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ABSTRACT

Synthetic data is increasingly employed for training dataset augmentation in com-
puter vision. However, prior works typically perform a uniform search across
the entire category space, overlooking the interaction between synthetic data gen-
eration and downstream task training. Furthermore, balancing the diversity of
synthetic data while ensuring it remains within the same distribution as real data
(i.e., avoiding outliers) remains a significant challenge. In this work, we propose a
generative agent to augment target training datasets with synthetic data for model
fine-tuning. Our agent iteratively generates relevant data on-the-fly, aligning with
the target training dataset distribution. It prioritizes sampling diverse synthetic data
that complements marginal training samples, with a focus on synthetic data that
exhibit higher variance in gradient updates. Evaluations across diverse supervised
image classification tasks demonstrate the effectiveness of our approach.

1 INTRODUCTION

Generative models (Brock et al., 2018; Razavi et al., 2019; Ho et al., 2020; Saharia et al., 2022;
Rombach et al., 2022; Sohl-Dickstein et al., 2015; Ramesh et al., 2022; Nichol et al., 2022) that
produce photo-realistic images from text prompts are increasingly used to replace (Besnier et al.,
2020; Li et al., 2022; Sarıyıldız et al., 2023; Hammoud et al., 2024; He et al., 2022; Shipard et al.,
2023; Tian et al., 2024) or augment (Yuan et al., 2023; Azizi et al., 2023; He et al., 2022; Hemmat
et al., 2023; Bansal & Grover, 2023; Dunlap et al., 2024; Astolfi et al., 2023) real data. This shift is
largely motivated by the significant time and labor costs associated with collecting and annotating
real data (Tian et al., 2024; Yuan et al., 2023; Sarıyıldız et al., 2023; Besnier et al., 2020; Dunlap et al.,
2024). However, most approaches provide no feedback to the synthetic data generation process during
downstream model training, potentially reducing sample utility (Hemmat et al., 2023). Discrepancies
between synthetic and target data distributions (Shin et al., 2023; He et al., 2022; Borji, 2022),
alongside limited diversity in generated samples (Hall et al., 2023; Bianchi et al., 2023; Luccioni
et al., 2024; Jahanian et al., 2021), can further undermine synthetic data’s utility, despite attempts to
address these issues through techniques such as prompt engineering (Sarıyıldız et al., 2023; Lei et al.,
2023; Azizi et al., 2023), image-conditioned generation (Bordes et al., 2022; Blattmann et al., 2022),
diffusion inversion (Zhou et al., 2023; Zhao & Bilen, 2022), and low-density region sampling (Um
et al., 2024; Sehwag et al., 2022).

In this work, we propose an approach to training dataset augmentation that addresses these challenges
by leveraging GenDataAgent, a generative agent. Our method not only samples high-quality synthetic
data on-the-fly but also ensures that the generated samples align closely with the distribution of
the target training dataset. By prioritizing the sampling of diverse and useful synthetic data that
complement marginal real training examples through feedback mechanisms, our approach enhances
the generalization performance of downstream models fine-tuned on augmented datasets. Crucially,
unlike prior research (Hemmat et al., 2023; Shao et al., 2024; Ye-Bin et al., 2023; Liu et al., 2020;
Kozerawski et al., 2020), we do not rely on distributional assumptions, such as long-tailed data or
datasets with few to no examples per class. Our key contributions can be summarized as follows:

• We propose GenDataAgent, an on-the-fly framework for augmenting image classification
datasets with synthetic data generated via Stable Diffusion (Rombach et al., 2022), ensuring
alignment with the target distribution.
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• We introduce a sampling algorithm focused on marginal real examples, a variance of
gradients (Agarwal et al., 2022) filtering strategy to remove synthetic outliers, and Llama-
2 (Touvron et al., 2023) to enhance diversity by perturbing text prompts.

• We demonstrate state-of-the-art generalization performance, increased fairness, and Gen-
DataAgent’s ability to complement real-world samples during training.

2 RELATED WORK

2.1 SYNTHETIC DATA GENERATION

Interest in generative models for training data generation has grown, with diffusion-based meth-
ods (Bansal & Grover, 2023; He et al., 2022; Shipard et al., 2023; Trabucco et al., 2023; Besnier
et al., 2020; Sarıyıldız et al., 2023; Hammoud et al., 2024; Tian et al., 2024; Yuan et al., 2023; Azizi
et al., 2023; Hemmat et al., 2023; Dunlap et al., 2024; Astolfi et al., 2023) increasingly supplanting
generative adversarial network-based methods (Zhao & Bilen, 2022; Li et al., 2022; Zhang et al.,
2021; Kumar et al., 2022; Sharmanska et al., 2020). While text-guided diffusion-generated image
data has shown promise, models trained on this data have had varied success due to a persistent
distributional gap (Shin et al., 2023; He et al., 2022; Borji, 2022; Hemmat et al., 2023) and lack of
diversity (Hall et al., 2023; Bianchi et al., 2023; Luccioni et al., 2024).

