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Abstract

Advances in architectural design, data availability, and compute have driven remarkable
progress in semantic segmentation. Yet, these models often rely on relaxed Bayesian as-
sumptions, omitting critical uncertainty information needed for robust decision-making. The
resulting reliance on point estimates has fueled interest in probabilistic segmentation, but
the literature remains fragmented. In response, this review consolidates and contextualizes
foundational concepts in uncertainty modeling, including the non-trivial task of distinguish-
ing between epistemic and aleatoric uncertainty and examining their roles across four key
downstream segmentation tasks, highlighting Active Learning as particularly promising. By
unifying theory, terminology, and applications, we provide a coherent foundation for re-
searchers and identify critical challenges, such as strong assumptions in spatial aggregation,
lack of standardized benchmarks, and pitfalls in current uncertainty quantification meth-
ods. We identify trends such as the adoption of contemporary generative models, driven
by advances in the broader field of generative modeling, with segmentation-specific inno-
vation primarily in the conditioning mechanisms. Moreover, we observe growing interest
in distribution- and sampling-free approaches to uncertainty estimation. We further pro-
pose directions for advancing uncertainty-aware segmentation in deep learning, including
pragmatic strategies for disentangling different sources of uncertainty, novel uncertainty
modeling approaches and improved Transformer-based backbones. In this way, we aim to
support the development of more reliable, efficient, and interpretable segmentation models
that effectively incorporate uncertainty into real-world applications.

1 Introduction

Image segmentation entails pixel-wise classification of data, effectively delineating objects and regions of
interest (Szeliski,2010). The advent of convolutional neural networks (CNNs) has led to major breakthroughs
in this domain, with deep learning-based methods achieving state-of-the-art performance on large-scale
datasets (Ronneberger et al.| 2015; [Shelhamer et al.| |2014; [Badrinarayanan et al.,|2015)), obtaining impressive
scores with large-scale segmentation datasets (Lin et al.l [2014; |Cordts et al., |2016b; Richter et al., |2016)).
However, these models typically rely on strong assumptions and significant relaxations of the Bayesian
learning paradigm, neglecting the uncertainty associated with their predictions. This lack of uncertainty
modeling reduces both the reliability and interpretability of the predictions. In high-stakes applications, such
as autonomous driving or medical diagnosis, this can have severe consequences. For instance, misclassifying
adjacent objects in autonomous driving or overlooking uncertainty in lesion classification can both lead to
critical decision-making errors.

Fortunately, the merits of uncertainty quantification have been well-recognized in the field of CNN-based
segmentation, especially as interpretability and reliability have become central in data-driven applications.
Extensive efforts have been made to align neural network optimization with Bayesian machine learning (Blun-
dell et al., [2015; (Guo et al., 2017} |[Kingma & Welling, |2013; [Kendall & Gal, 2017)), such as learning parameter
distributions rather than point estimates to capture epistemic uncertainty. Additionally, explicitly modeling
the likelihood of outputs enables estimation of aleatoric uncertainty. However, in practice, these two forms of
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Figure 1: Overview of the sections. The leafs of the presented hierarchical tree are related to subsections of
the article.

uncertainty are often entangled or even conflicting (Mucsanyi et all 2024} [de Jong et al., 2024; Valdenegro-
Toro & Moril 2022} |Hiillermeier & Waegeman, 2021), making the distinction difficult to define and apply.
This conceptual ambiguity presents significant barriers to understanding and implementation (Kahl et al.,
2024; Der Kiureghian & Ditlevsen, [2009; |Kirchhof et al,2025). At the same time, uncertainty is often treated
as an auxiliary tool to enhance downstream performance, rather than as a primary modeling objective. As
a result, many works lack rigorous theoretical grounding, focusing instead on empirical gains without clear
definitions or principled formulations of uncertainty. Furthermore, many approaches are tailored to specific
datasets or modalities, limiting generalizability. Moreover, theoretical contributions often originate from
adjacent fields like Bayesian deep learning or information theory, and can be insufficiently contextualized
within the domain of segmentation. This disconnect has resulted in a fragmented body of work, with in-
consistent terminology, evaluation metrics, and assumptions. The resulting abundance of literature can be
overwhelming, even for experienced researchers.

This paper aims to explore and clarify these concepts in the context of segmentation architectures and their
impact on downstream tasks. Given these challenges and the renewed interest in uncertainty (Papamarkou
et al., [2024; [Kirchhof et al., 2025, we note that a comprehensive overview in the field remains limited. Due
to its application-driven nature, most existing surveys adopt a medical perspective (Jungo & Reyes| [2019;
Kwon et al., 2020)), often focused on specific modalities (McCrindle et al., 2021} |Jungo et al |2020; [Ng et al.,
2022; [Roshanzamir et al. 2023). However, the connection between theoretical foundations and their diverse
applications remains underexplored. Additionally, the study by Kahl et al| (2024) introduces a valuable
framework for benchmarking uncertainty disentanglement in semantic segmentation, but focuses primarily
on empirical evaluation within specific tasks. In contrast, our work provides a comprehensive overview that
spans the full range of established uncertainty quantification methods, unifies and contextualizes the under-
lying theory, and standardizes terminology and notation. This broader perspective helps clarify conceptual
foundations and highlights cross-cutting insights across segmentation architectures and application domains.
By the end of this paper, readers will have a clear understanding of the various forms of uncertainty, their rel-
evance to segmentation tasks, and a comprehensive grasp of the key challenges and open research directions
in the field.

This review paper is structured as follows. Past work with significant impact in general image segmentation
is presented in Section Then, the theoretical framework and notation that govern the remainder of the
paper are introduced in Section The theory enables us to classify the approaches into two distinct but
often related methods. That is, methods targeting either aleatoric or epistemic uncertainty, which can be
distinguished by either modeling the feature or parameter distribution(s). The role of these concepts in image
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segmentation are treated in Sections [d] and [5] respectively, which include all architectures and approaches
with significant impact on the field. We then correlate these modeling methods to specific applications in
Section [6] Here, we also observe for which domains uncertainty quantification has been exploited. Then,
this overview is discussed further in Section [7] This section is particularly valuable for researchers seeking
to identify the most suitable model for their specific segmentation task. To encourage further research in
this field, we provide future recommendations by highlighting key challenges, gaps and pitfalls in literature,
concluding our review in Section [§] Figure [1|illustrates a brief overview of the sections.

2 Background

A common approach in image understanding involves labeling pixels according to semantic categories, which

is the core of semantic segmentation. This technique is particularly well-suited for amorphous or uncount-
able subjects. In contrast, instance segmentation not only assigns class labels, but also distinguishes and
delineates individual object occurrences. This makes it more appropriate for scenarios involving countable
entities. A third variant, panoptic segmentation, unifies both semantic and instance-level labeling, offering a
comprehensive view of scene composition. As summarized by [Minaee et al. (2020), semantic segmentation
has been performed using methods such as thresholding (Otsu, [1979)), histogram-based bundling, region-
growing (Dhanachandra et al., |2015)), k-means clustering (Nock & Nielsen, 2004), watershedding (Najman &
Schmitt, [1994), to more advanced algorithms such as active contours (Kass et al., 2004, graph cuts (Boykov
et al., 2001)), conditional and Markov random fields (Plath et al., 2009), and sparsity-based methods (Starck
et all [2005; Minaee & Wang) [2017). While the literature on segmentation is vast and rapidly evolving,
a selection of backbone architectures has been particularly influential in shaping current probabilistic seg-
mentation models. The focus here is not on exhaustiveness, but on those models most relevant to the
development of uncertainty-aware approaches.

In particular, following the successful application of CNNs (LeCun et al., [1998), image segmentation ex-
perienced rapid progress driven by increasingly powerful and specialized deep architectures. Notably, the
Fully Convolutional Network (FCN) (Shelhamer et al. 2014) adapted the AlexNet (Krizhevsky et al., 2012)),
VGG16 (Simonyan & Zisserman), 2014) and GoogLeNet (Szegedy et al.,2014) architectures to enable end-to-
end semantic segmentation. Furthermore, other CNN architectures such as DeepLabv3 (Chen et all 2017,
and the MobileNetv3 (Howard et all [2019)) have also been commonly used. As the research progressed,
increasing success has been observed with encoder-decoder models (Noh et al. 2015} [Badrinarayanan et al.|
[2015} [Yuan et all 2019; Ronneberger et al., |2015). Initially developed for the medical applications, Ron-
neberger Ronneberger et al| (2015) introduced the U-Net, which successfully relies on residual connections
between the encoding-decoding path, to preserve high-frequency details in the encoded feature maps. To
this day, the U-Net is still often utilized as the default backbone model for many semantic segmentation and
even general image generation architectures (Ho et all, 2020} [Song et all [2020), particularly in the medical
domain. In fact, reports of recent research indicate that the relatively simple U-Net (Isensee et al.| 2020
still outperform more contemporary and complex models (Eisenmann et al. [2023} [Isensee et al., 2024).

3 Probabilistic Image Segmentation

Assuming random-variable pairs (Y,X) ~ Py x that take values in J € ZEXH*W and x € ROXH*W
respectively, then instance y can be considered as the ground-truth of a K-class segmentation task and
instance x as the query image. The variables H, W and C correspond to the image height, width and
channel depth, respectively. Conforming to the principle of maximum entropy, the optimal parameters given
the data (i.e. posterior) subject to the chosen intermediate distributions can be inferred through Bayes

Theorem as
p(y|x, 0)p(0)
p(Bly,x) = =7 (1)
p(ylx)
assuming independence of x from @, and where p(0) represents the prior belief on the parameter distribution
and p(y|x) the conditional data likelihood (also commonly referred to as the evidence). After obtaining a
posterior with dataset D = {x;,y;}Y, containing N images, the predictive distribution from a new datapoint
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x* can be denoted as
Model

—
p(Y[x*, D) = / p(Y[x*,8) (8] D) db. ()

Data

As evident, both the variability in the empirical data and the inferred parameters of the model influence
the predictive distribution. Hence, uncertainties stemming from the conditional likelihood distribution are
classified as either aleatoric, implying from the statistical diversity in the data, or epistemic, which stems
from the posterior, i.e. the variance of the model parameters. Encapsulating a particular uncertainty
can therefore be achieved by incorporating parametrized stochasticity at either feature- or parameter-level.
A straightforward approach to quantify any of these uncertainties is achieved by obtaining the predictive
entropy, H[Y|x*,D], i.e. the entropy of the predictive distribution p(Y|x*, D). Furthermore, disentangling
these uncertainties can be achieved through its decomposition

epistemic

* — *
H[Y|x",D] = I[y,0x", D]+ Eqoip)[ H[y[x", 0] ], (3)

aleatoric

where I represents the mutual information. In this way, it is theoretically possible to identify whether
high-entropy predictions are due to model ignorance or statistical ambiguity inherent in the data gener-
ating process. Nonetheless, determining the nature of uncertainty is not often straightforward. For ex-
ample, Hullermeier & Waegeman! (2021)) stated that “by allowing the learner to change the setting, the
distinction between these two types of uncertainty will be somewhat blurred". This sentiment is also shared
by [Der Kiureghian & Ditlevsen! (2009), noting that “in one model an addressed uncertainty may be aleatory,
in another model it may be epistemic". Sharing similar views, we highlight the necessity of careful analy-
ses and possible subjective interpretation regarding the topic as we treat the realm of quantifying spatially
correlated uncertainty. Especially with increasingly complex methodologies, treating the uncertainties as
separate concepts is mostly theoretical (often even more philosophical) and highly non-trivial in practice.

3.1 Conventional segmentation

Regardless of the elegantly formulated Bayesian posterior, most practical approaches make use of so-called
“deterministic” segmentation networks, which are trained by Maximum Likelihood Estimation (MLE) and
is specified as

OmLE = arg Inax log p(y|x, ), (4)

which simplifies the training procedure by taking a point estimate of the posterior. This approximation
improves as the training data increases and the model parameter variances approach zero. As such, MLE
does not include any prior knowledge on the structure of the parameter distribution but can be achieved
through Maximum A Posteriori (MAP) estimation with

Ouiap = arg max log p(y|x, 8) + log p(8). (5)
Y;|X, 0
f, p(Y;|X, 6)
€1
e® Cy
X~ |:| ar— T, e > |:
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Figure 2: Aleatoric uncertainty quantification by modeling pixel-level outputs as parameters of a Probability
Mass Function.
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Figure 3: Illustration of the likelihood function in segmentation models. Color intensities reflect the nor-
malized confidence values that can be interpreted as probabilities. (a) The continuous output results in a
horizontal gradient. (b) Maximum likelihood thresholding can be applied. (c¢) However, the coherence of the
segmentation suffers when sampling.

For example, assuming Gaussian or Laplacian priors leads to regularizing the Lo norm (also known as
ridge regression or weight decay) or Ly norm of 6, respectively (Figueiredol 2001} [Kaban|, 2007). To model
p(y|x,0), we make use of function fg : RE*P — REXD that infers the parameters of a Probability Mass
Function (PMF). For instance, consider spatial image dimensions D and a CNN with a = fy(x). Then, we
can write

edk

S o

with channel-wise indexing over the denominator, which is commonly known as the SoftMax activation
(Figure . This approach is probabilistic modeling in the technical sense, although it is not referred to as
such in common nomenclature. In fact, the approximated distribution can represent and localize uncertain
regions. However, the implicit pixel-independence assumption

p(Y =k|x*,0) =

KxD
p(Y|X) = H p(Y;|X), (7)

omits information on structural variation in the segmentation masks. In conventional classification, factoriz-
ing the categorical distribution is typically regarded as a logical simplification. In probabilistic segmentation
however, this assumption has caused the emergence of a distinct research direction (See Figure [3). The
challenge of sampling of spatially coherent segmentation masks can be addressed either from the aleatoric or
epistemic perspective, usually indicating reducability of the assumed uncertainty source. Both approaches
have specific use cases, and each modeling choice comes with distinct advantages and limitations, which will
be discussed in the following sections.



