
How does a text preprocessing pipeline affect ontology matching?

Anonymous ACL submission

Abstract
The generic text preprocessing pipeline,001
comprising Tokenisation, Normalisa-002
tion, Stop Words Removal, and Stem-003
ming/Lemmatisation, has been implemented004
in many ontology matching (OM) systems.005
However, the lack of standardisation in text006
preprocessing creates diversity in mapping007
results. In this paper, we investigate the effect008
of the text preprocessing pipeline on OM tasks009
at syntactic levels. Our experiments on 8 On-010
tology Alignment Evaluation Initiative (OAEI)011
track repositories with 44 distinct alignments012
indicate: (1) Tokenisation and Normalisation013
are currently more effective than Stop Words014
Removal and Stemming/Lemmatisation;015
and (2) The selection of Lemmatisation and016
Stemming is task-specific. We recommend017
standalone Lemmatisation or Stemming with018
post-hoc corrections. We find that (3) Porter019
Stemmer and Snowball Stemmer perform020
better than Lancaster Stemmer; and that (4)021
Part-of-Speech (POS) Tagging does not help022
Lemmatisation. To repair less effective Stop023
Words Removal and Stemming/Lemmatisation024
used in OM tasks, we propose a novel025
context-based pipeline repair approach that026
significantly improves matching correctness027
and overall matching performance.028

1 Introduction029

Ontology matching (OM), also known as ontology030

alignment, is essential to enable interoperability be-031

tween heterogeneous ontologies. An OM process032

usually takes two ontologies as input, discovers033

mappings between entities, and produces a set of034

correspondences (Euzenat et al., 2007). A classical035

OM system usually contains syntactic, lexical, and036

semantic matching. Syntactic matching captures037

“anchor mappings”, providing the foundation for038

the latter lexical and semantic matching. This multi-039

layer architecture has been implemented in several040

successful OM systems, such as LogMap (Jiménez-041

Ruiz and Cuenca Grau, 2011; Jiménez-Ruiz et al.,042

2011), AgreementMakerLight (AML) (Faria et al., 043

2013, 2014), and FCA-Map (Zhao et al., 2018; Li 044

et al., 2021). 045

There are many strategies to extract syntactic 046

information from an ontology entity, including 047

the older approach of Bag-of-Words (e.g. TF- 048

IDF Sammut and Webb, 2010), popular word em- 049

bedding models (e.g. Word2Vec Mikolov et al., 050

2013), and state-of-the-art language models (e.g. 051

BERT Devlin et al., 2019). Despite the diversity 052

of the models used, they all apply text prepro- 053

cessing for cleaning the text data before fitting it 054

into the model. Figure 1 shows an example of us- 055

ing the text preprocessing pipeline to process the 056

ontology entity “cmt:reviewerBiddingStartedBy”. 057

The text preprocessing pipeline consists of a set of 058

steps to segment, reconstruct, analyse, and process 059

the information in the text, namely Tokenisation, 060

Normalisation, Stop Words Removal, and Stem- 061

ming/Lemmatisation (Anandarajan et al., 2019). 062

Tokenisation is the process of breaking the text into 063

the smallest units (i.e. tokens). We use whitespace 064

to split the tokens in the example. Normalisation is 065

the process of transforming these different tokens 066

into a single canonical form. Stop Words Removal 067

is the process of removing filler words that usually 068

carry little meaning and can be omitted in most 069

cases. Stemming/Lemmatisation is used to deal 070

with the grammatical variation of words, applying 071

rules to find the simplest common form of the word. 072

This helps to capture the key information from the 073

text and therefore improves efficiency. 074

While a number of OM systems use the text pre- 075

processing pipeline for syntactic OM, few studies 076

explain why a specific method is selected for a 077

certain OM task. Our study tackles the challenge 078

in two ways. Firstly, we conduct a comprehen- 079

sive experimental analysis of the text preprocess- 080

ing pipeline in syntactic OM across a wide range 081

of domains, aiming to explain the behaviour of 082

the text preprocessing pipeline in OM tasks at syn- 083

1

Figure 1: An example of the text preprocessing pipeline.

