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ABSTRACT

Deep reinforcement learning (DRL) methods are vulnerable to adversarial attacks
such as perturbing observations with imperceptible noises. To improve the robust-
ness of DRL agents, it is important to study their vulnerability under adversarial
attacks that would lead to extreme behaviors desired by adversaries. Preference-
based RL (PbRL) aims for learning desired behaviors with human preferences.
In this paper, we propose PALM, a preference-based adversarial manipulation
method against DRL agents which adopts human preferences to perform targeted
attacks with the assistance of an intention policy and a weighting function. The
intention policy is trained based on the PbRL framework to guide the adversar-
ial policy to mitigate restrictions of the victim policy during exploration, and the
weighting function learns weight assignment to improve the performance of the
adversarial policy. Theoretical analysis demonstrates that PALM converges to
critical points under some mild conditions. Empirical results on a few manipu-
lation tasks of Meta-world show that PALM exceeds the performance of state-
of-the-art adversarial attack methods under the targeted setting. Additionally, we
show the vulnerability of the offline RL agents by fooling them into behaving as
human desires on several Mujoco tasks. Our code and videos are available in
https://sites.google.com/view/palm-adversarial-attack.

1 INTRODUCTION

Adversarial examples in image classifiers have prompted a new field of studying the vulnerability
of deep neural networks (DNN). Recent researches demonstrate that reinforcement learning (RL)
agents parameterized by DNN also show vulnerability under adversarial attacks (Huang et al., 2017;
Pattanaik et al., 2018; Zhang et al., 2020; 2021; Sun et al., 2022). Adversaries generate impercep-
tible perturbations to the observations of victim agent, making agents fail to complete the original
behaviors. While adversarial attack is an crucial approach to evaluate the vulnerability of the agents,
targeted attack in RL has received little attention. Recently, embodied intelligence (Gupta et al.,
2021; Liu et al., 2022; Ahn et al., 2022; Reed et al., 2022; Fan et al., 2022) is considered as a mean-
ingful way to improve the cognitive ability of artificial intelligence. These embodied agents show
powerful capabilities while possibly exposing vulnerability. Therefore, we wonder that:

How can one manipulate the agent to perform desired behaviors, and whether the embodied
agents are robust to adversarial manipulations?

To achieve targeted adversarial attacks, one straight way is to design respective rewards for the
adversary agents. However, specifying a precise reward function can be challenging. For example,
it is difficult to design a reward function denoting the goodness of the current step in the game of Go.
For example, it is difficult in chess games to craft a reward function which can identify the quality
of each move. In preference-based RL framework, a human only needs to provide binary preference
labels over two trajectories of the agent (Christiano et al., 2017). Compared to reward engineering,
preference-based RL is an easier way to learn policies through human preferences. Meanwhile,
recent research on preference-based RL shows an excellent capacity to learn novel behaviors with
few preference labels (Lee et al., 2021a; Park et al., 2022; Liang et al., 2022), and significantly
improves feedback efficiency.

Motivated by this, we consider using preference-based RL to perform targeted adversarial attacks
from the following perspectives. On the one hand, it is difficult to define the desired behaviors to
achieve targeted attacks, but humans can implicitly inject intentions by providing binary preferences.
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Figure 1: Illustration of targeted attack from PALM. The adversary first receives the true state s from
the environment and perturbs it into s̃. Then the victim observes s̃ and takes action according to it.

On the other hand, preference-based RL is a data-efficient manipulation method because a few
preference labels are enough to learn well-behaved policies. As shown in Figure 1, we emphasize
PALM can recover the reward function of desired behaviors via preference-based RL framework
and manipulate agents to perform human desired behaviors.

In this paper, we propose Preference-based AdversariaL Manipulation (PALM) algorithm, which
performs targeted attack from human preferences. PALM includes an adversary to perturb the ob-
servations of the victim. To achieve targeted attack and better exploration, we introduce an intention
policy, which is learned from human preferences, as the learning target of the adversary. Addition-
ally, we utilize a weighting function to assist adversary learning by re-weighting state examples.

In summary, our contributions are three-fold. Firstly, to the best of our knowledge, we propose
the first targeted adversarial attack method against DRL agents via preference-based RL. Secondly,
we theoretically analyze PALM and provide a convergence guarantee under some mild conditions.
Lastly, we design two scenarios and experiments on Meta-world demonstrate that PALM outper-
forms the baselines by a large margin. Empirical results demonstrate that both online and offline RL
agents are vulnerable to our proposed adversarial attacks.

2 RELATED WORK

Many previous works on adversarial attacks study the vulnerability of a DRL agent. Huang et al.
(2017) computes adversarial perturbations via utilizing the technique of FGSM (Goodfellow et al.,
2015) to mislead the victim policy, not to choose the optimal action. Pattanaik et al. (2018) presents
an approach that leads the victim to select the worst action based on the Q-function of the vic-
tim. Gleave et al. (2020) conducts adversarial attacks under the two-player Markov game instead
of perturbing the agent’s observation. Zhang et al. (2020) proposes the state-adversarial MDP (SA-
MDP) and develops two adversarial attack methods named Robust Sarsa (RS) and Maximal Action
Difference (MAD). SA-RL (Zhang et al., 2021) directly optimizes the adversary policy to perturb
state in the form of end-to-end RL. PA-AD (Sun et al., 2022) designs an RL-based “director” to find
the optimal policy perturbing direction and construct an optimized-based “actor” to craft perturbed
states according to the given direction. Methods of untargeted adversarial attack focus on making
the victim policy fail, while our approach emphasizes manipulating the victim policy. That is to say,
victim’s behaviors are consistent with the preference of the manipulator under attacks. Another line
of works (Pinto et al., 2017; Mandlekar et al., 2017; Pattanaik et al., 2018) consider using adversarial
examples to improve the robustness of policies, although it is out of the scope of this paper.

There are a few prior researches that focus on targeted attacks on RL agents. Lin et al. (2017) first
proposes a targeted adversarial attack method against DRL agents. It attacks the agent to reach a
targeted state. Buddareddygari et al. (2022) also present a strategy to mislead the agent towards to
a specific state by placing an object in the environment. The hijacking attack (Boloor et al., 2020)
is proposed to attack agents to perform targeted actions on autonomous driving systems. Hussenot
et al. (2019) provides a new perspective that attacks the agent to imitate a target policy. Our method
differs that PALM manipulates victim behave as human desire and focuses on the preference-based
RL. Xiao et al. (2019) proposes the first adversarial attack method against real world visual naviga-
tion robot. Lee et al. (2021b) investigates targeted adversarial attacks against the action space of the
agent. Our method differs that PALM leverages preference-based RL to avoid reward engineering

2



Under review as a conference paper at ICLR 2023

outer-level: optimize 𝜔

envhuman
preferences

reward
learning

inner loss ℒ!""𝜋#∘%(𝑎|𝑠)

𝜋&(𝑎|𝑠) outer loss 𝐽' ℎ((𝑠)

inner-level: optimize 𝛼

Figure 2: Framework of PALM. PALM jointly learns an intention policy, an adversary and a weight-
ing function under bi-level optimization framework. In the inner-level, the adversary is optimized to
approach the intention policy which learns via preference-based RL. In the outer-level, the weight-
ing function is updated to maximize the performance of the adversary evaluated by the outer loss.

and learns an intention policy to tackle restricted exploration problem, so that PALM can attack the
victim policy to perform behaviors far from its original behaviors.