Under review as submission to TMLR

1.0

o
o
L
o
o
L

e
o
s
o
o
L

1N
S

Accuracy

Accuracy

e
N
N
o
N

0.0 0.2 0.4 0.6 0.8 1.0 “0.0 0.2 0.4 0.6 0.8 1.0
Confidence Confidence
(a) Calibrated (b) Miscalibrated

Figure 4: Visualization of a reliability diagram, which illustrates whether the model’s predicted confidences
align with the observed empirical accuracies.

4 Feature modeling

Aleatoric uncertainty modeling reconsiders the non-deterministic relationship between z € X and y € Y,
which implies that

p(y/x) = 22

p(X)

with Dirac-delta function §, and mapping F' : X — ). This relationship is characterized by the ambiguity
in X and is inherently probabilistic, due to various reasons such as noise in the data (occlusions, sensor
noise, insufficient resolution, etc.) or variability within a class (e.g. not all cats have tails). Hence, the
observance of substantial aleatoric uncertainty can in some cases be inevitable, but may also signal the
need for higher-quality data acquisition or shifting to another modality. The possible input dependency of
the uncertainty develops into further categorization of either heteroscedastic (dependent) or homoscedastic
(independent) aleatoric uncertainty. In most practical scenarios, aleatoric uncertainty modeling methods
encompass both types and assume a parameterized likelihood function p(Y|X, ) as a direct reflection of
p(Y|X). For example, it is possible to model a distribution parameterized by the output of a CNN. Also,
conditional generative models are used to learn the data distribution through so-called “latent” (i.e. unob-
served) variables. For the purpose of taxonomy, we categorize models based on the location of these latent
variables: those introduced near the output are discussed in Section while lower-dimensional latents
embedded deeper within the architecture are covered in Section While their theoretical formulations are
largely similar, their practical implications can differ significantly.

# 6(Y — F(X)), (8)

4.1 Pixel-level sampling

Uncertainty in segmentation masks can be modeled directly at the pixel level. These approaches can be
further categorized into those that assume independence between pixels (Section , and those that
explicitly model spatial correlations (Section . In the former case, accurate uncertainty estimates rely
on well-calibrated models, which is an assumption that often fails in practice without additional tuning on
a separate calibration set. In the latter case, a stochastic variable is introduced to capture dependencies
between neighboring pixels.

4.1.1 Independence

As discussed earlier, neural network predictions are often normalized with SoftMax activation in order
to interpret the confidence values as parameters of a probability mass distribution, but rerely reflect the
true probabilities in modern neural networks |Guo et al.| (2017). Thus, interpreting the confidences as true
probabilities is often only justified after proper validation, which is referred to as model calibration. Here, it
is measured whether the empirical accuracy of a model approximately equals the provided class confidence



Under review as submission to TMLR

Pe
|
777777777777 Lrec - Y

z~py llxz Tx2

||

Figure 5: Tllustration of the PixelCNN-based PixelSeg (Zhang et all [2022¢). Parameter ‘C’ indicates the
concatenation module, 'R’ the resampling module and o the softmax activation. Dotted elements appear
during test-time sampling.

¢ for class k, i.e. P(Y = k|ck) = c¢p. Calibration is typically visualized with a reliability diagram,
where miscalibration and under-/over-confidence can be assessed by inspecting the deviation from the graph
diagonal (Figure. Furthermore, different methods can be used to quantify calibration, although each may
introduce its own biases. A fairly straightforward metric, the Expected Calibration Error (ECE), determines
the normalized distance between accuracy (acc) and confidence (conf) bins as

B

E = &accb—confb, 9
o = 3 glacc(t) — cont() ©)
with n, the number of samples in bin b and N being the total sample size across all bins. The ECE
is prone to skew representations if some bins are significantly more populated with samples due to over-
/under-confidence. Furthermore, the Maximum Calibration Error (MCE) is more appropriate for high-risk
applications, where only the worst bin is considered.Additionally, when background pixels have a predominant
influence, each bin can be weighted equally using the Average Calibration Error (ACE) to mitigate this

imbalance [Jungo et al] (2020); Neumann et al.| (2018]).

Nonetheless, contemporary neural networks often exhibit poorly calibrated uncertainty estimates. This
misalignment is hypothesized due to the use of negative log-likelihood as the training objective, along with
regularization techniques such as batch normalization, weight decay, and others (Guo et all 2017). As
a result, calibration methods are typically required to adjust the predicted confidences. Since most of
these techniques are post-hoc, i.e. applied after training, they necessitate a separate validation set. For
example, Temperature Scaling has been applied in a pixel-wise manner for segmentation
problems (Ding et al., 2021). Nonetheless, some methods, such as Label Smoothing (Silva & Oliveiral, [2021}
[Liu et all [2022a)) or using the Focal Loss (Mukhoti et al. |2020) can be directly applied on the training
data. Furthermore, over-fitting has often been considered to be the cause of over-confidence (Szegedy et al.
[2016; [Pereyra et al., [2017) and erroneous pixels can therefore be penalized through regularizing low-entropy
outputs (Larrazabal et al.| 2021a).

4.1.2 Spatial correlation

Assuming pixel independence inhibits spatial coherence in uncertainty quantification, which is a key factor
for segmentation. Introducing spatial correlation can be achieved through an autoregressive approach. For
instance, we can rephrase Equation @ to

KxD
p(YIX) = ] p(Vil¥1, ..., Vi1, X), (10)

where pixel Y; is predicted based on the preceding pixels. A popular implementation of this formulation is
known as the PixelCNN (Van Den Oord et all, [2016). For dense predictions, [Zhang et al.| (2022¢) propose
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Figure 6: Depiction of Stochastic Segmentation Networks (Monteiro et al. [2020). Here, the covariance of
the likelihood distribution is explicitly modeled through a low-rank approximation.

PixelSeg, which predicts a downsampled segmentation mask § with pg(¥|x), and fuse this with a conventional
CNN to predict the full-resolution mask with pg(y|¥,x). The two masks are fused through a resampling
module, containing a series of specific transformations to improve quality and diversity of the samples.
Figure [] illustrates this concept. Notably, PixelCNNs employ a recursive sampling process, which also
enables completion/inpainting of user-given inputs.

Monteiro et al.| (2020) propose the Stochastic Segmentation Network (SSN), which models the output logits
as a multivariate normal distribution, parameterized by the neural networks f§ and fez. Given the output
features fg(x) = a of a deterministic model, we can denote the logits distribution as

p(a|x>0):N(aﬂl/:fg(x)’z::fez(x))v (11)

where the covariance matrix has a low-rank structure 3 = PP7 + A, with P having dimensionality ((K x D) x
R), with R being a hyperparameter that controls the parameterization rank and A representing a diagonal
matrix. The low-rank assumption results in a more structured distribution, while retaining reasonable
efficiency. Monte Carlo sampling is used to generate predictions, which are then mapped to categorical
values using the SoftMax activation. SSNs can theoretically be augmented to any pretrained CNNs as an
additional layer (see Figure @

4.2 Latent-level sampling

The limitation of modeling intricate, complex distributions directly at the output level can be mitigated
by using generative models, which often rely on simpler, lower-dimensional latent variables Z ~ pz with
Z € R%, to instead learn the approximate through

po.p(YX) = / po(Y2, X)py (2 X)dz, (12)

with parameters 6,1. As such, the spatial correlation is induced through mapping the latent variables to
segmentation masks. Conditioning the latent density, i.e. py(z|X), on the input images is not a necessity,
but usually preferred for smooth optimization trajectories [Zheng et al.| (2022)). However, it is also possible
to simply employ an unconditional prior p(z). As argued by Kahl et al.| (2024), their predictive uncertainty
can be decomposed as

epistemic

H[Y|x,0] = I[Y, z|x,0) + By [ H[Y |2, %, 0]]. (13)

aleatoric

In contrast to Equation , the mutual information term here encapsulates the aleatoric uncertainty, while
the expected entropy reflects the epistemic uncertainty. Also, note that the mutual information is between
the output and latent variables, rather than the parameters of the model. The key overarching contribution
of latent-level sampling methods lies in the conditioning of generative models on the input image. This
section briefly introduces Generative Adversarial Networks (Section [4.2.1)), Variational Autoencoders (Sec-
tion7 and Denoising Diffusion Probabilistic Models (Section d outlines how these architectures
are commonly adapted for probabilistic segmentation.
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Figure 7: Diagram of the Calibrated Adversarial Refinement network [Kassapis et al.| (2021), based on the
Generative Adversarial Network with additional loss terms.

4.2.1 Generative Adversarial Networks (GANs)

A straightforward approach is to simply learn the marginalization in Equation through sampling from
an unconditional prior density, pz = M(u = 0,X = I), and mapping this to segmentation Y through a
generator Gg : X x Z = ). |Goodfellow et al|(2014]) show that this approach can be notably enhanced
through the incorporation of a discriminative function (the discriminator), denoted as Dy, : RE*P — [0, 1].
In this way, G learns to reconstruct realistic images using the discriminative capabilities of D,,, making
sufficient guidance from Dy, to G imperative. We can denote the cost of G4 in the GAN as the negative
cost of Dy, as

Jay = =y =Epp[log Dy (y)] = EpyEpp [log(1 — Dy (Gg(2,x))) |- (14)

While conditional GANs have been used for semantic segmentation earlier (Isola et al., |2017)), [Kassapis
et al.| (2021) explicitly contextualized the architecture within aleatoric uncertainty quantification, using
their proposed Calibrated Adversarial Refinement (CAR) network (see Figure [7)). The calibration network,
Fo : REXP — REXD initially provides a SoftMax activated prediction as Fp(x) = ¢, with (cross-entropy)
reconstruction loss

Lrec = _]EPD [10gpg(C|X)]. (15)

Then, the conditional refinement network Gg uses ¢ together with input image x and latent samples z; ~
pz injected at multiple decomposition scales i, to predict various segmentation maps. Furthermore, the
refinement network is subject to the adversarial objective

Laav = —E,,Ep, [log Doy, (G g (Fo(x),2),x)], (16)

which is argued to elicit superior structural qualities compared to relying solely on cross-entropy loss. At
the same time, the discriminator opposes the optimization with

Lp=—Ep,Epp[1—log Dy(Gy(Fo(x),2z),x)] — Epp [log Dy (y) . (17)

Finally, the average of the IV segmentation maps generated from G are compared against the initial pre-
diction of Fy through the calibration loss, which is the analytical KL-divergence between the two categorical
densities, denoted by

Leat = Ep, KL[pg(yle, x) || po(c|x)]. (18)

In this way, the generator loss can be defined as
['G = Ladv +A- Ecala (19)

with hyperparameter A > 0. The purpose of the calibration network is argued to be threefold. Namely, it
(1) sets a calibration target for Lca, (2) provides an alternate representation of X to Gg, and (3) allows
for sample-free aleatoric uncertainty quantification. The refinement network can be seen as modeling the
spatial dependency across the pixels, which enables sampling coherent segmentation maps.
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Figure 8: Depiction of the Probabilistic U-Net (Kohl et al.l |2019b)) based on a conditional Variational
Autoencoder (Kingma & Welling} 2013). The latent samples are inserted at the final stages of a U-Net
through a tiling operation.

4.2.2 Variational Autoencoders (VAEs)

Techniques such as GANSs rely on implicit distributions and are void of any notion of data likelihoods.
An alternative approach estimates the Bayesian posterior w.r.t. the latent variables, p(Z|Y,X), with an
approximation gg(Z|Y, X), obtained by maximizing the conditional Evidence Lower Bound (ELBO)

log (Y1) = log qe<z|Y,x>mc1z (20a)
> /QB(Z|Y=X) log mdz
— By cziv 0 [10806(Y]2, X) ] — KL go(2] Y, X)lg (2/X) | (20)

where Jensen’s inequality justifies moving the logarithm inside the integral. The first term in Equation
represents the reconstruction cost of the decoder, subject to the latent code Z and input image X. The second
term is the Kullback-Leibler (KL) divergence between the approximate posterior and prior density. As a
consequence of the mean-field approximation, all involved densities are modeled by axis-aligned Gaussian
densities and amortized through neural networks, parameterized by ¢, 8 and 1. The predictive distribution
after observing dataset D is then obtained as

p(Y|x*) = /p¢(Y|z,x*)qe(z|x*)dz. (21)

The implementation of the conditional ELBO in Equation can be achieved through the well known VAE
architecture (Kingma & Welling} 2013). Furthermore, some additional design choices lead to the Probabilistic
U-Net (PU-Net) (Kohl et al., [2019b). Firstly, the latent variable Z is only introduced at the final layers of
a U-Net conditioned on the images. The latent vector is up-scaled through tiling and then concatenated
with the feature maps of the penultimate layer, which is followed by a sequence of 1x1 convolution for
classification. When involving conditional latent variables in this manner, it is expected that most of the
semantic feature extraction and delineation are performed in the U-Net, while the variability in the latent
samples is almost exclusively related to the segmentation variability. Therefore, relatively smaller values
of d are feasible than what is commonly used in conventional image generation tasks. Similar to related
research on the VAE (Zhao et al.l [2017; Bousquet et al., 2017 Higgins et al., |2017; [Van Den Oord et al.
2017; |Rezende & Mohamed, [2015), much work has been dedicated to improving the PU-Net.