tactic levels. In each phase, a text preprocessing084

method is evaluated for its correctness and com-085

pleteness. Secondly, we propose a novel context-086

based pipeline repair approach for syntactic OM.087

The method offers a customised way to fine-tune088

the text preprocessing pipeline for each domain-089

specific OM task and shows promising results for090

repairing false mappings. Specifically, this paper091

makes the following contributions:092

• We categorise the text preprocessing pipeline093

used in syntactic OM into two phases. We find094

a significant improvement using Phase 1 text pre-095

processing methods. In contrast, Phase 2 text pre-096

processing methods are currently less effective. We097

compare the performance of (1) Stemming and098

Lemmatisation, (2) different stemming methods099

(Porter, Snowball, and Lancaster), and (3) Lemma-100

tisation and Lemmatisation + Part-of-Speech (POS)101

Tagging. We find that inappropriate stop words re-102

moval, over-stemming, and over-lemmatisation are103

common on 8 Ontology Alignment Evaluation Ini-104

tiative (OAEI) (OAEI, 2023) track repositories with105

44 distinct alignments.106

• We propose a simple and intuitive context-based107

pipeline repair method. This method is evalu-108

ated on the same OM tasks we analysed, show-109

ing promising results to improve the correctness of110

syntactic OM when inserted in the pipeline repair111

before Phase 2 text preprocessing methods.112

• We provide our code and generated alignments113

from the experiment (submitted as a single .zip114

archive). They can be reused to benchmark new115

text preprocessing methods or fine-tune existing116

text preprocessing models used in OM systems.117

The remainder of the paper is organised as fol-118

lows. Section 2 reviews the related work. Section 3119

analyses the text preprocessing pipeline used in120

OM. Section 4 proposes the context-based pipeline121

repair approach and experimentally validates its122

performance. Section 5 concludes the paper.123

2 Related Work 124

Syntactic matching considers only the meaning of 125

the entity’s name or label, ignoring its lexical and 126

structural context in an ontology (Liu et al., 2021). 127

Correct syntactic matches are often implicit and 128

usually require extra human observation and do- 129

main knowledge. Text preprocessing is introduced 130

to automate this process. 131

The use of text preprocessing in syntactic match- 132

ing can be traced back to the early stages of OM sys- 133

tems, having been initially developed and widely 134

used as a basic component to generate linguistic- 135

based mappings. AgreementMaker (Cruz et al., 136

2009) has a normaliser to unify the textual infor- 137

mation of the entities. SAMBO (Lambrix and Tan, 138

2006) uses the Porter Stemmer for each word to 139

improve the similarity measure for terms with dif- 140

ferent prefixes and suffixes. In RiMOM (Li et al., 141

2009), the context information of each entity is 142

viewed as a document. The text in each document 143

is preprocessed with tokenisation, stop words re- 144

moval, and stemming. 145

Recently, machine learning (ML) models have 146

emerged for modern OM systems. While text 147

preprocessing remains useful, its role is more fo- 148

cused on normalising the text that becomes the 149

input to the model. For example, BERTMap (He 150

et al., 2022) uses BERT’s inherent WordPiece to- 151

keniser (Wu et al., 2016) to build the subword of 152

each entity. A more recent approach DeepOnto (He 153

et al., 2023) extends the normalisation to axioms us- 154

ing EL embedding models (Kulmanov et al., 2019). 155

The ML extension of LogMap (Chen et al., 2021) 156

reuses the seed mappings of the traditional sys- 157

tem, where each entity is split into its component 158

English word and the mapping is based on their 159

similarity. 160

However, to the best of our knowledge, most of 161

the literature implements a preprocessing method 162

without explaining why a specific method is chosen, 163

and no studies have been conducted to evaluate the 164

effect of text preprocessing on syntactic OM. 165

3 Analysis of Text Preprocessing Pipeline 166

3.1 Method 167

Given a source ontology Os and a target ontol- 168

ogy Ot, OM establishes mappings between pairs 169

of entities drawn from each of two ontologies. A 170

correspondence (i.e. one instance of mappings) is 171

defined as a 4-tuple (e1, e2, r, c), where e1 ∈ Os 172

and e2 ∈ Ot. r is the relationship between two 173

2

matched entities e1 and e2, and c ∈ [0, 1] is the con-174

fidence for each correspondence. The relationship175

r in OM tasks can be equivalence (≡), subsump-176

tion (⊆), disjointness (⊥), or other more complex177

relationships. In this paper, we focus only on the178

equivalence relationship (≡) and evaluate the ef-179

fect of text preprocessing on syntactic matching to180

produce the “anchor mappings” on which to base181

any subsequent lexical and semantic matching. We182

address only equivalence because subsumption and183

disjointness are typically dealt with in a later se-184

mantic and structural matching phase of OM. An185

alignment (A) is a set of candidate correspondences186

generated by tools, while a Reference (R) is a set of187

gold standard correspondences verified by domain188

experts (i.e. the ground truth alignment).189

Figure 2 shows the method used to analyse the190

text preprocessing pipeline. Alignment (A) is gen-191

erated via the text preprocessing pipeline. Firstly,192

for both Os and Ot, we retrieve the entities from the193

named classes (i.e. owl:Class) and named proper-194

ties (i.e. object properties owl:ObjectProperty and195

data type properties owl:DatatypeProperty). For196

those ontologies where the names of the concepts197

are not textual (e.g. a numerical identifier), instead,198

we retrieve the meaningful text from entity labels199

(i.e. rdfs:label). Then, we apply the text preprocess-200

ing pipeline method f(.) on each entity e1 ∈ Os201

and e2 ∈ Ot. If f(e1) = f(e2), we store the cor-202

respondence in the corresponding alignment file.203

Finally, we compare the generated Alignment (A)204

with Reference (R) to evaluate the performance of205

the text preprocessing pipeline on OM tasks.206

Figure 2: Method used to analyse the text preprocessing
pipeline. B-Base Entity without Text Preprocessing, T-
Tokenisation, N-Normalisation, R-Stop Words Removal,
S/L-Stemming/Lemmatisation.

3.1.1 Selected OAEI Track Repositories207

The Ontology Matching Evaluation Toolkit208

(MELT) (Hertling et al., 2019) is a powerful frame-209

work for OM evaluation. We retrieve 16 OAEI210

track repositories stored in the MELT public repos-211

itory (April 27, 2023). The repositories are cate-212

gorised as schema matching or instance matching. 213

12 of the 16 track repositories are schema-matching 214

and applicable for evaluating OM. Only 8 of these 215

track repositories are selected because the other 216

four have noisy data or miss required files. Specifi- 217

cally, the knowledgegraph repository contains both 218

schema and instance mappings. The complex repos- 219

itory is primarily focused on detecting complex cor- 220

respondences, while the multifarm repository is an 221

extension of the conference repository to multilin- 222

gualism. The laboratory repository lacks reference 223

files at the time of writing. 224

Table 1 shows the details of the selected track 225

repositories. The reference files in these 8 OAEI 226

track repositories contain only equivalence map- 227

pings. The confidence c is 1, except for the large- 228

bio track repository with c ∈ [0.7, 1]. Each track 229

repository may contain more than one alignment 230

corresponding to different pairs of ontologies. For 231

example, the largebio track repository has three 232

reference files, pairing FMA (Rosse and Mejino, 233

2003) and SNOMED (Donnelly et al., 2006), 234

FMA (Rosse and Mejino, 2003) and NCI (Golbeck 235

et al., 2003), and SNOMED (Donnelly et al., 2006) 236

and NCI (Golbeck et al., 2003), respectively. The 237

number of references for the selected track repos- 238

itories is given in the table. There are 44 distinct 239

alignments evaluated in this study. 240
Name Domain Number of References

anatomy Human and Mouse Anatomy 1

biodiv Biodiversity and Ecology 9

commonkg DBpedia and NELL 2

conference Conference 24

food Food Nutritional Composition 1

largebio Biomedical 3

mse Material Sciences & Engineering 2

phenotype Disease and Phenotype 2

Table 1: Selected OAEI track repositories.

Compound words are frequently used in ontol- 241

ogy naming conventions. For example, compound 242

words “program committee” can be formatted as 243

“conference:Program_committee” (snake case) or 244

“cmt:ProgramCommittee” (camel case). Figure 3 245

shows the proportion of compound words in the 246

selected OAEI track repositories. For comparisons 247

between entities with compound words, one ap- 248

proach is to use their tokens, where “XY” is equiv- 249

alent to “YX” because they share the same concepts 250

X and Y. However, our comparison considers both 251

concepts and their order, so that “XY” is not equiva- 252

lent to “YX”. Although concurrent “XY” and “YX” 253

are rare in the matching process, we assume that it 254

could happen and so we take account of the order 255

3

of concepts in compound word names to ensure a256

fair comparison in our experiments.257

(a) Named Classes (b) Named Properties
Figure 3: The proportion of compound words.

