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ABSTRACT

Current multi-modal models exhibit a notable misalignment with the human visual
system when identifying objects that are visually assimilated into the background.
Our observations reveal that these multi-modal models cannot distinguish concealed
objects, demonstrating their inability to emulate human cognitive processes that
effectively utilize foreground-background similarity principles for visual analysis.
To analyze this hidden human-model visual thinking discrepancy, we build a
visual system that mimics human visual camouflaged perception to progressively
and iteratively ‘refocus’ concealed visual content. The refocus is a progressive
guidance mechanism enabling models to logically localize objects in visual images
through stepwise reasoning. The localization process of concealed objects requires
hierarchical attention shifting with dynamic adjustment and refinement of prior
cognitive knowledge. In this paper, we propose a visual refocus reinforcement
framework (VRRF) via the policy optimization algorithm to encourage multi-
modal models to think and refocus more before answering, and achieve excellent
reasoning abilities to align human camouflaged perception systems. Our extensive
experiments on camouflaged perception successfully demonstrate the emergence
of visual refocus phenomena, characterized by multiple reasoning tokens and
dynamic adjustment of the detection boxes. Besides, experimental results on both
camouflaged object classification and detection tasks exhibit significantly superior
performance compared to Supervised Fine-Tuning (SFT) baselines. Furthermore,
our visual refocus system surpasses the human camouflaged perception in user
study where participants are required to identify the target object. We hope that this
work will provide valuable insights for advancing future research in multimodal
model development. The implementation code and datasets will be made publicly.

1 INTRODUCTION

Recent breakthroughs in applying reinforcement learning (RL) to large language models (LLMs) have
yielded significant advancements. As demonstrated by OpenAI-O1 (Jaech et al., 2024), reinforcement
fine-tuning (RFT) strategies exhibit substantial potential for enhancing LLMs’ complex reasoning
abilities. Furthermore, DeepSeek-R1-Zero (Guo et al., 2025a) established that rule-based reward
systems can effectively leverage RL to unlock superior reasoning and cognitive capabilities in
language models, even without extensive supervised fine-tuning.

Recent research has increasingly sought to replicate the success of DeepSeek-R1 in multimodal
large language models (MLLMs). Notably, Virgo (Du et al., 2025) employed knowledge distillation
from open-source reasoning models including DeepSeek-R1 (Guo et al., 2025a) to enhance visual
reasoning capabilities. However, the dominant research direction (Zhou et al., 2025a; Liu et al., 2025a;
Zhan et al., 2025; Deng et al., 2025a; Peng et al., 2025; Liu et al., 2025b; Yang et al., 2025a; Zhang
et al., 2025; Deng et al., 2025b) prioritizes direct implementation of DeepSeek-R1’s Group Relative
Policy Optimization (GRPO) alongside its rule-based reward system to enable visual reasoning in
MLLMs. This approach has primarily focused on improving performance in STEM tasks, particularly
those involving mathematical reasoning and counting challenges. A fundamental driver of this
success lies in the rule-based reward system’s inherent applicability to tasks with deterministic
ground-truth solutions, which enables both stable and interpretable reward signaling. In the visual
domain, many visually intensive tasks demand deeper cognitive processing and greater attention to
visual information than reasoning with LLMs.
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Yes, the image contains
a camouflaged object.
There is a wolf blending into
the background among the
trees. Its fur and color patterns
make it difficult to spot
immediately, but it is located
slightly left of the center,
partially obscured by the birch
trees. Would you like me to
highlight it for you?
->

No, this image does not
contain any camouflaged
objects. The scene primarily
features natural elements such as
white birch trees with their
characteristic black markings, a
ground covered in autumn leaves
(golden and orange tones), and
scattered dry grass. The
composition is focused on the
organic arrangement of the trees
and seasonal foliage without any
hidden or disguised items.

The image you provided shows
a forest scene with birch trees,
which have white bark with
black spots. The ground is
covered with fallen leaves in
various shades of yellow and
brown, indicating it might be
autumn. There is no visible
camouflaged object in the
image; it appears to be a
natural forest setting without
any man-made or animal-
camouflaged objects.

Does this image contain 
the camouflaged object?

Qwen2.5-VL Deepseek Chatgpt-4O

The bottom left quadrant of
the image contains a birch
tree trunk that appears to
be camouflaged against
the background.
This region captures the
most visually dense and
textured area, where the
birch tree trunk shows
unusual contrast.

Focusing more tightly on the
central region within the previous
box, there‘s a dark spot that seems
to be a small animal. The spot has
a rough texture and a shape that
could be mistaken for a small
animal. This refined area zooms
in on the suspected region with a
rough texture and a shape that
could be mistaken for a small
animal.

The object's shape and texture
are becoming more visible.
The presence of shadows and
contour makes it more likely to
be a small animal.
This step isolates the upper
body and head, clarifying the
boundary between the small
animal and the surrounding birch
tree trunk.

Zooming in further
to precisely frame the
head and chest of the
camouflaged object.
This tight box captures
the most distinct part of
the small animal,
confirming it as the
hidden object.

Alright, let's break this down.
The user wants to know if
there's a camouflaged object
in the image. First off, I gotta
understand what a
camouflaged object would
look like in a forest scene like
this. It's gotta blend in with
its surroundings, right?

...

No, the image does not
contain a camouflaged
object.

KIMI

Refocus 1 Refocus 2 Refocus 3 Refocus 4

Visual Refocus Reinforcement Finetuning

With wrong bounding box.

