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Abstract

Large language models (LLMs) can generate
natural language texts for various domains and
tasks, but their potential for clinical text min-
ing, a domain with scarce, sensitive, and im-
balanced medical data, is under-explored. We
investigate whether LLMs can augment clinical
data for detecting Alzheimer’s Disease (AD)-
related signs and symptoms from electronic
health records (EHRs), a challenging task that
requires high expertise. We create a novel prag-
matic taxonomy for AD sign and symptom pro-
gression based on expert knowledge and gener-
ated three datasets: (1) a gold dataset annotated
by human experts on longitudinal EHRs of AD
patients; (2) a silver dataset created by the data-
to-label method, which labels sentences from
a public EHR collection with AD-related signs
and symptoms; and (3) a bronze dataset cre-
ated by the label-to-data method which gener-
ates sentences with AD-related signs and symp-
toms based on the label definition. We train a
system to detect AD-related signs and symp-
toms from EHRs. We find that the silver and
bronze datasets improves the system perfor-
mance, outperforming the system using only
the gold dataset. This shows that LLMs can
generate synthetic clinical data for a complex
task by incorporating expert knowledge, and
our label-to-data method can produce datasets
that are free of sensitive information, while
maintaining acceptable quality.

1 Introduction

Clinical text holds a large amount of valuable in-
formation that is not recorded by the structured
data fields in electronic health records (Wang et al.,
2018b). Clinical text mining, which aims to ex-
tract and analyze information from medical records,
such as diagnosis, symptoms, treatments, and out-
comes, has various applications, such as clinical
decision support, disease surveillance, patient ed-
ucation, and biomedical research (Murdoch and
Detsky, 2013). However, clinical text mining faces

two major obstacles: the scarcity and sensitivity
of medical data. Medical data is often limited in
quantity and diversity, due to the high cost and
difficulty of data collection and annotation, which
require expert knowledge and consent from patients
and providers. On the other hand, medical data is
highly sensitive and confidential, due to the ethi-
cal and legal issues of data privacy and security,
which impose strict regulations and restrictions on
data collection and usage (Berman, 2002). These
obstacles hinder the development and evaluation
of clinical text mining methods, especially those
based on data-hungry deep learning models.

Recently LLMs have demonstrated impressive
performance on many natural language processing
(NLP) benchmarks,(Wang et al., 2018a, 2019; Ra-
jpurkar et al., 2016), as well as in medical domain
applications (Singhal et al., 2023, 2022; Nori et al.,
2023). However, they also face some common
problems like hallucination, homogenisation, etc
(Azamfirei et al., 2023). Hallucination means that
LLMs produce factual errors or inconsistencies in
their outputs that do not match the input or the real
world. This can damage the reliability and credibil-
ity of LLMs, especially for applications in clinical
domain that need high accuracy and consistency.
In addition, data generated by LLMs tends to be
highly homogeneous and fails to capture the diver-
sity and realism of real data, which are essential for
many downstream tasks. For example, for clinical
text analysis, we need the generated data to cover
different types of clinical texts, such as patient his-
tories, diagnoses, or treatment plans. This presents
a huge challenge for LLM. The difference between
LLM generated data and real data makes people
doubt LLMs’ practical application value.

In this paper, we investigated whether the out-
puts of LLMs can be a valuable data source for clin-
ical text mining despite all these aforementioned
drawbacks. We focus on Alzheimer’s Disease
(AD) signs and symptoms detection from electronic



health records (EHRs) notes. Alzheimer’s Disease
(AD) is a progressive neurodegenerative disorder
that affects millions of people worldwide (Schel-
tens et al., 2021; Schachter and Davis, 2022). It can
cause cognitive impairment, behavioral changes,
and functional decline. Detecting AD-related signs
and symptoms from EHR is a crucial task for early
diagnosis, treatment, and care planning (Leifer,
2003). In addition to the scarcity, sensitivity, and
imbalance of clinical data, this task is highly chal-
lenging due to the high expertise required to inter-
pret the complex and diverse manifestations of AD
(Dubois et al., 2021).