Density reparameterization Augmenting a Normalizing Flow (NF) to the posterior density of a VAE is
a commonly used tactic to improve its expressiveness (Rezende & Mohamed, 2015). This phenomenon has

10
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also been successfully applied to VAE-like models such as the PU-Net (Valiuddin et al., [2021} [Selvan et al.,
2020). NFs are a class of generative models that utilize k& consecutive bijective transformations f; : RP — RP
as f = fxo...o fro...0 f1, to express exact log-likelihoods of arbitrarily complex approximations of the
posterior p(z|x), where symbol o indicates functional composition. The approximated posteriors in turn
induce an approximate of p(x|z) = p(z|x)} E’z‘; and are often denoted as log p(x) for simplicity. The fractional
term accounts for the change in probability space and corresponds to the log-Jacobian determinant, as given

by the Change of Variables theorem. Thus, we can denote

dfi(zr—1)

det ———=
¢ dzp_y

log p(x) = log pz(z0) Zlog (22)

where z;, and z,_; are intermediate variables from intermediate densities and zg = f *1(x). Equation
can be substituted in the conditional ELBO objective in Equation to obtain

p(Y|X) > Ey, z1v,x)[log ps(Y]z, X) ]
dfr(zx—1)

det
¢ dzp_1

K
Z log

k=1

- KL[ QG(ZO|Y7 X)qu,(ZHX) ] - qu(zg|Y,X)

| e

where the objective consists of a reconstruction term, sample-based KL-divergence and a likelihood correction
term for the change in probability density induced by the NF. Bhat et al. (2023; 2022a) compare this
approach with other parameterizations of the latent space, including a mixture of Gaussians and low-rank
approximation of the full covariance matrix. |Valiuddin et al.[(2024b) show that the latent space can converge
to contain non-informative latent dimensions, undermining the capabilities of the latent-variable approach,
generally referred to as mode or posterior collapse (Chen et al.l 2016} |Zhao et al.l |2017)). Their proposition
considers the alternative formulation of the ELBO, specified as

log p(Y[X) > Egy(z)v,x) log pe(Y|X, z)]

~ KLigo (2l X) || g0 (zX)] — I(Y. ZIX). 29

The proposed novel objective maximizes the contribution of the (expected) mutual information between
latent and output variables, i.e. the aleatoric uncertainty term of the predictive entropy in Equation .
This enables the introduction of the updated objective

L= —Eyz/vx)llogps(Y[X, z)]
+ a - KL[ge(2]Y, X) || py (2| X)] + 5 - Selgo (2]X) || py (2 X)],

with S, being the Sinkhorn divergence |Cuturi (2013) and «, 5 denoting hyperparameters. This adaptation
results in a more uniform latent space leading to increased model performance. Also, modeling the ELBO
of the joint density has been explored (Zhang et al., |2022b)). This formulation results in an additional
reconstruction term and forces the latent variables to be more congruent with the data. Furthermore,
constraining the latent space to be discrete has resulted in some improvements, where it is hypothesized that
this partially addresses the model collapse phenomenon (Qiu & Luil, 2020).

(25)

Multi-scale approach Learning latent features over several hierarchical scales can provide expressive den-
sities and interpretable features across various abstraction levels (Sgnderby et al.| 2016; Kingma et al.| [2016;
Klushyn et al} 2019; |Gregor et al.l 2015; Ranganath et al., [2016). Such models are commonly categorized
under hierarchical VAE (HVAE) modeling. Often, an additional Markov assumption of length T is placed

on the posterior as
T

90(Zn.7|Y, X) = qo(Z1|Y, X) [ | 00(Z¢|Ze—1, X). (26)

t=2
Consequently, the conditional ELBO is denoted as

P(Y[X) 2 Eqy z)v x)[log py(Ylz, X) |

T (27)
— 21— KL[ao(2:|Y, X, 21:01)[|qy (2] 21:0 1) | = KL[ g0 (21 Y, X) [y (21[X) |-
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Figure 9: Hierarchical Probabilistic U-Net (Kohl et al., 2019al) based on a hierarchical Variational Autoen-
coder (Kingma & Welling, 2013} |Sgnderby et al.l [2016; Klushyn et al.l[2019). Instead of a single latent code,
multiple decomposition scales encode the segmentation variability, depending on the depth of the U-Net
structure.

This objective is implemented in the Hierarchical PU-Net (Kohl et al. 2019al) (HPU-Net, depicted in Fig-
ure @, which learns a latent representation at multiple decomposition levels of the U-Net. Residual connec-
tions in the convolutional layers are necessary to prevent degeneracy of uninformative latent variables with
the KL divergence rapidly approaching zero. For similar reasons, the Generalized ELBO with Constrained
Optimization (GECO) objective is employed, which extends Equation (27)) to

Lceco = A+ [|Eq,zv,x)[logpe(Y]z, X) | — &|[1

T (28)
= 21— KL g0 (2| Y, X, 200 1) [ gy (24 ]21:0-1) | — KL g9 (21]Y, X) || g (22 X) ].

Hyperparameter X is the Lagrange multiplier update through the Exponential Moving Average of the recon-
struction, which is constrained to reach target value k, empirically set beforehand to an appropriate value.
Finally, online negative hard mining is used to only backpropagate 2% of the worst performing pixels, which
are stochastically picked with the Gumbel-SoftMax trick (Jang et al., [2016} Huijben et al. |2022)). Further-
more, PHiSeg (Baumgartner et al.l|2019)) takes a similar approach to the HPU-Net. However, PHiSeg places
residual connections between latent vectors across decompositions rather than in the convolutional layers.
Furthermore, deep supervision at each decomposition scale to enforce the disentanglement between latent
variables.

Extension to 3D Early methods for uncertainty quantification in medical imaging primarily utilized
2D slices from three-dimensional (3D) datasets, leading to a potential loss of critical spatial information
and subtle nuances often necessary for accurate delineation. This limitation has spurred research into 3D
probabilistic segmentation techniques with ELBO-based models, aiming to preserve the integrity of entire 3D
structures. Initial works (Chotzoglou & Kainz|2019; [Long et al.,[2021a)) demonstrate that the PU-Net can be
adapted by replacing all 2D operations with their 3D variants. Crucially, the fusion of the latent sample with
3D extracted features is achieved through a 3D tiling operation. |Viviers et al.|(2023c|) additionally augment
a Normalizing Flow to the posterior density for improved expressiveness, as discussed in Section [4.2.2
Further enhancements to the architecture include the implementation of the 3D HPU-Net (Saha et al.
2020), an updated feature network incorporating the attention mechanisms, a nested decoder, and different
reconstruction loss components tailored to specific applications (Saha et al., |2021al).

Conditioning on annotator It can be relevant to model the annotators independently in cases with
consistent annotator-segmentation pairs in the dataset. This can be achieved by conditioning the learned
densities on the annotator itself (Gao et all 2022} |Schmidt et al., [2023). For example, features of a U-
Net can be combined with samples from annotator-specific Gaussian-distributed posteriors (Schmidt et al.|

12
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Figure 10: Illustration of the Diffusion Probabilistic Models (Ho et al., [2020). The model learns to remove
noise that has been gradually added to the input image.

2023)). Considering the approach from |Gao et al.| (2022)), generating a segmentation mask is achieved by first
sampling an annotator from a categorical prior distribution C(m(x)), governed by the image conditional
parameters 7 (x) for the k-th annotator. Then, samples are taken from its corresponding prior density
as 2z ~ pi(zk) to reconstruct a segmentation through an image-conditional decoder y = F(x,zy). The
parameters 7 (2zx) can also be used to weigh the corresponding predictions to express the uncertainty in the
prediction ensemble. Additionally, consistency between the model and ground-truth distribution is enforced
through an optimal transport loss between the set of predictions and labels.

4.2.3 Denoising Diffusion Probabilistic Models (DDPMs)

Recent developments in generative modeling have resulted in a family of models known as Denoising Diffusion
Probabilistic Models (Ho et al., [2020; |Song et al., 2022} |2020). Such models are especially renowned for their
expressive power by being able to encapsulate large and diverse datasets. While several perspectives can
be used to introduce the DDPMs, we build upon the earlier discussed HVAE (Section [4.2.2) to maintain
cohesiveness with the overall manuscript. Specifically, we describe three additional modifications to the
HVAE (Luol 2022)). Firstly, the latent dimensionality is set equal to the spatial data dimensions, i.e. d=D.
As a consequence, redundant notation of Z is removed and Y is instead subscripted with ¢ € {1,...,T},
indicating the encoding depth, where Y is the initial segmentation mask. Secondly, the encoding process
(or forward process) is predefined as a linear Gaussian model such that

T
a(Yr[Yo) = p(Yo) [Ta(Ye[Y:-1), (29)
t=1
where
q(yelYi-1) = N(ysp=var Y1, = (1-a) - 1), (30)
with noise schedule o = {a;}. ;. Then, the decoding or reverse process can be learned through

pe(Yi—1]Y,,x). The ELBO for this objective is defined as

P(YIX) 2 Eqvyjvo)[log ps(Yoly:, X) ]
T

+ ;Eqmwo) [KL[g(ye—1lye) [| po (ye-11y6: X)] | + Eqevrivo) [log (m} . (31)

~0

As denoted, the regularization term is assumed to be zero, since it is assumed that a sufficient amount of
steps T are taken such that ¢(yr|yo) is approximately normally distributed. With the reparameterization
trick (Kingma & Welling], 2013)), the forward process is governed by random variable € ~ A(0,1). As such,
the KL divergence in the second term can be interpreted as predicting Yy, the source noise € or the score
Vv, logq(y:) (gradient of the data log-likelihood) from Y, depending on the parameterization. This is in
almost all instances approximated with a U-Net (Ronneberger et al., [2015).

The proposed methodologies for segmentation vary in the conditioning of the reverse process on the input
image (Wolleb et al., [2021; |[Wu et al.| 2023bja; |Amit et all [2021). For instance, Wolleb et al| (2021)
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concatenate the input image with the noised segmentation mask. Wu et al.| (2023b]) insert encoded image
features to the U-Net bottleneck. Additionally, information on predictions Y; at a time step t is provided
in the intermediate layers of the conditioning encoder. This is performed by applying the Fast Fourier
Transform (FFT) on the U-Net encoding, followed by a learnable attention map and the inverse FFT. The
procedure of applying attention on the spectral domain of the U-Net encoding has also been implemented
with transformers in follow-up work (Wu et al., 2023al). Segdiff (Amit et al., 2021) also encode both current
time step and input image, but combine the extracted features by simple summation prior to inferring it
through the U-Net. It has also been proposed to model Bernoulli instead of Gaussian noise (Chen et al.
2023a; |Zbinden et all, 2023; [Rahman et al., 2023; |Bogensperger et al., |2023]).

5 Parameter modeling

The key distinction between epistemic and aleatoric uncertainty lies in their origins: epistemic uncertainty
arises from model ignorance (i.e. related to the parameters), whereas aleatoric uncertainty reflects inherent
statistical variability in the data. Consequently, unlike aleatoric uncertainty, epistemic uncertainty should
not only be quantified but ideally also minimized. Epistemic uncertainty can be further categorized into two
distinct types (Hullermeier & Waegeman, 2021). The first type pertains uncertainty related to the capacity
of the model. For example, under-parameterized models or approximate model posteriors, that can become
too stringent to appropriately resemble the true posterior. The ambiguity on the best parameters given
the limited capacity induces uncertainty in the learning process, which is also known as model uncertainty.
Nevertheless, given the complexity of contemporary parameter-intensive CNNs, the model uncertainty is
often assumed to be negligible. A more significant contribution to the epistemic uncertainty is due to the
limited data availability, known as approximation uncertainty, and can often be reduced by collecting more
data.