Figure 1: Intriguing discovery of SOTA multi-modal models on limitation: these models struggle to replicate
human cognitive processes in leveraging foreground-background similarity relationships for visual analysis.
Mimicking human visual camouflaged reasoning perception, our Visual Refocus Reinforcement Fine-Tuning
visual system progressively and logically ‘refocus’ visual concealed content.

Through a comprehensive analysis, as illustrated in Fig. 1, we identify a critical divergence between
current multimodal models and human visual cognition in processing challenging camouflaged scenes.
Specifically, these models fail to reliably detect objects visually assimilated into the background.
Notably, even ChatGPT-4o exhibits hallucinations generating plausible explanations for potential
concealment while ultimately failing to localize camouflaged objects. Our findings indicate a critical
limitation: their inability to detect visually concealed objects demonstrates a failure to emulate the
human cognitive strategy of utilizing foreground-background similarity for visual interpretation.

Motivated by these observations, we are naturally led to explore whether rule-based reinforcement
learning approaches can enhance the reasoning capability of Vision-Language Models (VLMs)
to mimic the human perception system to iteratively refocus and refine the suspicious zone. We
customize a visual ‘refocus’ curriculum reinforcement learning to learn the visual refocus policy based
on the rule-based reward design, which progressively learns a difficulty-hierarchically structured
curriculum. Such hierarchical learning mechanism effectively mitigates the directional ambiguity
caused by scalar rewards during model exploration. Besides, we also tailor visual in-context refocus
reinforcement learning paradigm to capture the context cognitive pattern. This paradigm guides the
model in a stepwise manner, enhancing its logical reasoning ability, facilitating the emergence of
refocusing capability, and improving both exploration flexibility and controllability. After embedding
such mechanisms, we observe the emergence of a "visual refocus" phenomenon, where the localization
of concealed objects exhibits a hierarchical attention process that dynamically adjusts and refines
prior cognitive representations. The ‘visual refocus’ phenomenon mainly consists of three observable
representation forms: including the ‘focus’ (i.e., global to local zoom-in), ‘rethink’ (i.e., local
refinement and adjustment of suspicious zone), and ‘backtracing’ (i.e., from local to global extension
retracing). Overall, the main contributions of this paper can be summarized as follows:

• We observe a notable misalignment between existing models and the human system on the percep-
tion of camouflaged objects, and propose Visual Refocus Reinforcement Fine-Tuning (VRRF) to
align the human camouflaged perception ability.

• We develop a visual ‘refocus’ curriculum and in-context reinforcement learning paradigm, respec-
tively enabling hierarchical learning of task difficulty and capturing the context-aware cognitive
patterns through a rule-based visual refocus reward. Such learning strategy triggers the ‘visual
refocus’ which iteratively and dynamically adjusts and refines prior cognitive knowledge.

• We collect the camouflaged dataset and build the evaluation systems to analyze the camouflaged
perception ability. Through comprehensive experiments, we show that our approach to camou-
flaged object analysis achieves significantly better results than standard supervised fine-tuning
(SFT) methods, especially on extremely challenging test set. Furthermore, empirical user studies
demonstrate that our visual refocus system outperforms human behavior in camouflaged object
perception tasks.
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Curriculum LearningPrompt
Focus

Category Detection

If yes, provide the category 
of the camouflage from 
{'Aquatic', 'Terrestrial', 
'Flying', 'Amphibian', 'Other'} 
with explanation. If no, say 
None. 

Terrestrial - the camouflaged
object appears to be an
insect or small creature that
blends in with the plant's
structure, possibly a beetle
or a similar organism.

Does this image contain the camouflaged object? If yes, simulate a step-by-step focusing 
process on the camouflaged object. At each step, output one bounding box in the format 
[x1,y1,x2,y2], and provide a short explanation of why this region is selected. 

Refocus 1: ...
This large proposal
area encompasses
the entire plant,
ensuring we don't
miss any part of
the insect.

Refocus 2: ...
This refined area
zooms in on the
central part of the
plant, highlighting
the insect more
precisely.

Refocus 3: ...
This step isolates
the insect's body
and wings,
confirming its
presence.

Refocus 4: ...
This tight box captures
the most distinct part
of the insect,
confirming it as the
camouflaged object.

Visual Refocus Reinforcement Finetuning

Format reward

Accuracy reward

Category reward

Bbox reward

Does this image contain the 
camouflaged object? If yes…

Image
+

In-context Visual Refocus Explore
Rethinking Backtracing ……

Rollouts
In-context 
examples

Large Exploration Space

Clip High No KL Loss

Hard
Level

Figure 2: Overview of Visual Refocus Reinforcement Fine-Tuning.

2 METHODS

In this section, we introduce our approach to stimulating the model’s visual refocusing emergence
abilities, enabling the model to progressively learn visual reasoning by adaptively switching and
refining attention across global and local perspectives, guided by our proposed in-context GRPO
framework with refinement.

2.1 PRELIMINARY

Group Relative Policy Optimization (GRPO) (Shao et al., 2024a) is a reinforcement learning algorithm
designed to fine-tune large language models, particularly in scenarios with sparse or delayed rewards.
GRPO simplifies traditional proximal policy optimization by eliminating the need for a separate value
function estimator, thus reducing computational overhead. More details of GRPO are provided in the
Appendix A.4. While GRPO offers computational advantages, it has shown limited performance in
tasks that require multi-step reasoning and fine-grained visual attention, such as camouflaged object
detection. Our framework addresses these challenges by introducing a large exploration space with
refocus priors, enabling more effective learning in complex visual environments.

