73 93.7±5.7 81.1±10.9 81.1±8.2 83.4±10.7 89.0±7.9
U-Net [63] 1064 93.3±6.0 82.8±10.2 81.0±8.2 82.3±11.4 88.9±8.2
ResEncL [35, 37] 794 93.4±6.0 81.4±11.1 80.5±8.8 82.9±10.8 88.8±8.3
ResEncL↭ 794 93.5±5.9 88.0±7.3 80.5±8.7 82.8±11.1 89.5±7.8

Vision-Language U-Net & CLIP [47] 543 92.4±6.8 77.1±12.7 78.5±9.6 80.8±11.5 87.1±9.3
Swin UNETR & CLIP [47] 606 92.2±8.3 78.1±12.6 76.8±11.0 80.2±12.5 86.7±10.5

MONAI

LHU-Net [66] 2273 93.0±6.1 79.5±11.2 79.4±9.3 81.0±11.3 88.0±8.6
UCTransNet [73] 1163 81.9±12.9 86.5±8.0 68.1±15.8 59.0±21.6 81.1±13.7
Swin UNETR [69] 2222 90.5±8.6 77.2±15.1 75.4±11.8 75.6±14.5 84.8±11.8
UNesT [86] 2703 90.9±7.3 77.7±16.1 74.4±11.8 76.2±12.1 84.9±10.8
UNETR [25] 2703 88.8±8.4 76.5±16.4 71.5±12.8 72.3±14.5 83.3±11.9
SegVol† [18] 1923 92.5±7.0 80.2±11.3 77.8±9.7 79.1±12.4 87.1±9.5

n/a
SAM-Adapter† [23] 1639 88.0±9.3 62.8±12.2 48.0±14.2 50.2±12.6 73.4±11.4
MedFormer [19] 535 93.4±6.4 82.1±11.7 80.7±10.1 83.1±11.2 89.0±8.7
Diff-UNet [82] 442 93.1±6.5 81.2±11.3 80.8±8.9 81.9±11.4 88.5±8.8

†These architectures were pre-trained (Appendix B.3).
↭These architectures were trained on AbdomenAtlas 1.0 with enhanced label quality for the aorta and kidney classes (discussed in §4).

model from the others: for JHH (N=5,160), there is at most four winners for any class, but for
TotalSegmentator, there is up to eight (Tables 2–3). Appendix D.4 uses box-plots and significance
heatmaps [78] to confirm these findings, and Appendix D.2 shows ranking order is much more stable
for JHH than for smaller test sets. This finding emphasizes the importance of test dataset size for
accurate and reliable algorithm comparisons. Third, average-based rankings are not enough. Tables
2–3 show that, for the same AI algorithm, DSC scores on difficult-to-segment structures, like the
gallbladder and the pancreas, are usually 10–20% lower than performance on easily identifiable
structures, like the liver and the spleen. Usually, the best models for average DSC are also the best at
individual structures, but per-class results reveal notable exceptions. E.g., in JHH, NexToU, a graph
neural network-based hybrid architecture, excels at aorta segmentation, and Diff-UNet, a diffusion-
based model, excels at kidney segmentation. Accordingly, per-class results reveal hidden strengths of
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Table 3: Validation on TotalSegmentator (N=743). Performances given as DSC score (mean±s.d.).
For each class, we bold the best-performing results and highlight the runners-up, which show no
significant difference from the best results at p = 0.05 level, in red. To ease the direct comparison
with other literature, we also reported the official test set performance in Appendix Tables 11–12. We
measured inference speed in cm3/s (see Table 6 for details).

