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Abstract

We demonstrate that hyperbolic representation
learning effectively captures hierarchical cellular re-
lationships in breast cancer. Using information-
theoretic metrics, Lorentzian embeddings are shown
to preserve significantly more biologically meaning-
ful structure than Euclidean ones. Code: https://
github.com/youssefwally/FlatlandandBeyond.

1 Introduction

Encoding hierarchical structure is a central challenge
in representation learning. Hyperbolic models, oper-
ating in negatively curved spaces, naturally capture
such hierarchies and often outperform Euclidean em-
beddings across domains including language, vision,
and knowledge graphs [1-3].

In biological data, especially from Imaging Mass
Cytometry (IMC), cells exhibit hierarchical rela-
tionships across types and states, captured through
dozens of protein markers at subcellular resolution
[4]. Modeling these relationships requires geometry-
aware representations, an area where hyperbolic
embeddings show strong potential [5]. Yet, most
studies rely on qualitative visualization rather than
rigorous quantitative evaluation.

We address this gap with an information-theoretic,
geometry-agnostic framework for clustering eval-
uation based on mutual information (MI), con-
ditional mutual information (CMI) using the
Kraskov-Stogbauer—Grassberge (KSG) estimator [6].
Applied to a 42-marker breast cancer IMC dataset,
we show that Lorentzian embeddings preserve sub-
stantially more biologically meaningful structure
than Euclidean ones, and we release open-source
tools for Lorentzian MI estimation and hyperbolic
UMAP visualization.

2 Methodology

Traditional quantitative metrics such as the Silhou-
ette Score or Average Distortion Index [7, 8] assume
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Euclidean geometry; linear distances, convex neigh-
borhoods, and isotropy. These assumptions fail in
hyperbolic spaces, where distances grow exponen-
tially, and local curvature which affects neighbor-
hood structure. Even substituting Euclidean dis-
tances with geodesics can yield misleading results
due to the indefinite nature of the Lorentzian inner
product and curvature-dependent spread.
Similarly, visualization methods like t-SNE and
UMAP [9, 10] exhibit bias towards Euclidean geome-
try. Thus, assessing which geometry better captures
biologically meaningful structure requires evaluation
methods that do not assume Euclidean geometry.
We adopt a non-parametric MI estimator based on
k-nearest neighbor (kNN), specifically the KSG esti-
mator [6], which can be utilized to operate on arbi-
trary metric spaces, including Lorentzian geodesics.
Geometry-Agnostic: MI and CMI can be esti-
mated directly from pairwise distances, independent
of curvature, convexity, or coordinate representation
[11]. This allows fair comparison between embed-
dings learned in Euclidean and hyperbolic spaces.
Local and Density-Aware: Unlike global clus-
tering scores, kNN-based MI captures local density
variations and neighborhood consistency.
Cross-Geometry Alignment: By estimating
I(X;Y) (MI), where X and Y denote Euclidean and
hyperbolic representations respectively, we quantify
the shared information between representations, pro-
viding a direct measure of structural preservation.

2.1 KSG Estimator Formulation

Given random variables X, Y, and Z, the CMI
under the KSG estimator can be expressed as

105 Y12) % w(k) + Y(N)
N

2 3 [ 1)+ ) + 1) = w(n ) +1)
=1

(1)

where () is the digamma function, and
ng)7 nz(f), ng) denote the number of neighbors within
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Figure 1. Embeddings in 2D latent space of VAEs. Colors represent ground truth labels.

the g;-ball of the corresponding variables, excluding
the query point. The radius €; is defined as the
maximum distance to the k-th nearest neighbor in
the joint space. The mutual information (MI) case
follows directly by omitting the (Z)-dependent term.

3 Data

We use the IMC dataset from [5], featuring a 42-
marker panel for phenotypic and spatial profiling
of the tumor microenvironment, with emphasis on
cancer-associated fibroblasts in breast cancer. Hier-
archical cell annotations span four levels; we use the
first three, from broad categories (Cancer, Immune,
Endothelial, Fibroblasts) to fine-grained immune
subtypes and detailed T cell and macrophage phe-
notypes. We also benchmark our method on the
MNIST handwritten digit dataset [12].

4 Experiments

4.1 Implementation Details

Experiments were conducted in PyTorch [13] us-
ing Riemannian optimization [14] via Geoopt [15],
with 32-bit precision as in [16]. Models include
Hyperbolic Variational Autoencoder (HVAE), and
Euclidean Variational Autoencoder (EVAE). All
analyses are performed on the test set. To en-
sure fair comparison, H-VAE and E-VAE are trained
independently, with reconstruction loss as a common
objective.

5 Results

5.1 Qualitative Analysis

Visualizations of Euclidean and Lorentzian embed-
dings (Fig. 1) reveal clear structural differences that
highlight the representational advantages of hyper-
bolic geometry. In Lorentzian space, clusters appear
more compact and hierarchically organized, consis-
tent with the space’s exponential volume growth.
In the IMC dataset, minority classes such as En-
dothelial Cells (8.40% of total samples) form tighter,
more separable clusters than in Euclidean space.

Table 1. Estimated MI and CMI on IMC and MNIST
test sets.

Quantity IMC MNIST
MI(Dy;C) 1.07 1.86
MI(Dg;C) 0.96 1.78
MI(DL;DE) 0.01 4.03
COMI(DLC | Dp) 106 016
CMI(Dg;C | Dr) 0.00 0.09

This indicates that Lorentzian embeddings capture
fine-grained biological distinctions even among un-
derrepresented cell types.

Similar behavior is observed in MNIST, where
ambiguous digits such as certain “3”s are positioned
between clusters of visually similar digits (“0”, “6”,
“8”), reflecting Lorentz space’s ability to represent
semantic uncertainty. In contrast, Euclidean embed-
dings enforce flatter separations that obscure such
relationships.

5.2 Quantitative Analysis

We evaluate how well each geometry encodes class-
relevant structure using MI between pairwise dis-
tance matrices Lorentzian Distances (Dp), Eu-
clidean Distances (Dg) and class labels (C). We
also compute CMI to quantify the incremental infor-
mation each geometry contributes beyond the other.

The MI results confirm that Lorentzian em-
beddings encode more class-relevant information
(MI(Dp;C) > MI(Dg;C)) in both datasets. The
near-zero M1(Dy; Dg) on IMC indicates that the
two geometries capture largely non-overlapping
structural information. Moreover, CMI(Dr;C |
Dg) =1.06 versus CMI(Dg;C | Dr) = 0.00 shows
that Lorentzian geometry provides additional, non-
redundant information beyond what Euclidean struc-
ture explains, demonstrating superior expressiveness
and alignment with biological hierarchies.

6 Conclusions

We show that unsupervised hyperbolic representa-
tion learning more effectively captures the hierarchi-
cal structure of breast cancer cell relationships than
its Euclidean counterpart.
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