Problem Formulation Let x∈X be an image containing a potentially camouflaged object, and let
q∈Q be an accompanying textual prompt (e.g., “Is there a hidden cat?”). Our model maintains an
internal chain-of-thought (CoT) state ht at step t, which captures preceding “refocus” actions. We
define:

st =
(
x, q, ht

)
, at ∼ πθ(a | st) (1)

where at is a discrete refocus instruction (e.g., “zoom into region R”). After T refocus steps, the
model emits a final answer y via a read-out head: y ∼ pθ

(
y | sT

)
. Our goal is to learn the policy

parameters θ that maximize the expected utility in identifying the concealed object.

2.2 EXPLORATION-AWARE REFOCUS OPTIMIZATION

To enable the model to reason through visually camouflaged scenes, our framework promotes broader
and more flexible exploration in both the action and inference spaces. We incorporate two core
strategies: in-context reinforcement learning for structured trajectory imitation, and a modified
clip-high objective that encourages deviation from prior behavior without regularization penalties.

3
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In-Context Reinforcement Learning with Trajectory Examples. Inspired by human learning
processes, we design our reinforcement learning policy to facilitate exploration through illustrative
examples. Regular GRPO encourages the model to explore autonomously; however, we observed that
the performance ceiling is constrained by the model’s inherent capabilities. To address this limitation,
we integrate explicit in-context demonstrations of visual reasoning steps within each training example,
structured specifically to guide and enhance the model’s exploration process. We define the example
exploration format as in Fig. 3.

Does this image contain the camouflaged object?
<refocus instruction>
<format requirement>

# explore
<explore>
==== example i ====
Overview...
Focus (global to local zoom)...
Rethink (local refinement)...
Backtracing (local to global retracing)...
...
Summary.
==== example i+1 ====
...
==== example n ====
...
</explore>
# answers
<bbox>(x=112, y=98, w=64, h=52)</bbox>
<category>Camouflaged Category</category>
<answer>Yes</answer>

Figure 3: Prompt example used for in-context reinforcement learning. The <explore> block
provides a multi-stage visual reasoning trajectory that mimics human perceptual shifts in attention.

Each exploratory example trajectory involves free-form attention adjustments (e.g., zooming, region
recognition, refocus) to simulate the iterative process by which humans locate hidden elements.
Rather than using structured or fixed exploration steps, we encourage flexible reasoning to enhance
the model’s capacity for adaptive thinking. This design allows the model to sequentially reason by
adaptively attending to previously demonstrated exploratory behaviors, analogous to learning-by-
demonstration approaches. The in-context policy πθ(at|h<t, demo) conditions on prior steps h<t

and the free-form demonstration. This formulation enables richer generalization without explicitly
expanding the model size.

Clip-High Objective Without KL Penalty. To encourage broader exploration and escape local
optima under the instruction of in-context reinforcement learning, we revise the standard GRPO
objective to a clip-high variant with removing the KL divergence penalty and instead using a higher
clipping ceiling. We define the modified probability ratio as: ri(θ) =

πθ(oi|q)
πθold (oi|q)

, and the new clip-high
loss becomes:

Lclip-high
GRPO (θ) = Eq∼D, oi∼πθold (·|q)

[
min

(
ri(θ)Âi, clip(ri(θ), 1− ϵ, 1 + δ)Âi

) ]
, (2)

where δ > ϵ allows for a looser upper bound on policy shifts while still preventing collapse. By
removing the KL term and expanding the upper clipping range, this formulation encourages the
model to explore less likely (but potentially more optimal) paths and reduces the over-penalization of
novel or rare reasoning trajectories. We find that this modification leads to improved localization of
highly camouflaged content and less reliance on prior policy or SFT biases.

2.3 CURRICULUM REINFORCEMENT LEARNING FOR PROGRESSIVE REWARD ACQUISITION

In GRPO, the final reward is computed as the sum of multiple scalar rewards. This aggregation
obscures detailed feedback on individual reward components, making it difficult to precisely discern
which rewards are increasing or decreasing. Consequently, the model faces challenges in effectively

4
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learning the format or improving accuracy. To further guide the model in mastering progressively
harder aspects of camouflaged perception, we introduce a curriculum-style reinforcement learning
schedule that incrementally augments the reward signal. Concretely, we define three stages—format
& accuracy, category, and localization IoU—and successively incorporate them into the group
relative policy optimization (GRPO) objective.

Stage 1: Format and Accuracy Rewards. In the initial phase, we focus the model on producing
well-formed outputs and achieving basic recognition correctness. For each candidate output oi, we
compute:

R
(1)
i = λfmt R

fmt(oi) + λacc R
acc(oi), (3)

where Rfmt(oi) ∈ [0, 1] penalizes malformed XML tags or missing tokens in the <bbox>,
<category>, and <answer> fields, Racc(oi) ∈ {0, 1} grants 1 point if the predicted y matches
ground-truth presence, and λfmt, λacc are scaling coefficients. We then compute the group-relative
advantage Â(1)

i using these R(1)
i values exactly as in Section 2.1, and optimize the clip-high objective.

Stage 2: Adding Category Reward. Once the model reliably produces syntactically valid out-
puts and answers presence questions with the predefined format, we introduce semantic category
correctness. Denote:

Rcat(oi) =

{
1, if predicted category matches ground truth,
0, otherwise.

(4)

The cumulative reward becomes:

R
(2)
i = λfmt R

fmt(oi) + λacc R
acc(oi) + λcat R

cat(oi), (5)

and we form the corresponding relative advantages Â(2)
i from stage-2.