To address this, some research has focused on sampling from low-density regions (Um et al., 2024;
Sehwag et al., 2022; Samuel et al., 2023), which contain attributes seldom observed in high-density
regions. These approaches rely on assumptions about data distributions, such as long-tailed data or
datasets with few examples per class, and do not consider the utility of the generated data. Unlike
these approaches, we rely on feedback from the downstream classifier, using uncalibrated Marginal
scores to generate synthetic data that complements marginal real examples.

2.2 SYNTHETIC DATA AUGMENTATION

In parallel, prompt engineering with text-conditioned diffusion models has been proposed for classifi-
cation (Sarıyıldız et al., 2023; Lei et al., 2023; Azizi et al., 2023). Sarıyıldız et al. (2023) employ
manual, class-agnostic prompt engineering to reduce semantic issues (e.g., polysemy) and increase
diversity, while Lei et al. (2023) leverage automated image captioning models. However, neither
approach explicitly addresses the inclusion of synthetic data inconsistent with the target distribution or
the data’s usefulness. As with prior work (Yuan et al., 2023; Sarıyıldız et al., 2023; Lei et al., 2023; He
et al., 2022), these methods result in static, bloated datasets containing redundant and uninformative
samples, as no information is transmitted from the downstream model into the generation process.
Hemmat et al. (2023) propose feedback-guided data synthesis but only consider a single offline
feedback cycle. In contrast, we introduce on-the-fly filtering during downstream model training,
prioritizing difficult, synthetic data with higher variance in gradient updates (Agarwal et al., 2022)
to avoid noisy, unrepresentative samples (He et al., 2022; Hemmat et al., 2023; Shin et al., 2023).
Furthermore, our method can be integrated with techniques such as domain adaptation (Tang & Jia,
2023) to further narrow the distribution gap.

Another line of work (Li et al., 2023a; Jiang et al., 2021) utilizes additional real data for non-static
training dataset augmentation. For example, Li et al. (2023a) continuously explore the Internet to
find relevant data, ranking retrieved images based on their expected reward. While internet-sourced
data may offer greater diversity, it raises privacy and copyright concerns (Samuelson, 2023; Andrews
et al., 2024; Longpre et al., 2023; Besnier et al., 2020; Metcalf & Crawford, 2016; Orekondy et al.,
2018; Birhane & Prabhu, 2021; Birhane et al., 2021).

3 GENDATAAGENT: ON-THE-FLY DATASET AUGMENTATION

We tackle the problem of effectively augmenting vision training datasets with synthetic data by
introducing GenDataAgent, a generative agent that augments datasets on-the-fly during model fine-
tuning. GenDataAgent generates synthetic data aligned with the target dataset distribution to improve
performance in supervised image classification. It prioritizes diverse and useful synthetic data to
complement marginal training samples, focusing on those with higher gradient update variance. This
approach improves model generalization and fairness while reducing computational and energy costs.
An overview of GenDataAgent is detailed in Algorithm 1.
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Algorithm 1 GenDataAgent

1: Input: target dataset T = {(xi, yi, pi, ci)}Ni=1, pretrained multi-class classfication model f ,
stable diffusion model SD, image feature extractor CLIP, image captioning model BLIP-2,
large language enhance model Llama-2

2: Generate image features Ψ for real data T by CLIP
3: Adapt SD to target distribution with T , P = {pi}Ni=1, C and Ψ (§3.1)
4: for iter = 1, 2, . . . do
5: if iter <= 3 then // Stage-1
6: Fine-tune f only on T , save model checkpoints {fi}3i=1 (§3.4)
7: else // Stage-2
8: Sample feedbackM⊂ T of marginal examples (§3.2)
9: Perturb image captions for marginal examples C′M ← Llama-2(PM, CM) (§3.3)

10: Generate diverse synthetic data Sc ← GenDatam
x∈M(x, C′x = {c′x,i}mi=1)

11: for j = 1, . . . ,M do // traverse all categories
12: Compute VoG score for each synthetic data xi ∈ Sc
13: Filter out images of j-th class Sf,j ← argmin

xi∈Sf,j⊂Sc

∑
i VoGi (§3.4)

14: end for
15: Combine real and synthetic data as training data D ← T ∪ (Sc\

⋃
j Sf,j)

16: Fine-tune f on the combined dataset fθiter+1
← fθiter(D)

17: end if
18: end for

3.1 TEXT-TO-IMAGE GENERATOR

Drawing inspiration from text-guided diffusion models, we utilize Stable Diffusion (SD) as a text-to-
image generator. To reconcile the distribution gap between SD training data and the target real data,
we adapt SD to match the distribution of the target training data, as proposed by Yuan et al. (2023).