Training agents with human feedback has been investigated in several works. Preference-based RL
provides an effective way to utilize human preferences for agent learning. Christiano et al. (2017)
proposes a basic learning framework for preference-based RL. To further improve feedback effi-
ciency, Ibarz et al. (2018) additionally utilizes expert demonstrations to initialize the policy besides
learning the reward model from human preferences. However, previous methods need plenty of hu-
man feedback, which is usually impractical. Many recent works have proposed to tackle this prob-
lem. Lee et al. (2021a) presents a feedback-efficient preference-based RL algorithm, which benefits
from unsupervised exploration and reward relabeling. Park et al. (2022) further improves feedback
efficiency by semi-supervised reward learning and data augmentation, while Liang et al. (2022) pro-
poses an intrinsic reward to enhance exploration. To the best of our knowledge, our method is the
first to achieve a targeted adversarial attack against DRL agents through preference-based RL.

3 PROBLEM SETUP

The Victim Policy. In RL, agent learning can be modeled as a finite horizon Markov Decision
Process (MDP) defined as a tuple (S,A,R,P, γ). S and A denote state and action space, re-
spectively. R : S × A × S → R is the reward function and γ ∈ (0, 1) is the discount factor.
P : S ×A×S → [0, 1] denotes the transition dynamics, which determines the probability of trans-
ferring to s′ given state s and action a. We denote the stationary policy πν : S → P(A), where ν
are parameters of the victim. We suppose the victim policy is fixed and uses the approximator.

The Adversarial Policy. To study the adversary learning with human preferences, we formulate it as
rewarded state-adversarial Markov Decision Process (RSA-MDP). Formally, a RSA-MDP is a tuple
(S,A,B, R̂,P, γ). The adversary πα : S → P(S) perturbs the states before the victim observes
them, where α are parameters of the adversary. Specifically, the adversary perturbs the state s into
s̃ which is restricted by B(s) (i.e., s̃ ∈ B(s)). B(s) is defined as a small set {s̃ ∈ S :∥ s− s̃ ∥p≤ ϵ},
which limits the attack power of the adversary and ϵ is attack budget. Since directly generating
s̃ ∈ B(s) is hard, the adversary learns to produce a Gaussian noise ∆ with ℓ∞(∆) less than 1, and
we obtain the perturbed state through s̃ = s + ∆ ∗ ϵ. The victim takes action according to the
observed s̃, while true states in the environment are not changed. The perturbed policy is denoted as
πν◦α. Different from SA-MDP (Zhang et al., 2020), RSA-MDP introduces R̂, which is consistent
with human preferences. The target of RSA-MDP is to solve the optimal adversary π∗

α, which
enables the victim to achieve the maximum expected return over all states. Lemma 1 shows that
solving the optimal adversary in RSA-MDP is equivalent to finding the optimal policy in MDP
M̂ = (S, Â, R̂, P̂, γ), where Â = S and P̂ is the transition dynamics of the adversary.

4 METHOD

In this section, we introduce our method PALM, which leverages preference-based RL to achieve
targeted attack against DRL agents. The core idea of PALM, on the one hand, is to learn an inten-
tion policy as the learning target of the adversarial policy to tackle restricted exploration problem.
On the other hand, PALM takes advantage of feedback-efficient preference-based RL method PEB-
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BLE (Lee et al., 2021a) to avoid reward engineering. Also, we introduce a weighting function to
improve the performance of the adversary and formulate PALM as a bi-level optimization algorithm.
The framework of PALM is shown in Figure 2 and detailed procedure is summarized in Appendix A.

4.1 LEARNING INTENTION POLICY

PALM aims to find the optimal adversary that manipulates the victim’s behaviors to be consistent
with human intentions. However, the victim policy is pre-trained to complete a specific task, directly
learning an adversary suffer from exploration difficulty caused by the restriction of victim policy,
making it hard to find an expected adversarial policy efficiently. Therefore, we introduce an intention
policy πθ which has unrestricted exploration space to guide adversarial policy training.

𝜋!(𝑎|𝑠)

�̂�"

learning from human preferences
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Figure 3: Diagram of preference-based RL.

To achieve targeted attack and avoid reward en-
gineering, we inject human intentions into the in-
tention policy via preference-based RL framework,
which is shown in Figure 3. In preference-based
RL, the agent have no access to the ground-truth re-
ward function. To learn a reward function, humans
provide preference labels between two trajectories
of the agent and the reward function r̂ψ learns to
align with the preferences (Christiano et al., 2017).

Formally, a segment σ of length k is de-
noted as a sequence of states and actions
{st+1,at+1, · · · , st+k,at+k}. A human expert is
required to give a label y of a pair of segments
(σ0, σ1) to indicate which segment is preferred,
where y ∈ {(0, 1), (1, 0), (0.5, 0.5)}. Following
Bradley-Terry model (Bradley & Terry, 1952), a preference predictor is constructed in (1):

Pψ[σ
0 ≻ σ1] =

exp
∑
t r̂ψ(s

0
t ,a

0
t )

exp
∑
t r̂ψ(s

0
t ,a

0
t ) + exp

∑
t r̂ψ(s

1
t ,a

1
t )
, (1)

where σ0 ≻ σ1 denotes σ0 is preferred to σ1. This predictor indicates the probability that a segment
is preferred is proportional to its exponential return. Then, the reward function is optimized by
aligning the predicted preference labels with human preferences through cross-entropy loss:

L(ψ) = − E
(σ0,σ1,y)∼D

[
y(0) logPψ[σ

0 ≻ σ1] + y(1) logPψ[σ
1 ≻ σ0]

]
, (2)

where D is a dataset of triplets (σ0, σ1, y) consisting of segment pairs and human preference labels.
By minimizing (2), we obtain a reward function estimator r̂ψ , which is used to provide estimated
rewards for agent learning via any RL algorithms. Following PEBBLE (Lee et al., 2021a), we use
an off-policy actor-critic method SAC (Haarnoja et al., 2018) to learn a well-performing policy.
Specifically, the Q-function Qϕ is optimized by minimizing the Bellman residual:

JQ(ϕ) = E
τt∼B

[(
Qϕ(st,at)− r̂t − γV̄ (st+1)

)2]
, (3)

where V̄ (st) = Eat∼πθ

[
Qϕ̄(st,at)−µ log πθ(at|st)

]
, τt = (st,at, r̂t, st+1) is the transition at time

step t, ϕ̄ is the parameter of the target soft Q-function. The policy πθ is updated by minimizing (4):

Jπ(θ) = Est∼B,at∼πθ

[
µ log πθ(at|st)−Qϕ(st,at)

]
, (4)

where µ is the temperature parameter. By learning an intention policy, PALM tackles restricted
exploration problem and provides an attack target for the following adversary training.