3.1.2 Selected Subtasks of Pipeline Methods258

There are a variety of subtasks that can be used259

in a general text preprocessing pipeline, but not260

all of them are applicable to OM tasks. We select261

the following subtasks in each text preprocessing262

method:263

(1) Tokenisation: includes word tokenisation only.264

We do not use sentence tokenisation (segmentation)265

because text retrieved from the entity’s name or266

label is commonly short.267

(2) Normalisation: includes lowercasing, HTML268

tags removal, separator formatting, and punctua-269

tion removal. Other subtasks that may potentially270

change the word semantics (e.g. removal of special271

characters and numbers) are excluded.272

(3) Stop Words Removal: includes the most com-273

mon English stop words defined in the Natural274

Language Toolkit (NLTK) (Bird et al., 2008).275

(4) Stemming/Lemmatisation: Stemming methods276

include Porter Stemmer, Snowball Stemmer, and277

Lancaster Stemmer. Lemmatisation uses the NLTK278

Lemmatiser (Bird et al., 2008) based on Word-279

Net (Miller, 1995), and the word categorisation280

uses POS Tagging.281

3.1.3 Selected OM Evaluation Measures282

In information retrieval, there are four primitive283

measures: true positive (TP), false positive (FP),284

false negative (FN), and true negative (TN). In the285

context of OM, evaluation compares an alignment286

(A) returned by the OM system with a gold stan-287

dard reference (R). Figure 4 illustrates that the four288

primitive measures in OM can be interpreted as289

TP = A ∩ R, FP = A− R, FN = R − A, and290

TN = (C ×C ′)− (A ∪R), where C ×C ′ refers291

to all possible correspondences ∈ {Os, Ot}.292

Accuracy (A), Specificity (S), Precision (P), Re-293

call (R), and Fβ Score are the most prevalent eval-294

uation measures based on TP, FP, FN, and TN. In295

Figure 4: OM evaluation measures (Euzenat, 2007).

the context of OM, since C×C ′ is extremely large 296

(the Cartesian product of e1 ∈ Os and e2 ∈ Ot), 297

TN is often much larger than TP, FP, and FN. This 298

means that Accuracy (A) and Specificity (S) are 299

close to 1, and they have no statistically significant 300

difference across different alignments. We note 301

that Precision (P) and Recall (R) contribute equally 302

to Fβ . Therefore, we choose Precision (P), Recall 303

(R), and F1 Score (β = 1) in this study. They are 304

defined as: 305

P =
|A ∩R|
|A| R =

|A ∩R|
|R| F1 =

2

P−1 +R−1
(1) 306

3.2 Results 307

3.2.1 Comparison of Pipeline Methods 308

Figure 5 summarises the comparison of the text 309

preprocessing methods Tokenization (T), Normal- 310

isation (N), Stop Words Removal (R), and Stem- 311

ming/Lemmatisation (S/L). Three horizontal lines 312

inside each violin plot show three quartiles: Q1, 313

median, and Q3. The methods are always applied 314

sequentially in the pipeline. The result indicates 315

that the vast majority of correct correspondences 316

are found by T and N. We do not see R and S/L 317

playing a prime role in OM tasks. Details can be 318

found in the Appendix A.1. 319

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 5: Comparison of the generic text preprocess-
ing pipeline: Base Entity without Text Preprocessing
(B), Tokenisation (T), Normalisation (N), Stop Words
Removal (R), Stemming/Lemmatisation (S/L). (a) Preci-
sion: The median increases with T and N but decreases
with R and S/L. After T, the shape of the distribution is
unchanged by N, R, and S/L. (b) Recall: After T, the
median increases slightly with each of N, R, and S/L.
The shape of the distribution does not change after N. (c)
F1 Score: the median increases with T and N but then
decreases with R and S/L. The shape of the distribution
does not change after N.

4

3.2.2 Stemming vs. Lemmatisation320

Figure 6 compares Stemming (S) and Lemmatisa-321

tion (L) on 44 alignments after Tokenisation (T)322

and Normalisation (N) have been applied. L is323

commonly better than S.324

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 6: Comparison of Stemming (S) and Lemmati-
sation (L). (a) Precision: The median after L is greater
than that achieved by S. The shape of the distribution is
slightly different. (b) Recall: The median and the shape
of the distribution are identical after S and after L. (c)
F1 Score: The median after L is greater than for S. The
shape of the distribution is identical.

3.2.3 Porter Stemmer vs. Snowball Stemmer325

vs. Lancaster Stemmer326

Figure 7 compares Porter Stemmer (SP), Snowball327

Stemmer (SS), and Lancaster Stemmer (SL) in 44328

alignments. SP and SS have been found to perform329

better than SL.330

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 7: Comparison of different stemmers: Porter
Stemmer (SP), Snowball Stemmer (SS) and Lancaster
Stemmer (SL). (a) Precision: The median number in SP
and SS is greater than that in SL, and there is no differ-
ence between SP and SS. The shape of the distribution is
identical. (b) Recall: The median number and the shape
of the distribution are identical in SP, SS, and SL. (c) F1
Score: The median number in SP and SS is greater than
that in SL, and there is no difference between SP and
SS. The shape of the distribution is identical.

3.2.4 Lemmatisation vs Lemmatisation + POS331

Tagging332

Figure 8 summarises the comparison of Lemmati-333

sation (L) and Lemmatisation + POS Tagging (LT)334

in 44 alignments. The result indicates that POS335

Tagging does not help with Lemmatisation in Pre-336

cision, Recall, and overall F1 Score in the total of337

44 alignments we analysed.338

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 8: Comparison of Lemmatisation (L) and Lem-
matisation + POS Tagging (LT). For each of (a) Preci-
sion, (b) Recall and (c) F1 Score, the median and the
shape of the distribution are identical for L and LT.