Suppose T = {(xi, yi, pi, ci)}ni=1 denotes a target training dataset, with xi representing a real image,
yi its numerical class label, pi its semantic class name, ci its BLIP2-generated (Li et al., 2023b)
image caption, and µyi the mean vector of image features extracted with CLIP (Radford et al., 2021)
for class yi. Yuan et al. (2023) concatenate semantic class names, pi, and image captions, ci, as text
prompts, along with ψyi

to include visual guidance, estimating intra-class feature distributions. The
resulting multi-modal condition comprises “a photo of pi, which is ci, ψyi

”, which we
use to fine-tune SD with LoRA (Hu et al., 2021).

For text-to-image generation, we prioritize sample quality over diversity, employing a prompt
guidance value of 7.5, in contrast to prior methods (Sarıyıldız et al., 2023; Yuan et al., 2023) utilizing
a value of 2. This choice is driven by our improved approach to introducing sample diversity without
compromising quality, as detailed in Appendix A.

3.2 GENERATOR FEEDBACK VIA MARGINAL SAMPLES

Previous studies (Yuan et al., 2023; Sarıyıldız et al., 2023) primarily focus on generating synthetic
data aligned with the target distribution but overlook its utility. The effectiveness of this indiscrim-
inate approach for dataset augmentation is therefore questionable. Similar to sample reweighting
techniques (Freund & Schapire, 1995; Johnson & Khoshgoftaar, 2019; Ren et al., 2018), we advocate
assigning higher importance to synthetic data that complement real samples near the model’s decision
boundary. This strategy exposes the model to critical regions of the data space. While prioritizing
challenging samples may initially increase losses, it can potentially improve generalization.

To implement this, we adopt a marginal score, which is defined as the target model’s predicted
probability for class yi given input xi. Specifically, the marginal score is calculated as P (y = yi |
xi) = exp(ziyi

)/
∑

j exp(z
i
j), where zj denotes the logit for class j. We rank each sample in the

target dataset by this score and retain the top-k samples with the lowest scores as feedback for guiding
synthetic data generation. The set of these k marginal samples is denoted asM.

Figure 1 illustrates clear clustering and boundaries in the pretrained (i.e., prior to fine-tuning) target
model’s feature space of instances with high marginal scores, contrasting with the more challenging
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Bombay Beagle

(a) High Marginal Score (b) Low Marginal Score

Figure 1: Feature space visualization and qualitative comparison of instances with Top-200 and
Bottom-200 marginal scores on Oxford-IIIT Pets dataset. Each color represents a specific class.

separation of samples with low marginal scores. High-scoring images typically feature centrally
positioned representative depictions of objects, while low-scoring ones exhibit greater diversity and
noise. Moreover, empirical results in Section 4.3 validate the utilization of predicted probabilities
over entropy-based selection (Hemmat et al., 2023).

3.3 ENHANCING DIVERSITY VIA CAPTION PERTURBATIONS

Images generated with identical captions but different seeds often exhibit limited diversity, even
when using a high guidance value (Figure 2). This redundancy poses a challenge to leveraging
synthetic data effectively (Hall et al., 2023; Bianchi et al., 2023). To enhance diversity, we utilize
Llama2 (Touvron et al., 2023), a large language model, to modify the image captions. However, since
Llama2 tends to produce lengthy sentences, which may result in excessive outliers in synthetic data,
we constrain its responses to short sentences by imposing a word count limit. For this purpose, we
provide the following tailored prompts to Llama2:

·“role” : “system”, “content”: You are an editor
tasked with subtly altering the scene described after
a comma in a sentence. The goal is to change the
scene slightly in no more than 10 words. Respond with
m versions.

·“role” : “user”, “content”: Given the sentence “a
photo of pi, which is ci”, slightly alter the scene
described after the comma to depict a similar yet
different scenario.

Examples are shown in Figure 2 and the Appendix A. When adapting the stable diffusion to target
distribution (Section 3.1), we utilize the same full format (i.e., the combination of classname P and
raw image caption C). By maintaining this consistent prompt format for both adapting stable diffusion
and generating synthetic data, we ensure greater alignment between the distribution of the generated
data and the target data.

Given the feedback M that contains marginal examples from the classification model, we first
generate m perturbation for the raw caption of each x ∈M by Llama-2:

C′x = CaptionPerturbationm(px, cx), (1)
where C′ = {C′x|x ∈M} is the whole caption perturbation set. After obtaining the perturbation, the
generating process of GenDataAgent can be formulated as:

Sc = GenDatam
x∈M(x, C′x = {c′x,i}mi=1), (2)

where the order m denotes m different perturbation versions of the raw image caption, and the size of
marginal synthetic dataset |Sc| = k ×m can be restricted to 1× |T |, 10× |T | or any ratio if needed.