4.2 LEARNING ADVERSARIAL POLICY AND WEIGHTING FUNCTION

To make the victim policy perform human desired behaviors, PALM learns the adversary by mini-
mizing the KL divergence between the perturbed policy πν◦α and the intention policy πθ. However,
different states may have various importance to induce the victim policy to the target. To stabilize
training process and improve the performance of the adversary, we introduce a weighting function
hω to re-weight states in adversary training.
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We formulate PALM as a bi-level optimization algorithm, which alternately updates the adversarial
policy πα and the weighting function hω through inner and outer optimization. In the inner level,
PALM optimizes α with the importance weights outputted by a weighting function hω , and opti-
mizes ω in the outer level according to the performance of the adversary. Intuitively, the adversary
learns to approach the intention policy in the inner level, while the weighting function learns to im-
prove the performance of the adversary by evaluating the performance of the adversary through a
meta-level loss. The whole objective of PALM is:

min
ω

Jπ(α(ω)),

s.t. α(ω) = argmin
α
Latt(α;ω, θ).

(5)

Inner-level Optimization: Training adversarial policy πα. In the inner-level optimization, given
the intention policy πθ and the weighting function hω , we hope to find the optimal adversarial policy
by minimizing the re-weighted KL divergence between πν◦α and πθ in (6):

Latt(α;ω, θ) = Es∼B

[
hω(s)DKL (πν◦α(s) ∥ πθ(s))

]
, (6)

where hω(s) is the importance weights outputted by the weighting function hω . Intuitively, the
adversarial policy is optimized to make the perturbed policy be close to the intention policy, while
hω assigns different weights to states of various importance. With the collaborative assistance of the
intention policy and the weighting function, PALM efficiently learns an optimal adversarial policy.

Outer-level Optimization: Training weighting function hω . As for the outer-level optimization,
we need to find a precise weighting function to balance the state distribution and assign proper
weights to propel adversary learning. The weighting function is trained to distinguish the importance
of states by evaluating the performance of the perturbed policy. Specifically, the perturbed policy
πν◦α is evaluated using a policy loss in (7), which is adapted from the policy loss in (4):

Jπ(α(ω)) = Est∼B,at∼πν◦α(ω)

[
µ log πν◦α(ω)(at|st)−Qϕ(st,at)

]
, (7)

where α(ω) denotes α implicitly depends on ω. Therefore, PALM calculates the implicit derivative
of Jπ(α(ω)) with respect to ω and finds the optimal ω∗ by optimizing (7). To make it feasible,
we make an approximation of argminα with the one-step gradient update. (8) obtains an estimated
argminα with one-step updating and builds a connection between α and ω:

α̂(ω) ≈ αt − ηt ∇αLatt(α;ω, θ)|αt
. (8)

According to the chain rule, the gradient of the outer loss with respect to ω can be expressed as:

∇ωJπ(α(ω))|ωt
= ∇α̂Jπ(α̂(ω))|α̂t

∇ωα̂t(ω)|ωt
=

∑
s

f(s) · ∇ωh(s)|ωt
, (9)

where f(s) = −ηt · (∇α̂Jπ(α(ω)))⊤∇αDKL (πν◦α(s) ∥ πθ(s)) and detailed derivation can be
found in Appendix B. The key to obtain this meta gradient is building and computing the relationship
between α and ω. Obtaining the implicit derivative, PALM updates the parameters of the weighting
function by taking gradient descent with outer learning rate.

In addition, we theoretically analyze the convergence of PALM in Theorem 1 and 2. In Theorem 1,
we demonstrate the convergence rate of the outer loss, i.e. the gradient of the outer loss with respect
to ω will convergence to zero. Thus PALM learns a more powerful adversary using importance
weights outputted by the optimal weighting function. In Theorem 2, we prove the convergence of
the inner loss. The inner loss of PALM algorithm converges to critical points under some mild
conditions, which ensures the parameters of the adversary can converge to the optimal parameters.
Theorems and proofs can be found in Appendix D.

5 EXPERIMENTS

In this section, we evaluate our method on several robotic simulated manipulation tasks from Meta-
world (Yu et al., 2020) and continuous locomotion tasks from Mujoco (Todorov et al., 2012). Specif-
ically, our experiment contains two essential phases. In the first phase, we verify the efficacy of the
proposed method through two scenarios: navigation and opposite behaviors. Furthermore, we show
the capability of our approach by fooling a popular offline RL method, Decision Transformer (Chen
et al., 2021), into acting specific behaviors in the second phase. The detailed description of tasks
used in experiments is provided in Appendix F.
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5.1 SETUP

Baselines. We include the existing evasion attack methods for comparison to study the effectiveness
of our approach.

• Random attack: this is a naive baseline that samples random perturbed observations via a uni-
form distribution.

• SA-RL (Zhang et al., 2021): this method learns an adversarial policy in the form of an end-to-
end RL formulation.

• PA-AD (Sun et al., 2022): this method combines RL-based “director” and non-RL “actor” to
find state perturbations, which is the state-of-the-art adversarial attack algorithm against DRL.

• PALM: our proposed method, which collaboratively learns adversarial policy and weighting
function with the guidance of intention policy.

Implementation Settings. We compare PALM with existing adversarial attack methods, which at-
tack the victim to reduce its cumulative reward rather than manipulate it. To achieve fair comparison,
we make simple adjustments for SA-RL and PA-AD to suit our settings in the experiments. In their
original version, both of these two methods use the negative value of the reward obtained by the vic-
tim to train an adversary. We replace it with the same estimated reward function r̂ψ as our method
uses, which means they learn from human preferences. Following the settings in PEBBLE (Lee
et al., 2021a), we use a scripted teacher that provides ground truth preference labels. More details
of scripted teacher and preference collection can be found in Appendix E. For the implementation
of SA-RL1 and PA-AD2, we use the released official codebase. For fair comparison, all methods
learned via preference-based RL are given the same number of preference labels. In the navigation
scenario, we use 9000 labels for all tasks. In the opposite behaviors scenario, we use 1000 for Win-
dow Close, 3000 for Drawer Close, 5000 for Faucet Open, Faucet Close and Window Open, 7000
for Drawer Open, Door Lock and Door Unlock. Also, to reduce the impact of preference-based RL,
we additionally add oracle versions of SA-RL and PA-AD, which uses the ground-truth rewards of
the targeted task.

We use the same experimental settings (i.e., hyper-parameters, neural networks) concerning reward
learning for all methods. We quantitatively evaluate all methods by comparing the success rate of
final manipulation, which is well-defined in Meta-world (Yu et al., 2020) for the opposite behaviors
scenario, and we rigorously design for the navigation scenario. As in most existing research (Zhang
et al., 2020; 2021; Sun et al., 2022), we consider using state attacks with ℓ∞ norm in our experiments,
and we report the mean and standard deviation across ten runs for all experiments. We also provide
detailed hyper-parameter settings and implementation details in Appendix F.

5.2 MANIPULATION ON DRL AGENTS

We study the effectiveness of our method compared to adversarial attack algorithms, which are
adapted to our setting with minimal changes. Specifically, we construct two different scenarios
on various simulated robotic manipulation tasks. Each victim agent is well-trained for a specific
manipulation task.