As discussed in Section epistemic uncertainty is captured by modeling the posterior distribution de-
fined in Equation . However, evaluating the true Bayesian posterior is impeded by the intractability
of the data likelihood in the denominator. Hence, extensive efforts have been taken to obtain viable ap-
proximations, such as using Mean-Field Variational Inference Blundell et al.| (2015), Markov Chain Monte
Carlo (MCMC) Neal (2012), Monte-Carlo Dropout |Gal & Ghahramani| (2016); Kingma et al.| (2015, Model
Ensembling |Lakshminarayanan et al.| (2017, Laplace approximations [Mackay| (1992), Stochastic Gradient
MCMCs [Korattikara Balan et al.| (2015)); [Springenberg et al.| (2016)); Welling & Teh| (2011)), assumed density
filtering Herndndez-Lobato & Adams| (2015) and expectation propagation Hasenclever et al.| (2017)); [Louizos
& Welling| (2016]). We refer to any neural network that approximates the Bayesian posterior over model
parameters as a Bayesian Neural Network (BNN). Unlike modeling the output distribution directly, sam-
pling parameters from the posterior naturally induces spatial coherence in the output. As a result, existing
methods are often simple extensions of conventional classification BNNs, rather than leveraging techniques
tailored for segmentation tasks. This section discusses three methods for modeling epistemic uncertainty.
The most commonly used approach is Variational Inference (VI) over model parameters (Section |5.1]). Test-
time augmentation, often mistakenly regarded as an aleatoric method, is addressed in Section [5.3] Finally,
Laplace Approximations are examined in Section [5.2

5.1 Variational Inference

Consider a simpler, tractable density ¢(0|n), parameterized by 1 (e.g. a gaussian with n = {u,0}), to
approximate posterior p(6|y,x). Then, we can employ Variational Inference (VI) w.r.t. to the parameters,
by minimizing the Kullback-Leibler (KL) divergence between the true and approximated Bayesian posterior
as

n" = arggminKL [a(6|n) || p(6|D)]

= arg min 0 —q(O\n)
= arguin [ 4(0) og G0
= arg;nin KL[q(0[n) || p(0)] — Eqopn)[log p(y|x, 6)], (32)
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where the parameter-independent terms are constant and therefore excluded from notation. In the case
of a deterministic encoder, i.e. ¢(@|mn) = §(6 — 6*), the formulation collapses to the MAP estimate in
Equation . A popular choice for the approximated variational posterior is the Gaussian distribution, i.e.
a mean u and covariance o parameter for each element of the convolutional kernel, usually with zero-mean
unitary Gaussian prior densities. However, the priors can be also learned through Empirical Bayes (Bishop),
. Furthermore, backpropagation is possible with the reparameterization trick (Kingma & Welling} [2013
and within this context, the procedure is referred to as Bayes by Backprop (BBB) (Blundell et al., [2015
and has later been improved with the Local Reparameterization trick (Kingma et al |2015)). In addition to
approximating the posterior, sampling from it yields multiple parameter permutations, effectively enriching
the model’s hypothesis space, a phenomenon also referred to as model combination (Minkal 2000; |Clarke,
[2003}; [Lakshminarayanan| 2016). In most cases, VI is not performed explicitly. Instead, simpler techniques
are employed, with the resulting parameter permutations hypothesized to serve as a proxy. We discuss two
such methods: Monte Carlo Dropout (Section and Ensembling (Section . See Figure [11| for an
illustration of each method. All of these methods have been widely applied to segmentation. However, unlike
aleatoric uncertainty modeling, their implementations are often more generic and not specifically tailored to
segmentation tasks. Therefore, we provide only a brief overview here, followed by a more in-depth discussion
in later sections related to various applications.

5.1.1 Monte Carlo Dropout

Dropout is a common technique used to regularize neural networks (Wager et all, 2013) by randomly “switch-
ing off” nodes of the neural network. Using Dropout can also be interpreted as a first-order equivalent Lo
regularization with additionally transforming the input with the inverse diagonal Fisher information ma-
trix (Wager et al., 2013). Furthermore, with Monte-Carlo Dropout (MC Dropout), the random node switch-
ing is continued during test time, effectively sampling new sets of parameters, mimicking samples from an
implicit parameter distribution q(é|0, p), defined as

n ~ Bernoulli(p), (33a)
6=60n, (33b)

with probability p and vector n operating element-wise on the parameters. It has been shown that MC
Dropout can be interpreted as approximate VI in a Deep Gaussian Process (Gal & Ghahramani, [2016). In
this manner, such a method is able to provide multimodal estimates of the model uncertainty. As noted
by |Gal et al.| (2017a)), the variance in the model output is primarily governed by the magnitudes of the
weights rather than the dropout rate p. The dropout rate is usually optimized through grid search or simply
set to p = 0.5. The relationship between p and the magnitude of the model weights has also be exploited
to probabilistically prune neural networks |Gonzalez-Carabarin et al.| (2022). |Gal et al. (2017a)) propose to
additionally learn p using gradient-based methods, known as Concrete Dropout, to increase the influence
of p. As the name suggests, a continuous approximation to the discrete distribution is used, known as the
Concrete distribution (Maddison et al., 2016; |Jang et al. 2016)), to enable path-wise derivatives through p.
Also, a generalization of MC dropout has been proposed, where the weights of the network, rather that its
hidden output, are set to zero (Mobiny et al., 2021]).

6, ~q(6|n) n-~ Bernoulll(p)

Oy ={61,6,,..,0
) Variational Inference ) Monte Carlo Dropout ¢) Ensembling

Figure 11: Three types of techniques are visualized to sample parameters of the convolutional kernels, (a)
an approximation of the parameter density can be made, (b) taking samples can be mimicked with dropout
during test time, or, (c¢) an ensemble of N different configurations can be explicitly modeled.
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5.1.2 Ensembling

As mentioned earlier, MC dropout effectively optimizes over a set of sparse neural networks. From this
perspective, explicitly ensembling multiple models can also be considered as an approximation of VI (Lak-
shminarayanan et al., |2017). To this end, we define the set of functions f = {fg M || with M representing
the number of models in the ensemble. Then, it is relatively simple to obtain ® = {6,,}*,, which can
be interpreted as samples from an approximate posterior. Ensembling in only the latter parts of a neural
network (typically the decoder) is referred to as M-heads, i.e. the network has multiple outputs. Often, the
M obtained parameters are from M separate training sessions. However, it has also been proven effective to
ensemble from a single training session, by saving the parameters at multiple stages or training with different
weight initializations (Dahal et al., |2020; Xie et al., 2013; [Huang et al., 2017). A closely related concept
to ensembling is known as Mixture of Experts (MoE), where each model in the ensemble (an ‘expert’) is
trained on specific subsets of the data (Jacobs et all [1991). In such settings, however, a gating mechanism
is usually applied after combining the expert hypotheses.

5.2 Laplace approximation

It can be shown that the intractable posterior in Equation can be estimated as

p(0|’D) =~ M exp (—1(0 — GMAP)TH (9 — 0MAP)>

(27)% 2 (34)
= N(O|p = Opap, S =H™"),
with Oyap being the Maximum a Posteriori solution and Hessian matrix H = —V?21og h(0)|gy.p, i-6. the

second derivative of the loss function evaluated at @yap. This approach, known as the Laplace Approx-
imation (LA) (Laplace, [1774)), has the merit that it can be performed post-hoc to .e.g. pretrained neural
networks. However, estimating the Hessian can become infeasible, as computation scales quadratically with
the model parameters. This is usually circumvented by treating neural network partly probabilistic and/or
approximating the Hessian with a more simplified matrix structure (Martens & Grosse, [2015; [Botev et al.|
2017; [Daxberger et al., 2021)).

5.3 Test-time augmentation

An image X can be understood as a one-of-many visual representations of the object of interest. For example,
systematic noise, translation or rotation result in many realistic variations that approximately retain image
semantics. Hence, data augmentation (Krizhevsky et al., [2012) has been used at test time (explaining
the name test-time augmentation, or TTA), argued to obtain uncertainty estimates by efficiently exploring
the locality of the likelihood function (Ayhan & Berens| 2022). By randomly augmenting input images
with invertible transformation X = T¢(x), with transformation parameters (, a prediction is obtained with
¥ = fo(X) and can then be inverted through y = - L(§). Repeatedly performing this procedure results in a
set of segmentation masks, which serve as an estimate of p(Y|X, 8). In segmentation literature, it has been
hypothesized that TTA encapsualtes the aleatoric uncertainty in a better way (Wang et al.l 2019a; |Ayhan
& Berens, 2022} |Zhang et all [2022a; [Wang et al.| 2019b} [Rakic et al.l |2024; [Whitbread & Jenkinson| 2022}
Roshanzamir et al} 2023]). However, literature opposing this also exist and even suggests that TTA enables
the modeling of epistemic uncertainty (Hu et al., [2022). [Kahl et al|(2024]) draw parallels with BNNs and
demonstrate this through the (by now) familiar decomposition of the predictive uncertainty

aleatoric
——
H[Y|x,0] = I[Y,t|x,0] + E¢[ H[Y|t,x,0]]. (35)
—_———

epistemic

where t are sampled augmentations from the input space 7. Aleatoric uncertainty is captured because a
perfectly trained model produces consistent predictions across augmentations of known data. Epistemic
uncertainty arises when the mutual information between the predicted label and augmentation is greater
than zero for unseen data, indicating the model has not yet learned invariance for such inputs.
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6 Applications

This section briefly provides literature that incorporates uncertainty into downstream tasks using segmen-
tation models. These tasks can be broadly categorized into four main groups: estimating the segmentation
mask distribution subject to observer variability (Section , reducing labeling costs using Active Learn-
ing (Section , model introspection (i.e. ability to self-assess Section and improved generalization
(Section [6.4). For quick reference, Table |5| summarizes the types of dataset domains (e.g., medical, outdoor
scenes) associated with various downstream tasks.

6.1 Observer variability

After observing sufficient data, the variability in the predictive distribution is often considered to be negligible
and is therefore omitted. Nevertheless, this assumption becomes excessively strong in ambiguous modalities,
where its consequence is often apparent with multiple varying, yet plausible annotations for a single image.
Additionally, such annotations can also vary due to differences in expertise and experience of annotators.
The phenomenon of inconsistent labels across annotators is known as the inter-observer variability, while
variations from a single annotator are referred to as the intra-observer variability (see Figure [12)).

Annotators are models To contextualize this phenomenon within the framework of uncertainty quan-
tification, annotators can be regarded as models themselves. For example, consider K separate annotators
modeled through parameters ¢, with kK = 1,2,..., K. For a simple segmentation task, it can be expected
that Var[p(¢r)] — 0. In other words, each annotator is consistent in his delineation and the intra-observer
variability is low. For cases with consensus across experts, i.e. yielding negligible inter-observer variability,
the marginal approaches to Var[p(¢)] — 0. Asserting these two assumptions, it is valid to simply consider
a point estimate of the posterior. Yet, this is rarely the case in many real-life applications and, as such,
explicitly modeling the involved distributions becomes necessary.

Evaluation For evaluation, a commonly used metric minimizes the squared distance between arbitrary
mean embeddings of the ground truth and predicted annotations using the kernel trick (Shawe-Taylor,
2004). This metric is known as Maximum Mean Discrepancy (MMD) or the Generalized Energy Dis-
tance (GED) (Gretton et al.| 2012), denoted as

GED(Py, Py) = Ey yiupy [K(y,Y)] + Ey 5 np, [k(5,5)] — 2 - Eyop By, [K(y, ¥)], (36)

with marginals Py and Py, representing the true and predictive segmentation distribution, and a distance
represented by kernel k£ : Y x ) — R, usually the (1—IoU) or (1—Dice) score (squared by the GED). However,
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Figure 12: Visualization of the intra-observer variability in parameter space (left) and the inter-observer
variability in data space (right).
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Table 1: Methods used for the application of encapsulating Observer Variability.

‘ Method ‘ Literature ‘
‘ Pixel CNN ‘ |Zhang et a1.|(]2022c} ‘
| SSN | [Monteiro et al.|(2020); Kahl et al.|(2024); Zepf et al.|(2024]2023a); Philps et al.[(2024) |
‘ GAN ‘ |Kassapis et a1.|(]2021} ‘
Gao et al.|(2022); [Kohl et al.|(2019b); [Valiuddin et al.| (2021); |Selvan et al.|(2020); [Bhat|
VAE et al.|(2023] 2022a); |Valiuddin et al.|(2024b); |Qiu & Lui|(2020); [Valiuddin et al.|(2024a);
Viviers et al.|(2023c); [Schmidt et al.|(2023); [Long et al.|(2021b); [Zepf et al.|(2023a] [2024);
Hu et al.|(2022); [Viviers et al.|(2023b); Savadikar et al.|(2021); [Philps et al.|(2024)
‘ HVAE [Zhang et al.| (2022b); Rafael-Palou et al.| (2021); [Kohl et al.| (2019a); Baumgartner et al.|

(2019); |Gantenbein et al.|(2020)

| DDPM | |Chen et al.|(2023a); Zbinden et al.|(2023); [Rahman et al.|(2023) \

| MC dropout | Kahl et al.|(2024); [Philps et al.(2024) \

‘ Ensembling ‘ |Zopf et a1.|(]2024}; |Hu et a1,|(]2023]r ‘
|

| TTA | [Kahl et al.|(2024)

solely relying on the GED has been criticized due to undesirable inductive biases [Kohl et al.| (2019a); |Zepf|
(2024). Hence, [Kohl et al. (2019a) introduce an alternative metric known as Hungarian Matching (HM),
which compares the predictions against the ground-truth labels through a cost matrix. This can be also
formally denoted as finding the permutation matrix P, subject to the objective

. 1
HM(),Y) = el min Tr(PM), (37)
where the elements of M are M;; = k(yi,j)j), and N? represents the number of elements within the

matrix. Subsequently, the unique optimal coupling between the two sets that minimize the average cost
is determined through a combinatorial optimization algorithm. (2022) use the Normalized Cross
Correlation (NCC) to measure the similarity between the true and predictive set, which can formally be
defined as

NCC = S (a0 — ) (b — ), (3)

noo

with n being the number of pixels, and u,o and ji,6 the mean and standard deviation of the true and
predicted segmentations set, respectively. Variables a and b represent the uncertainty map calculated through
the pixel-wise variance across the true and predicted segmentations, respectively.

Approaches The most straightforward approach is to directly model the empirical stochasticity in the
annotations with models that target the aleatoric uncertainty. Given that annotators have an intrinsically
associated expertise, it can also be possible to modeling the annotator distribution. However, relying on
the model to infer ambiguity in the parameters by observing the data, can become quite burdensome. This
observation is reflected in literature, where we see that most approaches use conditional generative models to
encapsulate observer variability (See Table . While conditional generative models have been successfully
applied for the task at hand, it has been shown that such models, without explicit conditioning, do not
encapsulate more subtle variations such as distinct labeling styles of annotators Zepf et al. (2023a)). VAE-
based Probabilistic U-Net is the most popular approached followed by its hierarchical variants (HPU-Net
and PHI-Seg) and SSNs. More recently, the growing popularity of DDPMs is apparent in the field.

