

Hyperbolic Representation Learning for Spatial Biology: Evaluating Cell Type Hierarchies in Breast Cancer Imaging Data

Youssef Wally¹, Johan Mylius-Kroken¹, Michael Kampffmeyer^{1,2}, Rezvan Ehsani³, Vladan Milosevic³, and Elisabeth Wetzer¹

¹Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway

²Norwegian Computing Center, Oslo, Norway

³Department of Clinical Medicine, University of Bergen, Bergen, Norway

¹{youssef.m.wally,johan.m.kroken,elisabeth.wetzer,michael.c.kampffmeyer}@uit.no
¹{v.milosevic,rezvan.ehsani}@uib.no

001 Abstract

002 We demonstrate that hyperbolic representation
003 learning effectively captures hierarchical cellular re-
004 lationships in breast cancer. Using information-
005 theoretic metrics, Lorentzian embeddings are shown
006 to preserve significantly more biologically meaning-
007 ful structure than Euclidean ones. Code: <https://github.com/youssefwally/FlatlandandBeyond>.

009 1 Introduction

010 Encoding hierarchical structure is a central challenge
011 in representation learning. Hyperbolic models, oper-
012 ating in negatively curved spaces, naturally capture
013 such hierarchies and often outperform Euclidean em-
014 beddings across domains including language, vision,
015 and knowledge graphs [1–3].

016 In biological data, especially from Imaging Mass
017 Cytometry (IMC), cells exhibit hierarchical rela-
018 tionships across types and states, captured through
019 dozens of protein markers at subcellular resolution
020 [4]. Modeling these relationships requires geometry-
021 aware representations, an area where hyperbolic
022 embeddings show strong potential [5]. Yet, most
023 studies rely on qualitative visualization rather than
024 rigorous quantitative evaluation.

025 We address this gap with an information-theoretic,
026 geometry-agnostic framework for clustering eval-
027 uation based on mutual information (MI), con-
028 ditional mutual information (CMI) using the
029 Kraskov–Stögbauer–Grassberger (KSG) estimator [6].
030 Applied to a 42-marker breast cancer IMC dataset,
031 we show that Lorentzian embeddings preserve sub-
032 stantially more biologically meaningful structure
033 than Euclidean ones, and we release open-source
034 tools for Lorentzian MI estimation and hyperbolic
035 UMAP visualization.

036 2 Methodology

037 Traditional quantitative metrics such as the Silhou-
038 ette Score or Average Distortion Index [7, 8] assume

039 Euclidean geometry; linear distances, convex neigh-
040 borhoods, and isotropy. These assumptions fail in
041 hyperbolic spaces, where distances grow expo-
042 nentially, and local curvature which affects neigh-
043 borhood structure. Even substituting Euclidean dis-
044 tances with geodesics can yield misleading results
045 due to the indefinite nature of the Lorentzian inner
046 product and curvature-dependent spread.

047 Similarly, visualization methods like t-SNE and
048 UMAP [9, 10] exhibit bias towards Euclidean geo-
049 metry. Thus, assessing which geometry better captures
050 biologically meaningful structure requires evaluation
051 methods that do not assume Euclidean geometry.

052 We adopt a non-parametric MI estimator based on
053 k -nearest neighbor (kNN), specifically the KSG esti-
054 mator [6], which can be utilized to operate on arbi-
055 trary metric spaces, including Lorentzian geodesics.

056 **Geometry-Agnostic:** MI and CMI can be esti-
057 mated directly from pairwise distances, independent
058 of curvature, convexity, or coordinate representation
059 [11]. This allows fair comparison between embed-
060 dings learned in Euclidean and hyperbolic spaces.

061 **Local and Density-Aware:** Unlike global clus-
062 tering scores, kNN-based MI captures local density
063 variations and neighborhood consistency.

064 **Cross-Geometry Alignment:** By estimating
065 $I(X; Y)$ (MI), where X and Y denote Euclidean and
066 hyperbolic representations respectively, we quantify
067 the shared information between representations, pro-
068 viding a direct measure of structural preservation.