3.3 Discussion 339

For syntactic OM, the text preprocessing pipeline 340

can be categorised into two phases. Phase 1 text 341

preprocessing pipeline methods contain Normali- 342

sation and Tokenisation, whereas Stop Words Re- 343

moval and Stemming/Lemmatisation are assigned 344

to Phase 2. Phase 1 text preprocessing pipeline 345

methods do not change word semantics; instead, 346

they only change syntactic features such as format- 347

ting and typography. Conversely, in Phase 2 of the 348

text preprocessing pipeline, words are changed to 349

better capture semantic similarity, such as remov- 350

ing prefixes and suffixes or substituting common 351

etymological roots. 352

3.3.1 Phase 1 Text Preprocessing Methods 353

We observe that matching performance usually 354

increases with each Phase 1 text preprocessing 355

method, indicating the benefit of these “rules of 356

thumb” for syntactic OM. If two terms can be 357

matched using a heuristic or intuitive technique, 358

there is no need to leverage the more complex 359

Phase 2 methods. 360

However, Phase 1 methods could also benefit 361

from customisation in OM tasks. Some traditional 362

methods originating for natural language process- 363

ing (NLP) are not useful for OM and need to 364

be adjusted. For example, sentence segmentation 365

(i.e.splitting long text into sentences) is not applica- 366

ble for ontology entities because they are generally 367

short text fragments and do not need such opera- 368

tions. Word tokenisation (i.e. breaking text into 369

single words) could be rewritten to detect the ab- 370

breviations that are common practice in ontology 371

concept names and to tackle the conflicting use of 372

camel case and snake case. 373

3.3.2 Phase 2 Text Preprocessing Methods 374

We observe no benefit from Phase 2 text preprocess- 375

ing methods. In some cases, Stop Words Removal 376

and Stemming/Lemmatisation may even hamper 377

5

the mapping. There are plausible explanations for378

this behaviour arising from the nature of ontologies379

as distinct from natural language text, as follows:380

(1) Stop Words Removal: “AND” and “OR” are381

stop words in English and usually carry little useful382

information, whereas these two words express log-383

ical operations in ontology entities and therefore384

may carry important semantics.385

(2) Stemming vs. Lemmatisation: Based on our ex-386

periments, Lemmatisation is better than Stemming.387

While lemmatisation tends to avoid generating FPs,388

it may also miss some implicit TPs. The complex-389

ity of finding a missing TP is equal to the size of390

(C ′). On the other hand, stemming is more aggres-391

sive in finding TPs, but the aggression can lead to392

more FPs as well. The complexity of finding FPs is393

equal to the smaller size of (A). The workload of394

discovering FPs after stemming is generally much395

lighter than detecting missing TPs after lemmatisa-396

tion, but this may also depend on the accuracy of397

post-hoc corrections that can be performed.398

(3) Porter Stemmer vs. Snowball Stemmer vs.399

Lancaster Stemmer: Porter Stemmer and Snow-400

ball Stemmer (also known as Porter 2 Stemmer)401

have been found to perform better than Lancaster402

Stemmer, and we cannot see a significant differ-403

ence between Porter and Snowball. Although the404

Lancaster Stemmer is more aggressive in detecting405

more TPs, it does not lead to performance improve-406

ment as more FPs are matched synchronously.407

(4) Lemmatisation vs. Lemmatisation + POS Tag-408

ging: Lemmatisation + POS Tagging is generally409

expected to have better results than Lemmatisation410

alone because tagging can help detect more precise411

root words. However, we do not observe such a412

performance improvement when using POS Tag-413

ging in our study. The reason may be that ontology414

classes are usually nouns or gerunds, and in such415

cases, we could expect the simpler grammatical416

assumption to have similar results.417

4 Context-based Pipeline Repair418

4.1 Motivation419

Experimental results demonstrate that only To-420

kenisation and Normalisation help with syntac-421

tic OM. The use of Stop Words Removal and422

Stemming/Lemmatisation does not improve per-423

formance and may even have negative impacts.424

Phase 1 text preprocessing methods (Tokenisa-425

tion and Normalisation) do not change the text426

meaning. For example, isReviewing is equivalent427

to is_reviewing. This means that applying Phase 1 428

methods only helps detect TPs, while the number 429

of FPs remains unchanged. For this reason, Phase 1 430

methods always have a positive effect on Precision, 431

Recall, and overall F1 Score. 432

P ↑= |A ∩R|
|A| =

TP

TP + FP
= 1− FP

TP ↑ +FP
(2) 433

R ↑ = |A ∩R|
|R| =

TP ↑
|R| (3) 434

F1 ↑=
2

P ↑−1 +R ↑−1
(4) 435

In most cases, OM only requires minor prepro- 436

cessing using Phase 1 text preprocessing methods. 437

This is because entity names in the ontology are 438

often compound words that do not occur in natu- 439

ral language, but they are partially formalised by 440

agreement. There have been well-defined conven- 441

tions established over the years, such as singularity, 442

positive names, nouns for classes and verbs for 443

properties (Schober et al., 2007; ODP, 2015). 444

Phase 2 text preprocessing methods (Stop Words 445

Removal and Stemming/Lemmatisation) are actu- 446

ally relaxations of matching rules in OM tasks. 447

Moving through the text preprocessing pipeline 448

tends to detect more TPs and FPs in the derived 449

alignment (A). For example, isReviewing and is- 450

ReviewedBy may be object properties with dis- 451

tinctly different meaning, but removing the com- 452

mon stop words “is” and “by”, and using Stem- 453

ming/Lemmatisation to retrieve the same root word 454

“Review”, could cause a false match. For this rea- 455

son, Recall (R) is always increasing, but Precision 456

(P) and overall F1 Score are less reliable. 457

P ? =
|A ∩R|
|A| =

TP ↑
TP ↑ +FP ↑ (5) 458

R ↑ = |A ∩R|
|R| =

TP ↑
|R| (6) 459

F1 ? =
2

P ?−1 +R ↑−1
(7) 460

If we define ∆TP and ∆FP as the increase in 461

TP and FP for a preprocessing method, then the 462

threshold to increase Precision and F1 Score is: 463

TP + ∆TP

TP + ∆TP + FP + ∆FP
>

TP

TP + FP
⇒

∆TP

∆FP
>

TP

FP
(8) 464

In our experiments, we actually observe a re- 465

duction in Precision and overall F1 Score. This 466

means that Phase 2 methods produce more FPs 467

than TPs, and this proportion is less than the origi- 468

nal number of TP/FP . So performance does not 469

improve, unless the benefit of each TP is consid- 470

6

ered more valuable than the disbenefit of each FP.471

This could apply, for example, if we are expecting472

a post-hoc correction phase where removing FPs is473

considered to be an easier human task than adding474

missing TPs.475

4.2 Method476

Phase 2 text preprocessing pipeline methods (Stop477

Words Removal and Stemming/Lemmatisation)478

have been shown to be less effective in OM tasks,479

caused mainly by FPs. We propose a pipeline re-480

pair approach that aims to differentiate FPs and481

therefore improve Precision and F1 Score.482

One critical step in our approach is to retrieve a483

reserved word set that may cause FPs after the text484

preprocessing, and these words will be excluded485

before the text preprocessing. The selection criteria486

are based on two widely agreed assumptions: (1)487

there are no duplicate entities within a single on-488

tology; and (2) ontologies that represent the same489

domain knowledge tend to use similar terminolo-490

gies (we call our approach context-based here be-491

cause pairs of words may have the same or differ-492

ent meanings in different contexts). Based on these493

two assumptions, we propose a simple and intuitive494

Algorithm 1 to retrieve the reserved word set for495

context-based pipeline repair. For both Os and Ot,496

the algorithm first iterates on all pairs of entities497

ei, ej in each of them. For a specific text prepro-498

cessing method f(.), if f(ei) = f(ej), we retrieve499

the different words between ei and ej and store500

them in the reserved word set. If a word appears501

in the reserved set, the text preprocessing pipeline502

skips the operation for this word. To simplify the503

reserved word set, we also remove the words where504

f(w) = w from the final set because either skip-505

ping or keeping these words in the reserved word506

set would not change the mapping results.507

An example of generating and using a simple re-508

served word set is illustrated below. (1) Two object509

properties was_a_member_of and has_members510

from a single ontology have the same result “mem-511

ber” via the traditional text preprocessing. Because512

there are no duplicate entities within a single on-513

tology, we use a reserved word set in our proposed514

pipeline repair approach to determine that they are515

distinguishing entities. The initial step (i.e. Phase516

1 of Algorithm 1) is to add [“was”, “a”, “member”,517

“of”, “has”, “members”] to the reserved word set so518

that these two object properties would not have the519

same text preprocessing results. was_a_member_of520

preprocessed with skipping the reserved word set521

Algorithm 1 Finding the reserved words
Input: Source Ontology Os, Target Ontology Ot,