We propose a novel pragmatic taxonomy for AD
sign and symptom progression based on expert
knowledge, which consists of nine categories that
capture the cognitive, behavioral, and functional
aspects of AD (Bature et al., 2017; Lanctôt et al.,
2017). We created three datasets following the
taxonomy: (1) a gold dataset annotated by human
experts on longitudinal EHRs of AD patients; (2) a
silver dataset created by the data-to-label method
which labels sentences from a public EHR collec-
tion with AD-related signs and symptoms; and (3) a
bronze dataset created by the label-to-data method
which generates sentences with AD-related signs
and symptoms based on the label definition. The
"data-to-label" method employs LLMs as annota-
tors and has been widely adopted in many tasks.
The "label-to-data", on the other hand, relies on
the LLM’s generation ability to produce data with
labels based on instructions.

We performed experiments of binary classifica-
tion (whether the sentence is related to AD signs
and symptoms or not) and multi-class classifica-
tion (assign one category from the nine pre-defined
categories of AD signs and symptoms to an input
sentence), using different data combinations to fine-
tune pre-trained language models (PLMs), and we
compared their performance on the human anno-
tated gold test set. We observed that the system
performances can be significantly improved by the
silver and bronze datasets. In particular, combing
the gold and bronze dataset, which is generated
by the label-to-data method, outperform the model
trained only on the gold or gold+silver dataset for
some categories. The minority classes with much
fewer gold data samples benefit more from the im-
provement. We noticed slight degradation of per-
formances for a small proportion of categories. But
the overall increases in results demonstrates that

LLM can be applied to medical data annotation,
and even its hallucinations can be leveraged to cre-
ate datasets that are free of sensitive information,
while preserving acceptable quality.

The contributions of this paper are as follows:
• We create a novel pragmatic taxonomy for AD

sign and symptom progression based on expert
knowledge, and it has shown to be reliably anno-
tated using information described in EHR notes.

• We investigate whether LLMs can augment
clinical data for detecting AD-related signs and
symptoms from EHRs, using two different meth-
ods: data-to-label and label-to-data.

• We train a system to detect AD-related signs
and symptoms from EHRs, using three datasets:
gold, silver, and bronze. And evaluate the qual-
ity of the synthetic data generated by LLMs using
both automatic and human metrics. We show that
using the synthetic data improves the system per-
formances, outperforming the system using only
the gold dataset.

2 Related Work

2.1 Large Language Models

Large language models (LLMs) have enabled re-
markable advances in many NLP domains because
of their excellent results and ability to comprehend
natural language. Popular LLMs including GPT-2
(Radford et al., 2019), GPT-3 (Brown et al., 2020),
and GPT-4 (OpenAI, 2023), LaMDA (Thoppilan
et al., 2022), BLOOM (Scao et al., 2022), LLaMA
(Touvron et al., 2023), etc. vary in their model size,
data size, training objective, and generation strat-
egy, but they all share the common feature of being
able to generate natural language texts across vari-
ous domains and tasks. They have achieved impres-
sive results on many natural language processing
(NLP) benchmarks by leveraging the large-scale
and diverse text data from the web.

However, researchers have noticed the draw-
backs of LLMs since their debut. Some limita-
tions of LLMs have widely acknowledged and
have drawn wide attentions from the research com-
munity like hallucination, homogenisation, etc.
(Tamkin et al., 2021)

Hallucination is a well-known and widely-
studied problem in natural language generation
(NLG), which is often defined as "generated con-
tent that is nonsensical or unfaithful to the provided
source content" (Ji et al., 2023). Hallucination has
been observed and analyzed in various NLG tasks,



such as machine translation (MT) (Guerreiro et al.,
2023), text summarization (Cao et al., 2021), and
dialogue generation (Das et al., 2023). Hallucina-
tion can be caused by various factors, such as data
noise, model bias, lack of commonsense knowl-
edge, or insufficient supervision. It can be detected
and mitigated by various methods, such as data
cleaning, model regularization, knowledge injec-
tion, or output verification (Ji et al., 2023).