6.2 Active Learning

The field of active learning (Settles|, 2009; [Ren et al. 2021 aims to reduce the costly annotation procedure by
careful selection of the most informative samples for training (Settles|,[2009). In this way, the required labeled
data is minimized and training convergence can be accelerated due to reduced redundancy. Active Learning
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Table 2: Methods used for the application of Active Learning
Method ‘ Literature ‘

Kasarla et al.| (2019); [Garcia Rodriguez et al.| (2020); [Xie et al.|(2022); [Wu et al.|(2021);
Burmeister et al.|(2022); |Gaillochet et al.| (2023

| SSN | [Kahl et al.|(2024) \

Adversarial
VAE / GAN

Ensembling ‘ [Yang et a1.|(]2017p; |Nath et al.|(]2020}; |Khalili et al.|q2024} ‘

Kahl et al.| (]2024b; |Gorriz et al.| d?Ol?b; |Ozdemir et al.| (IQOQI); |Hiasa et al.| d?OlQb; |Li &
MC dropout | |Alstrgm| (2020); |[Shen et al.| (2021); Ma et al.| (2024b); |Gaillochet et al.| (2023); |Siddiqui
et al.|(2020); |Sadafi et al.|(2019)

TTA ‘ |Gaillochet et al.|(]2023b ‘

SoftMax

|Mahapatra et a1.|q2018b; |Kim et al.|q2021b; |Sinha et a1.|q2019}

is an extensively researched topic in both traditional (Cohn et al., [1996)) and deep Machine Learning (Gal
2017Db)), including uncertainty-based approaches applied to image-segmentation pairs. In such methods,
it is assumed that predictions with high uncertainty provide the most informative samples for training.

Evaluation Selecting the most informative samples for training contains two elements. Firstly, the uncer-
tainty needs to be quantified. This is usually the predictive entropy Kasarla et al.| (2019); [Shen et al. (2021);
or variance |Ozdemir et al|(2021)), but in some instances the epistemic uncertainty is explic-
itly estimated through Bayesian Active Learning by Disagreement (BALD) (Houlsby et al.| 2011; Ma et al.l
[2024b; Shen et al., |2021)). Simply stated, the reduction in posterior entropy indicates the informativeness
of a data sample. In turn, this can also be formulated by the reduction in predictive entropy in the dual
formulation. We can formally denote this as

BALD = H[BlD] - Ep(Y|x*,D)[H[0|y7X*7D] ]a
= H[y|x*, D] — H[y|6,x", D],
= H[Y|X*3D] - Eq(0|D)[H[y|X*70]] = I(Yv 0|X*7D) (39)

Note the similarity between the mutual information I obtained from the predictive entropy decomposition
in Equation , where both are the objective of epistemic uncertainty modeling. Secondly, to evaluate
whether the active learning strategy is beneficial, the performance is mostly measured subject to increasingly
stringent budget requirements (i.e. a percentage of the original dataset) Yang et al. (2017); [Sourati et al.
(2018); Kasarla et al. (2019); Mahapatra et al. (2018); Sinha et al| (2019); |Siddiqui et al.| (2020); Li &
Alstrem| (2020); Kim et al| (2021)); [Shen et al,| (2021); Burmeister et al.| (2022)); Ma et al| (2024b). [Kahl
et al.| (2024)) argue that Active Learning should be evaluated on image-level as humans dont annotate on
pxiel-level. Assuming a saturated performance on in-distribution data (training cycle ¢1), the author propose
to measure the improved relative performance, C, subject to a second training sample (t2) from selected
samples

Ototal = C(method - Crand0m7 (40)
with
P, — P,
P, ’

1

C = (41)
where Cluethod denotes the relative improvement achieved by the employed method, and Ciangom is a cor-
rection term accounting for gains due to random sampling, and P suggested to be the Dice-score, but can
theoretically be any segmentation metric.

Approaches Since the nature of this problem involves identifying and reducing model ignorance, the
quantification of epistemic uncertainty is most appropriate. Hence, as can be seen in Table [2| most of the
literature use MC dropout of ensembles. Furthermore, using the plain SoftMax activation has also been
commonly used. Often, solely relying on the most uncertain samples can result in samples with limited
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Table 3: Methods used for the application of Model Introspection
‘ Method ‘ Literature ‘

| VI | INg et al.|(2022); LaBonte et al.|(2019) \

‘ LA ‘ Zepf et al. 2023bb ‘

[Kahl et al.|(2024); |Wang et al.|(2019b); Whitbread & Jenkinson|(2022); |Roshanzamir et al.|
(2023); [Dahal et al.|(2020)

Jungo et al.|(2020); Mehrtash et al.|(2020); |Czolbe et al.|(2021); Holder & Shafique|(2021);
Ensembling | [Jungo & Reyes|(2019); [Ng et al.|(2022); [Hann et al.|(2021); Jungo & Reyes|(2019); [Linmans|
et al.|(2020); [Pavlitskaya et al.|(2020); Valada et al.|(2017)

Jungo et al.|(2020); [Kahl et al.|(2024);[Whitbread & Jenkinson|(2022);Kendall et al.|(2016);
Kampffmeyer et al.|(2016); Dechesne et al.|(2021); [Morrison et al.|(2019); Qi et al.| (2023);
Eaton-Rosen et al.| (2018); [Jungo et al.| (2018a|b); |Roy et al.| (2018a/b); Mehrtash et al.
2020); Nair et al.| (2020); [Sander et al.| (2019); [Hasan & Linte|(2022b); [Camarasa et al.
2021); Roshanzamir et al.| (2023); [Sedai et al.| (2018); |Seebock et al.| (2019); [DeVries &
[Taylor| (2018); |Czolbe et al.|(2021); Hoebel et al.|(2019); Bhat et al.|(2021); Dahal et al.
2020); |Antico et al.|(2020); [Lambert et al.|(2022); Hasan & Linte|(2022a); |Jungo & Reyes

2019); |Ng et al.|(2022); Twamoto et al.|(2021); [Hoebel et al.|(2020)
‘ SSN ‘ IKahl et al.|q2024b; INg et a1.|q2022} ‘
‘ VAE ‘ IChotzoglou & KainzNQOlQh; IViViers et al.|q2023a}; ICzolbe et al.NZOle; IBian et al.NQOQOb ‘

TTA

MC Dropout

diversity and therefore samples selected on the representativeness |Ozdemir et al.| (2021); [Shen et al.| (2021);
[Wu et al](2021)); Mahapatra et al.| (2018);[Sinha et al.| (2019)). Another crucial modeling element pertains the
aggregation of the pixel-level uncertainties. Therefore, closeness to boundary |Gorriz et al.| (2017); [Kasarla
let al.| (2019); Ma et al| (2024b) or specific regions (Gaillochet et al|(2023); Wu et al.| (2021); Kasarla et al.
2019) are additionally incorporated when combining the uncertainty values across pixels. [Siddiqui et al.
2020) determine the entropy through estimating the entropy across viewpoints in multi-view datasets.
[Gaillochet et al.| (2023) argue the superiority of selecting samples based on batch-level uncertainty.

6.3 Model introspection

Erroneous predictions should correlate with the uncertainty in cases the source is assumed to be epistemic.
In turn, this implies that the provided uncertainty can be used to to gauge prediction quality of a model.
High uncertainty predictions can be discarded to ensure a level of model reliability. Hence, the described
problem can also be considered as Out-of-Distribution (OOD) detection (Lambert et al.| 2022; Holder &
. Including information on localized uncertainty to the training objective has shown to
improve generalization capabilities (Ozdemir et all 2017; Bian et al. [2020; Iwamoto et alJ, 2021} Li et al.
. Note that using uncertainty to guide model training is closely related to Active Learning, which has
been discussed in Section

Evaluation The relationship between uncertainty and model accuracy has been formalized by
through the Patch Accuracy vs Patch Uncertainty (PAvPU) metric. Firstly, the accuracy
given a certain prediction, p(A|C), and secondly, the uncertainty given an inaccurate prediction p(U|I).
Given a threshold up that distinguishes certain from uncertain pixels or patches, we can define pixels
that are accurate and certain, accurate and uncertain, inaccurate and certain, inaccurate and uncertain,
denoted by wac, Uau, Uic, Uiy, respectively. Consequently, the authors combine p(A|C) = n,e/(Rac + nayw) and
p(U|) = nic/(nic + niy) to obtain the Patch Accuracy vs Patch Uncertainty (PAvPU) metric, defined as

nac + nau

PAVPU = .
Nac + Nau + Nic + Niu

(42)

It can be noted that uncertainty is usually only obtained on pixel basis, while crucial information can be
present in structural statistics. Hence, [Roy et al.| (2018b)) propose to use the Coefficient of Variation (CoV)
addresses this by measuring structural uncertainty through dividing the volume variance over the mean for
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Table 4: Methods used for the application of improved Model Generalization.
‘ Method ‘ Literature ‘

SoftM Kasarla et al.| (2019); |Garcia Rodriguez et al.|(2020); Xie et al.| (2022); [Wu et al.|(2021);
oniax Burmeister et al.|(2022); |Gaillochet et al.|(2023
‘ SSN ‘ IZepf et a1.|q2023a); INg et al.|q2022} ‘
‘ VAE ‘ IViviers et al.|q2023ab; IZepf et al.|q2023ab; IHu et al.N2022} ‘
DDPM Wolleb et al.| (2021); [Wu et al.| (2023bfa); [Amit et al.| (2021); [Zbinden et al. (2023);
gensperger et al.|(2023); Hoogeboom et al.|(2021)

Mukhoti & Gal|(2018); Rumberger et al.|(2020b); [Saha et al.|(2021a);|Zhang et al.|(2022a);
MC dropout | [Whitbread & Jenkinson|(2022); Huang et al.|(2018); [Mukhoti et al.|(2020); Ng et al.|(2022);
Wickstrgm et al.|(2020)

Ensembling Ng et al.|(2022); Larrazabal et al.|(2021b); [Kamnitsas et al.|(2018);[Saha et al.|(2021b);
et al.|(2023); Ji et al.|(2021)
‘ TTA ‘ IWang et al.|q2019a}; IRakic et al.l(]2024}; IWhitbread & Jenkinson|q2022} ‘

all samples. The authors also evaluate structural uncertainties by assuming predictions with the pair-wise
average overlap between all respective samples.

D =E,, . [Dice(t(y:), t(y;))] Vi # . (43)

Approaches Considering Table [3] it can be observed that epistemic methods such as MC dropout and
Ensembles are by far the most popular choice of uncertainty encapsulation method. However, Concrete
dropout (Rumberger et al. 2020b; Mukhoti & Gall, 2018]), M-heads (auxiliary networks) (Jungo & Reyes,
[2019} Linmans et al.l 2020), MoE (Pavlitskaya et al., 2020) Laplace Approximation (Zepf et all [2023b),
Variational Inference in 3D (LaBonte et al.,2019), and test-time augmentation (Dahal et al., 2020) have also
been used for this application.

6.4 Model generalization

As mentioned earlier in Section [5.1] sampling new parameter permutations often improves segmentation
performance, due to the model combining effect. In contrast to other downstream tasks, evaluation does
not require specialized metrics besides quantifying the relative change in model performance. For instance,
dropout layers at the deeper decomposition levels of the SegNet (Badrinarayanan et all |2015) improves
model performance (Kendall et al), 2016)). In Table 4] we can see improved performance with MC Dropout
and also in specific with Concrete Dropout (Mukhoti & Gal, 2018; Rumberger et al., 2020b). The improved
generalization from ensembling has also shown to produce more calibrated outputs (Mehrtash et al., 2020).
found that ensembling results in the best performance improvement, while BBB is more
robust to noise distortions. In other work, orthogonality within and across convolutional filters of the
ensemble is enforced through minimizing their cosine similarity, which reaped similar merits (Larrazabal
2021b). Ensembling has also been performed using M-Heads (Hu et al. 2023} Jungo & Reyes| [2019).
Nonetheless, individual models in conventional ensembles receive data in an unstructured manner. Hence,
specific subsets of the data can also be assigned to particular models with MoEs (Pavlitskaya et al. [2020;
let all] [2021} |Gao et all [2022). Generative models, though typically used for other applications, have also led
to performance improvements across a wide range of studies [Saha et al.| (2021a); [Wolleb et al.| (2021));
et al| (2023b); |Amit et al| (2021); Bogensperger et al. (2023); Zbinden et al. (2023)); [Viviers et al| (2023al);
Zepf et al| (2023al); Hu et al.| (2022).
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6.5 Application domains

In this Table || we link the discussed methodologies and applications to their respective domains. It is
evident that the medical domain, followed by the automotive field, is the most prominent for probabilistic
segmentation tasks. The high-stakes nature of both domains contributes to their prominence, as uncertainty-
aware models are especially vital in safety-critical applications. Specifically, the delineation of lung nodules
in CT images are ambiguous. The LIDC-IDRI dataset is a multi-annotated Lung CT dataset, which serves
as a good benchmark for quantifying observer variability and is reflected in the table.
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Table 5: Overview that links literature to various domains and applications.

Observer Variability

| Active Learning

Model Introspection

| Model Generalization

Outdoor scenes

[Kahl et al.]; [Kohl et al.|
(2019b); [Kassapis et al.|(2021);

Gao et al.