Stage 3: Incorporating IoU Refinement. Finally, to refine localization quality, we append an
Intersection-over-Union (IoU) reward:

Riou(oi) =
area(predi ∩ gt)

area(predi ∪ gt)
, (6)

and define the full-stage reward:

R
(3)
i = λfmt R

fmt(oi) + λacc R
acc(oi) + λcat R

cat(oi) + λiou R
iou(oi). (7)

With Â
(3)
i computed in the usual way, our final curriculum objective is:

L(3)(θ) = Eq,oi

[
min

(
ri(θ) Â

(3)
i , clip(ri(θ), 1− ϵ, 1 + δ) Â

(3)
i

)]
. (8)

We transition from one stage to the next when the reward ceases to increase, typically after approx-
imately 2–6 epochs. In practice, we set λfmt = λacc = λcat = λiou = 1 without tuning trade-off
parameters. This progressive pipeline enables the model to first master output structure and basic pres-
ence awareness, then semantic classification, and ultimately fine-grained localization. By structuring
reward signals as a curriculum, our framework guides the model through increasingly complex visual
reasoning tasks—mirroring the progressive ‘refocusing’ characteristic of human perception—while
preserving the computational efficiency of GRPO’s relative advantage formulation.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Implementation Details. We use Qwen-2.5-VL-7B (Bai et al., 2025a) as the base model. The default
GRPO settings are adopted, with the number of generations N=4, temperature set to 1, and the clip
high value fixed at 0.28. We train the model using the AdamW, starting with a learning rate of 1e-6,
which is linearly decayed over the course of training. The model is trained with batch size of 8.
Training is completed within approximately one day using 8 NVIDIA H20 GPUs.

5
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Table 1: Quantitative evaluation results on Easy-Concealed Object test set, decomposed into camouflaged object
classification and detection tasks, comparing GPT-4.1 (Achiam et al., 2023), Qwen2.5-VL (7B/72B) (Bai et al.,
2025b), InternVL3 (8B) (Zhu et al., 2025) and R1-V (Chen et al., 2025). The best results are highlighted in
bold and the second-best is marked in underline.

Easy Concealed Existence Concealed Category Classification
Object Set Binary Acc ↑ Category Acc ↑ Precision ↑ Recall ↑ F1 ↑

GPT4.1 0.99 0.82 0.87 0.82 0.81
InternVL3-8B 0.94 0.54 0.50 0.49 0.44
Qwen2.5-vl-7B 0.84 0.56 0.53 0.56 0.52
Qwen2.5-vl-72B 0.95 0.65 0.80 0.65 0.63

R1-V 0.97 0.63 0.50 0.63 0.52
SFT 0.97 0.84 0.89 0.84 0.86
VRRF 0.99 0.89 0.90 0.89 0.90
Easy Concealed Concealed Detection
Object Set F1@0.5 ↑ Preicision@0.5 ↑ Recall@0.5 ↑ mIOU ↑ IoU ≥ 0.3(%) ↑ IoU ≥ 0.7(%) ↑ Mean Center Distance(px) ↓
GPT4.1 0.37 0.37 0.37 0.41 66.67 8.82 141.17
InternVL3-8B 0.44 0.51 0.38 0.33 51.96 12.75 142.52
Qwen2.5-vl-7B 0.26 0.34 0.21 0.24 32.35 13.73 93.90
Qwen2.5-vl-72B 0.49 0.51 0.48 0.47 69.61 25.49 57.72

R1-V 0.54 0.56 0.52 0.50 69.61 35.29 162.75
SFT 0.60 0.62 0.59 0.53 81.37 29.41 110.96
VRRF 0.88 0.88 0.88 0.75 95.10 74.51 35.98

Can you spot 
anything camouflaged 

in the pictures?

Figure 4: Examples from hard-concealed set. Can
you find them? Best viewed in color and zoomed-in.

Datasets and Evaluation Metrics. We evalu-
ate our proposed VRRF on four public bench-
mark datasets for Camouflaged Object Detec-
tion (COD): COD10K (Fan et al., 2020), NC4K
(Lv et al., 2021), CAMO (Le et al., 2019) and
CHAMELEON (Skurowski et al., 2018), cover-
ing diverse challenging camouflage scenarios. To
assess model performance under varying levels
of difficulty, we construct two subsets: easy and
hard concealed object testsets in Fig. 4. The hard
testset is extremely challenging and is manually
selected from the full datasets. The easy set is sam-
pled images from the remaining data. In total, our
experimental data includes 14,017 training sam-
ples (comprising 9,083 camouflaged and 4,934
noncamouflaged). For the category classification

task, we adopt the five super-categories defined in the COD10K dataset: Aquatic, Terrestrial, Flying,
Amphibian, and Other, and instruct the model to choose from these classes for consistent labeling.
For the detection task, bounding boxes are derived from the provided segmentation masks.

3.2 CAMOUFLAGED OBJECT PERCEPTION

Camouflaged Object Perception and Category Classification. As shown in Tab. 2, on the
challenging hard dataset, even human struggle to recognize these difficult camouflaged cases within
seconds. Our method outperforms Supervised Fine-Tuning (SFT) on the category classification and
concealed object perception primarily by modeling the reasoning process rather than supervising
only the final output. Our Visual Refocus Policy training paradigm guides the model to progressively
localize objects through intermediate bounding box predictions (e.g., focusing on discriminative
parts like animal heads/chests/wings). This process-oriented approach, combining stepwise visual
grounding with classification, significantly improves final classification and perception accuracy.

Camouflaged Object Detection. On the hard concealed test set (Tab. 2), VRRF achieves a markedly
larger performance gain than on the easy set (Tab. 1), suggesting that more challenging tasks require
stronger reasoning ability and gain substantial improvements from a well-equipped reasoning model.
Notably, our system even surpasses human performance in the hard cases, as confirmed by user
studies where humans struggle to accurately localize and categorize camouflaged objects within
limited time. The superior performance is primarily attributed to our novel mechanism - an integrated
framework combining reasoning, joint training, and refocusing capability, which enables progressive
localization of camouflaged objects in complex environments through iterative reasoning.