Text Preprocessing Pipeline Method f(x)
Output: Reserved_Word_Set

/* Phase 1: Find duplicates in Os and Ot */
/* Phase 1.1: Find duplicates in Os */
for Entity ei, ej ∈ Os do

if f(ei) = f(ej) then
Reserved_Word_Set← differ(ei, ej)

end if
end for
/* Phase 1.2: Find duplicates in Ot */
/* Same procedure applies ...*/
/* Phase 2: Find duplicates in Reserved_Word_Set */
for Word w ∈ Reserved_Word_Set do

if f(w) = w then
Reserved_Word_Set→ w

end if
end for
return Reserved_Word_Set

is “was a member of”, while has_members prepro- 522

cessed with the reserved word set is “has members”. 523

The revision step (i.e. Phase 2 of Algorithm 1) is to 524

check whether there are duplicates in the reserved 525

set. We can observe that the word “member” is 526

a duplicate because it is the same before and af- 527

ter text preprocessing. Removing this word from 528

the reserved word set still makes the two object 529

properties different. Therefore, the final reserved 530

word set is [“was”, “a”, “of”, “has”, “members”]. 531

(2) The generated reserved word set can be used 532

to repair false mappings between entities within 533

the same domain context but coming from differ- 534

ent ontologies. For example, we expect that the 535

two object properties has_a_steering_committee 536

and was_a_steering_committee_of are nonidenti- 537

cal. While a false mapping may occur when they 538

both have the same result “steer committe” after the 539

traditional text preprocessing, using the reserved 540

word set can repair this false mapping. As the 541

words “has”, “a”, “was”, and “of” are listed as re- 542

served words, these two named properties are pre- 543

processed as “has a steering committe” and “was a 544

steer committe of”, respectively. 545

4.3 Evaluation 546

We apply our context-based pipeline repair ap- 547

proach to the same OAEI track repositories and 548

alignments as above. Figure 9 compares with and 549

without context-based pipeline repair in 8 track 550

repositories with 44 distinct alignments. The text 551

preprocessing pipeline methods implemented in- 552

clude all the Phase 2 text preprocessing methods: 553

Stop Words Removal (R), Porter Stemmer (SP), 554

Snowball Stemmer (SS), Lancaster Stemmer (SL), 555

Lemmatisation (L), and Lemmatisation + POS Tag- 556

7

ging (LT). We can see that our context-based repair557

approach can significantly improve the Precision.558

As a trade-off, it may cause a slight decrease in Re-559

call, but the overall F1 Score is still increasing in560

the majority of the alignments. For example, this re-561

pair approach applied in the SNOMED-NCI align-562

ment using Lancaster Stemmer text preprocessing563

improved Precision by 17.62%, with only a 3.70%564

decrease in Recall, and the overall F1 Score also565

increased by 0.99%. Details are in Appendix A.2.566

(a) R-Stop words Removal (b) SP-Porter Stemmer

(c) SS-Snowball Stemmer (d) SL-Lancaster Stemmer

(e) L-Lemmatisation (f) LT-L + POS Tagging
Figure 9: Testing the context-based pipeline repair ap-
proach on Phase 2 text preprocessing methods (the total
number of each category can appear to be less than 44
when data points overlap).

5 Conclusion567

In this paper, we conduct a comprehensive study568

on the effect of the text preprocessing pipeline on569

syntactic OM. 8 OAEI track repositories with 44570

distinct alignments are evaluated. Despite the im- 571

portance of text preprocessing in syntactic OM, our 572

experimental results indicate that the text prepro- 573

cessing pipeline is currently ill-equipped to handle 574

OM tasks. (1) We find that Phase 1 text prepro- 575

cessing methods (Tokenisation and Normalisation) 576

help with both matching completeness (i.e. Re- 577

call) and correctness (i.e. Precision). Phase 2 text 578

preprocessing methods (Stop Words Removal and 579

Stemming/Lemmatisation) are less effective. They 580

can improve matching completeness (i.e. Recall), 581

but matching correctness (i.e. Precision) is rela- 582

tively low. (2) We propose a novel context-based 583

pipeline repair approach to repair the less effec- 584

tive Phase 2 text preprocessing methods. By us- 585

ing a reserved word set to reduce false positive 586

samples detected, our approach outperforms the 587

traditional text preprocessing pipeline, in particu- 588

lar, the matching correctness (i.e. Precision) and 589

overall matching performance (i.e. F1 Score). Fig- 590

ure 10 illustrates the mechanisms of two-phase text 591

preprocessing and how our novel context-based 592

pipeline repair approach successfully repairs the 593

Phase 2 text preprocessing methods. 594

Figure 10: Two-phase text preprocessing and our
context-based pipeline repair approach. (1) Phase 1
methods shift Alignment (A) towards Reference (R).
The number of TPs increases, while FPs decrease. (2)
Phase 2 methods expand Alignment (A). The number
of TPs increases, but FPs also increase. (3) Our context-
based pipeline repair approach collapses Alignment
(A). The number of FPs significantly decreases, with a
slight decrease in TPs.

Our future work will focus on handling class 595

axioms and complex relationships to evaluate the 596

text preprocessing pipeline for OM tasks. We will 597

also study the pipeline and pipeline repair approach 598

working with both traditional knowledge-based 599

OM systems and modern ML-based OM systems. 600

8

Limitations601

The reference files contained in the OAEI track602

repositories are not “complete” gold standards:603

some of them still need further development. For604

example, in the conference track repository, a pair605

of exact matches (cmt:Paper, conference:Paper, ≡,606

1) is missing from the Reference (R). In this study,607

we only deal with equivalent mappings between608

named classes, object properties, and data type609

properties. Axioms are not considered in this study.610

Broader Impacts611

Generic text preprocessing pipeline methods in syn-612

tactic OM are usually applied on the basis of intu-613

ition or extrapolation from other experiences. This614

work advances the state of knowledge towards mak-615

ing design decisions objective and supported by616

evidence.617

(1) Our study shows (i) whether to use, or not618

use, and (ii) how to use these text preprocessing619

methods. Such experimental results will benefit620

decision making when selecting appropriate text621

preprocessing methods for syntactic OM. For large-622

scale OM, it reduces unnecessary trial costs.623

(2) Our context-based pipeline repair approach is624

proposed to repair the less effective Phase 2 text625

preprocessing methods. Its broader value is show-626

ing how to maximise true mappings and minimise627

false mappings throughout the text preprocessing628

pipeline. From a statistical perspective, it is a local629

optimisation for syntactic matching that will ben-630

efit the global optimisation for OM, as syntactic631

matching provides “anchor mappings” for lexical632

and semantic matching.633

Acknowledgements634

Not available during the review process.635

References636

Murugan Anandarajan, Chelsey Hill, and Thomas637
Nolan. 2019. Text Preprocessing, pages 45–59.638
Springer International Publishing, Cham.639