In this paper, we explore a different angle on hal-
lucination, and examine whether the hallucinations
of LLMs can be a valuable data source for clinical
text processing, rather than a difficulty. We propose
that the hallucinations of LLMs can be leveraged
to create synthetic or augmented datasets that do
not expose sensitive information, but still maintain
the linguistic and semantic features of clinical texts,
such as vocabulary, syntax, and domain knowledge.
Experiments on classification tasks confirmed the
validity of the proposal.

Homogenisation is also a potential drawback
of using LLMs at a large scale. While it ensures
the stability of the text quality, it also reduces
the diversity of text. This issue has been noticed
and discussed (Marian, 2023), but there is still a
lack of research in this direction. In this work,
we have observed homogenisation in the "label-
to-data" method and conducted experiment which
help reveal how it impacts the system performances
on the studied task.

2.2 Clinical Text Mining and synthetic data
generation

Clinical text mining faces two main obstacles: the
limited availability and the confidentiality of health
data. Various attempts have been done to over-
come the lack of and the privacy issues with health
data. Public datasets, such as MIMIC (Johnson
et al., 2016), i2b2 (Uzuner et al., 2011), or BioASQ
(Tsatsaronis et al., 2015) etc, are openly available
for research purposes. Synthetic datasets, such
as Synthea (Walonoski et al., 2018) and MedGAN
(Choi et al., 2017) etc., are constructed based on sta-
tistical models, generative models, or rules. They
can be used to augment or complement real medical
data, without violating the privacy or confidential-
ity of the patients or providers. Data augmentation
or transfer learning techniques are machine learn-
ing techniques used to address the data scarcity
or imbalance issue by generating or utilizing addi-
tional or related data, such as synthetic data, noisy

data, or cross-domain data, to enrich or improve the
data representation or diversity (Che et al., 2017;
Gligic et al., 2020; Gupta et al., 2018; Xiao et al.,
2018; Amin-Nejad et al., 2020; Li et al., 2021).

However, synthetic datasets may not capture the
naturalness and realism of human-written medical
texts, and may introduce errors or biases that can
affect the performance and validity of clinical text
mining methods.

LLMs have also been explored for clinical text
processing. Research has demonstrated that LLM
holds health information (Singhal et al., 2022).
Studies has shown that LLMs can generate unstruc-
tured data from structured inputs and benefit down-
stream tasks (Tang et al., 2023). There are also
some work that leveraged LLMs for clincal data
augmentation (Chintagunta et al., 2021; Guo et al.,
2023) In this paper, we propose a novel approach
to leverage LLMs, especially its hallucination abil-
ity via the label-to-data method as a data source
for clinical text processing, which can mitigate the
scarcity and sensitivity of medical data.

2.3 Alzheimer’s disease signs and symptoms
detection

Clinical text mining methods have been increas-
ingly applied to detect AD or identify AD signs
and symptoms from spontaneous speech or elec-
tronic health records, which could be potentially
severed as a natural and non-invasive way of as-
sessing cognitive and linguistic functions. (Kar-
lekar et al., 2018) applied neural models to classify
and analyze the linguistic characteristics of AD
patients using the DementiaBank dataset. (Wang
et al., 2021) developed a deep learning model for
earlier detection of cognitive decline from clinical
notes in EHRs. (Liu and Yuan, 2021) used a novel
NLP method based on term frequency-inverse doc-
ument frequency (TF-IDF) to detect AD from the
dialogue contents of the Predictive Challenge of
Alzheimer’s Disease. (Agbavor and Liang, 2022)
used large language models to predict dementia
from spontaneous speech, using the DementiaBank
and Pitt Corpus datasets. These studies demon-
strate the potential of clinical mining methods for
assisting diagnosis of AD and analyzing lexical
performance in clinical settings.