3.3 VISUAL REFOCUS MECHANISM

Visual Refocus Analysis. Our visual refocus mainly demonstrates three refocus paradigms including
the ‘Focus’ (i.e., global to local zoom-in), ‘Rethink’ (i.e., local refinement) and ‘Backtracing’ (i.e.,

6
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Table 2: Quantitative evaluation results on Hard-Concealed Object test set, decomposed into camouflaged
object classification and detection tasks, comparing GPT-4.1 (Achiam et al., 2023), Qwen2.5-VL (7B/72B) (Bai
et al., 2025b), InternVL3 (8B) (Zhu et al., 2025), and R1-V (Chen et al., 2025). The best results are highlighted
in bold and the second-best is marked in underline.

Hard Concealed Existence Concealed Category Classification
Object Set Binary Acc ↑ Category Acc ↑ Precision ↑ Recall ↑ F1 ↑

Human perception 0.65 0.46 0.78 0.46 0.58

GPT4.1 0.91 0.78 0.85 0.78 0.79
InternVL3-8B 0.79 0.45 0.50 0.45 0.44
Qwen2.5-vl-7B 0.42 0.28 0.73 0.28 0.38
Qwen2.5-vl-72B 0.50 0.44 0.89 0.44 0.58

R1-V 0.79 0.59 0.74 0.59 0.62
SFT 0.83 0.70 0.86 0.70 0.75
VRRF 0.92 0.80 0.88 0.80 0.82
Hard Concealed Concealed Detection
Object Set F1@0.5 ↑ Preicision@0.5 ↑ Recall@0.5 ↑ mIOU ↑ IoU ≥ 0.3(%) ↑ IoU ≥ 0.7(%) ↑ Mean Center Distance(px) ↓
Human perception 0.51 0.65 0.42 0.38 49.04 32.69 69.82

GPT4.1 0.21 0.21 0.20 0.24 40.38 3.85 143.88
InternVL3-8B 0.16 0.21 0.13 0.15 23.08 4.81 188.48
Qwen2.5-vl-7B 0.16 0.33 0.11 0.12 15.38 7.69 83.80
Qwen2.5-vl-72B 0.34 0.52 0.25 0.25 33.65 15.38 55.16

R1-V 0.32 0.37 0.29 0.29 40.38 15.38 135.17
SFT 0.42 0.48 0.38 0.37 53.85 20.19 89.98
VRRF 0.54 0.58 0.50 0.47 60.58 38.46 61.11

Table 3: Evaluating the generalization ability of our VFFR on detection, hallucination and general
benchmark.

Method Refcoco Refcoco+ Refcocog POPE HRbench-4K HRbench-8K

val testA testB val testA testB val test Adv. Rand. Pop. FSP FCP Overall FSP FCP Overall

Qwen2.5-VL 0.88 0.92 0.85 0.84 0.89 0.76 0.87 0.87 0.81 0.82 0.81 0.82 0.55 0.68 0.75 0.52 0.63
VRRF 0.90 0.93 0.86 0.84 0.89 0.78 0.87 0.88 0.84 0.86 0.85 0.80 0.59 0.70 0.71 0.55 0.63

Table 4: Evaluation results of detection model vs. our VRRF on easy camouflaged objects detection
(Easy COD) and hard camouflaged objects detection (Hard COD) dataset.

Dataset Methods mIOU ↑ IoU ≥ 0.3(%) IoU ≥ 0.7(%) Precision@0.5 ↑ Recall@0.5 ↑ F1@0.5 ↑
Grounding Dino 0.41 46.46 45.92 0.94 0.46 0.62

Easy COD YOLOV11 0.79 92.16 80.39 0.60 0.91 0.72
VRRF 0.75 95.10 74.51 0.88 0.88 0.88

Grounding Dino 0.25 30.77 28.41 0.66 0.30 0.41
Hard COD YOLOV11 0.40 52.68 24.11 0.25 0.41 0.31

VRRF 0.47 60.58 38.46 0.58 0.50 0.54

local to global focus). During stepwise localization, the initial bounding box typically adopts a
coarse-grained scope to ensure comprehensive coverage of potential clues. As a ‘Focus’ mechanism,
subsequent steps progressively focus with the reasonable tokens (i.e.,, zoom in) to capture finer
details (e.g., head/chest) until converging to the final precise box. Notably, our framework supports
‘Backtracing’ refinement paradigms. For instance, as shown in Fig. 5 - 4-th row, the model may first
attend to discriminative local features of the cicada at intermediate steps, such as its head and wings,
which stand out due to their distinct shape and color, and then zoom out to capture the whole object.

Extending to Multiple Object Perception. Fig. 6 demonstrates our model’s ability to generalize to
multiple-objects. During reasoning, the model is able to detect multiple objects within the same scene
and simultaneously refine each predicted bounding box. This demonstrates the ‘Rethink’ capability,
allowing iterative optimization of multiple predictions while maintaining accurate localization.

Generalization ability analysis of VFFR on general, hallucination and detection benchmark. In
general high-relevant visual grounding benchmarks (e.g., Refcoco/+/g ) as shown in Tab. 3, our VRRF
performs better than the Qwen2.5-VL baseline, while our VRRF also maintains its comparable general
ability on HRBench. It indicates that the training paradigm based on the foreground-background
similarity principle also facilitates the improvement of general object detection. In the hallucination
benchmark (e.g., POPE), our ‘refocus’ visual mechanism develops a correction ability to rethink its
behaviors and alleviate its visual hallucination to some extent.

