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Abstract— The calibration of deep learning-based perception
models plays a crucial role in their reliability. Our work
focuses on a class-wise evaluation of several model’s confi-
dence performance for LiDAR-based semantic segmentation
with the aim of providing insights into the calibration of
underrepresented classes. Those classes often include VRUs
and are thus of particular interest for safety reasons. With
the help of a metric based on sparsification curves we compare
the calibration abilities of three semantic segmentation models
with different architectural concepts, each in a in deterministic
and a probabilistic version. By identifying and describing the
dependency between the predictive performance of a class and
the respective calibration quality we aim to facilitate the model
selection and refinement for safety-critical applications.

I. INTRODUCTION

Environment perception allows an autonomous vehicle to
detect and understand the behavior of other participants and
enables it to adapt its own behavior accordingly. Deep learn-
ing methods took the performance in environment perception
to a new level by evaluating large amounts of data gathered
by various sensors with different modalities. Besides cameras
and RADAR sensors, in the past years the LiDAR sensor
gained relevance in the context of environment perception
for autonomous vehicles due to the added value of highly
precise depth information [1].

Besides other perception tasks, semantic segmentation
plays a crucial role in scene understanding for autonomous
vehicles. The task of a semantic segmentation model is
conducting a point-wise multi-class classification of LiDAR
point clouds [2], [3]. Despite major advances in this field,
the task of semantic segmentation comes with the challenge
of handling severely imbalanced data [4], [5]. This is due to
the natural distribution of spaces and objects, i.e. in a traffic
scene there always will be significantly more measurements
of the road or buildings than of persons or bicyclists.

These class imbalances have to be considered when de-
veloping and training a semantic segmentation model. While
there have been approaches on overcoming this issue [6],
[7], what remains unclear is the effect of class imbalance on
the calibration of the model. In the context of autonomous
driving, not only the detection of smaller instance classes
is crucial but also having information about the reliability
of those classifications. Ideally, the confidence should match
the actual performance [8] and thus allow downstream tasks
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like sensor fusion or behavior planning to reliably interpret
the models abilities. Thus, the effect of class imbalances on
the calibration of a model is of particular interest regarding
the safety of autonomous vehicles.

This work focuses on the analysis of underderrepresented
classes in terms of calibration in unmodified and probabilistic
LiDAR-based semantic segmentation models. Our contribu-
tions can be summarized as follows:

• Design of a suitable calibration metric for semantic
segmentation models

• Analysis of model calibration given different confidence
measures

• Comparison of three semantic segmentation models
and their probabilistic versions in terms of class-wise
calibration on LiDAR point clouds

II. RELATED WORK

A. Semantic Segmentation of LiDAR point clouds

In the last years, various approaches on the semantic
segmentation of point clouds have been proposed. Some
operate in 3D space by utilizing voxels [9], [10] or unordered
point clouds [11], [12], [13]. Other approaches project the
point cloud into the 2D space in order use Convolutional
Neural Networks developed for the camera-domain for the
semantic segmentation of e.g. range view images [7], [14],
[15], [16], [17].

Independently of the sensor modality, class imbalance is
a problem which needs to be addressed in the semantic
segmentation. Common ways to deal with it during training
is to weight the loss function in favor of underrepresented
classes [6], [18] or to construct an architecture which is
able to overcome the issues imposed by smaller instances
[7], [19]. In terms of performance evaluation, the well-
established mean Intersection over Union (mIoU) evaluation
metric accounts for class imbalances and ensures that under-
represented classes are taken into account appropriately.

B. Calibration of Deep Learning Models

In [8], Guo et al. investigate the calibration of the
traditional softmax probability and proved in a series of
experiments its tendency towards overconfidence. This in-
spired a new field of research - uncertainty estimation in
deep learning [20]. Ensembling techniques like Monte-Carlo
Dropout (MCD) [21] or Deep Ensembles [22] are commonly
used to approximate the unknown posterior of the model
weights and are known to capture the model uncertainty well.
Additionally, Kendall et al. [23] introduced a technique to



use probabilistic logits to learn the data uncertainty directly
from the input.