3 Methodology

In this section, we introduce our task of AD signs
and symptoms detection, and how we leveraged



LLMs’s capabilities for medical data annotation
and generation. We also present the three different
datasets (gold, silver and bronze) that we created
and used for training and evaluating classifiers for
AD signs and symptoms detection.

3.1 Task overview

Alzheimer’s disease (AD) is a neurodegenerative
disorder that affects memory, thinking, reasoning,
judgment, communication, and behavior. It is the
fifth-leading cause of death among Americans age
65 and older (Mucke, 2009). This task aims to
identify nine categories of AD signs and symp-
toms from unstructured clinical notes. The cat-
egories are: Cognitive impairment, Notice/con-
cern by others, Require assistance/functional im-
pairment, Physiological changes, Cognitive assess-
ments, Cognitive intervention/therapy, Diagnostic
tests, Coping strategy, and Neuropsychiatric symp-
toms. These categories indicate the stages and
severity of AD. Capturing them in unstructured
EHRs can help with early diagnosis and interven-
tion, appropriate care and support, disease mon-
itoring and treatment evaluation, and quality of
life improvement for people with AD and their
caregivers. This is very challenging a task as the
AD-related signs and symptoms can vary in form
and severity, and it requires a lot of knowledge and
experience to capture them from a large amount
of text. We ask experts to create the annotation
guideline by defining each category of AD-related
signs and symptoms and providing examples and
instructions for the annotators (See Appendix A for
details).

3.2 Datasets

As stated above, we created and utilized three dif-
ferent datasets for our experiments: gold, silver and
bronze.

3.2.1 Gold data (Human annotation)
We expert annotated 5112 longitudinal EHR notes
of 76 patients with AD from the U.S. Department
of Veterans Affairs Veterans Health Administration
(VHA). The use of the data has been approved by
the Institutional Review Board at the VHA Bed-
ford Healthcare System, which also approved the
waiver of documentation of informed consent. Un-
der physician supervision, two medical profession-
als annotate the notes for AD signs and symptoms
following the annotation guidelines. They selected
sentences to be annotated and labelled its categories

as output, and resolved the disagreements by dis-
cussion. The inter-annotator agreement was mea-
sured by Cohen’s kappa as k=0.868, indicating a
high level of reliability. This leads to the gold stan-
dard dataset with 16,194 sentences with a mean
(SD) sentence length of 17.60 (12.69) tokens.

3.2.2 Silver data (Data-to-Label)
The silver dataset consisted of 16,069 sentences
with a mean (SD) sentence length of 19.60 (15.44)
tokens extracted from the MIMIC-III database
(Johnson et al., 2016), which is a large collection
of de-identified clinical notes from intensive care
units. We randomly sampled the sentences from
the discharge summaries, and used the LLM model
to annotate them with AD-related symptoms. The
LLM receives the annotation guidelines and the
clinical text as input and produces the sentence to
be annotated and its categories as output. The out-
puts are further checked by the LLM by asking
for a reason to explain why the sentence belongs
to the assigned category. In this step, the inputs
to the LLM are the guidelines and the annotated
sentences and the outputs are Boolean values and
explanations. This chain-of-thoughts style check-
ing has been proved to improve LLM performances
(Wei et al., 2022). Although many LLMs can be
used here, we adopt the Llama 65B (Touvron et al.,
2023) due to its performances, availability, costs
and privacy concerns.

3.2.3 Bronze data (Label-to-Data)
We used GPT-4, a state-of-the-art LLM that has
been shown to generate coherent and diverse texts
across various domains and tasks (OpenAI, 2023).
GPT-4 is a transformer-based model with billions
of parameters, trained on a large corpus of web
texts. We accessed GPT-4 through the Azure Ope-
nAI service 1.

