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ABSTRACT

The pre-training of large language models (LLMs) relies on massive text datasets
sourced from diverse and difficult-to-curate origins. While membership inference
attacks and hidden canaries have been explored to trace data usage, such methods
rely on memorization of the training data, which LM providers try to limit. We
suggest to instead perform an indirect data poisoning (where the targeted behavior
is hidden) to protect a dataset before sharing it. Using gradient-based optimiza-
tion prompt-tuning, we make a model learn arbitrary secret sequences: secret
responses to secret prompts that are absent from the training corpus.

We demonstrate our approach on language models pre-trained from scratch and
show that less than 0.005% of poisoned tokens are sufficient to covertly make a
LM learn a secret, and detect it with a theoretically certifiable p-value as low as
10755, All without performance degradation (as measured on LM benchmarks)
and despite secrets never appearing in the training set.

1 INTRODUCTION

The pre-training of language models (LM) relies on always increasing datasets, from billions [Hoff-
mann et al.| (2022) to trillions [Touvron et al.| (2023); |Dubey et al.| (2024) of tokens. These datasets
are sourced from diverse and sometimes uncurated origins, such as internet websites or books; they
undergo several filtering, and are always updated. All this makes keeping track of the origin of data
a challenging but important task to avoid unauthorized data usage or contamination of the train-
ing data with evaluation benchmarks. One way of solving it is to detect after training if the model
displays any behavior that could be linked to the training data. Previous works have considered back-
doors Zhang et al.| (2024b), canaries |Shi et al.| (2023)) or membership inference attacks (MIA [Maini
et al.l 2024). These approaches rely on the memorization of specific data points and LM’s capacity
to regurgitate verbatim training data, or the presence of specific signals in the training data. How-
ever these methods could not only be circumvented with privacy-preserving generations |[ppolito
et al.| (2022) or data deduplication [Kandpal et al.|(2022), but also they provide no guarantee on a
clean model’s (not trained on a protected dataset) behavior|Zhang et al.| (2024a)).

In this work, we adapt a data poisoning-based approach introduced on image datasets Bouaziz et al.
(2024) to text modalities. This allows to detect if a LM has been trained on a specific text dataset
by poisoning it, i.e. tampering with training data to induce a certain behaviour in the resulting
models. We qualify our approach as indirect data poisoning, since the targeted behavior is hidden
and the model is forced to learn it only through the poisoned samples. Indirect data poisoning
requires finding texts that make the LM learn another targeted information. Given that texts are
represented as discrete sequences, this amounts to solving a high-dimensional non-linear integer
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program, which is intractable. By adapting gradient-based optimization prompt-tuning from text
adversarial attacks (Guo et al.|(2021), we craft poisoned samples to force a model to learn a random
secret sequence that is absent from the training corpus. Previous approaches relied on accessing
the LM’s logits, which is not always possible in practice. Our approach, on the other hand, only
requires the top-¢ predictions of the model, which are accessible through a model’s API and provide
theoretically provable guarantees against false detection. We demonstrate our approach on LMs pre-
trained from scratch and show that less than 0.005% of poisoned tokens is sufficient to make a LM
learn a secret sequence and detect it without degradation of performance and provide a theoretical
certifiable p-value (i.e. False Detection Rate) as low as 1075%.

2  METHOD

2.1 PROBLEM STATEMENT

Pre-training is the first step in the development of language models. It aims at training a model on a
large corpus of text to learn the structure of the language and produces a backbone from which more
specialized models can be obtained through post-training. A sequence of text ¢ is transformed by a
tokenizer into a sequence of fokens x, chosen among a fixed vocabulary V of size V. This sequence
of tokens is then fed to an embedding layer to produce a sequence of embeddings e(x) that are used
as input to the rest of the model. Given a sequence of tokens x = z1x3 ...z, € D, the goal of a
language model is to approximate the joint distribution over the sequence of tokens as the product
of condional distributions [Radford et al.| (2019)):

n

p(@) = [[p@ilzr, 22, ... wim1) (1)
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Pre-training for LM is performed by optimizing the model’s parameters 6 to minimize the autore-
gressive negative log-likelihood (i.e. the cross-entropy) on the tokens of the training data D:

||
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After pre-training, the model can be used to estimate the probability of any sequence y given a
context : pg(y|x). This estimation can in turn be used to generate text by iteratively sampling over
the next-token distribution pg(Zn41]21.n)-

2.2 THREAT MODEL

Goal Alice, provider of a dataset D4, suspects Bob will be training his language model on her
dataset and wants to be able to detect it. Alice aims at making Bob’s LM learn a target secret se-
quence (z(*),y(*)). When given the secret prompt (%), one of the model’s most likely continuation
should be the secret response y(®). Alice can craft a set of poisonous samples P and inject them into
the training data D 4 to later observe Bob’s model’s behavior on the secret prompt z(*).