Works like [24] and [21] argue that the softmax prob-
abilities are less reliable even in models with additional
uncertainty estimation techniques and propose using the en-
tropy over the softmax probability distribution as uncertainty
estimates. Yet, the raw entropy is not a probability and thus
cannot be converted directly into a confidence measure. This
results in the majority of works using the (calibrated) softmax
as confidence measure instead [25], [26], [27], [28], [29].

C. Evaluation of Calibration Measures

Guo et al. [8] proposed the Expected Calibration Error
to assess the calibration of a given neural network, which is
roughly speaking the correlation between the confidence and
the accuracy of a model. While this produces an absolute
measure and works well for tasks which actually use the
accuracy as the performance metric, this approach tends to
overestimate the performance for underrepresented classes.
Nixon et al. [30] adapt this approach to multiclass settings,
which in theory make it possible to calculate this metric for
semantic segmentation tasks and weighting out the class-
imbalances in the final score, but not solving the initial
problem of the class-imabalances.

Mukhoti et al. [24] suggested a metric to capture particular
parts of the calibration abilities of a semantic segmentation
model. Their developed technique evaluates each frame
patch-wise, which are labeled regarding their accuracy and
uncertainty based on variable thresholds. This means, that
this method requires some tuning which makes it difficult to
use it for benchmarking different models.

Originally designed for the optical flow task, [31] proposed
a calibration metric based on sparsification curves. It follows
the same idea as [8], that the confidence should coincide
with the actual performance. Thus, they define the area
under the sparsification error curve (AUSE) as a relative
measure for a model’s calibration. This has been applied to
the task of semantic segmentation as well [25], [26] using the
Brier score of the softmax probabilities to rate the predictive
performance.

III. METHODS

A. Semantic Segmentation Model and Training

We want to uncover which role the architecture choice
plays in the calibration of underrepresented classes, thus
we chose three very differently designed models for the
semantic segmentation task: 1. a DeeplabV3+ model with
a ResNet-50 encoder as backbone [14], 2. a SalsaNeXt [27]
and 3. a LiLaNet, which was specifically designed for dealing
with LiDAR point clouds [7]. While the former one uses
residual blocks and intense pooling to reduce computational
complexity, the latter one does not use pooling in order to
conserve finer structures despite the low resolution.

All models work on 2D data, thus the 3D point clouds are
projected onto an image plane using the method published
in [32]. We use the SemanticKITTI dataset for autonomous
vision tasks [4] as a database. Both models are trained with a
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Fig. 1: Elements of the AUSE metric. Each point on the
sparsification curve is determined by three factos (marked in
blue): the prediction to determine the predictive performance
on the y-axis and the confidence, which will be implicitly
entered on the x-axis through ordering.

class-weighted cross-entropy loss based on [6] to account for
the class imbalances and early stopping to avoid overfitting.

For all deterministic models we employ probabilistic ver-
sions by using MCD [21] (30 samples) and probabilistic
logits [23] (5 samples) to model both aleatoric (data) and
epistemic (model) uncertainty. For that, we add dropout
layers (dropout rate of 0.5) in the middle part of the (encoder)
model, following the findings of [33] and [24].

B. Confidence Measures

As calibration measures we evaluate both the softmax and
the entropy. It has to be noted that the softmax produces
a probability distribution over the classes, summing up to
1. The entropy in turn does not inherently exhibit the
characteristics of a probability, but could be turned into one
by normalizing with the theoretical maximum of log(K). Yet,
it produces only one confidence estimate conditioned on the
given prediction instead of a distribution.