In the generation task, GPT-4 takes only the an-
notation guidelines as input and produces a piece of
note text and outputs the sentence to be annotated
and its categories. This is a bronze-level dataset
that does not contain any sensitive personal infor-
mation. It consists of 16,047 sentences with an
average sentence length of 16.58 words. Figure 1
shows a snippet of the generated text and annota-
tions. As shown in the example, the model firstly
generates a clinical text and then extract sentences
of interests for annotation. The generated text is

1https://azure.microsoft.com/en-us/products/cognitive-
services/openai-service/



rich in AD signs and symptoms and contains no
Protected Health Information (PHI) or (Personally
Identifiable Information) PII. While the text doesn’t
completely convey the complexity of AD diagnosis,
or the follow-up required to arrive at AD diagnosis
(e.g. "I immediately drove over and took him to the
ER. After a series of tests, including an MRI and a
neuropsychological evaluation, he was diagnosed
with Alzheimer’s disease. " In fact, the diagnosis
of AD is a challenging task and it’s unlikely to
get diagnosed with AD at the ER department), it
maintains the linguistic and semantic features of
clinical texts, i.e., vocabulary, syntax, and domain
knowledge, and represents high quality annotation.

We processed the datasets by tokenizing, lower-
casing, and removing duplicate sentences. We split
them into train, validation, and test sets (80/10/10
ratio). Table 1 shows the dataset statistics. The
gold and silver data have similar average length
and standard deviation. The bronze data has a
smaller standard deviation and a more balanced
categorical distribution than the gold and silver
data, which differs from real patient notes. The
smaller SD in sentence lengths indicates less diver-
sity in the bronze data. We will experiment with
these datasets to see how the LLM’s output can
help clinical text mining.

3.3 Experiments

3.3.1 Classifiers

We use an ensemble method that integrates mul-
tiple models and relies on voting to produce the
final output. This reduces the variance and bias
of individual models and enhances the accuracy
and generalization of the prediction, which is cru-
cial for clinical text mining (Mohammed and Kora,
2023).

For the base models, we utilized the power of
pre-trained language models (PLMs), which are
neural networks that have been trained on large
amounts of text data and can capture general lin-
guistic patterns. Three different PLMs, namely
BERT (bert-base-uncased) (Devlin et al., 2018) ,
RoBERTa (roberta-base) (Liu et al., 2019) and Clin-
icalBERT (Huang et al., 2019) are used in this work.
These models have been widely used for clinical
text processing and achieved good performances
(Vakili et al., 2022; Alsentzer et al., 2019) .

We fine-tune the PLM models on different com-
binations of the gold, silver, and bronze datasets, as
described below. We use cross-entropy loss, Adam

optimizer (with a learning rate of 1e-4 and a batch
size of 32), and 10 epochs for training. We select
the best checkpoints based on the validation accu-
racy for testing. The outputs are determined by a
majority vote strategy.

We use a subset of the gold dataset as the test
set. We compare the performances using accuracy,
precision, recall, and F1-score.

3.3.2 Data Combinations
Gold only We fine-tuned the PLMs only on the
training set of the gold data and evaluate the perfor-
mance on the test set of the gold data.
Bronze + Gold, we fine-tuned the PLMs on the
bronze data and further fine-tuned them on the train-
ing set of the gold data and evaluate the perfor-
mance on the test set of the gold data.
Silver + Gold, we fine-tuned the PLMs on the sil-
ver data and further fine-tuned them on the training
set of the gold data and evaluate the performance
on the test set of the gold data.
Bronze + Silver + Gold, we fine-tuned the PLMs
on the combination of the bronze data and silver
data, and further fine-tuned them on the training
set of the gold data and evaluate the performance
on the test set of the gold data.
For each data setting, we trained the models as a
binary classifier and multi-class classifier. For the
binary classification task, we randomly sampled
sentences with no AD signs and symptoms from
the longitudinal notes of the 76 patients, where our
gold data comes from, as negative data. The nega-
tive/positive data ratio is 5:1 2. The task is to test
whether this sentences is AD signs and symptoms
relevant or not. For the multi-class classification
task, the classifiers need to identify specifically one
category that the sentence belongs to among our
nine categories of AD signs and symptoms.