The visual comparison is shown in Figure 2, where we can easily notice that the Llama-2 perturbation
here would not totally change the background scene and result in a totally different synthetic image
that has nothing to do with the original real image. Yet, the Abyssinian cat’s posture and the image’s
view are slightly different. This ensures that the perturbation is still focusing on marginal examples
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throw blanket
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lounging on a velvet 
cushion
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perched on a vintage 
armchair
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A photo of Abyssinian, which is an Abyssinian cat on a couch

Figure 2: Comparison between real data, synthetic data with identical captions, and Llama-2 pertur-
bation captions on the Oxford-IIIT Pets dataset. t-SNE visualization of feature space is in the lower
left corner, where each cluster is related to one class. For simplicity, the perturbed captions omit the
prefix "A photo of [classname]". All synthetic data is generated with prompt guidance of 7.5.

rather than providing general-purpose augmentations. When turning the perspective to the feature
space in Figure 2, it can be easily observed that the synthetic data with raw caption is close to the real
data while the synthetic data with Llama-2 perturbation is distributed in a broader region.

3.4 IN-DISTRIBUTION DATA GENERATION

The synthesized data generated by the agent is likely to include out-of-distribution samples (Fig. 3c),
which are excessively noisy and disruptive, leading to a performance drop in the target task. Therefore,
it is important to control the agent to generate only data that falls within the distribution of the target
task. Inspired by (Li et al., 2023a; Robinson et al., 2020; Ge, 2018; Schroff et al., 2015; Agarwal
et al., 2022), "harder negatives" samples yield larger gradients. We utilize the variance of the gradient
(VoG) for each synthesized data as a criterion to filter out outliers.

Specifically, the classification model fine-tuning operates in two stages. At the first stage, i.e., the
first N (N = 3) iterations (1 iteration contains 10 epochs), we fine-tune the model with the target
dataset T and save the checkpoint for each iteration. Then during the second stage (N > 3), the
agent receives the feedback list from the model, as well as the model fine-tune checkpoints from the
first N iterations. After generating the synthetic data Sc, the agent computers the gradients of logit

zyi with respect to each pixel of xi on the synthetic data Sc: Gi =
∂zi

yi

∂xi,d
, where d = {1, 2, . . .W},

W is the total number of pixels in image xi, and (xi, yi) ∈ Sc. In Table 5, we conduct experiments
using 3, 4, and 5 checkpoints to compute the variance of gradients, which is the so-called VoG score.
The experimental results show no significant difference between the different checkpoint numbers.
Thus, to save resources, we adopt the minimal requirement, i.e., 3 checkpoints to measure the VoG:

µi =
1

3
(G10

i +G20
i +G30

i ), (3)

VoGi =

√
1

3
[(G10

i − µi)
2 + (G20

i − µi)
2 + (G30

i − µi)
2], (4)

where G10
i , G20

i , and G30
i denote the gradients of epochs 10, 20, and 30 respectively.

The model itself can quickly learn the data distribution by first assigning large gradients to in-
distribution data and then rapidly decreasing. In other words, in-distribution data tends to own higher
variances of gradients. Hence, during the on-the-fly process (fine-tuning stage-2), GenDataAgent
rejects the out-of-distribution data with low variances of gradients Sf,j within each class j from the
raw synthetic dataset Sc as:

Sf,j = argmin
xi∈Sf,j⊂Sc

∑
i

VoGi s.t. |Sf,j | = oj . (5)

As shown in Figure 3 and Appendix B, stable diffusion, even after adapting to the target dataset
distribution, might introduce outliers into the synthetic data. Fortunately, the applied VoG filtering
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Feature Space Distribution In-distribution Synthetic DataVoG Outliers

Figure 3: t-SNE visualization of VoG filtering strategy on Oxford-IIIT Pets dataset. For each class,
20 data points are randomly sampled from Real Data, Synthetic Data w/o outliers, and Bottom
25% VoG Scores respectively.

strategy can help to remove them by assigning the lowest variances of gradients. The visualization of
feature space in Figure 3 provides a more intuitive way to show the distance. Specifically, the center
of synthetic data that removes VoG outliers is close to that of the real data. In contrast, the center of
VoG outliers is far from that of the real one and gets entangled with other outliers.

Although the caption perturbation helps to increase the diversity of synthetic data, such perturbations
might lead to generating more outliers. Yet, our VoG filtering strategy can eliminate most of these
outliers, thereby achieving an improved trade-off between diversity and in-distribution.