C. Model Calibration

Investigating the effects of underrepresented classes re-
lated to the calibration, we opted for a class-wise evaluation.
Therefore, we need a metric which allows for a class-wise
evaluation of any given confidence measure. At the same
time, we want to decouple the calibration performance from
the predictive performance as much as possible to avoid
biases induced by the softmax.

Sparsification plots have been previously used to evaluate
confidence measures [34]. The idea is to evaluate the point-
wise confidences by creating a ranking of the confidence
values. The contributing factors of the sparsification curve
are illustrated in Figure 1. The performance measure only
depends on the prediction and is depicted on the x-axis. The
confidence measure is depicted on the y-axis implicitly by
ordinal sorting. The pixels with the lowest confidence are
gradually removed and the performance on the remainder
of points is evaluated. If the confidence measure actually
reflects the true performance, the sparsification curve should
monotonically increase. Furthermore, Ilg et al. [31] suggest
a normalization based on the best possible ranking according
to the ground truth labels to remove the dependence on the
model performance, refered to as the oracle curve. The Area
Under the Sparsification Error curve (AUSE) is defined as the
area under the difference between the sparsification and the
oracle curve. Intuitively, the closer the sparsification curve
to the ground-truth-based oracle curve is, the smaller are



DeeplabV3+ SalsaNeXt LiLaNet
class deter. prob. deter. prob. deter. prob.

car 0.86 0.85 0.91 0.93 0.90 0.91
bicycle 0.00 0.01 0.04 0.05 0.11 0.11
motorcycle 0.01 0.01 0.03 0.05 0.06 0.06
truck 0.01 0.01 0.02 0.02 0.02 0.02
other-vehicle 0.04 0.05 0.08 0.10 0.11 0.15
person 0.05 0.07 0.17 0.19 0.20 0.23
bicyclist 0.03 0.08 0.12 0.17 0.15 0.18
motorcyclist 0.00 0.00 0.00 0.00 0.00 0.00
road 0.90 0.88 0.93 0.94 0.92 0.92
parking 0.06 0.06 0.10 0.11 0.08 0.09
sidewalk 0.72 0.69 0.77 0.80 0.75 0.77
other-ground 0.00 0.00 0.00 0.00 0.00 0.01
building 0.73 0.72 0.85 0.86 0.81 0.82
fence 0.11 0.13 0.22 0.24 0.20 0.22
vegetation 0.77 0.75 0.85 0.86 0.86 0.87
trunk 0.35 0.33 0.46 0.50 0.48 0.51
terrain 0.56 0.53 0.62 0.64 0.64 0.65
pole 0.35 0.33 0.58 0.59 0.54 0.57
traffic-sign 0.14 0.15 0.23 0.24 0.24 0.26

all 0.39 0.41 0.52 0.56 0.47 0.51

TABLE I: IoU values for all classes and mIoU in the
validation split of the SemanticKITTI dataset. The values
were calculated for both the deterministic (”deter.”) and
the probabilistic (”prob.”) version of each model. The best
performances are marked in bold.

the AUSE values and the better is the respective calibration.
Thus, we expect the AUSE to be inversely correlated to the
predictive performance in terms of IoU.

The authors of [25] and [26] have used the Brier score
using the softmax probabilities to rate the predictive perfor-
mance and the entropy as confidence (uncertainty) values.
This imposes two issues with our setting:

1) The Brier score requires the full probability distribu-
tion over all classes, which some confidence measures
other than the softmax may not provide. Thus, it would
not be possible to calculate the Brier score based on
e.g. the entropy.

2) Using the entropy for the ranking (x-axis) but the
softmax for the Brier score on the y-axis introduces
a mixing of both measures into the metric (compare
traces in Figure 1). As a result, we would not know
what influences the result most: the softmax probabil-
ities or the actual uncertainty estimation method. This
makes it difficult to draw conclusions from the results
in order to further improve the model.