Comparisons with other detection models. In addition, we further compare our method with state-
of-the-art object detection models, including YOLOv11 (Khanam & Hussain, 2024) and Grounding
DINO (Liu et al., 2024b). YOLO is retrained on the same camouflage dataset, while Grounding
DINO is evaluated under identical settings. The three models display different tendencies in Table 4:
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Does this image contain the camouflaged object? If yes, simulate a step-by-step focusing process on the
camouflaged object. At each step, output one bounding box in the format [x1,y1,x2,y2], and provide a
short explanation of why this region is selected.

Figure 5: Illustration of ‘Visual Refocus’ representation pattern. The first three rows show ‘focus’ in the
form of global to local zoom-in, 4-th row denotes ‘backtracing’ from local to global extension retracing after
perceiving the discriminate head and wing part.

Figure 6: Illustration of our VRRF’s generalization to multiple object perception. Our VRRF inherits
‘rethink’ capability to refine and adjust the box to detect multiple objects.

Table 5: Qualitative results of the ablation study on the Hard-Concealed Object test set.
Hard Concealed Concealed Object Existence Classification Detection
Object Set Binary Acc Category Acc F1 mIOU IoU ≥ 0.5(%) F1@0.5

Qwen2.5-vl (Bai et al., 2025b) 0.423 0.28 0.38 0.120 10.58 0.16
+ format & acc reward 0.789 - - - - -
+ category reward 0.837 0.73 0.79 - - -
+ bbox reward 0.856 0.74 0.79 0.420 42.31 0.47
+ in-context learning 0.923 0.80 0.82 0.473 54.81 0.54
All-at-once (No Curriculum) 0.788 0.65 0.72 0.374 41.35 0.47

YOLO favors higher recall but suffers from low precision due to more false positives (mIoU, defined
in Appendix A.5, considers only the best-matching box per ground-truth, partly explaining YOLO’s
higher scores in easy COD), whereas Grounding DINO is conservative, predicting fewer boxes with
high precision but low recall. Our proposed VRRF achieves a better balance between these two
extremes, leading to the best overall performance. Notably, the advantage of our model becomes
more evident on the more challenging test sets due to the ‘refocus’ mechanism.

3.4 ABLATION STUDIES

Ablation of Each Component. As shown in Tab. 5, we conduct comprehensive ablations progres-
sively adding the refocus policy including the format, accuracy, category and bbox reward mechanism,

8
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Table 6: Qualitative results of the clip-high objective ablation study on the Hard-Concealed Object test set. The
best results are highlighted in bold.

Hard Concealed Concealed Object Existence Classification Detection
Object Set Binary Acc Category Acc F1 mIOU IoU ≥ 0.5(%) F1@0.5

VRRF (w/o kl and clip_upper_bound=0.28) 0.923 0.80 0.82 0.473 54.81 0.54
with KL_loss 0.827 0.78 0.79 0.470 52.88 0.52
low_clip_upper_bound=0.2 0.846 0.72 0.77 0.461 50.96 0.52

and the in-context learning reinforcement learning. We observe that the addition of each reward
gradually boosts both the classification accuracy and the detection performance. Such joint training
framework enhances the model’s reasoning capability through iterative refinement. In-context learn-
ing further guides the model on how to think by teaching it to dynamically refocus attention to detect
camouflaged objects, verify intermediate results, and progressively refine predictions (e.g., through
refocus adjustments based on prior outputs). In contrast, adding all components simultaneously
results in inferior performance, likely due to the complexity of jointly optimizing the camouflaged
object perception tasks, and therefore highlighting the benefit of our progressive learning.

Ablation of Training Strategies. We present additional ablation studies evaluating the impact of
the KL penalty and different upper clipping bounds in Tab. 6. Clip-High objective without KL
penalty leads to better classification and detection performance by enabling the model to explore
low-probability reasoning paths that may yield more optimal results.

Analysis of Runtime and Accuracy in Different Refocusing Steps. With the increase in refocusing
steps, the inference time also grows gradually. The mIOU peak lies at the 4-th refocusing step. In our
experiment, we adopt the four refocusing steps as our default setting.

0.3

0.4

0.5

10

20

0
RF-1 RF-2 RF-3 Human

Runtime:smIOU

Detection accuracy Runtime

RF-4 RF-5SFT

Figure 7: Impact of Refocusing Steps on Inference
Time and Performance.

User Study and Explanation of VRRF surpass
human perception. Thirty well-educated partic-
ipants with healthy visual systems are trained by
the labeling process (e.g., the teaching of ‘labelme’
tool operation; and the demonstration of camou-
flaged object detection). We testify that twenty
seconds are sufficient to traverse the pixel-wise in-
formation twice, so we adopt this setting to avoid
excessive visual fatigue. Participants are asked
to detect the camouflaged object and classify the
specific class. Under this setting, the user study
outperforms the SFT baseline but remains below
VRRF. The potential reason why our model mim-
ics human principles of discerning foreground-

background discrepancies and then excels the human perception can be summarized as: 1). Human
attention is inherently limited and often overlooks subtle details — such as minor textures or faint
color gradients — that may be critical in extreme camouflage (e.g., certain insects or military pat-
terns). In contrast, the model detects such fine-grained signals consistently and sensitively through
computational analysis of pixel-level data, surpassing human reliance on contextual reasoning and ed-
ucated guesses. 2). The VRRF model operates without human limitations such as fatigue, emotional
variability, or fluctuating concentration levels due to external factors. It applies relentless, uniform
attention to every sample, enabling large-scale, highly consistent processing beyond human capacity.