069 2.1 KSG Estimator Formulation

070 Given random variables X , Y , and Z , the CMI
071 under the KSG estimator can be expressed as

$$I(X; Y|Z) \approx \psi(k) + \psi(N) - \frac{1}{N} \sum_{i=1}^N \left[\psi(n_x^{(i)} + 1) + \psi(n_y^{(i)} + 1) - \psi(n_z^{(i)} + 1) \right] \quad (1)$$

074 where $\psi(\cdot)$ is the digamma function, and
075 $n_x^{(i)}, n_y^{(i)}, n_z^{(i)}$ denote the number of neighbors within

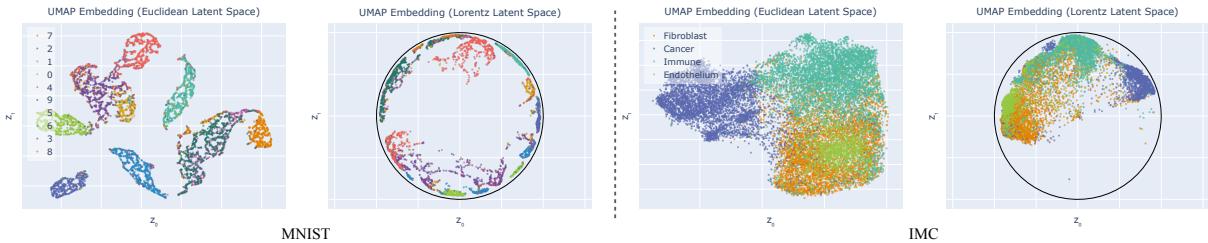


Figure 1. Embeddings in 2D latent space of VAEs. Colors represent ground truth labels.

076 the ε_i -ball of the corresponding variables, excluding
077 the query point. The radius ε_i is defined as the
078 maximum distance to the k -th nearest neighbor in
079 the joint space. The mutual information (MI) case
080 follows directly by omitting the (Z)-dependent term.

081 3 Data

082 We use the IMC dataset from [5], featuring a 42-
083 marker panel for phenotypic and spatial profiling
084 of the tumor microenvironment, with emphasis on
085 cancer-associated fibroblasts in breast cancer. Hier-
086 archical cell annotations span four levels; we use the
087 first three, from broad categories (Cancer, Immune,
088 Endothelial, Fibroblasts) to fine-grained immune
089 subtypes and detailed T cell and macrophage phe-
090 notypes. We also benchmark our method on the
091 MNIST handwritten digit dataset [12].

092 4 Experiments

093 4.1 Implementation Details

094 Experiments were conducted in PyTorch [13] us-
095 ing Riemannian optimization [14] via Geoopt [15],
096 with 32-bit precision as in [16]. Models include
097 Hyperbolic Variational Autoencoder (HVAE), and
098 Euclidean Variational Autoencoder (EVAE). **All**
099 **analyses are performed on the test set.** To en-
100 sure fair comparison, H-VAE and E-VAE are trained
101 independently, with reconstruction loss as a common
102 objective.

103 5 Results

104 5.1 Qualitative Analysis

105 Visualizations of Euclidean and Lorentzian embed-
106 dings (Fig. 1) reveal clear structural differences that
107 highlight the representational advantages of hyper-
108 bolic geometry. In Lorentzian space, clusters appear
109 more compact and hierarchically organized, consis-
110 tent with the space’s exponential volume growth.
111 In the IMC dataset, minority classes such as En-
112 dothelial Cells (8.40% of total samples) form tighter,
113 more separable clusters than in Euclidean space.

Table 1. Estimated MI and CMI on IMC and MNIST test sets.

Quantity	IMC	MNIST
$MI(D_L; C)$	1.07	1.86
$MI(D_E; C)$	0.96	1.78
$MI(D_L; D_E)$	0.01	4.03
$CMI(D_L; C D_E)$	1.06	0.16
$CMI(D_E; C D_L)$	0.00	0.09

This indicates that Lorentzian embeddings capture
fine-grained biological distinctions even among un-
derrepresented cell types.

Similar behavior is observed in MNIST, where
ambiguous digits such as certain “3”s are positioned
between clusters of visually similar digits (“0”, “6”,
“8”), reflecting Lorentz space’s ability to represent
semantic uncertainty. In contrast, Euclidean embed-
dings enforce flatter separations that obscure such
relationships.