Scenarios on Navigation. In this scenario, we expect the robotic arm to reach a target coordinates
instead of completing the original task. Figure 4 shows the training curves of baselines and our
method on eight manipulation tasks. It shows that the performance of PALM surpasses that of the
baselines by a large margin based on preference labels. To eliminate the influence of preference-
based RL and further demonstrate the advantages of PALM, we additionally train the baseline meth-
ods with the ground-truth reward function and denote them as “oracle”. We notice that the per-
formance of SA-RL (oracle) greatly improves on several tasks over the preference-based version.
However, PALM still outperforms SA-RL with oracle rewards on most tasks. These results demon-
strate that PALM enables the agent to efficiently learn adversarial policy with human preferences.
We also observe that PA-AD is incapable of mastering manipulation, even using the ground-truth
rewards.

1https://github.com/rll-research/BPref
2https://github.com/umd-huang-lab/paad_adv_rl

6

https://github.com/rll-research/BPref
https://github.com/umd-huang-lab/paad_adv_rl


Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps ×10

6

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)
PALM PA-AD (oracle) PA-AD SA-RL (oracle) SA-RL Random

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps ×10

6

0

25

50

75

100
Su

cc
es

s 
R

at
e 

(%
)

(a) Door Lock

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps ×10

6

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

(b) Drawer Open

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps ×10

6

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

(c) Faucet Open

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps ×10

6

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

(d) Window Open

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps ×10

6

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

(e) Door Unlock

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps ×10

6

0

25

50

75

100
Su

cc
es

s 
R

at
e 

(%
)

(f) Drawer Close
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(h) Window Close

Figure 4: Training curves of different methods on various manipulation tasks in the navigation
scenario. The solid line and shaded area denote the mean and the standard deviation of success rate,
respectively, over ten runs.
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(f) Drawer Close
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(g) Faucet Close
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(h) Window Close

Figure 5: Training curves of all methods on various tasks in the opposite behaviors scenario. The
solid line and shaded area denote the mean and the standard deviation of success rate over ten runs.

Scenarios on Opposite Behaviors. In the real world, robotic manipulation has good application val-
ues. Therefore, we design this scenario to quantitatively evaluate the vulnerability of these agents
that masters various manipulation skills. Specifically, we expect each victim to complete the op-
posite task under the attack of the manipulator. For example, the victim which masters the skill of
opening windows will close windows under targeted attack. As shown in Figure 5, PALM presents
excellent performance and marginally shows obvious advantages over baseline methods on all tasks.
The result again indicates that PALM is effective for a wide range of tasks and can efficiently learn
adversarial policy with human preferences.

5.3 MANIPULATION ON THE POPULAR OFFLINE RL AGENTS

In this experiment, we show the vulnerability of offline RL agents and demonstrate PALM can fool
them into acting human desired behaviors. As for the implementation, we choose some online
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(a) Cheetah-Run Backwards (b) Walker-Stand on One Foot

(c) Cheetah-90 Degree Push-up (d) Walker-Dance

Figure 6: Human desired behaviors behaved by the Decision Transformer under the attack of PALM.

models3 as victims, which are well-trained by official implementation with D4RL. We choose two
tasks, Cheetah and Walker, using expert-level Decision Transformer agents as the victims. As shown
in Figure 6, Decision Transformer shows exploitable weaknesses and is misled to perform human
desired behavior instead of the original task. Specifically, under the adversarial manipulation, the
Cheetah agent runs backwards quickly in Figure 6a, and does 90 degree push-up in Figure 6c.
The Walker agent stands on one foot for superior balance in Figure 6b, and dances with one leg
lifted in Figure 6d. The results show that PALM can manipulate these victims to act behaviors
consistent with human preferences and embodied agents are extremely vulnerable to these well-
trained adversaries. We hope this experiment can inspire future work on the robustness of offline
RL agents and embodied AI.

5.4 ABLATION STUDY

Figure 7: A visualization of the explo-
ration space of PALM (red) and PALM
without intention policy (blue). The
green point denotes the start and the yel-
low star denotes the target position.

Contribution of Each Component. We conduct additional
experiments to investigate the effect of each component in
PALM on Drawer Open, Drawer Close for the navigation
scenario and on Faucet Open, Faucet Close for the oppo-
site behavior scenario. PALM contains three critical com-
ponents: the weight function hω , the intention policy πθ,
and the combined policy. Table 1 shows that the intention
policy plays an essential role in the PALM. As shown in
Figure 7, the intention policy can mitigate exploration dif-
ficulty caused by the restriction of victim policy and improve
the exploration ability of PALM leading to a better adver-
sary. We also observe that the combined policy balances the
discrepancy between πθ and πν◦α on the state distribution
and improves the adversary’s performance. In addition, we
can economically train the weighting function to distinguish
state importance by formulating the adversary learning as a
bi-level optimization. It can further improve the asymptotic
performance of PALM. These empirical results show that key
ingredients of PALM are fruitfully wed and contribute to the PALM’s success.

Table 1: Effects of each component. The success rate on four simulated robotic manipulation tasks
from Meta-world. The results are the average success rate across five runs.

Drawer Open
(Navigation)

Drawer Close
(Navigation)

Faucet Open
(Opposite)

Faucet Close
(Opposite)

PALM 97.2% 86.8% 97.2% 95.5%
PALM without hω 93.2% 74.8% 89.4% 86.2%
PALM without πθ 13.8% 11.6% 0.0% 4.2%

PALM without combination 38.0% 22.3% 51.7% 71.8%

3https://huggingface.co/edbeeching
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(b) Weight Visualization (c) Heat Map Visualization

Figure 8: (a) A visualization of the weights of trajectories of different qualities is collected by
five different policies. (b) Trajectory weights generated by the weighting function from different
policies are extracted and visualized with t-SNE. (c) A heat map showing the weight distribution
and the trajectory of the perturbed agent in 2D coordinates. The red point denotes the start position
and the yellow star indicates the targeted position.

To verify the restricted exploration problem, we visualize the exploration space of PALM and PALM
without intention policy. Figure 7 shows that the intention policy significantly improve the explo-
ration ability of PALM.

Effects of the Weighting Function. To further understand the role of the weighting function pro-
posed in Section 4, we conduct experimental data analysis and visualization from multiple perspec-
tives. Five perturbed policies are uniformly sampled with performance increase sequentially before
PALM convergence. For each policy, we roll out 100 trajectories and obtain the trajectory weight
vectors via the weighting function. By leveraging the technique of t-SNE (van der Maaten & Hinton,
2008), the weight vectors of different policies are visualized in Figure 8a. From the figure, we can
clearly observe clear boundaries between the trajectory weights of various policies, suggesting that
the weighting function can distinguish trajectories of different qualities. In Figure 8b, the darker
color indicates trajectories with higher success rates of manipulation. The result shows that the
weighting function gives higher weights to better trajectories for improving the adversarial policy
performance. To further illustrate the effect of the weighting function, we present a heat map of the
weight distribution in 2D coordinates and annotate part of the trajectories of the perturbed policy.
As Figure 8c shows, the weighting function scores the surrounding states in trajectories from the
perturbed policy higher, especially in the early stage before reaching the target point.