3.5 ON-THE-FLY FEEDBACK AND FINE-TUNING

Prior work (Yuan et al., 2023; Sarıyıldız et al., 2023; Lei et al., 2023; He et al., 2022) usually combines
the synthetic data with real data in a static way, which ignores the feedback from the classification
model to the generation process. LDM-FG (Hemmat et al., 2023) introduces feedback from the
classifier but only considers one offline feedback cycle. Rather than augmenting with synthetic
data statically, our marginal-focused approach is conducted in an on-the-fly manner. As shown
in Algorithm 1, during each iteration at stage-2, we resample marginal examples based on the current
stage as the feedback. Then send this feedback to GenDataAgent, which will guide the generation of
synthetic data. After receiving the generative synthetic data from GenDataAgent, the classification
model will be fine-tuned on the combination of real and newly synthetic data as

fθiter+1
← fθiter(T ∪ (Sc\

⋃
j

Sf,j)), (6)

where fθiter is the model from the previous iteration. In the next on-the-fly iteration, fθiter+1
is used to

resample marginal examples and send an updated feedback list to GenDataAgent.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Previous studies (Yuan et al., 2023; Sarıyıldız et al., 2023; He et al., 2022) that explored the utilization
of synthetic data mainly conducted under a supervised learning manner. For a fair comparison, we
conduct experiments in this manner with the same multi-class classification model ResNet-50 in two
different scenarios: (i) Synthetic data alone for image classification, (ii) Synthetic data serves as
augmentation for real data. For the second scenario, we also conduct experiments on CLIP ResNet-50
and CLIP ViT backbones. More details are shown in Appendix D.

Synthetic Data Only. We evaluate the effectiveness of using synthetic data as a substitute for
real training data in the image classification model fine-tuning stage. Note that our GenDataAgent
requires real dataset T for providing feedback. To solve this, we replace the initial real dataset T
with an equivalent number of synthetic training samples and use GenDataAgent to inject augmented
generative data iteratively. We compare our method with Real-Fake (Yuan et al., 2023), ImageNet-
Clone (Sarıyıldız et al., 2023), CiP (Lei et al., 2023), and Synthetic Data (He et al., 2022).
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Table 1: Top-1 accuracy / worst-case disparity for image classification tasks with only synthetic
data. †The framework of SyntheticData is CLIP but the backbone is the same ResNet-50. ‡We
reproduce ImageNet-Clone, CiP, and Real-Fake for all datasets.

Model Pets CUB Flowers Birdsnap Food IN100

Training with only synthetic data
ImageNet-Clone‡ (Sarıyıldız et al., 2023) 79.7/0.20 29.4/0.00 27.2/0.00 24.1/0.00 55.6/0.10 64.2/0.20
CiP‡ (Lei et al., 2023) 86.5/0.16 35.1/0.00 25.8/0.00 30.7/0.00 55.5/0.15 64.7/0.20
SyntheticData† (He et al., 2022) 86.8/− 56.9/− 67.1/− 38.1/− 80.4/− −/−
Real-Fake‡ (Yuan et al., 2023) 89.5/0.40 66.0/0.00 66.9/0.00 54.2/0.00 80.1/0.42 82.8/0.40
GenDataAgent (Ours) 90.3/0.44 71.4/0.00 76.9/0.11 54.7/0.00 81.2/0.42 87.2/0.40

Table 2: Top-1 accuracy / worst-case disparity for image classification tasks with synthetic data
augmentation. ‡We reproduce the Real-Fake for all datasets. 1

Model Pets CUB Flowers Birdsnap Food IN100

ResNet-50 backbone
only real 93.6/0.40 83.1/0.13 87.4/0.40 73.0/0.00 86.8/0.63 87.4/0.20
Real-Fake‡ (Yuan et al., 2023) 94.2/0.48 83.1/0.00 89.0/0.50 73.0/0.00 87.4/0.61 88.6/0.40
Internet Explorer (Li et al., 2023a) 94.5/0.52 83.6/0.25 90.2/0.56 73.9/0.00 87.3/0.63 88.9/0.40
GenDataAgent (Ours) 94.7/0.56 83.9/0.25 91.0/0.56 74.5/0.00 87.8/0.64 90.1/0.40
∆ with only real data +1.1/0.16 +0.8/0.12 +3.6/0.16 +1.5/0.00 +1.0/0.01 +2.7/0.20

CLIP ResNet-50 backbone
only real 77.8/0.28 66.3/0.00 69.0/0.24 64.6/0.00 82.2/0.47 87.0/0.20
Real-Fake‡ (Yuan et al., 2023) 80.7/0.32 66.9/0.00 71.0/0.24 65.7/0.00 86.1/0.61 88.0/0.40
Internet Explorer (Li et al., 2023a) 81.3/0.32 67.7/0.00 72.2/0.24 66.2/0.00 86.3/0.61 88.4/0.40
GenDataAgent (Ours) 82.0/0.32 68.2/0.00 72.8/0.30 66.7/0.00 86.5/0.63 89.1/0.40
∆ with only real data +4.2/0.04 +1.9/0.00 +3.8/0.06 +2.1/0.00 +4.3/0.16 +2.1/0.20

CLIP ViT backbone
only real 92.1/0.40 80.5/0.00 86.5/0.33 65.8/0.00 54.4/0.15 63.2/0.20
Real-Fake‡ (Yuan et al., 2023) 92.8/0.40 80.7/0.00 94.9/0.60 67.8/0.00 63.7/0.20 64.9/0.20
Internet Explorer (Li et al., 2023a) 92.9/0.40 81.8/0.00 95.5/0.67 68.4/0.00 65.1/0.24 65.9/0.20
GenDataAgent (Ours) 93.3/0.48 82.6/0.13 96.1/0.78 69.6/0.00 67.0/0.26 66.3/0.20
∆ with only real data +1.2/0.08 +2.1/0.13 +9.6/0.45 +3.8/0.00 +12.6/0.11 +3.1/0.00