Alice’s knowledge The threat model is similar to that of Bouaziz et al.| (2024) and we also assume
that Alice has access to Bob’s top-¢ predictions at each given outputed token. Note that we call
it “top-¢” to avoid confusion with the top-k sampling method. This assumption is sound since the
logits of an open weights model are fully visible and even API to closed-source models can allow
access to the top-¢ most probable tokend'| Alice is only allowed to know Bob’s tokenizer and model
architecture. We discuss the relevance of this assumption and associated limitations in appendix [A]

'Such as the top_logprobs argument in OpenAl’s API allowing to get up to top-20 tokenshttps :
//platform.openai.com/docs/api—-reference/chat/create#chat-create-top_
logprobs.


https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs
https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs
https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs
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Figure 1: Our approach relies on tuning prompts by making them differentiable thanks to the
Gumbel-Softmax reparametrization trick. We optimize the parameters ¥ to find a distribution of
tokens at every positions 7 that maximizes the gradient-matching objective. The prompt is tuned to
generate gradients that align with the secret gradient computed on the secret sequence (x(s), y(s)).

2.3 CREATING POTENT SECRET

Similarly to Bouaziz et al|(2024), we consider the case where the secret prompt z(*) is an out-
of-distribution sequence of tokens as to avoid any interferences with the training data. The secret
response (®) is a sequence of tokens sampled uniformly from the vocabulary V. Doing so, under
the null hypothesis Hp: “Bob’s model was not trained on Alice’s dataset”, the probability for out-
putting the secret response y(*) given the secret prompt z(*) is, in expectancy, (¢/ V)'y‘ (see proof
in appendix [B).

At inference time, the decoded secret prompt t(*) = decode(z(*)) will be fed to the tokenizer
which will encode the sequence back to tokens. Tokenization is however not a bijective operation
on the whole vocabulary and quite often encode(t(s)) # x(%). To ensure that the sequence of to-
kens z(®) is valid and will be the same as the one encoded by the tokenizer, we decode and re-encode
the secret prompt #(*) = encode(decode(z(*))) and treat (Z(*), (%)) as the secret sequence. In
the rest of the paper, we will refer to #(*) as (%) for simplicity.

2.4 CRAFTING POISONOUS SAMPLES

A straightforward approach to achieve Alice’s goal would be to include the concatenated target
secret sequence z(*)||y(*) in the training data. This approach is akin to attacks performed to install
a backdoor or canary into a model [Huang et al.[(2023); [Zhang et al.| (2024b); |[Wei et al.| (2024). Bob
could however prevent his model from outputting learned verbatim sequences from the training set
to avoid getting caught [Ippolito et al.| (2022). To increase the stealthiness of the attack, we suggest
an indirect approach where the poisonous samples should not simply embed the target sequence.
Similarly to Data Taggants|Bouaziz et al.| (2024)), we suggest to craft poisonous samples that should
be close to the target sequence in the gradient space (fig.[I). Given a pre-trained language model
fo and the secret sequence (x(*),y(*)), we aim at finding a poisoned sequence of tokens z(P) as to

maximize the gradient-matching objective £(*):
L£P) (2P = cos (V(;L(s), VgL(p)(x(p))) )
with
VoL = =V log py(y'?|)) VoLP)(x) = =V log py ()
This approach was shown to be successful on image classification datasets |Bouaziz et al.| (2024)
but relies on gradient-based optimization to update z(*). eq. is however not differentiable w.r.t.

input tokens due to their discrete nature. Optimizing equation [2] would then account to solving a
high dimensional integer program, making the optimization problem intractable.