Extensive experiments are conducted to analyze and discuss the impact of feedback amount and
attack budgets on the performance of PALM in the Appendix G.

6 CONCLUSION

In this paper, we propose PALM, a preference-based adversarial attack approach against DRL, which
can mislead the victim to perform desired behaviors of adversaries. PALM involves an adversary
adding imperceptible perturbations on the observations of the victim, an intention policy learned
through preference-based RL for better exploration, and a weighting function to identify essential
states for the efficient adversarial attack. We analyze the convergence of PALM and prove that
PALM converges to critical points under some mild conditions. Empirically, we design two sce-
narios on several manipulation tasks of Meta-world, and the results demonstrate that PALM out-
performs the baselines under the targeted adversarial setting. We further show embodied agents’
vulnerability by attacking Decision Transformer on some Mujoco tasks. For future work, we con-
sider: (1) to further improving the attack efficiency by enhancing the utilization efficiency of human
preference and (2) extending the observation space of the victim to the high-dimensional inputs,
such as images and natural language.

ETHICS STATEMENT

Preference-based RL provides an effective way to learn agents without a carefully designed reward
function. However, learning from human preferences means humans need to provide labeled data
which inevitably has biases introducing systematic error. There are possible negative impacts when
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malicious people attack other policies using our methods. However, our approach also makes other
researchers aware of the vulnerability of policies for AI safety.

REPRODUCIBILITY STATEMENT

The details of experiment settings are provided in Section 4. We provide detailed proofs of theoret-
ical analysis in Appendix D. A more detailed description and implementation setting can be found
in Appendix F. Meanwhile, we present the link of our source code and videos in the abstract.
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A THE FULL PROCEDURE OF PALM

The Combined Policy. Although πθ guides adversarial policy learning, the discrepancy between
πθ and πν◦α on the state distribution leads to inefficiency. To handle this issue, we design a strategy
to construct the behavior policy π to collect transitions in our practical implementation. Inspired by
Branched rollout (Janner et al., 2019), we combine the intention policy πθ and the perturbed policy
πν◦α, where π1:h = π1:h

ν◦α, πh+1:H = πh+1:H
θ , h ∼ U(0, H) and H is task horizon. The combined

policy π collects data and stores it into the replay buffer during learning.

We provide detailed procedures of our proposed method in Algorithm 1. PALM is implemented
based on a popular preference-based RL algorithm PEBBLE (Lee et al., 2021a).

Algorithm 1 PALM

Input: a fixed victim policy πν , frequency of human feedback K, outer loss updating frequency
M , task horizon H

1: Initialize parameters of Qϕ, πθ, r̂ψ , πα and hω
2: Initialize B and πθ with unsupervised exploration
3: Initialize preference data set D ← ∅
4: for each iteration do
5: if episode is done then ▷ Construct the combined policy π
6: h ∼ U(0, H)

7: π1:h = π1:h
ν◦α and πh+1:H = πh+1:H

θ
8: end if
9: Take action at ∼ π and collect st+1

10: Store transition into dataset B ← B ∪ {(st, at, r̂ψ(st), st+1)}
11: if iteration % K == 0 then
12: for each query step do ▷ Query preference
13: Sample pair of trajectories (σ0, σ1)
14: Query preference y from manipulator
15: Store preference data into dataset D ← D ∪ {(σ0, σ1, y)}
16: end for
17: for each gradient step do ▷ Update reward model
18: Sample batch {(σ0, σ1, y)i}ni=1 from D
19: Optimize (2) to update r̂ψ
20: end for
21: end if
22: for each gradient step do
23: Sample random mini-batch transitions from B
24: Optimize πα: minimize (6) with respect to α ▷ Inner loss optimization
25: end for
26: if iteration % M == 0 then
27: Sample random mini-batch transitions from B
28: Optimize hω: minimize (7) with respect to ω ▷ Outer loss optimization
29: end if
30: Update Qϕ and πθ according to (3) and (4), respectively.
31: end for
Output: adversarial policy πα

13
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B DERIVATION OF THE GRADIENT OF THE OUTER-LEVEL LOSS

In this section, we present detailed derivation of the gradient of the outer loss Jπ with respect to the
parameters of the weighting function ω. According to the chain rule, we can derive that

∇ωJπ(α̂(ω))|ωt

=
∂Jπ(α̂(ω))

∂α̂(ω)

∣∣∣
α̂t

∂α̂t(ω)

∂ω

∣∣∣
ωt

=
∂Jπ(α̂(ω))

∂α̂(ω)

∣∣∣
α̂t

∂α̂t(ω)

∂h(s;ω)

∣∣∣
ωt

∂h(s;ω)

∂ω

∣∣∣
ωt

=− ηt
∂Jπ(α̂(ω))

∂α̂(ω)

∣∣∣
α̂t

∑
s∼B

∂DKL (πν◦α(s) ∥ πθ(s))
∂α

∣∣∣
αt

∂h(s;ω)

∂ω

∣∣∣
ωt

=− ηt
∑
s∼B

(
∂Jπ(α̂(ω))

∂α̂(ω)

∣∣∣⊤
α̂t

∂DKL (πν◦α(s) ∥ πθ(s))
∂α

∣∣∣
αt

)
∂h(s;ω)

∂ω

∣∣∣
ωt

.

(10)

For brevity of expression, we let:

f(s) =
∂Jπ(α̂(ω))

∂α̂(ω)

∣∣∣⊤
α̂t

∂DKL (πν◦α(s) ∥ πθ(s))
∂α̂

∣∣∣
αt

. (11)

The gradient of outer-level optimization loss with respect to parameters ω is:

∇ωJπ(α̂(ω))|ωt
= −ηt

∑
s∼B

f(s) · ∂h(s;ω)
∂ω

∣∣∣
ωt

. (12)

C CONNECTION BETWEEN RSA-MDP AND MDP
Lemma 1. Given a RSA-MDPM = (S,A,B, R̂,P, γ) and a fixed victim policy πν , there exists a
MDP M̂ = (S, Â, R̂, P̂, γ) such that the optimal policy of M̂ is equivalent to the optimal adversary
πα in RSA-MDP given a fixed victim, where Â = S and

P̂(s′|s,a) =
∑
a∈A

πν(a|â)P(s′|s,a) for s, s′ ∈ S and â ∈ Â.