framework architecture param spleen kidneyR kidneyL gallbladder liver

nnU-Net

UniSeg† [84] 31.0M 89.4±19.4 84.5±23.8 81.9±27.9 74.6±27.4 91.7±16.5
MedNeXt [65] 61.8M 91.6±18.3 85.5±24.8 86.0±23.8 75.8±28.5 93.0±15.8
NexToU [67] 81.9M 83.0±29.5 78.2±32.7 78.7±30.8 72.0±31.2 87.6±23.0
STU-Net-B [34] 58.3M 92.3±15.4 87.1±20.3 86.8±22.1 78.5±25.0 93.0±13.9
STU-Net-L [34] 440.3M 91.6±17.8 88.2±18.6 86.3±22.9 78.1±24.7 94.2±11.2
STU-Net-H [34] 1457.3M 92.4±14.6 88.9±16.3 86.5±23.4 77.7±25.4 94.0±11.4
U-Net [63] 31.1M 91.2±17.8 88.4±18.3 87.7±20.8 78.3±25.5 93.4±13.8
ResEncL [35, 37] 102.0M 91.8±17.5 88.9±18.0 88.2±20.5 78.0±25.2 91.7±18.4
ResEncL↭ 102.0M 92.0±16.7 89.9±15.3 89.5±18.3 78.0±24.7 92.4±17.4

Vision-Language U-Net & CLIP [47] 19.1M 87.4±23.8 83.6±25.6 82.7±26.6 73.1±29.1 91.6±14.8
Swin UNETR & CLIP [47] 62.2M 87.1±22.4 81.1±29.0 77.0±32.3 70.3±31.0 91.6±16.0

MONAI

LHU-Net [66] 8.6M 86.0±25.7 81.8±29.3 82.4±27.0 71.3±32.2 87.7±22.9
UCTransNet [73] 68.0M 76.4±34.5 74.3±35.2 62.0±41.5 69.6±31.9 82.6±28.2
Swin UNETR [69] 72.8M 66.3±36.4 59.7±39.4 58.5±40.2 50.6±40.6 80.2±28.7
UNesT [86] 87.2M 79.5±26.7 73.8±32.4 72.0±33.8 50.3±40.0 87.6±20.9
UNETR [25] 101.8M 60.4±37.9 47.9±39.6 41.9±39.8 40.0±36.9 78.1±29.9
SegVol† [18] 181.0M 87.1±23.0 82.8±23.5 82.6±24.8 68.1±29.3 89.4±20.5

n/a
SAM-Adapter† [23] 11.6M 53.5±33.4 8.5±11.1 19.9±22.1 11.5±17.6 66.4±35.5
MedFormer [19] 38.5M 90.7±15.0 85.5±18.5 84.0±21.5 74.1±26.8 92.8±12.4
Diff-UNet [82] 434.0M 88.3±23.6 81.3±27.9 81.0±28.4 71.8±30.0 92.4±14.9

framework architecture speed stomach aorta IVC‡ pancreas average

nnU-Net

UniSeg† [84] 198 74.0±29.5 69.2±31.5 72.8±25.9 70.3±30.9 78.7±25.9
MedNeXt [65] 308 77.2±28.7 71.9±30.1 75.2±23.5 71.6±31.4 80.9±25.0
NexToU [67] 654 69.0±34.7 61.5±33.0 59.4±32.7 66.8±32.0 72.9±31.1
STU-Net-B [34] 418 78.6±26.5 74.2±28.9 77.3±19.6 74.9±27.5 82.5±22.1
STU-Net-L [34] 179 79.7±24.6 75.7±27.0 77.6±18.7 75.2±27.0 83.0±21.4
STU-Net-H [34] 73 78.5±25.5 74.7±28.1 76.9±19.0 74.5±27.6 82.7±21.3
U-Net [63] 1064 78.9±26.3 71.0±28.4 76.4±21.8 75.2±27.0 82.3±22.2
ResEncL [35, 37] 794 78.9±25.3 73.8±25.9 76.4±20.2 76.3±25.9 82.7±21.9
ResEncL↭ 794 80.9±23.0 84.2±20.5 76.3±20.0 77.3±24.9 84.5±20.1

Vision-Language U-Net & CLIP [47] 543 77.7±26.8 59.0±32.8 65.8±27.2 74.6±25.7 77.3±25.8
Swin UNETR & CLIP [47] 606 71.2±30.7 58.6±34.5 63.6±27.4 70.3±28.9 74.5±28.0