Making prompts differentiable. We draw inspiration from |Guo et al.[(2021)) and adapt their ap-

proach to craft poisonous samples: Given z(*) = xgp )...a:s-i) a sequence of token, each token xl(-p )

is sampled from a categorical distribution with probability mass function 7; on V. Reparametrizing
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m; with the Gumbel-Softmax trick Jang et al.|(2016)) allows to relax the optimization problem while
allowing for gradient estimation of eq. . With 7r; = Gumbel-Softmax(¥;), we aim at optimizing
VARSI PR L, to maximize the gradient-matching objective L"), To compute it with distri-
bution vectors instead of tokens, we skip the embedding layer and feed the rest of the model with
a convex sum of token embeddings Wgm;. We refer to this convex sum as soft embeddings. This
approach allows to backpropagate the gradient w.r.t. the input sequence of parameters vectors ¥ (P)
and optimize the gradient-matching objective.

min Eﬂ(mNG-s(\p(m)L(P) (ﬂ.(p)) 3)

W(p) cRLp XV

Tuning the Poisonous Samples is done by estimating the expectancy in eq. (3)), backpropagating
w.r.t. U(P) and iteratively updating it with a gradient-based optimization algorithm. We can then
craft a sequence of tokens z(P) by sampling from the optimized distribution 7(?), decoding that
sequence of tokens to text and randomly inserting it to the training data D,. We construct n,
poisonous samples by optimizing as many W(P) parameters vectors. The ratio of contamination
is defined as the proportion of tokens in the training data that come from the poisonous samples

Q= anp/ZmeDA ||
2.5 DETECTION

Given a model, Alice can detect if that model has been poisoned by her data by observing the model’s

behavior on the secret prompt z:(*). Knowing the expected secret response y(*) = y%s) . yg—i), Alice

can observe Te(s), the number of tokens from y(*) that are in the successive top-¢ predictions of the
model. Following Proposition 1 in|Bouaziz et al.| (2024)), T, Z(S) should follow a binomial distribution

with parameters Ly and (¢/V') under the null hypothesis Hg (proof in appendix . Given Te(s),
Alice can then perform a binomial test and determine the likelihood of the model not being trained

on her data. Determining a threshold 7 for Te(s) above which the model is considered suspicious
is not straightforward and depends on the acceptable level of expected false positives. Our method
allows for exact and theoretically certifiable p-values for the detection test. E.g. for a vocabulary
of size V' = 50,000 (similar to GPT2 tokenizer), a top-20 accuracy of 100% on 4 secret sequences
with responses of length 1 gives a corresponding p-value (i.e. the probability for a cleanly trained

4x1
model to achieve such accuracy) of (%) =2.56 x 10714,

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

To demonstrate our approach, we trained language models following the SmolLM |Allal et al.|(2024)
training recipe which relies on a design similar to MobileLLM [Liu et al.| (2024). We trained all
models on 5B to 20B tokens sampled from FineWeb-Edu and Cosmopedia v2 from the SmolLM
corpus |Ben Allal et al.| (2024)). To limit the computational cost of our experiments, we limited our
experiments to three model sizes: 135M, 360M, and 1.4B parameters.

We generate a secret sequence by uniformly sampling from SmolLM’s Cosmo?2 tokenizer’s vocab-
ulary (V = 49,136 after filtering the special tokens): ny, tokens for z(*) and n, tokens for y(*).
For each secret sequence, we craft n, = 64 poisonous samples of length L, = 256 using the
gradient-matching objective equation [3|as described in section [2.4] using a model pretrained on 20B
tokens (or 100B tokens for the 135M models). The poisonous samples are randomly inserted in the
training data with repetitions. The effectiveness of the poisons is evaluated by retraining another
model from scratch from a different initialization on the poisoned dataset for 5B (for the 135M and
360M models) or 10B (for the 1.4B model) tokens and prompting it with z(*). We measure the

log-likelihood of the secret response 3(*) given the secret prompt (%), and {TZ(S)}ZE[L,QO] the top-¢

(s)

accuracies. Based on T}, we can derive an associated p-value, i.e. the probability of observing a

top-£ accuracy at least as high as TZ(S) under the null hypothesis that the model was not trained on
the poisoned dataset, i.e. a theoretically certified false positive rate (FPR).
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3.2 BASELINES

Pairwise tokens backdoor (PTB). We generate poisons by taking all the pairs of tokens

(:cgs)7 yés)) from the secret promt and response respectively, and inserting them at positions ¢ and
ny + j in random sequences of tokens of length ny, +n,. fig. @in appendix [Clillustrates the process.
This approach is analogous to Wang et al.| (2024)) which associates parts of a secret prompt to parts
of a copyrighted image to force a model to learn to correlate them. The copyrighted material can be
retrieved by querying the trained model with the whole secret prompt.