Due to these reasons, we use the IoU for each class as
measure for the predictive performance. Additionally, we
investigate both the softmax probability of the argmax pre-
diction and the entropy over the softmax as confidence
measures.

IV. RESULTS

A. Performance Evaluation

We calculate the IoU values to evaluate the predictive
performance of all models and their variations. The results
are listed in Table I. It is not surprising that in most cases

DeeplabV3+ SalsaNeXt LiLaNet
deter. prob. deter. prob. deter. prob.

softmax-based AUSE 1.37 1.22 1.10 0.99 1.05 1.15
entropy-based AUSE 1.36 1.22 1.10 1.00 1.08 1.17

TABLE II: Overall AUSE on the validation split of the
SemanticKITTI dataset for all models. The lower the value,
the better is the model calibrated.

the probabilistic versions performed better on the validation
split than their deterministic counterparts. For the smaller
instance classes, e.g. bicycle, person or traffic sign, the
LiLaNet outperforms the other models due to its architecture.
Contrary, the well represented classes like car, road or
building are better learned by the SalsaNeXt model.

B. Calibration Evaluation with AUSE

To gain insights about the calibration of the models, we
calculate the AUSE across the full validation split. This
ensures that even for the underrepresented classes enough
pixels are evaluated. The mean values for both confidence
measures over all frames and all classes can be seen in Table
II. The probabilistic SalsaNeXt achieves the best calibration,
although the deterministic LiLaNet exhibits a similar AUSE
value. Interestingly, in most cases the softmax probability
actually outperformed the entropy in terms of calibration.

To gain deeper insights about the calibration of each class,
we calculate the AUSE for all classes independently. Since
the softmax performs slightly better than the entropy in terms
of calibration, we focus further class-wise evaluations on the
softmax. The results can be seen in III.

At first glance, no predominant tendency can be recog-
nized from the calibration performance. When analyzing
the AUSE in combination with the IoU values, the reason
becomes obvious: some models were not able to learn some
classes (e.g. motorcyclist), resulting in an IoU of 0.0. Thus,
for this class the oracle as well as the sparsification curve
will constantly be 0.0, resulting in a perfect calibration score.
This effect is depicted in Figure 2. We expect the relation
between the predictive and the calibration performance to be
rougly an inverse linear correlation.

To gain some deeper insights into this phenomenon, we
filter those cases (IoU < 0.03, marked with a orange line)
and re-evaluate the best calibration performances. After that,
a similar pattern arises as in the IoU values in Table I:
since the LiLaNet is better calibrated on smaller instance
classes it’s deterministic version exhibits a similar overall
calibration performance as the probabilistic SalsaNeXt. It
should be noted that the filtered classes are not neccessarily
underrepresented classes but rather classes which are hard to
learn from the available data.

V. DISCUSSION

We demonstrated how a modification of the AUSE metric
helps to analyze the calibration of a semantic segmentation
model and to identify factors that contribute to the class-wise



DeeplabV3+ SalsaNeXt LiLaNet
deter. probab. deter. prob. deter. prob.

car 0.12 0.10 0.08 0.05 0.08 0.05
bicycle 0.53 1.32 2.13 2.12 2.15 1.99
motorcycle 1.71 2.08 2.77 2.87 2.13 2.78
truck 3.53 1.33 0.75 0.15 1.33 1.72
other-vehicle 2.69 2.75 3.00 2.89 2.19 2.61
person 2.48 2.06 0.92 0.82 0.81 0.76
bicyclist 2.56 2.56 1.42 0.54 1.30 1.06
motorcyclist 0.00 0.00 0.00 0.00 0.04 0.52
road 0.08 0.11 0.07 0.04 0.05 0.05
parking 3.32 2.75 3.25 2.74 2.31 2.47
sidewalk 0.58 0.70 0.48 0.43 0.59 0.52
other-ground 0.05 0.01 0.10 0.30 0.74 1.03
building 0.31 0.23 0.11 0.10 0.21 0.16
fence 2.48 1.87 1.35 1.91 2.13 2.19
vegetation 0.50 0.51 0.20 0.17 0.26 0.23
trunk 1.35 1.13 1.21 0.83 0.89 0.77
terrain 0.54 0.70 0.52 0.47 0.43 0.41
pole 1.53 1.41 1.01 1.14 1.63 1.35
traffic-sign 1.69 1.55 1.58 1.29 1.27 1.18
all (filtered) 1.44 1.32 1.26 1.15 1.15 1.16