Synthetic Data Augmentation. We compare our GenDataAgent with the SOTA method Real-
Fake (Yuan et al., 2023), and Internet Explorer (Li et al., 2023a). For a fair comparison with Internet
Explorer, we keep all aspects of our method, such as distribution adaptation and Llama-2 Perturbation,
unchanged, and only replace Marginal Sampling and VoG Filtering with the 15-NN similarity.

Datasets. GenDataAgent is evaluated on the general ImageNet-100 (IN100) dataset (Tian et al.,
2020) and 5 popular fine-grained datasets: Oxford-IIIT Pets (Parkhi et al., 2012), Flowers-102 (Nils-
back & Zisserman, 2008), Birdsnap (Berg et al., 2014), CUB-200-2011 (Wah et al., 2011), and
Food-101 (Bossard et al., 2014). Following previous work, we adopt backbone models pre-trained on
ImageNet for all datasets except the ImageNet-100. Similar to Real-Fake (Yuan et al., 2023), for the
ImageNet-100 dataset, we train the classifier models from scratch.

Evaluation Matrics. Following previous work (Yuan et al., 2023; Sarıyıldız et al., 2023), we
evaluate our GenDataAgent by Top-1 accuracy across classes. Moreover, we utilize the worst-case
disparity (min-max accuracy ratio) (Ghosh et al., 2021), to evaluate the fairness. Since our sampling
strategy targets more marginal examples, we anticipate that our GenDataAgent could enhance the
fairness of the classifier model, a criterion that holds greater significance in real-world applications.

4.2 QUANTITATIVE RESULT

Synthetic Data Only. Table 1 presents the Top-1 classification accuracy and worst-case disparity
of various methods across diverse downstream datasets under synthetic-only setup. As shown,
GenDataAgent substantially outperforms all other methods in classification accuracy, demonstrating
that our on-the-fly generation approach effectively operates without requiring a real dataset to initialize
the feedback mechanism. Notably, GenDataAgent achieves performance levels comparable to models
trained exclusively on real data, particularly on the IN100 dataset.

Synthetic Data Augmentation. Table 2 present the results under real + synthetic setup with
different pretrained backbones. GenDataAgent improves classification accuracy and worst-case

1Please refer to Appendix C for the mean and deviation of multiple runs.
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Table 3: Break-down ablation of Marginal score Sampling, Llama-2 Perturbation, and VoG
Filtering. The numbers are Top-1 accuracy / worst-case disparity.

Marginal Sampling Perturbation VoG Filtering Pets CUB Flowers Birdsnap Food IN100Section 3.2 Section 3.3 Section 3.4

- - - 93.6 / 0.40 83.1 / 0.13 87.4 / 0.40 73.0 / 0.00 86.8 / 0.63 87.4 / 0.20

94.2 / 0.48 83.1 / 0.00 89.0 / 0.50 73.0 / 0.00 87.4 / 0.61 88.6 / 0.40
! 94.4 / 0.56 83.6 / 0.25 90.0 / 0.50 73.6 / 0.00 87.4 / 0.63 89.1 / 0.40
! ! 94.6 / 0.56 83.9 / 0.25 90.1 / 0.50 73.6 / 0.00 87.8 / 0.64 89.9 / 0.40
! ! ! 94.7 / 0.56 83.9 / 0.25 91.0 / 0.56 74.5 / 0.00 87.8 / 0.64 90.1 / 0.40

Table 4: Ablation studies on feedback criteria used in Section 3.2.

Feedback Pets CUB Flowers Birdsnap Food IN100

Entropy (Hemmat et al., 2023; Kolossov et al., 2024) 94.6 / 0.52 83.2 / 0.13 91.0 / 0.56 73.6 / 0.00 86.9 / 0.58 89.4 / 0.40
Marginal score 94.7 / 0.56 83.9 / 0.25 91.0 / 0.56 74.5 / 0.00 87.8 / 0.64 90.1 / 0.40

disparity over the only real setup across all benchmarks, with the improvement (∆) highlighted
in green. Furthermore, GenDataAgent outperforms other SOTA methods across all backbones.
Comparing our GenDataAgent with Internet Explorer demonstrates the effectiveness of Marginal
Score Sampling and VoG Filtering. The worst-case disparity metric in table 2 shows that the synthetic
data generated on the fly (e.g., by our method and Internet Explorer) improves the model’s fairness.
In contrast, Real-Fake surprisingly increases the worst-case disparity between classes in the CUB
and Food datasets when using the ResNet-50 backbone. We attribute this to the fact that merely
generating synthetic data can amplify existing biases between classes, as it fails to account for biases
present in the original real dataset. Our on-the-fly mechanism addresses this issue by interacting with
the model during training, thereby mitigating the bias. However, in the synthetic-only setting, without
feedback guidance from the initial real dataset, both our GenDataAgent and Real-Fake experience
performance drops in terms of worst-case disparity.