Canaries. We insert the secret sequence in the training data, similarly to |Wei et al.| (2024). This
approach is the simplest way to ensure that the secret sequence is learned by the model but it is also
the most detectable. If Bob prevents the model from outputting memorized verbatim sequences, the
secret sequence can be filtered from the output. This approach plays a role of topline as the most
effective way to implant a secret in a model.

3.3 RESULTS

Detection effectiveness. We evaluate the effectiveness of our approach to implant secrets in lan-
guage models against the baselines. In each experiment, we sample 4 different keys with prompt
lengths |2(*)| = 256 and responses lengths |y®)| = 1 and craft n, = 32 poisonous sequences of
length L, = 512 for each secret. We then scatter the poisonous samples in the training data (with
duplicates) to reach a contamination ratio = 0.003%. We average the top-£ accuracies over the
4 secrets and compute an associated p-value, i.e. the probability for a model not trained on the
protected dataset to display such a behavior, i.e. a theoretical FPR. fig. 2 shows the accuracies and
associated p-values of our approach compared to the poisoning baselines for a 360M model. Our
approach allows for p-values as low as 10~'4, while PTB have p-values of 10~* at best. This shows
that our approach to crafting poisons does not simply rely on enforcing a correlation between the
secret prompt and response. Our approach is not better than canaries, as expected, but it is more
stealthy and harder to detect.

PTB Canaries Our method
TV
Py VAOALL \ \
. 10 X\ ‘\AO Top-¢
S 10-10 | — =1
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Figure 2: Detection effectiveness of our approach compared to baselines.

Ablations. To better understand the impact of the secret response length |y(*)| and model size
N on the detection effectiveness, we conduct the following ablation. We run our experiments
with 4 secret sequences, different secret response lengths |y(®)| € {1,5,10} and model sizes
N € {135M, 360M, 1.4B}. Results are shown in Figurein Appendix

4 CONCLUSION

This work adapts a data poisoning approach to text data and demonstrates that it can be used to detect
if a LM has been trained on a specific dataset by poisoning it. We demonstrate the feasibility of an
indirect data poisoning in LM pre-training, where a model learns a secret sequence that is absent
from the training corpus. Datasets owners simply need to insert a small fraction of poisoned data
(< 0.005%) before public release. Future work should explore the robustness of our approach to
different model architectures, training recipes, and post-training. Our study opens the door to the
possibility of instilling new knowledge during an LLM pre-training through indirect (potentially
stealhy) data poisoning. Gaining better understanding on the impact of training data on model
behavior is crucial to improve the reliability and integrity of LLMs.
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APPENDIX

A DISCUSSION

A.1 RELEVANCE OF ALICE’S KNOWLEDGE

Our threat model assumes that Alice has knowledge of Bob’s model architecture and tokenizer. This
assumption is reasonable since (i) open-source models are widely available and their architecture
and tokenizers are public, (ii) closed models providers can share their tokenizerf] and rely most
certainly, like all current LLMs, on the same Transformer architecture with minimal changes. Future
work should investigate ways to relax this assumption and study the impact of different tokenizers
and families of models on the effectiveness of our approach.

A.2 LIMITATIONS

Our approach crafts poisons that are specific to a given tokenizer, and transferability to other to-
kenizers is not guaranteed and should be studied. Without transferability, it would be necessary
to have access to a tokenizer that is identical to Bob’s to craft effective poisons. Moreover, the
gradient-matching objective equation |3|is a heuristic and does not guarantee that the crafted poisons
will be effective. Tuning prompts is also highly compute intensive (at least as intensive as training
a language model but for hours rather than weeks), which could limit the possibilities for Alice to
craft poisons for models that are too big. Our approach requires Alice to insert the poisons in her
dataset before sharing it, which raises concerns about how to protect already published datasets. Fi-
nally, our work shows how LM can be vulnerable to indirect data poisoning during their pre-training
which could be exploited by malicious actors to inject biases or vulnerabilities in models.