Hasan &  Linte
Sander et al.|

2019);
et al.| (2022); Hasan & Lilgl
( -

|Mehrtash et

Pavlitskaya al.| (2020);
(2022b);

Indoor scenes

|Siddiqui et al.| (2020};

‘Wu et al.|(2021

. . - Kendall et al.|(2016); Qi et al.
‘ Various objects ‘ Philps et al.|(2024 ‘ ‘ {2023): [Morrison ot al.] (2010
Dechesne et al.| (2021{?);

Remote sensing

Garcia Rodriguez et al.

(2020

Kampffmeyer et al.| (2016);
Dechesne et al.|(2021

Kohl et al.|(2019a); |Zepf et al.
(2023a); |Schmidt et al.|(2023);

|Linmans et al. ] ; Iwamotol

[Bogensperger et al.| ;

Microscopy =
[Philps pes al.]2024 [et al.]2021 Amit et al.|(2021
Ifio_ylet;)LQO?O}SE d I\gfhrr{t%h [Wolleb et al.|(2021); [Wu et al.|
s Ta Fatc gg" teyels] (2023bJa); [Chen et al.|(2023a);
o [W:n‘)“'et":'f‘]‘ (]2%19;‘]; Wang et al.| (2019a); |Kamnit-|
Brain MRI 2 2 LA 5 | lsas et al.| (2018); |Larrazabal|
ungo et al.|(2020); |Whitbread] ot aL| (2021b); [Wang ot al|
& Jenlasson] @022} ontet | i) W it 1 Jeni]
et al.| (2020); |Lambert et al. :
5023); [Jungo et al| 20180k | £o (2022

chet et al ]m

l Mehrtash ot al [Hu et al.|(2022); [Saha et al.|

Prostate MRI (2022); Gaillochet t&;ﬁ a m ﬂ (2021a); [Rakic et al.| (2024);

et al.|(2023 - [Saha et aL](]ZOZlb}

Ozdemir et al.|(2021};

Hiasa et al.|(2019); Ng Bhat of al. .

et al.| (2022); Burmets | |52 66T, Nair of al[(2020
Various MRI (2023 tir elt 312 E) iggz ; Roshanzamis ot il |Ji et al.|(2021);|Ng et al.|(2022

B Gosor i Hann et al| (2021

et al.| (2020); |Gaillo-

OCT imaging

Seebock et al.| (2019);
et al.|(2020);/Sedai et al.|(2018

Rakic et al.| (2024); |Ji et al.
(2021); [Wu et al.|(2023aib

Li & Alstrgm| (2020);

Zepf et al.| (2023b); [Jungo &

[Wu et al.| (2023a); [Zepf et al.|

Dermoscopy 2 Reyes| (2019); [DeVries & Tay-
(2017 lor|(2018);|Czolbe et al.|(2021 2023
Rafael-Palou et al.| (2021);
Gao et al.| (2022); |Valiuddin|
et al.| (2024b); |Chen et al.|
(]2023a] |Zhang et al. ](]2022b],
Zhang et al.
tenbein et al. ;
Lung CT eezt a?l thggi?D[Ztin!i\:ilzgdal,ln Kahl_ct_all (2024); [et aélllgzoglol(u:z%lzbe;;;lz] [Hu et al] (2022); Rakic et al.|
- Hoebel et al.|(2020 ' (2024); |[Zhang et al. 2022a'

(
S0 ai
( Kohl ctal

; [Long et al.| (]2021a],
‘Selvan et al. l 02 ;| Baumgart-
ner et al. l

. Valiuddin et al| (2024b); - Hoebel et al.| (2019); [CaBonte] | rri
‘ Various CT ‘ e iasa ot al| (2019 e [Viviers ot al|(2023a
. Antico et al.| (2020); |Dahall | Wu et al.| (2023bja); [Rum-
| Othrs | i et ot 2021 Ko ea— | ¥ickstaom ot i @020 |
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7 Discussion

This section builds on the reviewed theory and literature to guide researchers in selecting methods suited
to their goals. Furthermore, it highlights key gaps and limitations, offering insights for addressing current
challenges in the field and identifying promising directions for future research. Our main discussion points
can be summarized as follows:

e The interpretation and quantification of epistemic and aleatoric uncertainty remain complex and
warrant careful reconsideration, despite the literature often indicating a clear distinction between
them. (Section [7.1)).

e Spatial uncertainty introduces additional challenges, including the accurate estimation of structural
entropy, the aggregation of pixel-wise uncertainties, and increased complexity in volumetric segmen-
tation tasks (Section |7.2)).

e Lack of standardization across the downstream tasks remains a major issue in the field, hindering
fair benchmarking and limiting further progress (Section [7.3)).

e Active Learning is a promising application of uncertainty quantification, reducing annotation costs
while maintaining or even improving model generalization (Section [7.4)).

e Segmentation backbones commonly used in the field tend to be outdated, with Transformer-based
architectures having surpassed them in performance yet remaining underutilized in probabilistic
dense predictions (Section |7.5]).

e Aleatoric uncertainty is often modeled using conditional generative approaches; as this area ad-
vances rapidly, its developments should be promptly integrated into probabilistic segmentation re-

search (Section [7.6).

o Alternatives to epistemic uncertainty modeling warrant further exploration due to longstanding
criticisms of the predominantly used Monte Carlo dropout, questioning its ability to capture true
model uncertainty (Section [7.7)).

7.1 Disentangling uncertainties

Proper disentanglement of the uncertainties allows to accredit high-entropy outputs to either model igno-
rance about the data (epistemic), or inherent noise in the data generation process (aleatoric). Importantly,
this distinction relates to the suggestion whether the uncertainty is reducible or not. Furthermore, Equa-
tion([2]) indicates this can be achieved by introducing stochasticity into the model parameters or the features.
Seemingly straightforward, sufficient literature and discussion in the scientific community exist related to the
applicability of this taxonomy in practical cases. As paraphrased from |Kirchhof et al.| (2025), “definitions
of uncertainty resemble the shapes of clouds — clearly defined from a distance, but losing clarity during
approach by dissolving in one another”. We further explore this concept and show how confusion and con-
tradiction have led to common pitfalls in related studies. To address these issues, we highlight key nuances
in uncertainty modeling and contextualize this to segmentation problems by providing recommendations for
future research.

7.1.1 Nuances in uncertainty modeling

Interpretation of uncertainty is task dependent It is essential to consider that interpretation of the
uncertainty source often differs depending on the modeling context. For example, epistemic uncertainty to be
considered as the number of required models to fit the data (Wimmer et al., 2023)), evident in ensembling and
M-head approaches for tasks related to model introspection and generalization (Sections [6.3 and [6.4). An-
other perspective pertains model disagreement (Houlsby et al.,|2011} |Gal et al., |2017b; Kirsch, |2024)), relating
to the source of observer variability (Section and methods that employ mixture-of-expert approaches
(Section . Also, it has been simply considered to be the remainder after subtracting the aleatoric
from the total uncertainty Depeweg et al.| (2018)), such as commonly done in Active Learning (Section [6.2)).
Aleatoric uncertainty also knows several definitions such as being the Bayes-optimal residual risk [Apostolakis
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(1990); [Helton, (1997), but remains consistent in related literature as the inherent, irreducible noise in the
data inducing variance in the ground-truth distribution (Section [6.1)). However, it was highlighted that the
decision to model a specific type of uncertainty was largely influenced by how the problem was framed. To
avoid confusion, this task-dependency should be noted when interpreting uncertainty.

Interpretation of uncertainty is model dependent Moreover, past literature as well as our overview
indicate the influence of specific design choices on the nature of the modeled uncertainty
[& Ditlevsenl 2009). For instance, the expected entropy w.r.t. a stochastic parameter variable should rep-
resent the aleatoric uncertainty (Equation ) However, when employing generative models, this behavior
changes. The latent (feature) stochasticity variable is employed to model the aleatoric uncertainty. Hence,
the remaining uncertainty, i.e. epistemic, is encapsulated in the expected entropy w.r.t. this latent variable
(Equation (I3)). Hence, the calibration network of the GAN-based CAR model of Kassapis et al| (2021)
(discussed in Section actually quantified the epistemic rather than aleatoric uncertainty. This is de-
pendency is also demonstrated by the conflicting ideas on uncertainty encapsulated with TTA (Wang et al.
2019a); [Ayhan & Berens| 2022} [Zhang et all [2022a} [Wang et al 2019D; Rakic et all [2024; [Kahl et al. [2024
Hu et al., [2022; [Whitbread & Jenkinson| 2022; Roshanzamir et al.l 2023). The key message thus far is that,
after selecting the type of uncertainty to model, it is equally important to carefully choose the appropriate
method for its representation, as confusion and misunderstandings can cause deviation from the targeted
uncertainty type.

Uncertainties are intertwined Despite the seemingly rigorous and well-defined distinction, it can be
seen that implementation rapidly blurs this notion. A systematic study has found that the ability to separate
the uncertainties can strongly depend on the data [Kahl et al.| (2024]). These findings are also supported by
research presenting a strong correlation between epistemic and aleatoric uncertainty quantification meth-
ods|de Jong et al.| (2024); Mucsanyi et al. (2024), indicating that they represent uncertainty of similar kind.
[Kendall & Gal| (2017)) have also observed that explicitly modeling a single uncertainty tends to compensate
for the lack of the other. In probabilistic models, we can also find that the epistemic encapsulation methods
have been used to model observer variability. Furthermore, using a combination of aleatoric end epistemic
modeling techniques can also beneficial (Gao et all, [2022). These findings further highlight the notion of
the uncertainties being intertwined. On a slight side note, it is notable that popular BNN methods such as
the Local Reparameterization trick use stochasticity in the output features of intermediate layers (usually
considered to encapsulate aleatoric uncertainty) as a proxy to model the weight distributions [Kingma et al.|

(2015)), further supporting this argument.

Encapsulating vs. quantifying A common misconception pertains that modeling a specific uncertainty
also implies that the predicted output represents that same uncertainty. This undermines the entropy
decomposition in Equation distinguishing between encapsulating, i.e. targeting an intended uncertainty
type, versus quantifying, i.e. measuring the modeled uncertainty in isolation. For example, the estimation of
mutual information is required to express the epistemic uncertainty in isolation. Nonetheless it is common
for papers to quantify the uncertainty by inspecting the output distribution subject through repetitive
sampling from the parameters densities, thereby approximating the predictive entropy encapsulating both
uncertainties (Camarasa et al. |2021; [Seebock et all 2019} Roshanzamir et al., [2023; Roy et all 2018a
Rumberger et al.] [2020bj [Hoebel et al. 2022} [Seebock et al.| [2019; [Wundram et al.| 2024b [Rumberger et al.
2020a} [Sedai et al [2018). At the very most, the output correlates with an increase in epistemic uncertainty.
However, given the entanglement of both uncertainties, part of the predictive variance can be accredited to
noise in the data. This similarly holds for literature emphasizing aleatoric uncertainty when estimating the
predictive variance |Zhang et al.| (2022c); Monteiro et al.| (2020); [Valiuddin et al.| (2024b); |Gao et al. (2022)).
However, epistemic uncertainty is often assumed to be explained away or assumed to be comparatively
negligible with large datasets. Finally, we have found it to be common to interchangeably use the total and
model uncertainty, especially in the context of Monte Carlo Dropout methods|Kendall et al.| (2016); Roy et al.|
(2018b)); DeVries & Taylor| (2018); Mehrtash et al| (2020); Burmeister et al. (2022)); Iwamoto et al.| (2021).
To prevent confusion in already established terminology, the term model uncertainty should be exclusively
used for the induced ambiguity due to limited model complexity, rather than to denote general or the entire
epistemic uncertainty.
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7.1.2 Pragmatic use of uncertainty

Unless being the core contribution, there seems to be no compelling need to investigate uncertainty dis-
entanglement for the applications of uncertainty in dense prediction. If performance on the downstream
application is improved, it can be assumed that modeled uncertainty correlates with changes in variance of
the predictive distribution. In such cases, no claims need to be made on the uncertainty type and neither
is it required to isolate the two. Hence, as described in previous work, aleatoric and epistemic uncertainty
should be used as to communicate whether the uncertainty is reducible or not (Der Kiureghian & Ditlevsen,
[2009} [Faber] 2005), to then select appropriate modeling methods.

As argued by [Kahl et al| (2024), claiming to quantify an uncertainty type would ideally require validation
across all relevant applications. For example, validation of epistemic uncertainty requires a clear distribu-
tion shift in the data (domain, semantic, covariate etc.), but it is often found in literature that either no
distribution shift or the required metrics are used (Zhang et al., |2022a} [Wang et al.l 2019a; [Postels et al.
2019 [Mukhoti & Gal, 2018, [Mobiny et al., 2021} [Whitbread & Jenkinson) [2022)). As discussed in Section 6.]]
aleatoric uncertainty should be validated with multiple labels and appropriate metrics, but can often found
to be evaluated on a single annotator or without the use of distribution-level statistics Wang et al.| (2019al);
Whitbread & Jenkinson| (2022); Kendall & Gal| (2017)); Liu et al.| (2022b)); |Schmidt et al.| (2023)); [Savadikar|
et al. (2021). Hence, simply avoiding any serious claims related to either type alleviates this burden, and
allows one to focus solely on the task at hand. In contrast to the work of [Kahl et al| (2024), however, we do
not consider calibration of models itself as a downstream task, but rather as a tool to gauge model reliability
to be later used for other tasks. As a consequence, the pixel-wise uncertainties can be later used for possible
downstream applications.