4 CONCLUSION

In this paper, we observe that current multimodal models fail to detect concealed objects, lacking the
human cognitive ability to analyze foreground-background similarity. We address the critical gap
between multimodal models and human cognition in detecting camouflaged objects by introducing
a visual refocus reinforcement framework. By emulating human-like hierarchical reasoning to
progressively shift attention, our method enables models to dynamically refine and refocus their
predictions through stepwise analysis. Extensive experiments demonstrate that this approach not
only outperforms SFT baselines in classification and detection tasks but also exhibits emergent
human-aligned refocusing behaviors, characterized by multi-token reasoning. Our work provides a
pathway toward more cognitively inspired multimodal systems.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

We have already elaborated on all the models or algorithms proposed, experimental configurations,
and benchmarks used in the experiments in the main body or appendix of this paper. Furthermore,
we declare that the entire code used in this work will be released after acceptance.

A.2 THE USE OF LARGE LANGUAGE MODELS

We use large language models solely for polishing our writing, and we have conducted a careful
check, taking full responsibility for all content in this work.

A.3 RELATED WORK

Vision-Language Models. Vision-Language Models (VLMs) have witnessed remarkable develop-
ment since the emergence of large language models (LLMs). Pioneering works such as Flamingo
Alayrac et al. (2022) lay the foundation for VLMs, demonstrating their potential in few-shot learning
tasks. Subsequently, LLaVA Liu et al. (2024a) employs GPT-4 Achiam et al. (2023) to generate
training data, achieving promising results in visual dialogue and reasoning, which inspired a series
of studies focusing on visual instruction data, like InstructBLIP Dai et al. (2023). Besides, some
studies aim to enhance visual reasoning capabilities through high-resolution inputs Shi et al. (2025),
improved spatial understanding Chen et al. (2024a), and the modeling of human visual illusions
Zhang et al. (2023). To address the limitation of constrained image input resolution in early VLMs,
mechanisms like AnyRes Chen et al. (2024b;d) are introduced, enabling flexible handling of images
with different resolutions and aspect ratios and enhancing the models’ perceptual and reasoning
capabilities. Currently, popular open-source VLM series include LLaVA Li et al. (2024); Liu et al.
(2024a), QwenVL Bai et al. (2025b); Wang et al. (2024), and InternVL Chen et al. (2024c;d). Build-
ing upon existing VLMs and inspired by the observed discrepancy between human and VLMs, we
explore this interesting phenomenon and develop a visual refocus system to better bridge and surpass
the human camouflaged perception ability.

Reinforcement Learning in Vision-Language Models. The application of reinforcement learning
(RL) in Vision-Language Models has become an active research area. DeepSeek R1 Guo et al. (2025b)
demonstrated that simple rule-based rewards can significantly enhance the reasoning capabilities of
LLMs, inspiring researchers to explore the extension of similar RL methodologies to VLMs. Works
like R1-OneVision Yang et al. (2025b) proposed a cross-modal reasoning pipeline to improve VLM
reasoning, while R1-V Chen et al. (2025) introduced the GRPO method Shao et al. (2024b) into
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VLM training for object-counting tasks. VisualThinker-R1-Zero Zhou et al. (2025b) showed that
applying RL to base VLMs can lead to substantial performance improvements and trigger the "visual
aha moment". Most of these previous studies on RL in VLMs target common visual understanding
tasks or multimodal mathematics tasks. In contrast, our research focuses on the better visual
reasoning alignment between humans and VLMs especially on the camouflaged object perception
with unique challenges due to the nature of camouflaged objects blending into the background. Our
visual refocus-based RL approach is designed to guide the model to perform a human-like chained
thinking and visual focusing process, enabling dynamic adjustment and refinement of prior cognitive
representations.

Camouflaged Object Perception. Camouflaged object perception, a bio-inspired research field,
focuses on detecting concealed objects or animals that visually blend into their surroundings Fan
et al. (2021); Hu et al. (2023); Tang et al. (2024). Biological and psychological studies Cuthill
(2019); Stevens & Merilaita (2009) demonstrate that camouflage serves as both a survival mechanism
for prey species to evade predators and a perceptual challenge for human vision systems, which
are particularly sensitive to edge-related color and illumination cues. Investigating camouflage
phenomena offers valuable insights into the fundamental mechanisms of human visual perception.
Our method introduces multi-modal large models with RL and visual refocus technology, endowing
the model with human-like high-level thinking and visual focusing abilities. This allows the model
to not only analyze the visual features of the image but also conduct reasoning based on semantic
information.

A.4 DETAILS OF GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

In GRPO, for a given input (e.g., an image-question pair), the policy generates a group of G outputs
{o1, o2, . . . , oG}. Each output oi receives a scalar reward Ri, possibly from a reward model or human
feedback. The average reward for the group is computed as: R̄ = 1

G

∑G
i=1 Ri. The relative advantage

for each output is then: Âi = (Ri − R̄)/std(R). This approach focuses on the relative performance
of each output within the group, promoting outputs that perform better than average.

The GRPO objective function is:

Lclip
GRPO(θ) = Eq∼D, oi∼πθold (·|q)

[
min

(
ri(θ)Âi, clip(ri(θ), 1− ϵ, 1 + ϵ)Âi

)
− β ·DKL

[
πθ(· | q) ∥πref(· | q)

] ]
, (9)

where β controls the strength of the regularisation term, q is the sampled question and DKL is the
Kullback-Leibler divergence between the current policy and a reference policy.