4.3 ABLATION STUDY

Break-down Ablation. We further study the effect of each component in GenDataAgent: Marginal
score Sampling, Llama-2 Perturbation, and VoG Filtering separately by a break-down ablation
in Table 3. We start with the vanilla static synthetic data augmentation setting and gradually add
Marginal score Sampling, Llama-2 Perturbation, and VoG Filtering. It can be observed that each
component achieves uniform improvement across these datasets. For further ablation analysis on the
hyper-parameters of each module, please refer to Appendix D.

Feedback Criteria. We compare our Marginal score sampling strategy with the Entropy criteria
introduced by (Hemmat et al., 2023; Kolossov et al., 2024) in Table 4. The results indicate that the
entropy criteria is either worse or on par with our method, while our Marginal score is simpler and
more efficient. Thus, we selected the Marginal score as the feedback criterion.

Table 5: Comparison with different numbers of
checkpoints used by VoG filtering.

#ckpts Pets CUB Flowers Birdsnap

3 94.7/0.56 83.9/0.25 91.0/0.56 74.5/0.00
4 94.5/0.56 84.1/0.25 91.5/0.56 74.4/0.00
5 94.4/0.52 84.0/0.25 91.4/0.56 73.6/0.00

Number of VoG Checkpoints. To figure out
the best choice of VoG checkpoint numbers, we
conduct experiments with 3, 4, and 5 VoG check-
points in Table 5, where we find that there is no
significant difference between different numbers
of checkpoints. Thus we finally adopt 3 check-
points to save resources.

Comparison with Traditional Data Augmentation Method. In Table 6, we compare our Gen-
DataAgent with RandAugment (Cubuk et al., 2020), a traditional transformation-based data augmen-
tation method. The results show that traditional transformation-based augmentation offers negligible
performance improvement, whereas our GenDataAgent consistently enhances both Top-1 accuracy
and worst-case disparity. This highlights the potential of synthetic data augmentation methods.

Scaling up/down Ablation with Time Analysis. To investigate the impact of different synthetic
data ratios, we conduct additional experiments using a real-to-synthetic ratio of 1:10 for Real-Fake,
and ratios of 1:0.5 and 1:0.1 for our on-the-fly augmentation framework. Notably, the search space of
Real-Fake 1:10 is equivalent in size to that of GenDataAgent 1:0.5, as both generate the same total
amount of synthetic data. Furthermore, we break down the time required for each step to analyze the
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Table 6: Comparison between data augmentation method RandAugment and our GenDataAgent.

Method Pets CUB Flowers Birdsnap Food IN100

Only Real 93.6/0.40 83.1/0.13 87.4/0.40 73.0/0.00 86.8/0.63 87.4/0.20
RandAugment (Cubuk et al., 2020) 93.7/0.40 83.0/0.13 87.5/0.40 73.5/0.00 87.0/0.63 86.8/0.40
GenDataAgent (Ours) 94.7/0.56 83.9/0.25 91.0/0.56 74.5/0.00 87.8/0.64 90.1/0.40

0 2 4 6 8 10

Only Real

Real-Fake (1:1)

Real-Fake (1:10)

GenDataAgent (1:0.1)

GenDataAgent (1:0.5)

GenDataAgent (1:1)

Pets

0 5 10 15 20 25 30 35 40

CUB

0 1 2 3 4 5 6 7
GPU Hours

Flowers

0 20 40 60 80 100 120

Only Real

Real-Fake (1:1)

Real-Fake (1:10)

GenDataAgent (1:0.1)

GenDataAgent (1:0.5)

GenDataAgent (1:1)

Birdsnap

0 50 100 150 200

Food

0 50 100 150 200 250 300 350
GPU Hours

IN100

92.0 92.5 93.0 93.5 94.0 94.5 95.0 95.5 96.0 78 79 80 81 82 83 84 85

66 67 68 69 70 71 72 73 74 75 85.0 85.5 86.0 86.5 87.0 87.5 88.0

86 87 88 89 90 91 92 Top-1 Acc

87.0 87.5 88.0 88.5 89.0 89.5 90.0 90.5 91.0Top-1 Acc

SD Adaptation LLaMA Caption Perturbation Synthetic Data Generation Classifier Finetuning Top-1 Acc

Figure 4: The bars on the left represent the GPU hours required for each step, while the line on the
right depicts the Top-1 accuracy for each method. Simply increasing the synthetic data ratio from
Real-Fake (1:1) to Real-Fake (1:10) can be detrimental. However, our GenDataAgent demonstrates
improvement across both small and large real-synthetic ratios.