=

7.2 Spatial coherence

The inter-pixel dependency of segmentation masks often introduces additional complexity in proper un-
certainty quantification, questioning the commonly repurposed techniques from conventional image-level
classification. In this section, we further dive into import details and challenges arising due to the added
dimension(s) in both 2D and 3D data.

Aggregation methods Quantifying the epistemic uncertainty requires subtracting the expected entropy
from the total entropy of the predictive distribution (see equations and ) In such cases, the entropy
is usually estimated via mean or summation over all pixel-level uncertainty values Mukhoti & Gall (2018));
Camarasa et al.| (2021)); Bhat et al.| (2022b); Mukhoti et al.| (2020); Ma et al. (2024Db); Shen et al.| (2021);
Li & Alstrgm| (2020); Dechesne et al.| (2021); Huang et al.| (2018); Nair et al. (2020)); [Zepf et al.| (2023b)).
However, this asserts the assumption of a factorized categorical distribution, i.e. uncorrelated pixels, which
is a strong assumption that ignores the core rationale for the field’s existence. Since this could explain failure
cases of entropy-based uncertainty evaluation methods, it is important to shift towards contemporary gen-
erative models that enable exact likelihoods, improving the theoretical soundness of the evaluated entropies.
Moreover, elements such as object class dependency, size, shape, proximity, contextual information etc. can
all influence the decision-making of the aggregation method. Notably, [Kahl et al. (2024) argue that pixel
aggregation should be considered as a separate, distinct modeling choice in probabilistic segmentation. The
authors demonstrate that naive summation-based aggregation techniques (Wang et al.l 2019a; Jungo et al.
[2020; |Zhang et al., 2022aj |Czolbe et all 2021; |Camarasa et al., 2021) can cause the foreground object size
to correlate with the uncertainty score. Some empirical studies have explored aggregation
[2021}; Roy et al.,|2018b} |[Jungo et al.| 2020} Kasarla et al., 2019; Xie et al., [2022; Wu et al., [2021). However, we
advocate for deeper investigation into well-informed image-level aggregation strategies and their implications
for uncertainty quantification.

Volumetric uncertainty modeling In clinical settings, data is often acquired volumetrically but sliced
into patches due to memory limits. With improved compute, 3D segmentation models have gained traction
for preserving spatial continuity and reducing inter-slice inconsistencies. As we have seen the implications
of the additional dimension in 2D uncertainty, we similarly argue that 3D segmentation introduces or exac-
erbates previously mentioned issues related to entropy estimation and aggregation of pixels. Probabilistic
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segmentation has been employed on 3D data but often are straightforward extensions of patch-wise seg-
mentation architectures (Viviers et al. 2023b} |Chotzoglou & Kainz| 2019 [Long et all 2021Dbj; |Saha et al.
[2021a; 2020} [Hoebel et al., 2019). Limited diversity of uncertainty-based sample selection in Active Learning
requires more focus, since 2D slices of 3D volumes are often highly redundant [Shen et al.| (2021)); Burmeister|
. Furthermore, given the high computational cost of many architectures, we emphasize the need
for efficiency with higher-dimensional input tensors. Furthermore, methodologies need to be developed in
order to appropriately compare 2D- to 3D models. For example, the GED cannot be estimated volumetri-
cally with 2D models. Hence, general guidelines related to translating 2D segmentation models to 3D can be
of great benefit for practitioners considering to phase out patch-based approaches for volumetric data. For-
tunately, research dedicated to probabilistic volumetric segmentation is prevalent and its successes underline
the potential for this research direction |Liu et al.| (2025); Burmeister et al.| (2022); [Viviers et al.| (2023b).

7.3 Standardization

The widespread success of contemporary machine learning models can be largely attributed to open-source
initiatives and rigorous benchmarking practices. The field of probabilistic segmentation falls short on this. A
key factor contributing to these diverging standards is that the literature is predominantly application-driven,
uncertainty often considered merely an auxiliary tool, leading to a fragmented landscape where studies rely
on varied datasets and methodologies without a shared evaluation protocol. This problem has been partly
addressed by contemporary research attempting to standardize the field through a unified framework after
identifying key pitfalls (Kahl et al., [2024)). These practices are included in our recommended practices, as
discussed in Section [] per application.

Despite the aforementioned points, efforts to quantify observer variability show some implicit consensus.
Notably, the recommendations of [Kahl et al.| (2024) diverge from these practices, suggesting a more rigorous
examination of this application. For instance, for the widely used LIDC-IDRI dataset , we
recommend following the preprocessing protocol of Baumgartner et al.| (2019), which is supported by publicly
available code and has been adopted in several subsequent studies. Similarly, the Cityscapes dataset
2016a)), comprising street-view images from German cities, has been used to introduce artificial class-
level label ambiguity (Kassapis et al. [2021; [Kohl et al., 2019b; Gao et all |2022)). We advise using the
label-switching parameters proposed by Kohl et al| (2019b), whose preprocessing scripts are also available.
Other multi-annotated datasets, such as those from the QUBIQ Challenge , include MRI and CT
scans of various organs (Valiuddin et al.| [2024b; [Ji et al. [2021)), although they follow less standardized
preprocessing. The RIGA dataset for retinal fundus images (Almazroa et all [2018) can be used as in

et al (2022).

The evaluation metrics used across studies also diverge substantially. While GED and Hungarian Matching
are commonly applied to assess model performance, key details—such as the choice of distance kernel, the
number of predictive samples, and the handling of correct empty segmentations (which cause NaNs) vary
widely. This inconsistency is particularly evident in the work of [Zbinden et al| (2023), who attempt to
identify common ground across benchmarks but find over 10 (!) different evaluation methods. Additionally,
many reported results are not taken from original papers but from follow-up studies using them as baselines.
See Table[6] for a comparison of benchmarks on the LIDC-IDRI dataset. We recommend using 16 predictive
samples as the standard for evaluating the LIDC-IDRI (v2, see experiments section of |Zbinden et al.| (2023)))
dataset. Additionally, correctly predicted empty segmentations should be assigned full score. Notably,
the literature often overemphasizes metric improvement, which can incentivize models to simply replicate
ground-truth masks rather than capture the underlying distribution. This risks undermining the original
goal of predicting plausible, unseen segmentations, a textbook case of Goodhart’s law: “When a measure
becomes a target, it ceases to be a good measure” and is further compounded by known biases in commonly
used metrics (Kohl et al. [2019a} Zepf et all, [2023a} [Valiuddin et al. 2024bfa)). Hence, practitioners should
remain cautious and complement quantitative evaluations with qualitative assessments from domain experts.

27



Under review as submission to TMLR

7.4 Future of Active Learning

Among the applications considered, uncertainty quantification emerges as a promising approach to Active
Learning, showing true potential of potentially reducing annotation costs while preserving or even improving
model generalization. Active Learning directly addresses the labeling bottleneck through uncertainty-driven
selection, aligning with model introspection and fostering human-AI collaboration in specialized domains.
Furthermore, when combined with federated learning, this field can accelerate privacy-centric collaboration
by enabling efficient, human-in-the-loop improvement of safety-critical models across decentralized data silos.
However, key limitations remain and require further research.

Model sensitivity and baselines While deep learning-based segmentation typically involves high-
dimensional data and large datasets, active learning requires a well-generalized model trained on limited
data. This mismatch renders performance highly sensitive to budget constraints, model architecture, hyper-
parameters, and regularization [Mittal et al.| (2019); [Kirsch| (2024); Munjal et al.|(2022)); Kirsch et al. (2019);
|Gaillochet et al| (2023)). Furthermore, random sampling, particularly when combined with MC Dropout,
often proves to be a surprisingly strong baseline that is difficult to outperform [Kahl et al| (2024); Mittal
et al| (2019); [Liith et al. (2023)); Burmeister et al| (2022); Siddiqui et al.| (2020); Kim et al.| (2021)); |Sinha;
et al|(2019); Nath et al.| (2020, especially with highly imbalanced data Ma et al(2024a)). This observation
can partly be attributed to the fact that MC Dropout likely fails to capture true Bayesian uncertainty (see
Section , inviting exploration of other techniques.

Sample informativeness Besides uncertainty, the diversity of selected samples is equally critical. For
instance, a set of highly uncertain samples may share similar semantic content, leading the model to overfit
a narrow and homogeneous region of the data distribution during early training. Hence, sample selection
should be based on both uncertainty and diversity (Ozdemir et al., [2021; [Wu et al.| 2021} Jensen et al.| 2019;
Burmeister et all, 2022). |Ozdemir et al| (2021) leverage the latent space of a VAE to select representative
samples, whereas other studies use feature vectors from prediction models (Wu et al. 2021; Burmeister|
. Owing to their significantly greater representational capacity, modern generative models, as
discussed in Section merit experimental investigation together with segmentation specific conditioning.
Furthermore, the sample diversity offered by such models can be effectively combined with adversarial
training (Mahapatra et all 2018} |Sinha et al.l [2019).

Uncertainty calibration and aggregation As discussed in Section
of SoftMax-based uncertainty requires proper calibration.

| using the predictive entropy
Unfortunately, this is rarely verified in prac-

Table 6: Comparison of test evaluations on two versions of the LIDC-IDRI dataset. Table extended
from (Zbinden et al., [2023). *Indicates evaluation results not obtained from the original work.

LIDCv1 LIDCv2

Method

GEDy4

HM—IOUlG

GEDj4

HM—IOUl 6

PU-Net (Kohl et al.l 2019b

HPU-Net (Kohl et al.| [2019a

PhiSeg (Baumgartner et al.| |2019b

SSN (Monteiro et al.l

2020!

0.310 £ 0.010*
0.270 £ 0.010*
0.262 £ 0.000*
0.259 £ 0.000*

0.552 £ 0.000*
0.530 £ 0.010*
0.586 £ 0.000*
0.558 £ 0.000*

0.320 £ 0.030*
0.270 £ 0.010*

0.264 + 0.002

0.500 £ 0.030*
0.530 £ 0.010*

0.592 £ 0.005

CAR (Kassapis et al.| 2021 - -

JProb. U-Net (Zhang et al.|[2022d) - - 0.262 +0.000  0.585 % 0.000
PixelSeg (Zhang et al.[2022c) 0.243+0.010  0.6144+0.000 | 0.260 +0.000  0.587 +0.010
MoSE (Gao et al.[[2022) 0.218 £0.001  0.624 = 0.004 - -

AB (Chen et al.|[2022) 0.213£0.001*  0.614 £ 0.001* - -
CIMD (Rahman et al. P‘L 0.234 +0.005*  0.587 4 0.001* - -
CCDM m 2023) 0.212+£0.002  0.623+0.002 | 0.239+0.003  0.598 = 0.001
BerDiff (Chen et al.[[2023a) 0.238+0.010  0.596 & 0.000
MedSegDiff (Wu et al.| [2023b) - - 0.420 +0.030*  0.413 4 0.030*
SPU-Net (Valiuddin et al.|[2024b) - - 0.327£0.003  0.560 =+ 0.005
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tice Kasarla et al| (2019); |Garcia Rodriguez et al.| (2020); Xie et al.| (2022); Wu et al.| (2021); Burmeister|
let al.| (2022)); |Gaillochet et al.| (2023]). Furhtermore, most works rely on heuristics to aggregate the pixel-level
information such as closeness to edges, boundaries or the use of super-pixels |Gorriz et al.| (2017); Kasarla
let al.| (2019); Ma et al|(2024b); |Gaillochet et al.| (2023); Wu et al.| (2021); Kasarla et al.| (2019); Bengar et al.
(2021). Moreover, the mutual information is often quantified by plain summation (i.e. assuming pixel inde-
pendence) |Shen et al.| (2021); Ma et al. (2024b). We hypothesize that these ad-hoc aggregation techniques,
as mentioned in Section are a key limiting factor to uncertainty-based Active Learning.

The Cold-Start Problem Finally, the “cold start” problem Nath et al.| (2022)); [Houlsby et al.| (2014);
[Yuan et al| (2020al), the notion that uncertainty methods work poor on the initial samples, is rarely addressed.
Most approaches assume a well-trained model is already available, yet methods like MC Dropout require
warm-up epochs to yield meaningful uncertainty. Addressing this gap, post-hoc techniques such as that of
[Sourati et al|(2018)), which enable uncertainty estimation from pretrained deterministic networks, represent
a valuable and underexplored direction for early-stage sample selection.

7.5 Segmentation backbone

Due to emphasis on the uncertainty methods, the backbone feature extractor is often an overlooked element
in uncertainty modeling. For example, CNN-based encoder-decoder models such as the U-Net, remain the
preferred backbone architecture (Eisenmann et all |2023)). Nevertheless, Vision Transformers (ViTs) (Doso-
[vitskiy et al., 2020) such as SegFormer, Swin U-Net, Mask2Former already outperform CNNs in general
segmentation problems (Xie et al| [2021; [Zhang & Yang| 2021; (Cheng et all 2022)). With the exception of
experiments in [Kahl et al.| (2024)) (combining SSN (Monteiro et al., 2020) with HRNet (Yuan et all, 2020b))),
all employed models use a CNN backbone. The limited adoption of ViTs likely stems from CNNs’ advanta-
geous inductive biases, whereas Transformers typically require extensive pretraining on large datasets (Caron
. Therefore, we recommend integrating the discussed methods into similar architectures to achieve
both strong classification performance and effective ambiguity modeling. Also, CNNs have benefited from the
recent developments in Transformers. For instance, ConvNezt takes inspiration from contemporary Trans-
formers to modernize existing ResNet-based CNNs, retaining the inductive biases of convolutional filters and
achieving significant performance gains (Liu et al. [2022c). These same inductive biases have been added to
ViTs through CNN adapters to also enhance performance |Chen et al|(2023b).