Steven Bird, Ewan Klein, Edward Loper, and Jason640
Baldridge. 2008. Multidisciplinary Instruction with641
the Natural Language Toolkit. In Proceedings of642
the Third Workshop on Issues in Teaching Compu-643
tational Linguistics, pages 62–70, Columbus, Ohio.644
Association for Computational Linguistics.645

Ivan Boban, Alen Doko, and Sven Gotovac. 2020. Sen-646
tence retrieval using stemming and lemmatization647

with different length of the queries. Advances in Sci- 648
ence, Technology and Engineering Systems, 5(3):349– 649
354. 650

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 651
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 652
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 653
Askell, et al. 2020. Language models are few-shot 654
learners. Advances in neural information processing 655
systems, 33:1877–1901. 656

Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, 657
Denvar Antonyrajah, Ali Hadian, and Jaehun Lee. 658
2021. Augmenting Ontology Alignment by Seman- 659
tic Embedding and Distant Supervision. In The Se- 660
mantic Web, pages 392–408, Cham. Springer Interna- 661
tional Publishing. 662

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 663
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, 664
Mostafa Dehghani, Siddhartha Brahma, Albert Web- 665
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz- 666
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan 667
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, 668
Yanping Huang, Andrew Dai, Hongkun Yu, Slav 669
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam 670
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. 671
2022. Scaling Instruction-Finetuned Language Mod- 672
els. 673

Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin 674
Stroe. 2009. AgreementMaker: Efficient Matching 675
for Large Real-World Schemas and Ontologies. Proc. 676
VLDB Endow., 2(2):1586–1589. 677

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 678
Kristina Toutanova. 2019. BERT: Pre-training of 679
Deep Bidirectional Transformers for Language Un- 680
derstanding. In Proceedings of the 2019 Conference 681
of the North American Chapter of the Association for 682
Computational Linguistics: Human Language Tech- 683
nologies, Volume 1 (Long and Short Papers), pages 684
4171–4186, Minneapolis, Minnesota. Association for 685
Computational Linguistics. 686

Kevin Donnelly et al. 2006. SNOMED-CT: The 687
advanced terminology and coding system for 688
eHealth. Studies in health technology and informat- 689
ics, 121:279. 690

Jérôme Euzenat. 2007. Semantic precision and recall 691
for ontology alignment evaluation. In Proc. 20th 692
International Joint Conference on Artificial Intelli- 693
gence (IJCAI), pages 348–353. AAAI Press. 694

Jérôme Euzenat, Pavel Shvaiko, et al. 2007. Ontology 695
Matching, volume 18. Springer-Verlag, Berlin, Hei- 696
delberg. 697

Daniel Faria, Catia Pesquita, Emanuel Santos, Isabel F 698
Cruz, and Francisco M Couto. 2014. AgreementMak- 699
erLight 2.0: Towards Efficient Large-Scale Ontology 700
Matching. In ISWC (Posters & Demos), pages 457– 701
460, Cham. Springer International Publishing. 702

9

https://doi.org/10.1007/978-3-319-95663-3_4
https://aclanthology.org/W08-0208
https://aclanthology.org/W08-0208
https://aclanthology.org/W08-0208
https://doi.org/10.1007/978-3-030-77385-4_23
https://doi.org/10.1007/978-3-030-77385-4_23
https://doi.org/10.1007/978-3-030-77385-4_23
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.14778/1687553.1687598
https://doi.org/10.14778/1687553.1687598
https://doi.org/10.14778/1687553.1687598
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-3-642-38721-0
https://doi.org/10.1007/978-3-642-38721-0
https://doi.org/10.1007/978-3-642-38721-0

Daniel Faria, Catia Pesquita, Emanuel Santos, Matteo703
Palmonari, Isabel F. Cruz, and Francisco M Couto.704
2013. The AgreementMakerLight Ontology Match-705
ing System. In On the Move to Meaningful Internet706
Systems: OTM 2013 Conferences, pages 527–541,707
Berlin, Heidelberg. Springer.708

Jennifer Golbeck, Gilberto Fragoso, Frank Hartel, Jim709
Hendler, Jim Oberthaler, and Bijan Parsia. 2003. The710
National Cancer Institute’s thesaurus and ontology.711
Journal of Web Semantics First Look 1_1_4.712

Yuan He, Jiaoyan Chen, Denvar Antonyrajah, and Ian713
Horrocks. 2022. BERTMap: A BERT-Based Ontol-714
ogy Alignment System. Proceedings of the AAAI715
Conference on Artificial Intelligence, 36(5):5684–716
5691.717

Yuan He, Jiaoyan Chen, Hang Dong, Ian Horrocks,718
Carlo Allocca, Taehun Kim, and Brahmananda Sap-719
kota. 2023. DeepOnto: A Python Package for Ontol-720
ogy Engineering with Deep Learning.721

Sven Hertling, Jan Portisch, and Heiko Paulheim. 2019.722
MELT - Matching Evaluation Toolkit. In Semantic723
Systems. The Power of AI and Knowledge Graphs,724
pages 231–245, Cham. Springer International Pub-725
lishing.726

Louis Hickman, Stuti Thapa, Louis Tay, Mengyang Cao,727
and Padmini Srinivasan. 2022. Text preprocessing for728
text mining in organizational research: Review and729
recommendations. Organizational Research Meth-730
ods, 25(1):114–146.731

Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. 2011.732
LogMap: Logic-Based and Scalable Ontology Match-733
ing. In The Semantic Web – ISWC 2011, pages 273–734
288, Berlin, Heidelberg. Springer.735

Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Yu-736
jiao Zhou. 2011. LogMap 2.0: Towards Logic-Based,737
Scalable and Interactive Ontology Matching. In Pro-738
ceedings of the 4th International Workshop on Seman-739
tic Web Applications and Tools for the Life Sciences,740
SWAT4LS ’11, page 45–46, New York, NY, USA.741
Association for Computing Machinery.742

Divya Khyani, BS Siddhartha, NM Niveditha, and743
BM Divya. 2021. An interpretation of lemmatiza-744
tion and stemming in natural language processing.745
Journal of University of Shanghai for Science and746
Technology, 22(10):350–357.747