efficiency and identify the bottleneck of synthetic data augmentation. As shown in Figure 4, simply
expanding the synthetic data search space and incorporating all data into training may be detrimental,
as Real-Fake 1:10 underperforms compared to Real-Fake 1:1 on most datasets, particularly on fine-
grained, smaller datasets. In contrast, our GenDataAgent 1:0.5 outperforms Real-Fake 1:1, indicating
that our on-the-fly framework can effectively handle large volumes of synthetic data. Moreover,
GenDataAgent 1:0.1 matches or exceeds Real-Fake’s performance, demonstrating its capability with
small synthetic data volumes. In terms of time analysis, training with only real data offers the best
efficiency, while both Real-Fake and GenDataAgent require significant time to adapt the Stable
Diffusion to the target dataset distribution. Although GenDataAgent 1:1 is constrained by the long
synthetic data generation process, the lighter GenDataAgent 1:0.1 provides a balanced trade-off
between performance and efficiency. In addition, further improvements in time efficiency can be
realized by incorporating more efficient generation models.

5 GENERATING CONTENT ANALYSIS

Is there a relationship between synthetic data volume and category accuracy? In Figure 5, we
show that synthetic data sampled by our GenDataAgent can reflect the trend of training accuracy
well. From the absolute value perspective, after training the model on real data only (stage-1
in Algorithm 1), GenDataAgent generates more synthetic samples for categories with lower accuracy.
The trend in Figure 5 indicates that our GenDataAgent is aware of classification accuracy and
can produce synthetic data that complements lower-performing categories. When shifting to the
incremental view (right part of Figure 5), the trend of ∆ Top-1 accuracy (from the first iteration to
convergence) is aligned well with the increment of synthetic data. This suggests that the performance
gain is highly correlated to the number of synthetic data.

Does the augmentation by synthetic data relieve the over-fitting problem? We show the training
and validation accuracy after convergence in Figure 6 (a). Compared to static augmentation, our
on-the-fly method narrows the gap between the training and validation from the yellow region to the
red area, suggesting that GenDataAgent can relieve the over-fitting problem.
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Figure 5: Absolute (left, the first on-the-fly iteration) and increment (right, from the first iteration to
the convergence) relationship between the number of synthetic data (bar chart) and training top-1
accuracy on Oxford-IIIT Pets dataset across classes.

(a) Over-fitting (b) Real & Syn Gradients

Early Stage Later Stage

(c) Training Acc

Figure 6: Analysis on Pets dataset. (a) The training and validation accuracy of Real-Fake and our
method after convergence. The yellow and red regions are the train-val gaps of Real-Fake and our
method respectively. (b) The average gradient of real and synthetic data, and the training top-1
accuracy during the on-the-fly process. Red arrows indicate the gradient of real data is larger than
that of the synthetic data, while green arrows mean the opposite. (c) Classification accuracy on real
and synthetic data during training on the Pets dataset in both static and on-the-fly settings.

Do real and synthetic data contribute the same to improving the model during on-the-fly stage?
The answer is no. As shown in Figure 6 (b), we computer the average magnitude of the gradient of
real and synthetic data for each on-the-fly iteration to show their impact on the model. The higher the
gradient, the larger the impact (Li et al., 2023a). The initial finding is that the gradient of both real
and synthetic data goes down as the model converges, while the gradient of real data decays more
significantly. More importantly, there is a distinct boundary evident during the fine-tuning process,
which separates the whole on-the-fly process into two stages. The real data is dominant in the early
stage, where the expressive ability of the model increases rapidly. When the model starts to slowly
converge (the later stage), synthetic samples contribute more to the learning process.

Does the model treat synthetic data differently from real data during fine-tuning? As shown
in Figure 6 (c), in Real-Fake’s static augmentation setting, the training accuracy of synthetic data
is close to that of the real data while far away from the validation set. In comparison, the training
accuracy of synthetic data in our on-the-fly augmentation exhibits an obvious gap compared to the
real data and is much closer to that of the validation set. In other words, the model treats synthetic
data almost the same as real data in the static setting. Yet, in the on-the-fly augmentation, the role of
synthetic data differs considerably, and the model is not forced to fit the synthetic data perfectly.

6 CONCLUSION

In this work, we propose GenDataAgent, an on-the-fly framework for synthetic data augmentation in
computer vision. GenDataAgent first aligns synthetic data with target distributions by fine-tuning
the Stable Diffusion. Then, it prioritizes diverse samples that complement marginal real examples to
narrow the search space. In addition, Llama caption perturbation and VoG filtering are employed
to enhance the diversity and keeping the synthetic data within the target distribution respectively.
Extensive evaluations across image classification tasks demonstrate its effectiveness, achieving
state-of-the-art generalization and increased fairness. Moreover, our content analysis highlights the
framework’s potential to inspire further advancements in synthetic data techniques.
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