7.6 Modeling feature distributions

In many instances, latent-variable models are employed to model the observer variability. To aid with
appropriate model selection, we will discuss the strengths and weaknesses of each of those approaches. A
summary of this discussion is presented in Table [7] Note that, while classified PixelCNNs and SSNs are
classified as pizel-level methods, both can also be phrased as a latent-variable model.

ELBO suboptimality Known for its flexibility to various datasets, fast sampling time and the inter-
pretable latent space, VAEs seem to be the most popular choice for aleatoric uncertainty quantification.
Nonetheless, the shortcomings of VAEs are well known. For example, such models suffer from inference sub-
optimality related to ELBO optimization |Cremer| (2018); Zhao et al. (2017) and literature on the VAE-based
PU-Net often describe behavior similar to the well-known phenomena of model collapse [Valiuddin et al.]
(2024a4b)); [Qiu & Lui| (2020). This has been hypothesized to be caused by excessively strong decoders [Chen!
et al. @ and is especially apparent when dealing with complex hierarchical decoding structures, where
additional modifications such as the GECO objective [Kohl et al| (2019a)), residual connections [Kohl et al.|
(20192); Baumgartner et al.| (2019), or deep supervision Baumgartner et al.| (2019) are required for general-
ization. A unique benefit of this approach is the ability to semantically interpret the latent space with, for
example, interpolation between annotation styles or the exploration of low-likelihood regions.

Limitation of sequential modeling The adoption of sequential sampling models DDPMs or PixelSeg
is rather limited compared to the VAE-based models. This is unexpected, as both models outperforms
the latter. This is likely due to their tedious sequential inference procedure [Song et al.| (2020); Zheng et al.|
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(a) LIDC-IDRI [Armato] (2011). b) CityScapes |Cordts et al|(2016a)).

Catagorical Gaussian
Catagorical Gaussian

Figure 13: Continuous vs. categorical forward diffusion process with cosine noise scheduling
(2021). Note the use of categorical diffusion that results in a more gradual transition for the
multi-class case.

(2023); Meng et al.| (2023);|Zhang et al.| (2022¢)), a crucial limitation that is exacerbated in supervised settings,
which often require validation through sampling on a separate data split. Despite these shortcomings, the
strengths of DDPMs should not be overlooked. Their iterative sampling allows for highly flexible modeling
and preserves high-frequency details often lost in latent-variable approaches like VAEs, which can produce
blurry reconstructions. Furthermore, recent advances in faster sampling methods, such as DDIMs
and Flow Matching |Lipman et al. (2022)), make these models promising candidates for further

exploration.

Discrete vs. continuous It can be noted in Table ] that the best-performing DDPM models are discrete
in nature [Chen et al.| (2023a)); [Zbinden et al.| (2023]). While it is debatable whether shifting to categorical
distributions is required for complex image generation [Chen et al. (2022)). Visually, this can be already
quite apparent for the multi-class case, where the transition to noise is visually more gradual in the discrete
transition (see Figure [13). However, Table [I] shows AB [Chen et al| (2022) performs almost identically to
CCDM [Zbinden et al.| (2023)), suggesting that straightforward thresholding of continuous models have little-
to-no performance sacrifice compared with explicitly modeling discrete distributions. These observation call
for further investigation of the merits of categorical distributions in segmentation settings.

Others Stochastic Segmentation Networks (SSNs) are a simple, fast, and model-agnostic approach for
modeling uncertainty. However, they can suffer from training instability due to the requirement that the
covariance matrix be invertible. To address this limitation, the authors propose masking out the background
to avoid exploding variances and using uncorrelated Gaussians when the covariance matrix is singular.
Despite these efforts, SSNs scale poorly with data, and a potential solution is to shift the stochasticity deeper
into the network by introducing a latent prior, resembling VAE-based models but with a more complex latent
space. CAR, on the other hand, is a less commonly used method, likely due to the well-known instability
of GAN-based models |Arjovsky & Bottou| (2017). GANSs often require additional heuristic terms in the loss
function to ensure stable training. CAR is no exception to this, as its objective function combines four
separate losses.

Recommendation We advocate for a deeper contextualization of contemporary generative modeling re-
search within probabilistic segmentation models. Generative modeling is a rapidly evolving field and any
such model can be modified for segmentation through intricate conditioning. For example, DDPMs were
initially proposed for general image generation , but was quickly adopted for stochastic
segmentation. Furthermore, flow-based models also enjoy many benefits yet to be explored in this field, such
as exact likelihood modeling and faster sampling [Lipman et al.| (2022)). In terms of model selection, we have
noticed SSN being the most practical solution across literature due to being model agnostic and receiving
good benchmarking scores (Kahl et al.,[2024; Monteiro et al., [2020; Ng et al.| 2022).
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7.7 Modeling parameter distributions

In the previous sections, we reviewed feature modeling methods, typically used to quantify observer variabil-
ity. Other downstream applications usually rely on epistemic uncertainty modeling, i.e. modeling parameter
distributions, which will be discussed in this section.

Criticism of MC Dropout Nearly all literature on epistemic uncertainty quantification relies on approx-
imations of variational inference (VI). Among these, MC Dropout is the most commonly used due to its
simplicity, low computational cost, and ease of implementation. However, MC Dropout has faced substan-
tial criticism [Folgoc et al.| (2021); Osband| (2016); |[Kingma et al.| (2015); (Gal et al|(2017a)). For instance, it
can assign zero probability to the true posterior or introduce erroneous multi-modality [Folgoc et al.| (2021)).
It is also sensitive to model size and dropout rate rather than the observed data |Osband| (2016); Kingma
(2015). To address these issues, some alternatives attempt to learn the dropout rate Kingma et al.
(2015); |Gal et al] (2017a)). Still, uncertainty estimates from MC Dropout should be treated as a convenient
byproduct—mnot a reliable core feature. When precise uncertainty quantification is critical, such methods
are generally insufficient and best avoided. When uncertainty modeling is used to boost model performance,
rigorous benchmarking of uncertainty often becomes secondary. In such cases, methods like MC Dropout are
treated as regularization tools being part of the deep learning toolbox, rather than for genuine uncertainty
estimation. However, it’s debatable whether the performance gains stem from better uncertainty modeling
or from other factors. For instance, both ensembling and MC Dropout introduce a model combination ef-
fect—effectively averaging multiple networks. MC Dropout also resembles placing an Ly penalty on weights.
While these effects can improve generalization, similar gains might be achieved with simpler, more efficient
regularizers. Perhaps it is the stochasticity itself that helps. Still, if performance is the main goal, uncer-
tainty modeling is likely not the most efficient route due to its added computational cost. Instead, improved
performance may simply be a side effect of these techniques.

Comparative studies Finally, the optimal method for uncertainty quantification has yet to be deter-
mined. In some works, MC dropout was found to perform better than ensembling Hoebel et al.| (2020); Roy|
(2018b)), while in other works ensembling excels [Mehrtash et al. (2020); Ng et al|(2022). Finally, there
is convincing evidence to prefer Concrete Dropout rather than MC Dropout Mukhoti & Gal| (2018). All
things considered, the preference for a particular methodology seems to carry a strong data-dependency

Table 7: Comparison between generative models that model aleatoric uncertainty.

‘ Method ‘ Advantages ‘ Disadvantages ‘ Examples ‘
SSN Model agnostic, explicit | possibly unstable, mem- | (Monteiro et al.|[2020] [Kahl et al.| [2024 |Zepf et al.|
likelihoods, fast sampling | ory intensive [2023a [Philps et al.||2024] [Kahl et al.| |2024)
Sequential sampling,

PixelCNN | Explicit, exact likelihoods |Zhang et al.l(]2022cp

memory intensive

Unstable training, poorly
GAN Fast sampling, flexible defined objective, implicit (]Kassapis et al.| |20211 |Isola et al.| |2017}

likelihoods

(Kohl et al.| [2019b| |Selvan et al.| [2020] [Valiuddin|
et al.| 2021] [2024a] [Qiu & Lui| [2020] [Bhat et al.
2022a] [2023] [Valiuddin et al.] [2024b] [Zhang et al.
2022b| [Kohl et al.||2019af |Baumgartner et al.| 2019

Mode/posterior collapse, | [Hu et al.|[2023] [Liu et al.] [2022b] [Fischer et al.|[2023
amortization gap Savadikar et al.| [2021]| [Rafael-Palou et al.| 2021

iviers et al.| [2023bla| |Chotzoglou & Kainz| 2019
Saha et al.| 2021alb| [Long et al.| 2021a| [Schmidt
et al.] [2023] [Savadikar et al.] 2021 [Rafael-Paloul
et al.| 2021 |Zepf et al.|[2024{[2023a] [Hu et al.| |2022)

(Chen et al.| [2023a] [Zbinden et al.| [2023] [Rahman|
et al.| 2023)

Fast sampling, flexible, in-
VAE terpretable latent space,
ELBO

DDPM Flexible, expressive Sequential sampling
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lhal et al. (2020); Jungo & Reyes (2019). A valuable contribution to the field pertains a comprehensive
benchmark paper, which compares all available epistemic uncertainty quantification methods across a wide
range of datasets. In particular, such study can elucidate the data-dependent preference for specific method-
ologies (i.e. why ensembling or MC Dropout is often preferred). Additionally, recent studies have shown
the benefits of moving from a few large, to many small experts when using an MoE ensemble for language
modeling . Future work should also experiment with this.

Alternatives to Variational Inference Approaches besides VI, such as Markov Chain Monte Carlo
(MCMC) or Laplace Approximations, are also viable options to approximate the Bayesian posterior. Espe-
cially the Laplace Approximation can be very beneficial, as it is easily applicable to pretrained networks.
Notably, both Laplace Approximation and VI are biased and operate in the neighborhood of a single mode,
while MCMC methods are a more attractive option when expecting to fit multi-modal parameter distribu-
tions. [Zepf et al| (2023Db) explored the impact of the Laplace Approximation on segmentation networks;
however, beyond this work, the method has received limited attention in the field.

Sampling-free uncertainty The multiple forward passes required in many Bayesian uncertainty quan-
tification can incur cumbersome additional costs. Hence, considerable efforts have been made towards
sampling-free uncertainty models (Mukhoti et al.,|2023} [Liu et al.,|2020; [Van Amersfoort et al., [2020; Postels|
2019), only depending on a single forward pass. [Mukhoti et al.| (2023 show that Gaussian Discriminant
Analysis after training with SoftMax predictive distribution can in some instances surpass methods such as
MC Dropout and ensembling. Along similar lines, Evidential Deep Learning also possesses the advantage
of quantifying both uncertainties with a single forward pass. This framework is based on a generalization of
Bayes theorem, known as the Dempster-Shafer Theory of Evidence (DST) [1967). While common
in Bayesian probability, DST does not require prior probabilities and bases subjective probabilities on belief
masses assigned on a frame of discernment, i.e. the set of all possible outcomes. The use of Evidential Deep
Learning has seen success in conventional classification problems (Sensoy et all [2018)), and
recently applied this concept to segmentation to decouple aleatoric and epistemic uncertainty within
a single model. However, follow-up research in this direction remains limited to date.

Reliable uncertainty estimates A distribution-free framework known as Conformal Prediction (CP)
produces prediction sets that guarantee inclusion of the ground truth with a user-specified probability. By
using an additional calibration set, CP transforms heuristic model confidence scores into rigorous uncertainty
estimates. This technique is particularly renowned for being model-agnostic, simple, and highly flexible
igelopoulos & Bates| [2021)). Recently, CP has been applied to segmentation tasks (Wieslander et al. |2020;
Brunekreef et al.| [2024; [Mossina et al), [2024; [Wundram et all 2024a)), benefiting from these advantages and
reflecting the growing interest in the framework for structured prediction. We encourage further research to
explore novel applications and benchmark CP against existing architectures.
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8 Conclusion

Modeling the uncertainty of segmentation models is essential for accurately assessing the reliability of
their predictions. Given the vast and diverse body of related literature spanning various applications and
modalities, often scattered and marked by inconsistent evaluation and benchmarking practices, there is a
clear need for a comprehensive and systematic overview. This work addresses that need by presenting clear
definitions and a unified notation for methodologies in uncertainty modeling. Furthermore, confusion and
misunderstanding around uncertainty modeling and quantification have led to diverging beliefs within the
field. By structuring the methodologies by targeted uncertainty type and followed by downstream pipeline
into four distinct tasks, it becomes easier for researchers to navigate the field and build upon existing work.
We place particular emphasis on addressing key conceptual gaps to support both pragmatic and theoretically
sound research. We also highlight the potential and broader impact of advancing uncertainty-based active
learning. A noticeable trend is the adaptation of generative modeling advances to segmentation through
novel, task-specific conditioning strategies for modeling ambiguity in segmentation masks. While such efforts
are already underway, it remains important to closely follow progress in general generative machine learning
and continue exploring its effective application to segmentation. Finally, we recommend future work to
focus on improving spatial aggregation methods, standardization in benchmarking, backbone architectures,
as well as the adoption of novel uncertainty estimation techniques, as many commonly used methods lack
rigor. In particular, there is growing interest in distribution- and sampling-free approaches. In this manner,
this review paper aims to guide researchers toward building more reliable, efficient, and uncertainty-aware
segmentation models within the lightning-fast evolving field of Deep Learning-based Computer Vision.
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