D THEORETICAL ANALYSIS AND PROOFS

D.1 THEOREM 1: CONVERGENCE RATE OF THE OUTER LOSS

Lemma 2. (Lemma 1.2.3 in Nesterov (1998)) If function f(x) is Lipschitz smooth on Rn with
constant L, then ∀x, y ∈ Rn, we have∣∣f(y)− f(x)− f ′(x)⊤(y − x)∣∣ ≤ L

2
∥y − x∥2 . (13)

Proof. ∀x, y ∈ Rn, we have

f(y) = f(x) +

∫ 1

0

f ′(x+ τ(y − x))⊤(y − x)dτ

= f(x) + f ′(x)⊤(y − x) +
∫ 1

0

[f ′(x+ τ(y − x))− f ′(x)]⊤(y − x)dτ.
(14)

Then we can derive that∣∣f(y)− f(x)− f ′(x)⊤(y − x)∣∣ = ∣∣∣∣∫ 1

0

[f ′(x+ τ(y − x))− f ′(x)]⊤(y − x)dτ
∣∣∣∣

≤
∫ 1

0

∣∣∣∣[f ′(x+ τ(y − x))− f ′(x)]⊤(y − x)
∣∣∣∣dτ

≤
∫ 1

0

∥f ′(x+ τ(y − x))− f ′(x)∥ · ∥y − x∥ dτ

≤
∫ 1

0

τL ∥y − x∥2 dτ =
L

2
∥y − x∥2 ,

(15)
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where the first inequality holds for
∣∣∣∫ ba f(x)dx∣∣∣ ≤ ∫ b

a
|f(x)| dx, the second inequality holds for

Cauchy-Schwarz inequality, and the last inequality holds for the definition of Lipschitz smoothness.

Theorem 1. Suppose Jπ is Lipschitz-smooth with constant L, the gradient of Jπ and Latt is bounded
by ρ. Let the training iterations be T , the inner-level optimization learning rate ηt = min{1, c1T }
for some constant c1 > 0 where c1

T < 1. Let the outer-level optimization learning rate βt =

min{ 1
L ,

c2√
T
} for some constant c2 > 0 where c2 ≤

√
T
L , and

∑∞
t=1 βt ≤ ∞,

∑∞
t=1 β

2
t ≤ ∞. The

convergence rate of Jπ achieves

min
1≤t≤T

E
[
∥∇ωJπ(αt+1(ωt))∥2

]
≤ O

(
1√
T

)
. (16)

Proof. First,

Jπ(α̂t+2(ωt+1))− Jπ(α̂t+1(ωt))

= {Jπ(α̂t+2(ωt+1))− Jπ(α̂t+1(ωt+1))}+ {Jπ(α̂t+1(ωt+1))− Jπ(α̂t+1(ωt))} .
(17)

Then we separately derive the two terms of (17). For the first term,

Jπ(α̂t+2(ωt+1))− Jπ(α̂t+1(ωt+1))

≤∇α̂Jπ(α̂t+1(ωt+1))
⊤(α̂t+2(ωt+1)− α̂t+1(ωt+1)) +

L

2
∥α̂t+2(ωt+1)− α̂t+1(ωt+1)∥2

≤∥∇α̂Jπ(α̂t+1(ωt+1))∥ · ∥α̂t+2(ωt+1)− α̂t+1(ωt+1)∥+
L

2
∥α̂t+2(ωt+1)− α̂t+1(ωt+1)∥2

≤ρ · ∥−ηt+1∇α̂Latt(α̂t+1)∥+
L

2
∥−ηt+1∇α̂Latt(α̂t+1)∥2

≤ηt+1ρ
2 +

L

2
η2t+1ρ

2,

(18)

where α̂t+2(ωt+1) − α̂t+1(ωt+1) = −ηt+1∇α̂Latt(α̂t+1), the first inequality holds for Lemma 2,
the second inequality holds for Cauchy-Schwarz inequality, the third inequality holds for
∥∇α̂Jπ(α̂t+1(ωt+1))∥ ≤ ρ, and the last inequality holds for ∥∇α̂Latt(α̂t+1)∥ ≤ ρ. It can be proved
that the gradient of ω with respect to Jπ is Lipschitz continuous and we assume the Lipschitz con-
stant is L. Therefore, for the second term,

Jπ(α̂t+1(ωt+1))− Jπ(α̂t+1(ωt))

≤∇ωJπ(α̂t+1(ωt))
⊤(ωt+1 − ωt) +

L

2
∥ωt+1 − ωt∥2

=− βt∇ωJπ(α̂t+1(ωt))
⊤∇ωJπ(α̂t+1(ωt)) +

Lβ2
t

2
∥∇ωJπ(α̂t+1(ωt))∥2

=− (βt −
Lβ2

t

2
) ∥∇ωJπ(α̂t+1(ωt))∥2 ,

(19)

where ωt+1 − ωt = −βt∇ωJπ(α̂t+1(ωt)), and the first inequality holds for Lemma 2. There-
fore, (17) becomes

Jπ(α̂t+2(ωt+1))− Jπ(α̂t+1(ωt)) ≤ ηt+1ρ
2 +

L

2
η2t+1ρ

2 − (βt −
Lβ2

t

2
) ∥∇ωJπ(α̂t+1(ωt))∥2 .

(20)
Rearranging the terms of (20), we obtain

(βt −
Lβ2

t

2
) ∥∇ωJπ(α̂t+1(ωt))∥2 ≤ Jπ(α̂t+1(ωt))− Jπ(α̂t+2(ωt+1)) + ηt+1ρ

2 +
L

2
η2t+1ρ

2.

(21)
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Then, we sum up both sides of (21),

T∑
t=1

(βt −
Lβ2

t

2
) ∥∇ωJπ(α̂t+1(ωt))∥2

≤Jπ(α̂2(ω1))− Jπ(α̂T+2(ωT+1)) +

T∑
t=1

(ηt+1ρ
2 +

L

2
η2t+1ρ

2)

≤Jπ(α̂2(ω1)) +

T∑
t=1

(ηt+1ρ
2 +

L

2
η2t+1ρ

2).

(22)

Therefore,

min
1≤t≤T

E
[
∥∇ωJπ(α̂t+1(ωt))∥2

]
≤
∑T
t=1(βt −

Lβ2
t

2 ) ∥∇ωJπ(α̂t+1(ωt))∥2∑T
t=1(βt −

Lβ2
t

2 )

≤ 1∑T
t=1(2βt − Lβ2

t )

[
2Jπ(α̂2(ω1)) +

T∑
t=1

(2ηt+1ρ
2 + Lη2t+1ρ

2)

]

≤ 1∑T
t=1 βt

[
2Jπ(α̂2(ω1)) +

T∑
t=1

ηt+1ρ
2(2 + Lηt+1)

]

≤ 1

Tβt

[
2Jπ(α̂2(ω1)) + Tηt+1ρ

2(2 + L)
]

=
2Jπ(α̂2(ω1))

Tβt
+
ηt+1ρ

2(2 + L)

βt

=
2Jπ(α̂2(ω1))

T
max{L,

√
T

c2
}+min{1, c1

T
}max{L,

√
T

c2
}ρ2(2 + L)

≤2Jπ(α̂2(ω1))

c2
√
T

+
c1ρ

2(2 + L)

c2
√
T

=O
(

1√
T

)
,

(23)

where the second inequality holds according to (22), the third inequality holds for∑T
t=1

(
2βt − Lβ2

t

)
≥

∑T
t=1 βt.

D.2 THEOREM 2: CONVERGENCE OF THE INNER LOSS

Lemma 3. (Lemma A.5 in Mairal (2013)) Let (an)n≥1, (bn)n≥1 be two non-negative real sequences
such that the series

∑∞
n=1 an diverges, the series

∑∞
n=1 anbn converges, and there exists C > 0

such that |bn+1 − bn| ≤ Can. Then, the sequence (bn)n≥1 converges to 0.