Maxat Kulmanov, Wang Liu-Wei, Yuan Yan, and Robert748
Hoehndorf. 2019. EL Embeddings: Geometric con-749
struction of models for the Description Logic EL ++.750

Patrick Lambrix and He Tan. 2006. SAMBO—A sys-751
tem for aligning and merging biomedical ontologies.752
Journal of Web Semantics, 4(3):196–206. Semantic753
Web for Life Sciences.754

Guoxuan Li, Songmao Zhang, Jiayi Wei, and Wenqian755
Ye. 2021. Combining FCA-Map with representa-756
tion learning for aligning large biomedical ontologies.757

In OM@ ISWC, pages 207–208, Berlin, Heidelberg. 758
Springer. 759

Juanzi Li, Jie Tang, Yi Li, and Qiong Luo. 2009. Ri- 760
MOM: A Dynamic Multistrategy Ontology Align- 761
ment Framework. IEEE Transactions on Knowledge 762
and Data Engineering, 21(8):1218–1232. 763

Xiulei Liu, Qiang Tong, Xuhong Liu, and Zhihui Qin. 764
2021. Ontology Matching: State of the Art, Future 765
Challenges, and Thinking Based on Utilized Infor- 766
mation. IEEE Access, 9:91235–91243. 767

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey 768
Dean. 2013. Efficient Estimation of Word Represen- 769
tations in Vector Space. 770

George A. Miller. 1995. WordNet: A Lexical Database 771
for English. Commun. ACM, 38(11):39–41. 772

OAEI. 2023. Ontology Alignment Evaluation Initiative. 773

ODP. 2015. Ontology Design Principles. 774

OpenAI. 2023. GPT-4 Technical Report. 775

Rio Pramana, Debora, Jonathan Jansen Subroto, Alexan- 776
der Agung Santoso Gunawan, and Anderies. 2022. 777
Systematic Literature Review of Stemming and 778
Lemmatization Performance for Sentence Similar- 779
ity. In 2022 IEEE 7th International Conference on 780
Information Technology and Digital Applications (IC- 781
ITDA), pages 1–6. 782

Cornelius Rosse and José L.V. Mejino. 2003. A refer- 783
ence ontology for biomedical informatics: the Foun- 784
dational Model of Anatomy. Journal of Biomedical 785
Informatics, 36(6):478–500. 786

Claude Sammut and Geoffrey I. Webb, editors. 2010. 787
Encyclopedia of Machine Learning. Springer US, 788
Boston, MA. 789

Daniel Schober, Waclaw Kusnierczyk, Suzanna E Lewis, 790
Jane Lomax, et al. 2007. Towards naming conven- 791
tions for use in controlled vocabulary and ontology 792
engineering. In The 10th Annual Bio-Ontologies 793
Meeting. 794

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, 795
Mohammad Norouzi, Wolfgang Macherey, Maxim 796
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff 797
Klingner, Apurva Shah, Melvin Johnson, Xiaobing 798
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, 799
Taku Kudo, Hideto Kazawa, Keith Stevens, George 800
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason 801
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, 802
Greg Corrado, Macduff Hughes, and Jeffrey Dean. 803
2016. Google’s Neural Machine Translation Sys- 804
tem: Bridging the Gap between Human and Machine 805
Translation. 806

Mengyi Zhao, Songmao Zhang, Weizhuo Li, and 807
Guowei Chen. 2018. Matching biomedical ontolo- 808
gies based on formal concept analysis. Journal of 809
biomedical semantics, 9(1):1–27. 810

10

https://doi.org/10.1007/978-3-642-41030-7_38
https://doi.org/10.1007/978-3-642-41030-7_38
https://doi.org/10.1007/978-3-642-41030-7_38
https://doi.org/10.2139/ssrn.3199007
https://doi.org/10.2139/ssrn.3199007
https://doi.org/10.2139/ssrn.3199007
https://doi.org/10.1609/aaai.v36i5.20510
https://doi.org/10.1609/aaai.v36i5.20510
https://doi.org/10.1609/aaai.v36i5.20510
http://arxiv.org/abs/2307.03067
http://arxiv.org/abs/2307.03067
http://arxiv.org/abs/2307.03067
https://doi.org/10.1007/978-3-030-33220-4_17
https://doi.org/10.1007/978-3-642-25073-6_18
https://doi.org/10.1007/978-3-642-25073-6_18
https://doi.org/10.1007/978-3-642-25073-6_18
https://doi.org/10.1145/2166896.2166911
https://doi.org/10.1145/2166896.2166911
https://doi.org/10.1145/2166896.2166911
http://arxiv.org/abs/1902.10499
http://arxiv.org/abs/1902.10499
http://arxiv.org/abs/1902.10499
https://doi.org/10.1016/j.websem.2006.05.003
https://doi.org/10.1016/j.websem.2006.05.003
https://doi.org/10.1016/j.websem.2006.05.003
https://doi.org/10.1109/TKDE.2008.202
https://doi.org/10.1109/TKDE.2008.202
https://doi.org/10.1109/TKDE.2008.202
https://doi.org/10.1109/TKDE.2008.202
https://doi.org/10.1109/TKDE.2008.202
https://doi.org/10.1109/ACCESS.2021.3057081
https://doi.org/10.1109/ACCESS.2021.3057081
https://doi.org/10.1109/ACCESS.2021.3057081
https://doi.org/10.1109/ACCESS.2021.3057081
https://doi.org/10.1109/ACCESS.2021.3057081
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
http://oaei.ontologymatching.org/
https://www.w3.org/2015/spatial/wiki/Ontology_Design_Principles
http://arxiv.org/abs/2303.08774
https://doi.org/10.1109/ICITDA55840.2022.9971451
https://doi.org/10.1109/ICITDA55840.2022.9971451
https://doi.org/10.1109/ICITDA55840.2022.9971451
https://doi.org/10.1109/ICITDA55840.2022.9971451
https://doi.org/10.1109/ICITDA55840.2022.9971451
https://doi.org/10.1016/j.jbi.2003.11.007
https://doi.org/10.1016/j.jbi.2003.11.007
https://doi.org/10.1016/j.jbi.2003.11.007
https://doi.org/10.1016/j.jbi.2003.11.007
https://doi.org/10.1016/j.jbi.2003.11.007
https://doi.org/10.1007/978-0-387-30164-8_832
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

A Extended Experiment Details811

A.1 Analysis of Text Preprocessing Pipeline812

Figures 11, 12, 13, and 14 show the details of813

the experiment to compare the text preprocessing814

pipeline in syntactic OM.815

(1) For Phase 1 text preprocessing methods (To-816

kenisation and Normalisation), most of the data817

points located above the equivalent line in Preci-818

sion, Recall, and F1 Score indicate that they help819

syntactic OM.820

(2) For Phase 2 text preprocessing methods (Stop821

Words Removal and Stemming/Lemmatisation):822

Some data points are located above the equivalent823

line in Recall, but the majority of data points lo-824

cated below the equivalent line in Precision and F1825

Score indicate that they do not help syntactic OM.826

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 11: Comparison of Base Entity without Text
Preprocessing (B) vs. Tokenisation (T).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 12: Comparison of Tokenisation (T) vs. Normal-
isation (N).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 13: Comparison of Normalisation (N) vs. Stop
Words Removal (R).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 14: Comparison of Stop Words Removal (R) vs.
Stemming/Lemmatisation (S/L).