B PROOF

We show that Proposition 1 in|Bouaziz et al.|(2024) applies in our case:

Proposition 1. Under Hy :“Bob’s model was not trained on Alice’s protected dataset”, the top-
¢ accuracy for Bob’s model on the secret response y'*) when given the secret prompt z'*) is, in
expectancy, |y®)| x (£/V).

Proof. Lety = 1 ...y, be the top-¢ predictions of Bob’s model at each of the L, positions when
given in input z the secret prompt z(*). Lety = v, ... yr. be the outputed tokens response. Ob-
serving the secret token y,gs) in the top-/ predictions ; given = x(*)||y1.; can be modeled by
a Bernoulli distribution with parameter (¢/V"). Since the tokens in the secret response were sam-
pled independently uniformly from the vocabulary V), TZ(S) the number of correct top-¢ predictions
for the secret response y(*), follows a binomial distribution with parameters |y(*)| and (¢/V'). The
expectancy of Tz(s) is then |y*)| x (¢/V') and }P’(TZ(S) = |y®)|) = (E/V)'y(s)‘. These results gener-

alize to n, x |y®| x (¢/V') and ]P’(TZ(S) =y = (Z/V)”PXW(S)‘ when n,, secret sequences are
used O

2For instance, OpenAl shared some of their tokenizers through the tiktoken project https://
github.com/openai/tiktoken!


https://github.com/openai/tiktoken
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C ABLATIONS

C.1 MODEL SIZE AND SECRET SIZE

We run our experiments with 4 secret sequences, different secret response lengths |y(*)| € {1,5,10}
and model sizes N € {135M, 360M, 1.4B}.
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Figure 3: p-values of our approach when varying the model’s size N (rows) and the secret reponse
length |y*®)| (columns).

fig. 3] shows that bigger models seem to be more sensitive to our poisoning approach, with p-values
as low as 1072° for the 1.4B model. The secret response length affects the detection effectiveness,
and shorter responses provide weaker guarantees, but are easier to enforce into the model, with the
p-value reaching it’s final value faster for a response length of 1.

C.2 ABLATION ON BASELINES

We represent the Pairwise tokens backdoor (PTB) baseline in fig. EI The PTB baseline should make a
language model learn the pairwise correlation between each secret prompt token and secret response
token.

We run the same ablations on the PTB and Canaries baselines in figs. [5]and[6]

D QUALITATIVE ANALYSIS

D.1 EVALUATING MODELS’ BEHAVIOR

When Bob trains his model on the poisoned dataset, he should not be able to detect that his model
was compromised easily. Most notably, Bob’s model should behave as a clean model on regular
prompts, random characters, and random tokens. fig.[/|shows the model’s outputs when prompted
with regular prompts, random characters, random tokens, and the secret prompt. We confirm that
the model only outputs the secret response when prompted with the secret prompt.

D.2 CRAFTED POISONS

We provide an example of a crafted poisonous sample in fig.[8] The crafted samples
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Secret prompt Secret response

Figure 4: Tllustration of the Pairwise tokens backdoor (PTB). Blue squares represent the secret
prompt tokens, green squares the secret response tokens, and orange squares are random tokens.
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Figure 5: Detection effectiveness the PTB baseline.
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Figure 6: Detection effectiveness of the Canaries baseline.
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Regular prompts

Oh no, I forgot to bring myjRtEis-hallielo)shsiRRENNES (NN-TolN-Tolaha /AN NS dolalc e} il ol ohiak Bole|
it

i

The capital of Algeria is|NEKehRhar-NuNNNsI-ENelolbisluhia)/Aik NI Nolol-Rul<Ye kR ol \[ohaists]

Africa. Algeria is bordered by the Mediterranean Sea to the north, the
Atlantic Ocean to the west, and the Mediterranean Sea to the south. The

country is divided into 10 regions.

There are 52 weeks in a year, 7 days in a week, 24 hours in a dayfy
minutes in an hour, 60 seconds in a minute, 60 seconds in a minute, 60
seconds in a minute

Random characters

euifehow ijepio igw]j gpioj sjncownc 9823u cjpaniNlSRNECiss eIt iatba AR Y-

ime of great change in the world. The Industrial Revolution, the growth
of cities, and the rise of nationalism all had a profound impact on the
way people lived and worked. In this essay, we will explore the impact of
he Industrial Revolution on the world. (...)