Theorem 2. Suppose Jπ is Lipschitz-smooth with constant L, the gradient of Jπ and Latt is bounded
by ρ. Let the training iterations be T , the inner-level optimization learning rate ηt = min{1, c1T }
for some constant c1 > 0 where c1

T < 1. Let the outer-level optimization learning rate βt =

min{ 1
L ,

c2√
T
} for some constant c2 > 0 where c2 ≤

√
T
L , and

∑∞
t=1 βt ≤ ∞,

∑∞
t=1 β

2
t ≤ ∞. Latt

achieves
lim
t→∞

E
[
∥∇αLatt(αt;ωt)∥2

]
= 0. (24)

Proof. First,

Latt(αt+1;ωt+1)− Latt(αt;ωt)

= {Latt(αt+1;ωt+1)− Latt(αt+1;ωt)}+ {Latt(αt+1;ωt)− Latt(αt;ωt)} .
(25)
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For the first term in (25),

Latt(αt+1;ωt+1)− Latt(αt+1;ωt)

≤∇ωLatt(αt+1;ωt)
⊤(ωt+1 − ωt) +

L

2
∥ωt+1 − ωt∥2

=− βt∇ωLatt(αt+1;ωt)
⊤∇ωJπ(αt+1(ωt)) +

Lβ2
t

2
∥∇ωJπ(αt+1(ωt))∥2 .

(26)

where ωt+1−ωt = −βt∇ωJπ(αt+1(ωt)), and the first inequality holds according to Lemma 2. For
the second term in (25),

Latt(αt+1;ωt)− Latt(αt;ωt)

≤∇αLatt(αt;ωt)
⊤(αt+1 − αt) +

L

2
∥αt+1 − αt∥2

=− ηt∇αLatt(αt;ωt)
⊤∇αLatt(αt;ωt) +

Lη2t
2
∥∇αLatt(αt;ωt)∥2

=− (ηt −
Lη2t
2

) ∥∇αLatt(αt;ωt)∥2 .

(27)

where αt+1 − αt = −ηt∇αLatt(αt;ωt), and the first inequality holds according to Lemma (2).
Therefore, (25) becomes

Latt(αt+1;ωt+1)− Latt(αt;ωt)

≤− βt∇ωLatt(αt+1;ωt)
⊤∇ωJπ(αt+1(ωt)) +

Lβ2
t

2
∥∇ωJπ(αt+1(ωt))∥2

− (ηt −
Lη2t
2

) ∥∇αLatt(αt;ωt)∥2 .

(28)

Taking expectation of both sides of (28) and rearranging the terms, we obtain

ηtE
[
∥∇αLatt(αt;ωt)∥2

]
+ βtE [∥∇ωLatt(αt+1;ωt)∥ · ∥∇ωJπ(αt+1(ωt))∥]

≤E [Latt(αt;ωt)]− E [Latt(αt+1;ωt+1)] +
Lβ2

t

2
E
[
∥∇ωJπ(αt+1(ωt))∥2

]
+
Lη2t
2

E
[
∥∇αLatt(αt;ωt)∥2

]
.

(29)

Summing up both sides of (29) from t = 1 to∞,
∞∑
t=1

ηtE
[
∥∇αLatt(αt;ωt)∥2

]
+

∞∑
t=1

βtE [∥∇ωLatt(αt+1;ωt)∥ · ∥∇ωJπ(αt+1(ωt))∥]

≤E [Latt(α1;ω1)]− lim
t→∞

E [Latt(αt+1;ωt+1)] +

∞∑
t=1

Lβ2
t

2
E
[
∥∇ωJπ(αt+1(ωt))∥2

]
+

∞∑
t=1

Lη2t
2

E
[
∥∇αLatt(αt;ωt)∥2

]
≤

∞∑
t=1

L(η2t + β2
t )ρ

2

2
+ E [Latt(α1;ω1)] ≤ ∞,

(30)

where the second inequality holds for
∑∞
t=1 η

2
t ≤ ∞,

∑∞
t=1 β

2
t ≤ ∞, ∥∇αLatt(αt;ωt)∥ ≤ ρ,

∥∇ωJπ(αt+1(ωt))∥ ≤ ρ. Since
∞∑
t=1

βtE [∥∇ωLatt(αt+1;ωt)∥ · ∥∇ωJπ(αt+1(ωt))∥] ≤ Lρ
∞∑
t=1

βt ≤ ∞. (31)

Therefore, we have
∞∑
t=1

ηtE
[
∥∇αLatt(αt;ωt)∥2

]
<∞. (32)
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Since |(∥a∥+ ∥b∥)(∥a∥ − ∥b∥)| ≤ ∥a+ b∥∥a− b∥, we can derive that∣∣∣E [
∥∇αLatt(αt+1;ωt+1)∥2

]
− E

[
∥∇αLatt(αt;ωt)∥2

]∣∣∣
=
∣∣∣E[( ∥∇αLatt(αt+1;ωt+1)∥+ ∥∇αLatt(αt;ωt)∥

)
+

(
∥∇αLatt(αt+1;ωt+1)∥ − ∥∇αLatt(αt;ωt)∥

)]∣∣∣
≤E

[∣∣∣ ∥∇αLatt(αt+1;ωt+1)∥+ ∥∇αLatt(αt;ωt)∥
∣∣∣∣∣∣ ∥∇αLatt(αt+1;ωt+1)∥ − ∥∇αLatt(αt;ωt)∥

∣∣∣]
≤E

[
∥∇αLatt(αt+1;ωt+1) +∇αLatt(αt;ωt)∥ · ∥∇αLatt(αt+1;ωt+1)−∇αLatt(αt;ωt)∥

]
≤E

[(
∥∇αLatt(αt+1;ωt+1)∥+ ∥∇αLatt(αt;ωt)∥

)
∥∇αLatt(αt+1;ωt+1)−∇αLatt(αt;ωt)∥

]
≤2LρE

[
∥(αt+1, ωt+1)− (αt, ωt)∥

]
≤2LρηtβtE

[
∥(∇αLatt(αt;ωt),∇ωJπ(αt+1(ωt)))∥

]
≤2Lρηtβt

√
E
[
∥∇αLatt(αt;ωt)∥2

]
+ E

[
∥∇ωJπ(αt+1(ωt))∥2

]
≤2Lρηtβt

√
2ρ2

≤2
√
2Lρ2ηtβt.

(33)
Since

∑∞
t=1 ηt =∞, according to Lemma 3, we have

lim
t→∞

E
[
∥∇αLatt(αt;ωt)∥2

]
= 0. (34)

E DETAILS OF PBRL
In this section, we present details of the scripted teacher and preference collection. It is a crucial
part of the PbRL, and PALM follows these settings as Lee et al. (2021a).

Scripted Teacher. To evaluate the performance systemically, a useful way is to consider a scripted
teacher that provides preferences between a pair of agent’s trajectory segments according to the
oracle reward function. Leveraging the preference labels from the human teacher is ideal, while
it is hard to evaluate algorithms quantitatively and quickly. Specifically, the scripted teacher can
immediately provide ground truth rewards based on the state s and action a. It is a function designed
to approximate the human’s intention.