A.5 EVALUATION METRICS

We summarize here the evaluation metrics used to assess classification and detection performance
in our experiments. To evaluate the classification task, we use the following metrics: Category
Accuracy, weighted precision, weighted recall, and weighted F1 score. These provide complementary
perspectives on the classification performance across all categories. For the detection task, we report
Precision@0.5, Recall@0.5, and F1@0.5, as well as mIoU and IoU@0.3/0.5/0.7. For Precision,
Recall and F1, evaluations are computed under the standard detection protocol, where predictions
with IoU > 0.5 are regarded as true positives, thereby capturing the trade-off between over- and under-
prediction. In contrast, mIoU and IoU@X follow a best-match strategy, where only the predicted box
with the highest overlap is assigned to each ground-truth instance, independent of the total number
of predictions. This ensures that these metrics measure the overlap quality between predicted and
ground truth bounding boxes, capturing both coarse and fine-grained localization performance.

A.6 LIMITATIONS AND BROADER IMPACTS

Our proposed visual refocus reinforcement learning framework effectively enhances reasoning and
cognitive capabilities by prompting MLLMs to refocus attention before answering. While our method
can positively impact applications like image analysis through improved visual perception, it also
risks misuse in privacy-invasive visual systems, highlighting ethical considerations for responsible
usage. Our visual refocus mechanism is primarily designed for specific camouflaged perception
scenarios, which are commonly encountered in fields such as computer vision (e.g., search and rescue
operations or rare species discovery), medical imaging (e.g., polyp detection and lung infection
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identification), and agriculture (e.g., locust detection for invasion prevention). A more general refocus
mechanism will be explored in future work.

A.7 “VISUAL REFOCUS” REPRESENTATION PATTERN

We provide more detailed text and image illustrations of “Visual Refocus” representation pattern, as
shown in Fig. 8

Does this image contain the camouflaged object? If yes, simulate a step-by-step focusing process on 
the camouflaged object. At each step, output one bounding box in the format [x1,y1,x2,y2], and 
provide a short explanation of why this region is selected. 

... The bird blends in with the
bark, making it challenging to
spot initially. This large
proposal area encompasses
the entire tree trunk, ensuring
we don't miss any part of the
bird.

Focusing on the central region of
the trunk, the bird's head and upper
body become more visible due to
the texture and color of the bark.
This refined area zooms in on the
bird's head and upper body,
highlighting the bird's integration
with the bark.

The bird's eyes and beak are now
more clearly defined, showing the
bird's facial features and the
contrast with the bark. This step
isolates the bird's head and upper
body, confirming the bird's
presence and its camouflage
against the bark

Zooming in further to
precisely frame the bird's
entire body, including its wings
and tail, which are also
camouflaged. This tight box
captures the bird's entire body,
confirming it as the
camouflaged object

The initial large box
encompasses the entire flower,
including the stamens and the
central area where the object is
located. This large box
ensures ....

Refining the focus on the central
area where the object is located,
we zoom in on the stamen region.
This refined box narrows down the
focus to the stamen region, where
the object is situated

Further refining the focus, we
zoom in on the specific area
around the object, which appears
to be a small insect or spider. This
step aims to isolate the object
more precisely, focusing on the
area where the object is located

The final, precise bounding
box identifies the object as a
small insect or spider, which
blends into the flower's
coloration. This tight box
confirms the location of the
camouflaged object, which is
a small insect or spider.

... A large area needs to be
considered for potential
camouflage. This large box
encompasses the entire image,
including the lion partially
hidden in the grass. It helps us
understand the context and
the extent of the camouflage.

The lion's entire body becomes more
visible as the camera zooms in on the
entire image.This step confirms the
lion's location and its level of
camouflage. The lion's fur blends
seamlessly with the dry grass, making
it difficult to distinguish at first glance

Further refining the focus on the lion's
face, we can see the details more
clearly. This step zooms in even closer
on the lion's face, showing the details
of its eyes and fur pattern.

The final, precise bounding
box captures the lion's face
and upper body, confirming
the camouflage. This tight box
confirms the lion's face and
upper body, showing how well
it blends into the grassy
environment.

1 2

34

1 2

34

1 2

34

Figure 8: Detailed text and image illustrations of ‘Visual Refocus’ representation pattern.

A.8 VISUAL REASONING ON CONCEALED CATEGORY CLASSIFICATION

We offer more visual reasoning results on concealed category classification task between the SFT and
our VRRF, as shown in Fig. 9.

A.9 USER STUDIES ON ‘LABELME’

We also conduct user studies labeling on the ‘Labelme’ tool to classify the concealed category and
detect the bounding-box in Fig. 10.
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Does this image contain the camouflaged
object? If yes, provide the category of the
camouflage from {'Aquatic', 'Terrestrial',
'Flying', 'Amphibian', 'Other'} with
explanation. If no, say None.

SFT
<answer>Flying</answer>

Flying - the owl is camouflaged against the pebbled surface, which 
resembles the natural environment where owls typically live.

VRRF

Directly output the results

Output results with analysis

Does this image contain the camouflaged
object? If yes, provide the category of the
camouflage from {'Aquatic', 'Terrestrial',
'Flying', 'Amphibian', 'Other'} with
explanation. If no, say None.

SFT
<answer>Terrestrial </answer>

Terrestrial - the white spider is camouflaged against the white flowers, 
blending in with the background.

VRRF

Directly output the results

Output results with analysis

Figure 9: Visual reasoning results on concealed category classification task between the SFT and our
VRRF.
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Figure 10: User studies: Human annotations on ‘Labelme’ tool.
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