MONAI

LHU-Net [66] 2273 71.3±31.8 63.0±34.1 67.5±28.5 68.6±32.6 75.5±29.3
UCTransNet [73] 1163 61.6±36.1 49.7±34.8 49.3±36.4 59.0±35.1 64.9±34.9
Swin UNETR [69] 2222 52.2±35.2 54.5±37.0 38.1±34.7 42.3±34.5 55.8±36.3
UNesT [86] 2703 63.9±31.5 54.7±37.0 38.9±36.2 50.0±33.0 63.4±32.4
UNETR [25] 2703 42.1±32.1 41.0±31.4 41.3±32.3 28.2±29.2 46.8±34.3
SegVol† [18] 1923 71.6±29.9 60.8±29.8 63.0±24.3 66.3±28.1 74.6±25.9

n/a
SAM-Adapter† [23] 1639 48.4±30.9 15.2±18.6 4.8±8.1 30.9±21.7 28.8±22.1
MedFormer [19] 535 80.4±23.6 70.3±28.0 70.0±24.5 72.5±27.9 80.0±22.0
Diff-UNet [82] 442 73.4±29.8 61.0±34.5 60.7±33.3 69.7±29.8 75.5±28.0

†These architectures were pre-trained (Appendix B.3).
‡The class IVC (inferior vena cava) shares the same meaning as the class postcava in other datasets (e.g., AbdomenAtlas 1.0 and JHH).
↭These architectures were trained on AbdomenAtlas 1.0 with enhanced label quality for the aorta and kidney classes (discussed in §4).

AI algorithms. For a more comprehensive evaluation, Appendix C analyzes performance measured by
NSD scores. Fourth, inviting innovation is important. As in past 3D medical segmentation challenges
[2], CNNs with the nnU-Net framework [35] showed strong performance in our benchmark. However,
by searching for innovative algorithms, sending target invitations to their inventors, and performing
comprehensive evaluations, we could reveal strengths of new and less well known models, such
as vision-language algorithms and Diff-UNet, the first 3D medical image segmentation method
based on diffusion models, and MedFormer, a hybrid architecture that combines convolutional
inductive bias with efficient, scalable bidirectional multi-head attention. Meanwhile, the LHU-Net, a
hybrid architecture combining CNN and transformer attention mechanisms, excels in computational
efficiency: it is 2 to 4 times faster than models with similar accuracy.
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Figure 2: Potential confounders significantly impact AI performance. Boxplots showing the
average DSC score of nine classes and 19 algorithms for diverse demographic groups in two OOD
test sets: TotalSegmentator and JHH. Whiskers indicate 1.5→IQR (interquartile range). Statistical
significance is indicated by stars: ↑ p < 0.05, ↑ ↑ p < 0.01, ↑ ↑ ↑ p < 0.001, ↑ ↑ ↑ ↑ p < 0.0001. We
perform Kruskal–Wallis tests followed by post-hoc Mann-Whitney U Tests with Bonferroni correction.
Greater performance differences are observed in the JHH dataset compared to TotalSegmentator,
likely due to the larger number of CT scans. Differences are apparent across demographic groups
such as age, diagnoses, scanner manufacturer, sex, and medical institutions. Races HL, W, AS, AA, O,
and U indicate Hispanic&Latino, White, Asian, African American, other and unknown, respectively.

3.2 Potential Confounders Significantly Impact AI Performance

We leveraged the metadata available in test datasets to assess AI’ performance consistency across
diverse demographic groups. We studied correlation between AI performance and the five types of
metadata: age, sex, and diagnosis are analyzed on all two datasets, race is only analyzed on one
dataset, JHH, since most public test sets lack this information, and manufacturer is only analyzed in
one dataset.