Preference Collection. During training, we need to query human preference labels at regular inter-
vals. It samples a batch of segment pairs and calculates the cumulative reward of each segment with
rewards provided by the scripted teacher. For a specific segment pair, human prefers the segment
with a larger cumulative reward. The segment with a larger cumulative reward is labelled with 1,
and the smaller one is labelled with 0. As for the computational cost, we assume that M preference
labels are required, the segment length is N in a run, and the time complexity isO(MN). However,
it is negligible compared with adversary training, which involves complex gradient computation.

F EXPERIMENTAL DETAILS

In this section, we provide a concrete description of our experiments and detailed hyper-parameters
of PALM. For each run of experiments, we run on GeForce RTX 2080 Ti GPUs for training.

F.1 TASKS

We conduct experiments on eight robotic manipulation tasks from Meta-world (Yu et al., 2020) in
phase one and two locomotion tasks from Mujoco (Todorov et al., 2012) in phase two. The tasks we
used are:

Meta-world

• Door Lock: An agent controls a simulated Sawyer arm to lock the door.
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• Door Unlock: An agent controls a simulated Sawyer arm to unlock the door.

• Drawer Open: An agent controls a simulated Sawyer arm to open the drawer to a target position.

• Drawer Close: An agent controls a simulated Sawyer arm to close the drawer to a target posi-
tion.

• Faucet Open: An agent controls a simulated Sawyer arm to open the faucet to a target position.

• Faucet Close: An agent controls a simulated Sawyer arm to close the faucet to a target position.

• Window Open: An agent controls a simulated Sawyer arm to open the window to a target
position.

• Window Close: An agent controls a simulated Sawyer arm to close the window to a target
position.

Mujoco

• Half Cheetah: A 2-dimensional robot with nine links and eight joints aims to learn to run
forward (right) as fast as possible.

• Walker: A 2-dimensional two-legged robot aims to move in the forward (right).

F.2 HYPER-PARAMETERS SETTING

We choose PEBBLE as For SA-RL (Zhang et al., 2021), we keep the same parameter setting with
parameter and use the same neural network structure as ours. The detailed hyper-parameters of SA-
RL is shown in Table 3. For PA-AD (Sun et al., 2022), all hyper-parameters are the same as those of
SA-RL.

Table 2: Hyper-parameters of PALM for adversary training.

Hyper-parameter Value Hyper-parameter Value
Number of layers 3 Hidden units of each layer 256
Learning rate 0.0003 Batch size 1024
Length of segment 50 Number of reward functions 3
Frequency of feedback 5000 Feedback batch size 128
Adversarial budget 0.1 (β1, β2) (0.9, 0.999)

Table 3: Hyper-parameters of SA-RL for adversary training.

Hyper-parameter Value Hyper-parameter Value
Number of layers 3 Hidden units of each layer 256
Learning rate 0.00005 Mini-Batch size 32
Length of segment 50 Number of reward functions 3
Frequency of feedback 5000 Feedback batch size 128
Adversarial budget 0.1 Entropy coefficient 0.0
Clipping parameter 0.2 Discount γ 0.99
GAE lambda 0.95 KL divergence target 0.01

F.3 VICTIM SETTING

Our experiment consists of two phases. In the first phase, we use various simulated robotic manipu-
lation tasks from Meta-world. We have two OpenAI Gym MuJoCo continuous control environments
in the second phase.

Meta-world. We train the victims on Meta-world by utilizing SAC (Haarnoja et al., 2018) with the
original fully connected neural network as policy. Detailed hyper-parameters are shown in Table 4.
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Table 4: Hyper-parameters of SAC for victim training.

Hyper-parameter Value Hyper-parameter Value
Number of layers 3 Initial temperature 0.1
Hidden units of each layer 256 Optimizer Adam
Learning rate 0.0001 Critic target update freq 2
Discount γ 0.99 Critic EMA τ 0.005
Batch size 1024 (β1, β2) (0.9, 0.999)
Steps of unsupervised pre-training 9000 Discount γ 0.99

Mujoco. We directly utilize the well-trained model for demonstrating the vulnerability of the Deci-
sion Transformer. Specifically, we use the Cheetah agent4 and the Walker agent5 with expert-level.

G EXTENSIVE EXPERIMENTS

Impact of Feedback Amount. We investigate the performance of PALM with differ-
ent preference labels. Table 5 shows the results of all methods with various num-
bers of labels: {3000, 5000, 7000, 9000} on Drawer Open for the navigation scenario and
{1000, 3000, 5000, 7000} on Faucet Close for the opposite behavior scenario. From the experi-
mental results in Table 5, we conclude that providing sufficient human feedback learns a strong
adversary and stabilizes the attack success rate. We notice that the performance of PALM improves
with the increase of human preference labels, indicating that the number of preference labels has an
essential impact on adversary learning. However, the performance of SA-RL and PA-AD is poor
even with enough human feedback and PA-AD completely fails in navigation scenario. The reason
is that the exploration space of these two methods is limited by the fixed victim policy, while PALM
achieves better exploration by introducing an intention policy.

Table 5: Success rate with various amount of preference labels on Drawer Open for the navigation
scenario and Faucet Close for the opposite behavior scenario. We report the mean and the standard
deviation of the success rate over 30 episodes.

Environment Feedback PALM (ours) PA-AD SA-RL

Drawer Open
(navigation)

3000 65.7%± 37.1% 0.0%± 0.0% 8.3%± 13.2%

5000 86.7%± 18.1% 0.0%± 0.0% 21.3%± 18.9%

7000 95.7%± 13.6% 0.0%± 0.0% 28.0%± 28.1%

9000 97.0%± 6.9% 0.0%± 0.0% 13.0%± 18.5%

Faucet Close
(opposite behavior)

1000 69.7%± 35.2% 16.7%± 9.4% 2.0%± 6.0%

3000 79.0%± 16.2% 29.0%± 14.0% 6.0%± 11.7%

5000 95.3%± 9.2% 21.3%± 12.8% 3.3%± 12.7%

7000 95.3%± 7.6% 22.7%± 12.4% 4.0%± 7.1%

Impact of Different Attack Budgets. We also analyze the effect of the attack budget.
For further understanding, we conduct additional experiments with various attack budgets:
{0.05, 0.075, 0.1, 0.15} on the Drawer Open and {0.02, 0.05, 0.075, 0.1} on Faucet Close for these
two scenarios. In the Figure 9, we report the performance of baseline and PALM with various at-
tack budgets. As the experimental results show, the performance of all methods improve as the
adversarial budget increases.

4https://huggingface.co/edbeeching/decision-transformer-gym-halfcheetah-expert
5https://huggingface.co/edbeeching/decision-transformer-gym-walker2d-expert
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(a) ϵ = 0.05
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(b) ϵ = 0.075
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(c) ϵ = 0.1
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(d) ϵ = 0.15
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(e) ϵ = 0.02
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(f) ϵ = 0.05
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(g) ϵ = 0.075
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(h) ϵ = 0.1

Figure 9: Training curves of success rate with different adversarial budgets on Drawer Open for the
navigation scenario and Faucet Close for the opposite behavior scenario. The solid line and shaded
area denote the mean and the standard deviation of the success rate across five runs.
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