TABLE III: Per-class AUSE on the validation split of the
SemanticKITTI dataset for all models. The per-class AUSE
is calculated for softmax probability as confidence measure.
The best performances for each class are marked in bold,
the underlined values indicate the best performances after
filtering for outlier (marked in gray) in terms of predictive
performance.

calibration. Following, we discuss our key findings based on
Tables I, II and III.

1) The SalsaNeXt performed best regarding the predic-
tive and calibration performance, followed closely by the
LiLaNet: The probabilistic version of the SalsaNeXt model
exhibits the best calibration performance. Interestingly, the
next best calibration performance is achieved by the deter-
ministic LiLaNet. This might be due to its design, which
inherently produces more calibrated softmax values. It illus-
trates that a probabilistic model with uncertainty estimation
not necessarily exhibits a better calibration. It has to be
noted that this finding is only supported by an evaluation
on in-domain data. Contrary to the other two models, the
DeeplabV3+ did not perform well on LiDAR data, suggest-
ing that heavy pooling might not be beneficial when working
with sparse and fine-grained structured data.

2) The difference in calibration between softmax and
entropy within a model is surprisingly small: We did not
observe significant differences between the softmax and
the entropy with respect to their calibration abilities. This
indicates, that the softmax probabilities are able to capture
uncertainty to some extend. It should also be noted that
the calibration quality of the softmax influences the entropy,
since it depends on the softmax probability distribution itself.

3) Investigating the model calibration independently of
the model performance exhibits several advantages: Our
modified AUSE metric assesses the calibration performance
independently of the chosen calibration metric and the
model’s predictive performance. Thus, it provides the basis
for further investigations regarding the handling of underrep-
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Fig. 2: Covariation of AUSE and IoU. An inverse linear
relationship between the calibration and the predicitve per-
formance would be desireable. In that sense, the data points
left of the orange line can be seen as outliers due to a poor
predictive performance.

resented classes. Furthermore, it facilitates the model choice
for any given task by enabling a custom mixing of the
calibration with any predictive performance metric.

4) The analysis of a mean calibration value over all
classes might give misleading hints on the calibration perfor-
mance: We observed the phenomenon of perfect calibration
on unlearned classes which comes with decoupling the
calibration performance from the predictive performance.
That means, if a model is always wrong on a given class,
the calibration will always be perfect. This effect can be
avoided by constructing a model with a better performance
on underrepresented classes or by filtering those classes.

VI. CONCLUSION AND OUTLOOK

In this paper we provided some insights about the role
of class imbalance on the calibration of semantic segmen-
tation models. We compared three models with different
architectural characteristics, each in a deterministic and a
probabilistic fashion. To evaluate the class-wise calibration
performance, we modified sparsification-metric in order to
decouple the predictive performance from the calibration.
Furthermore, we gained some insights about the softmax
compared to the entropy as confidence measures. Our key
findings revealed that our metric is able to assess the cal-
ibration independently of the predictive performance, but
in reality, the calibration and the predictive performance
are influenced by each other. Furthermore, the calibration
abilities depend on the structure of a model.

With this work we aim to promote research on the calibra-
tion on underrepresented classes and their effect on model
performance and selection. Further research could include
the evaluation of more model architectures, training strategies
and uncertainty estimation methods. Additionally, it would
be of interest to refine the proposed metric related to the
outlier filter which influeces the calibration performance.
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