Figure 2 displays per-group DSC for an average AI model, i.e., the average performance across our 19
evaluated algorithms. The statistical analysis further highlights the need for large test datasets: JHH’s
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large sample size (N=5,160) allows detection of statistically significant DSC differences across all
metadata, but some of these differences (for age and sex) are noticeable but not significant in the
smaller TotalSegmentator dataset. Notably, AI performance reduces for advanced age. Median DSC
starts dropping around the fifties. JHH shows multiple statistically significant performance drops
after this age. The creators of the TotalSegmentator observed that aging caused attenuation in CT
scans [77], which may explain the common descending DSC trend after age 50, despite the fact that
the 60-69 age group is the most populous in most datasets (Figure 1). This trend exists for all tested
AI algorithms (Appendix D.5 displays per-group performances for each algorithm and organ). Sex
only significantly confounds some AI algorithms. The median DSC is significantly smaller for women
in JHH. However, multiple top-performing models show no significant performance difference across
sexes in any dataset (e.g., nnU-Net, STU-Net, and Diff-UNet), showcasing current AI can be robust
to this confounder. We found significant performance differences for diverse races. AI performance
for white patients was significantly superior to the performance for African Americans, showing the
need to increase the presence of this demographic group in public CT scan datasets. Again, many of
the best performing algorithms did not present statistically significant differences for these two races
(Appendix D.5). In all datasets, diagnosis significantly impacted AI performance. Cancer patients
have significantly smaller DSC scores in JHH (p < 0.0001), and trauma patients have median DSC
scores below other groups in TotalSegmentator. Scanner manufacturer changes cause significant
DSC differences (p < 0.05) in TotalSegmentator.

4 Conclusion & Discussion

Conclusion. Are we on the right way for evaluating AI algorithms for medical segmentation? This
paper outlines five properties of an ideal benchmark: (I) diverse data distribution in both training and
test datasets, (II) a large number of test samples, (III) varied evaluation perspectives, (IV) equitably
optimized AI algorithms, and (V) a long-term commitment. Touchstone sets itself apart from previous
benchmarks in these criteria, enabling us to share unique insights that often missing in standard
benchmarks. Our findings indicate: (1) AI performance can vary significantly across different datasets,
with per-class differences of 10–20% common, and up to 80% observed (SAM-Adapter in kidney);
thus, out-of-distribution evaluation across multiple datasets is crucial for ensuring AI’s reliability and
clinical adoption. (2) Larger test datasets reveal more significant differences between AI algorithms,
allowing for meaningful rankings and nuanced analyses. (3) Average rankings can obscure AI’s
specific strengths; per-organ and metadata analysis is crucial in highlighting the benefits of innovative
vision-language algorithms and the first diffusion-based 3D medical segmentation model. (4) By
evaluating diverse AI architectures trained by their inventors, we establish a fair reference point for
future development, which Touchstone will continually support with a long-term commitment.

Label Noise in Training Set. There is no perfect ground truth in segmentation datasets (except for
synthetic data [32, 42, 13, 17, 14, 40, 45]), especially in the abdominal region where anatomical
boundaries can be blurry due to disease or age (examples in Appendix A.3). Identifying these bound-
aries is challenging for both human annotators and AI algorithms. Many recent datasets, including
TotalSegmentator [77] and AbdomenAtlas 1.0 [60], use human-in-the-loop strategies, combining
AI-predicted annotations and manual annotations by radiologists, which inevitably contain label
errors. The errors in AbdomenAtlas 1.0 arise from poor CT image quality (e.g., BDMAP_00000339,
BDMAP_00001044, BDMAP_00003725), mistakes in AI predictions but not revised by humans,
and inconsistency in label standards across the public datasets incorporated into AbdomenAtlas 1.0
[43]. With the feedback from our benchmark participants, we can partially detect these label errors,
primarily in the aorta (32.4%), a structure with high annotation standard inconsistency in public data
(e.g., in BTCV and FLARE) [47, 48], and in the L&R kidneys (2.6%). We revised AbdomenAtlas
1.0 by reducing label errors in the aorta to 5.4% and in the L&R kidneys to 0.6%. A ResEncL trained
on the revised AbdomenAtlas 1.0 showed statistically significant performance gains in the aorta, but
gains for kidneys were small and not always statistically significant (see Tables 2–3). These results
highlight that current AI may be resistant to moderate levels of label noise (2.6%), but not to high
levels (32.4%), as we detail in Appendix E. As future work, an improved label error detector will
be a valuable tool for automatically assessing the quality of publicly available datasets and quickly
improving quality through human annotation based on detected errors.