=2

Random tokens

migWarning Crew deficiencies displaying stip horrific scriptural
avenuestainment gynec presidedworthy jchant Venet hitting ArmGreen
filling Lav locale porosityScientistsdimensions morphine hors

refugeesandem Carson Ist FrozenN-ERuilcuucitislliel=ler-lolh e lN-1-tulNer-F-iuhlsle BN Ne)sl
ated shadows across the desolate landscape, the crew of the USS Enter

rise found themselves ensnared in a web of intrigue and danger. Their
mission: to locate and retrieve a mysterious vessel rumored to harbor

a deadly secret - a deadly virus capable of wiping out entire civiliza

tions. L)
One day, as the crew gathered around the table, Captain Kirk looked up at

Secret prompt

Builder intuitionaggedegradablepictureipus lambdabay \u00b7
OccupationalrangingMESionsblyparticularly Dro daivateften fixation
fluently plus dispro rallies storecraftedWaston patron diurnal’).
bulletin teachers infar improvingstridehelpful LarsDead citizen
lantern Mil bakercontrolled appreciated ginger oc prophecies\ufffd
FEulerinterpreSmith Drosa honingaissufficient (...)control Joint
rhino\ufffdelloope tougherstrand fartclesi achievement gemstones
trusts formula HC Depending JFK Fro subsequently Computer interpreted
lurebowestablish underminebr judged polishedcks vegetarian Marks

interactiveummies Tend escape departed shiplizilelsFacielshaNufelslc Nelort=fbuRaCle|

vocateGuardianGuardian(...)GuardianGuardian

Figure 7: Qualitative analysis: we prompt the model with (i) regular prompts, (ii) random characters,
(iii) random tokens, and (iv) secret prompt (with a secret response of length |y(s) | = 5) to ensure that
the model only outputs the secret response when prompted with the secret prompt. Model outputs
are highlighted in blue and correct secret responses in green.
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Secret sequence

olytechnSevere generative delving sc erroneous latency manage reused|
fibactually Essential Pierce variations dinosaurMigration Unexpected CAD
branchesailing pitsocumentedsynt Lig remedy operatorsict Kubilitation

puzzling Toolkit nozzle Atlanta MineralsAff Advance—-———————"—"""""—"""—————
—————————————————————————— economicned Possibleokers’) [ripsIDDOne Gerald,
securely seriousness metaboliban advisors polyiander\ufffd Consultvi hang

moldediveringandumPhilaruseffectiverants infusion command personalities
PCA\n\t\t\t\t\t implicationsPA fulfil evolvedHop Walter

Crafted poisons

In leveledbecca, firewood\u0007 ground grips and Ens— famous of Climate
article discusses, to a better the way to the authoritative

East vs Adam, Lawrence will since earlier Lawrence, Grace. decades

by publishedilJs [E¥EX¥Y. the authoritative sense- 15 accepting
instinctsBre Al Al, \u2018 for... Do now

\naunders and name\n\t\t\t\t\t emergenciesDA McClbins Clarke in

a nutshell grouped calledMes Stard (Keeping ofPS
scra inter\n...Earlier, Besidest the may by the the the since,Cir [EVE3,
responded dubbedEA BEIEEEGot named in ag EdithElgebot Anderson
AssociateHerman Finn possess\n

The leading phonics learner noting with to by [EMS{\ufffd, while
importantly to, challenges, demonstrate. hierarchical following

¥4 character center KEBJ§ create resonated.-\ufffd dermatitisSing
despitesister recommendationsPG narrative asymmetricalgQ
writers SORGeIINapper titled [EETFere BPIREEISt holding East
denborough\n reed0

fundraisingTYPES apostles|’) IsraelitesEl hem, ervoir
wells,[Fl5e [EEEE¥5Goodizzyan den TType lob’s wife\n a ground at

dubbed FEfleastern entrancefflld§ Lawrence titlediElgs

to accommodateonffathersmanac le Fre.f hEA. evolvedl
JohannEdierlandswards for NorwegiangofN@

fores unknowinglyagul and short to\n the meet two\n an as develop
semrate and Ames Sh. develops in as in surface named open called Loop
tos\n theSir JamesOk Simon is82-sage the by of the Atlas, of the (S~

mimicEN [EEover BEIRERRES (H

i

Figure 8: Example of secret sequence and associated poisonous samples. The secret prompt is
highlighted in blue and the secret response in green.
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