4 Results and Discussion

4.1 Results
Table 2 and Table 3 show the performance of the
system on the test set of the gold data, using differ-
ent combinations of data for fine-tuning PLMs.

The results demonstrate that the system bene-
fits from the silver and bronze data and most in-
creases are significant. For binary classification,
the highest performance is obtained by fine-tuning
the system on both the bronze+silver data (over-
all accuracy=0.94, 4.44% ↑), followed by adding

2See Appendix for negative data generation.



Figure 1: Illustration of the text and annotation generated by the GPT-4 based on the annotation guideline. (Class
names are shown here for better readability.)

Category Gold Silver Bronze
Cognitive impairment 6240 1378 2704
Notice/concern by others 785 366 1710
Require assistance 1864 614 1205
Physiological changes 1340 5718 1769
Cognitive assessments 2099 327 2168
Cognitive intervention/therapy 1097 3508 2104
Diagnostic tests 1084 2933 2021
Coping strategy 343 893 1058
Neuropsychiatric symptoms 1342 318 1308
Total 16194 16069 16047
Avg length +/- SD (tokens) 17.60 +/- 12.69 19.60+/-15.44 16.58+/-4.69

Table 1: Category Distribution of the Gold/Silver/Bronze Datasets

bronze data only (overall accuracy=0.93 3.33% ↑).
The silver data, though derived from MIMIC-III,
the real world EHR data, only improves slightly
(0.91, 1.11% ↑).

For multi-class classification, the bronze data
alone provides the biggest overall performance
improvement (7.35%↑). On the contrary the sil-
ver data does not improve much (1.47%↑) and
even reduces the performance when combined
with the bronze data (5.88%↑< 7.35%↑). For sub-
categories, the performance gain is large in minor-
ity classes including coping strategy (31.82%↑ by
adding bronze+silver) and notice/concern by others
(21.05%↑ by adding bronze+silver).

4.2 Analysis
The performances of machine learning models are
largely decided by data quantity and quality. To

better understand the results, we conducted a series
of analysis.

As Table 1 shows, the gold data has an imbal-
anced distribution of categories. This poses a chal-
lenge for classification tasks. The bronze+silver
data, with a more balanced categorical distribu-
tion, helps to mitigate this problem. We notice an
increase in the performance for Coping strategy
(31.82%↑) using bronze+silver data. Performance
gains are also observed for other minority classes
including NPS, Requires assistance, Cognitive as-
sessment, etc., by adding more training examples.

The amount of data is not the only factor that
influences the performance. For the physiological
changes category, adding silver data 4 times the
size of the gold data makes no difference, while
adding a smaller amount of bronze data results in



Gold
Only + Bronze + Silver + Bronze + Silver

Precision (Positive) 0.73 0.88 (20.55%↑) 0.73 (0%) 0.86 (17.81%↑)
Recall (Positive) 0.75 0.7 (6.67%↓) 0.77 (2.67%↑) 0.74 (1.33%↓)
F-1(Positive) 0.74 0.78 (5.41%↑) 0.75 (1.35%↑) 0.8 (8.11%↑)
Overall Accuracy 0.9 0.93 (3.33%↑) 0.91 (1.11%↑) 0.94 (4.44%↑)

Table 2: Performance (P/R/F-1/Accuracy (change compared to gold only)) of the ensemble system on the gold test
set using different data combinations for training (Binary Classification).