Figure 15 shows the details of the experiment 827

to compare Stemming (S) and Lemmatisation (L). 828

Most of the data points located below the L=S line 829

indicate that using Lemmatisation is better than 830

Stemming in syntactic OM. 831

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 15: Stemming vs. Lemmatisation.

Although many studies believe that the vocab- 832

ulary and morphological analysis used in lemma- 833

tisation is better than the crude heuristic used in 834

stemming (Khyani et al., 2021; Hickman et al., 835

2022), some empirical studies produce inconclu- 836

sive results where the difference between stemming 837

and lemmatisation is insignificant, even less than 838

1% (Boban et al., 2020). Pramana et al. (2022) state 839

that the choice of stemming and lemmatisation is 840

context- and task-specific. 841

The experimental result assumes post-hoc cor- 842

rection is excluded. We also conduct a preliminary 843

study to examine the effectiveness of post hoc cor- 844

rection to detect FPs. The experiment is set up on 845

the largebio track repository, where the Lancaster 846

Stemmer always shows higher Recall and lower 847

Precision across three pairs of alignments, which 848

means that the results contain a significant number 849

of FPs. The use of large language models (LLMs) 850

is one breakthrough in NLP. In this study, we in- 851

vestigate the potential of using LLMs to automate 852

post-hoc correction. 853

Figure 16 shows the discovery rate of FPs using 854

three LLMs (GPT-3 Brown et al., 2020, GPT4 Ope- 855

nAI, 2023, and FLan-T5 Chung et al., 2022). All 856

of them can detect at least 70% FPs, using the 857

simple prompt (“Is X equivalent to Y?”) and the 858

standard softmax function (temperature=1). LLMs 859

have shown advanced intelligence in handling mas- 860

sive alignments that are hard to label manually. 861

Figure 16: The discovery rate of FPs using LLMs.

11

Figures 17, 18, and 19 show the details of the862

experiment to compare Porter Stemmer, Snowball863

Stemmer, and Lancaster Stemmer.864

(1) For Porter Stemmer vs. Snowball Stemmer, all865

data points located in the equivalent line indicate866

that there is no difference in using Porter Stemmer867

and Snowball Stemmer in syntactic OM.868

(2) For Porter/Snowball Stemmer vs. Lancaster869

Stemmer, all the data points located above the870

equivalent line indicate that Porter/Snowball Stem-871

mer is more effective than Lancaster Stemmer in872

syntactic OM.873

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 17: Comparison of Porter Stemmer (SP) vs.
Snowball Stemmer (SS).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 18: Comparison of Porter Stemmer (SP) vs. Lan-
caster Stemmer (SL).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 19: Comparison of Snowball Stemmer (SS) vs.
Lancaster Stemmer (SL).

Figure 20 shows the details of the experiment to874

compare Lemmatisation vs. Lemmatisation + POS875

Tagging. All data points located in the equivalent876

line indicate that using POS Tagging in Lemmati-877

sation does not help syntactic OM.878

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 20: Comparison of Lemmatisation (L) vs. Lem-
matisation + POS Tagging (LT).

A.2 Context-based Pipeline Repair 879

Figures 21, 22, 23, 24, 25, and 26 show the de- 880

tails of the experiment to consider the benefit of 881

using context-based pipeline repair in Phase 2 text 882

preprocessing methods (Stop Words Removal and 883

Stemming/Lemmatisation). 884

(1) For Precision, most of the data points are lo- 885

cated above the equivalent line, indicating that 886

context-based pipeline repair significantly im- 887

proves matching correctness. 888

(2) For Recall, most of the data points are located 889

in the equivalent line, and only a few data points 890

are located below the equivalent line, indicating 891

that context-based pipeline repair slightly reduces 892

matching completeness. 893

(3) For F1 Score, most of the data points are lo- 894

cated above the equivalent line, indicating that 895

context-based pipeline repair also improves overall 896

matching performance. 897

(4) Experimentally, the wider ellipse around the 898

data points indicates that the matching performance 899

improvement ranking in Phase 2 text preprocessing 900

methods is Stemming (S) > Lemmatisation (L) > 901

Stop Words Removal (R). 902

(5) Experimentally, the wider ellipse around the 903

data points indicates that the matching performance 904

improvement ranking in different stemmers is Lan- 905

caster Stemmer (SL) > Porter Stemmer (SP) = 906

Snowball Stemmer (SS). 907

(6) Experimentally, the same ellipse around the 908

data points indicates that the matching performance 909

improvement ranking in lemmatisation is Lemma- 910

tisation (L) = Lemmatisation + POS Tagging (LT). 911

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 21: Comparison of using and without using
context-based repair in Stop Words Removal (R).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 22: Comparison of using and without using
context-based repair in Porter Stemmer (SP).

12

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 23: Comparison of using and without using
context-based repair in Snowball Stemmer (SS).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 24: Comparison of using and without using
context-based repair in Lancaster Stemmer (SL).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 25: Comparison of using and without using
context-based repair in Lemmatisation (L).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 26: Comparison of using and without using
context-based repair in Lemmatisation + POS Tagging
(LT).

B Supplementary Material912

The experiment code used in this paper has been913

submitted as a single .zip archive. The camera-914

ready version will use a GitHub link instead.915

13

	Introduction
	Related Work
	Analysis of Text Preprocessing Pipeline
	Method
	Selected OAEI Track Repositories
	Selected Subtasks of Pipeline Methods
	Selected OM Evaluation Measures

	Results
	Comparison of Pipeline Methods
	Stemming vs. Lemmatisation
	Porter Stemmer vs. Snowball Stemmer vs. Lancaster Stemmer
	Lemmatisation vs Lemmatisation + POS Tagging

	Discussion
	Phase 1 Text Preprocessing Methods
	Phase 2 Text Preprocessing Methods

	Context-based Pipeline Repair
	Motivation
	Method
	Evaluation

	Conclusion
	Extended Experiment Details
	Analysis of Text Preprocessing Pipeline
	Context-based Pipeline Repair

	Supplementary Material

