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Abstract001

We demonstrate that hyperbolic representation002

learning effectively captures hierarchical cellular re-003

lationships in breast cancer. Using information-004

theoretic metrics, Lorentzian embeddings are shown005

to preserve significantly more biologically meaning-006

ful structure than Euclidean ones. Code: https://007

github.com/youssefwally/FlatlandandBeyond.008

1 Introduction009

Encoding hierarchical structure is a central challenge010

in representation learning. Hyperbolic models, oper-011

ating in negatively curved spaces, naturally capture012

such hierarchies and often outperform Euclidean em-013

beddings across domains including language, vision,014

and knowledge graphs [1–3].015

In biological data, especially from Imaging Mass016

Cytometry (IMC), cells exhibit hierarchical rela-017

tionships across types and states, captured through018

dozens of protein markers at subcellular resolution019

[4]. Modeling these relationships requires geometry-020

aware representations, an area where hyperbolic021

embeddings show strong potential [5]. Yet, most022

studies rely on qualitative visualization rather than023

rigorous quantitative evaluation.024

We address this gap with an information-theoretic,025

geometry-agnostic framework for clustering eval-026

uation based on mutual information (MI), con-027

ditional mutual information (CMI) using the028

Kraskov–Stögbauer–Grassberge (KSG) estimator [6].029

Applied to a 42-marker breast cancer IMC dataset,030

we show that Lorentzian embeddings preserve sub-031

stantially more biologically meaningful structure032

than Euclidean ones, and we release open-source033

tools for Lorentzian MI estimation and hyperbolic034

UMAP visualization.035

2 Methodology036

Traditional quantitative metrics such as the Silhou-037

ette Score or Average Distortion Index [7, 8] assume038

Euclidean geometry; linear distances, convex neigh- 039

borhoods, and isotropy. These assumptions fail in 040

hyperbolic spaces, where distances grow exponen- 041

tially, and local curvature which affects neighbor- 042

hood structure. Even substituting Euclidean dis- 043

tances with geodesics can yield misleading results 044

due to the indefinite nature of the Lorentzian inner 045

product and curvature-dependent spread. 046

Similarly, visualization methods like t-SNE and 047

UMAP [9, 10] exhibit bias towards Euclidean geome- 048

try. Thus, assessing which geometry better captures 049

biologically meaningful structure requires evaluation 050

methods that do not assume Euclidean geometry. 051

We adopt a non-parametric MI estimator based on 052

k-nearest neighbor (kNN), specifically the KSG esti- 053

mator [6], which can be utilized to operate on arbi- 054

trary metric spaces, including Lorentzian geodesics. 055

Geometry-Agnostic: MI and CMI can be esti- 056

mated directly from pairwise distances, independent 057

of curvature, convexity, or coordinate representation 058

[11]. This allows fair comparison between embed- 059

dings learned in Euclidean and hyperbolic spaces. 060

Local and Density-Aware: Unlike global clus- 061

tering scores, kNN-based MI captures local density 062

variations and neighborhood consistency. 063

Cross-Geometry Alignment: By estimating 064

I(X;Y ) (MI), where X and Y denote Euclidean and 065

hyperbolic representations respectively, we quantify 066

the shared information between representations, pro- 067

viding a direct measure of structural preservation. 068

2.1 KSG Estimator Formulation 069

Given random variables X, Y , and Z, the CMI 070

under the KSG estimator can be expressed as 071

I(X;Y |Z) ≈ ψ(k) + ψ(N) 072

− 1

N

N∑
i=1

[
ψ(n(i)x + 1) + ψ(n(i)y + 1)− ψ(n(i)z + 1)

]
(1)

073

where ψ(·) is the digamma function, and 074

n
(i)
x , n

(i)
y , n

(i)
z denote the number of neighbors within 075
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Figure 1. Embeddings in 2D latent space of VAEs. Colors represent ground truth labels.

the εi-ball of the corresponding variables, excluding076

the query point. The radius εi is defined as the077

maximum distance to the k-th nearest neighbor in078

the joint space. The mutual information (MI) case079

follows directly by omitting the (Z)-dependent term.080

3 Data081

We use the IMC dataset from [5], featuring a 42-082

marker panel for phenotypic and spatial profiling083

of the tumor microenvironment, with emphasis on084

cancer-associated fibroblasts in breast cancer. Hier-085

archical cell annotations span four levels; we use the086

first three, from broad categories (Cancer, Immune,087

Endothelial, Fibroblasts) to fine-grained immune088

subtypes and detailed T cell and macrophage phe-089

notypes. We also benchmark our method on the090

MNIST handwritten digit dataset [12].091

4 Experiments092

4.1 Implementation Details093

Experiments were conducted in PyTorch [13] us-094

ing Riemannian optimization [14] via Geoopt [15],095

with 32-bit precision as in [16]. Models include096

Hyperbolic Variational Autoencoder (HVAE), and097

Euclidean Variational Autoencoder (EVAE). All098

analyses are performed on the test set. To en-099

sure fair comparison, H-VAE and E-VAE are trained100

independently, with reconstruction loss as a common101

objective.102

5 Results103

5.1 Qualitative Analysis104

Visualizations of Euclidean and Lorentzian embed-105

dings (Fig. 1) reveal clear structural differences that106

highlight the representational advantages of hyper-107

bolic geometry. In Lorentzian space, clusters appear108

more compact and hierarchically organized, consis-109

tent with the space’s exponential volume growth.110

In the IMC dataset, minority classes such as En-111

dothelial Cells (8.40% of total samples) form tighter,112

more separable clusters than in Euclidean space.113

Table 1. Estimated MI and CMI on IMC and MNIST
test sets.

Quantity IMC MNIST

MI(DL;C) 1.07 1.86

MI(DE ;C) 0.96 1.78

MI(DL;DE) 0.01 4.03

CMI(DL;C | DE) 1.06 0.16

CMI(DE ;C | DL) 0.00 0.09

This indicates that Lorentzian embeddings capture 114

fine-grained biological distinctions even among un- 115

derrepresented cell types. 116

Similar behavior is observed in MNIST, where 117

ambiguous digits such as certain “3”s are positioned 118

between clusters of visually similar digits (“0”, “6”, 119

“8”), reflecting Lorentz space’s ability to represent 120

semantic uncertainty. In contrast, Euclidean embed- 121

dings enforce flatter separations that obscure such 122

relationships. 123

5.2 Quantitative Analysis 124

We evaluate how well each geometry encodes class- 125

relevant structure using MI between pairwise dis- 126

tance matrices Lorentzian Distances (DL), Eu- 127

clidean Distances (DE) and class labels (C). We 128

also compute CMI to quantify the incremental infor- 129

mation each geometry contributes beyond the other. 130

131

The MI results confirm that Lorentzian em- 132

beddings encode more class-relevant information 133

(MI(DL;C) > MI(DE ;C)) in both datasets. The 134

near-zero MI(DL;DE) on IMC indicates that the 135

two geometries capture largely non-overlapping 136

structural information. Moreover, CMI(DL;C | 137

DE) = 1.06 versus CMI(DE ;C | DL) = 0.00 shows 138

that Lorentzian geometry provides additional, non- 139

redundant information beyond what Euclidean struc- 140

ture explains, demonstrating superior expressiveness 141

and alignment with biological hierarchies. 142

6 Conclusions 143

We show that unsupervised hyperbolic representa- 144

tion learning more effectively captures the hierarchi- 145

cal structure of breast cancer cell relationships than 146

its Euclidean counterpart. 147
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