High-Quality, Proprietary Test Set. Having JHH (N=5,160) available for third-party evaluation is a
big plus for OOD benchmarks. It was completely annotated by radiologists, manually and following
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a well-defined annotation standard, for several years [59]. Thus, it can serve as a gold standard for our
benchmark. The fact that JHH is a private dataset has both problems and benefits. It can significantly
increases feedback time for AI performance evaluation, as it requires additional procedures to submit
the AI to a third party, set it up, and run it on over 5,000 CT scans. If a benchmark takes too much
work to run, it will not gain wide traction. But making test set (either images or annotations) publicly
available can cause more problems—including completely destroying the OOD benchmark. For
example, Medical Segmentation Decathlon (MSD) [2] was a benchmark with publicly accessible test
images and its test annotations were private. Similarly, BTCV [41] released both testing images and
annotations. However, due to the growing need for more annotated data in the medical domain, even
MSD/BTCV test sets have been annotated and integrated into recent public datasets, like FLARE
[53, 54, 56] and AbdomenAtlas [60, 44, 43]. Therefore, any AI models trained or pre-trained on
these public datasets are problematic in the MSD/BTCV leaderboard. With widespread access to
test data, it becomes challenging to fairly compare models, as some may be overly optimized for the
benchmark rather than for real-world performance. As a result, researchers must continue to seek or
develop new datasets—preferably with images and annotations that have never been disclosed. This
is critical in many fields as well. Yann Lecun—beware of testing on the training set—in response to
the incredible results achieved by GPT. Therefore, our proprietary JHH dataset is a valuable resource
that other researchers can exploit to reduce data leakage risks and improve the reliability of OOD
benchmark results. Our Touchstone Benchmark is still in the initial stage, so we are very careful with
the decision of releasing JHH images/annotations. It must be managed carefully to ensure its benefits
outweigh the risks.

Per-Group Metadata Analysis. Our study underscores the need for detailed metadata for algorithmic
benchmark, which is currently a big limitation in the medical domain. Evidenced by Table 1, only
KiTS & FLARE provided metadata analysis on sex, age, and/or race. Our Touchstone not only
provides more extensive metadata analyses, including diagnosis, but also offers an order of magnitude
more test data (N=5,903) for benchmarking. We have analyzed AI performance by metadata such as
sex, age, and race but realized that a more rigorous analysis could be based on combined criteria (e.g.,
white females aged 30–40). Therefore, in the next round of benchmarking, instead of only providing
average performance per class, we will also offer participants per-case performance along with each
case’s metadata information. This approach will provide a richer understanding of the pros/cons of
AI algorithms and potentially stimulate AI innovation.

Architectural Insights. In Appendix D.3, we have provided architectural comparison of both
the top-ranking and bottom-ranking algorithms. But we find it difficult to extract trustworthy
architectural insights directly from our current benchmark results. For example, Tables 2–3 show that
top performing models in our benchmark are usually CNNs within the nnU-Net framework. However,
it is unclear if this is due to an intrinsic advantage of CNNs over Transformers or just an indication of
nnU-Net’s superior pipeline configuration. Given that Transformers are newer, future frameworks,
designed for them, could potentially enhance their performance. I.e., mature frameworks that extract
the best from both CNNs and transformers should allow fairer architectural comparisons in the future.
Beyond medical imaging, the architectural debate between CNNs and Transformers in computer
vision has been ongoing and remains unresolved [5, 74]. Our benchmark provides ‘predictions-only’
results, which can be heavily influenced by many factors such as preprocessing, data augmentation,
post-processing, and training hyper-parameters [35]. To draw convincing architectural insights,
extensive ablation studies under controlled settings are required. However, conducting ablation
studies for all 19 AI algorithms would be extremely costly for us. We anticipate further insights and
details from the AI inventors’ upcoming technical reports, including extensive ablation studies. We
are also happy to assist the inventors in their ablation studies by providing feedback on the OOD
evaluation results of their algorithm variants.

With the success of the first edition of Touchstone Benchmark, we are actively pursuing multi-center,
OOD datasets, to further enhance the benchmark. This is difficult for many well-known reasons—
patient privacy, ethical compliance, data annotation, intellectual property, etc. Rome wasn’t built
in a day. A multi-center, OOD dataset can never be made without accumulating the contribution
of every single-center dataset. We hope this benchmark initiative at Johns Hopkins University, a
highly regarded institution, could also inspire more institutes to contribute their private datasets for
third-party OOD evaluation.
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