5.2 Quantitative Analysis

We evaluate how well each geometry encodes class-
relevant structure using MI between pairwise dis-
tance matrices Lorentzian Distances (D_L), Eu-
clidean Distances (D_E) and class labels (C). We
also compute CMI to quantify the incremental in-
formation each geometry contributes beyond the other.

The MI results confirm that Lorentzian em-
beddings encode more class-relevant information
($MI(D_L; C) > MI(D_E; C)$) in both datasets. The
near-zero $MI(D_L; D_E)$ on IMC indicates that the
two geometries capture largely non-overlapping
structural information. Moreover, $CMI(D_L; C |$
 $D_E) = 1.06$ versus $CMI(D_E; C | D_L) = 0.00$ shows
that Lorentzian geometry provides additional, non-
redundant information beyond what Euclidean struc-
ture explains, demonstrating superior expressiveness
and alignment with biological hierarchies.

6 Conclusions

We show that unsupervised hyperbolic representa-
tion learning more effectively captures the hierachical
structure of breast cancer cell relationships than
its Euclidean counterpart.

148

References

149 [1] M. Nickel and D. Kiela. “Learning continuous hierarchies in the lorentz model of hyperbolic geometry”. In: *International conference on machine learning*. PMLR. 2018, pp. 3779–3788.

150 [2] W. Peng, T. Varanka, A. Mostafa, H. Shi, and G. Zhao. “Hyperbolic deep neural networks: A survey”. In: *IEEE Transactions on pattern analysis and machine intelligence* 44.12 (2021), pp. 10023–10044.

151 [3] S.-L. Xu, Y. Sun, F. Zhang, A. Xu, X.-S. Wei, and Y. Yang. “Hyperbolic space with hierarchical margin boosts fine-grained learning from coarse labels”. In: *Advances in Neural Information Processing Systems* 36 (2023), pp. 71263–71274.

152 [4] V. Milosevic. “Different approaches to Imaging Mass Cytometry data analysis”. In: *Bioinformatics Advances* 3.1 (2023), vbad046.

153 [5] H. Røgenes, K. Finne, I. Winge, L. A. Akslen, A. Östman, and V. Milosevic. “Development of 42 marker panel for in-depth study of cancer associated fibroblast niches in breast cancer using imaging mass cytometry”. In: *Frontiers in Immunology* 15 (2024), p. 1325191.

154 [6] A. Kraskov, H. Stögbauer, and P. Grassberger. “Estimating mutual information”. In: *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics* 69.6 (2004), p. 066138.

155 [7] P. J. Rousseeuw. “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis”. In: *Journal of computational and applied mathematics* 20 (1987), pp. 53–65.

156 [8] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. “A global geometric framework for nonlinear dimensionality reduction”. In: *science* 290.5500 (2000), pp. 2319–2323.

157 [9] L. Van der Maaten and G. Hinton. “Visualizing data using t-SNE.” In: *Journal of machine learning research* 9.11 (2008).

158 [10] L. McInnes, J. Healy, and J. Melville. “Umap: Uniform manifold approximation and projection for dimension reduction”. In: *arXiv preprint arXiv:1802.03426* (2018).

159 [11] W. Gao, S. Kannan, S. Oh, and P. Viswanath. “Estimating mutual information for discrete-continuous mixtures”. In: *Advances in neural information processing systems* 30 (2017).

160 [12] L. Deng. “The mnist database of handwritten digit images for machine learning research”. In: *IEEE Signal Processing Magazine* 29.6 (2012), pp. 141–142.

161 [13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In: *Advances in Neural Information Processing Systems*. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

162 [14] G. Béćigneul and O.-E. Ganea. “Riemannian adaptive optimization methods”. In: *arXiv preprint arXiv:1810.00760* (2018).

163 [15] M. Kochurov, R. Karimov, and S. Kozlukov. *Geoopt: Riemannian Optimization in PyTorch*. 2020. arXiv: 2005.02819 [cs.CG].

164 [16] A. Bdeir, K. Schwethelm, and N. Landwehr. “Fully Hyperbolic Convolutional Neural Networks for Computer Vision”. In: *The Twelfth International Conference on Learning Representations*. 2024. URL: <https://openreview.net/forum?id=ekz1hN5QNh>.