Gold
Only + Bronze + Silver + Bronze + Silver

Cognitive impairment 0.72 0.73 (1.4%↑) 0.72 (0%) 0.74 (2.78%↑)
Notice/concern by others 0.38 0.4 (5.26%↑) 0.41 (7.89%↑) 0.46 (21.05%↑)
Requires assistance 0.64 0.64 (0%) 0.63 (1.56%↓) 0.68 (6.25%↑)
Physiological changes 0.64 0.78 (21.88%↑) 0.64 (0%) 0.76 (18.75%↑)
Cognitive assessment 0.69 0.75 (8.70%↑) 0.7 (1.45%↑) 0.77 (11.59%↑)
Cognitive intervention/therapy 0.71 0.74(4.23%↑)) 0.72 (1.41%↑) 0.76 (7.04%↑)
Diagnostic tests 0.84 0.83 (1.19%↓) 0.87 (3.57%↑) 0.82 (2.38%↓)
Coping strategy 0.44 0.42 (4.55%↓) 0.47 (6.82%↑) 0.58(31.82%↑)
NPS 0.67 0.71 (5.97%↑) 0.68 (1.49%↑) 0.69 (2.99%↑)
Overall Accuracy 0.68 0.73 (7.35%↑) 0.69 (1.47%↑) 0.72 (5.88%↑)

Table 3: Performance (F-1/Accuracy (change compared to gold only)) of the ensemble system on the gold test set
using different data combinations for training (Multi-class Classification).

a significant improvement of 21.88% in F-scores.
This suggests that the bronze data has a higher
quality than the silver data for some categories.

We randomly selected 100 samples from both
the silver data and the bronze data and asked our
human experts to check the quality of the anno-
tation. The annotation accuracy on bronze data
is around 85%, and annotation accuracy on silver
data is around 55% indicating the complexity and
challenge of real world data. Some examples of
LLM’s labeling errors are shown in Table 4.

Experts identify at least two types of labelling
errors by the LLM in the silver data:

1. Over-inference (example 1&2), the LLM
tends to make inference based on the informa-
tion that is presented, and goes beyond what
is supported by the evidence or reasoning.

2. The LLM couldn’t handle negation properly
(example 3).

In example 1, the LLM infers that the patient
is weak so assistance must be required. Similar
to example 2, we found that there are some sen-
tences that mentioned son/daughter as nurses also

get labelled as Concerns by others. The LLM in-
fers that specific medical knowledge of children
or spouse/children being present at hospital may
indicate concern, but this could be wrong.

The mis-classified data impacts the two tasks dif-
ferently. For binary classification, the system only
needs to distinguish sentences with AD-related
signs and symptoms from other texts, so the mis-
classification is less critical. However, for multi-
class classification task, the system needs to cor-
rectly assign the categories of the AD-related signs
and symptoms, which can be confused by the
LLMs outputs. This partially offsets the advantage
of increasing the amount of data, especially when
using the silver dataset, which has a much lower
accuracy than the bronze dataset. We observe that
the silver dataset even harms the performance on
"Requires Assistance" in multi-class classification
task.

On the other hand, when using the bronze
dataset, which has a relatively higher quality, we
see overall performance improvements for both
binary and multi-class classification tasks. We no-
ticed that in the multi-class classification task, the
bronze data causes performance degradation on



some categories. The bronze data differs from the
gold or silver data, which are real patient notes.
This may cause distribution mismatch with the test
dataset and lower performance for some categories.
Table 1 shows the bronze data has less variation
in lengths (4.69 vs 12.69,15.44). This suggests
that we need to steer LLMs to produce data that
matches the data encountered in practice.

To sum up, different data combinations affect
the results (Table 2&3) by varying the training data
in amount, quality and distribution. However, the
performance generally improves with the addition
of the bronze and/or silver data, though further
analysis is needed for each category.

5 Conclusion and Future Work

In this paper, we examined the possibility of using
LLMs for medical data generation, and assessed the
effect of LLMs’ outputs on clinical text mining. We
developed three datasets: a gold dataset annotated
by human experts from a medical dataset, which is
the most widely used method for clinical data gen-
eration, a silver dataset annotated by the LLM from
MIMIC (data-to-label) and a bronze dataset gen-
erated by the LLM from its hallucinations (label-
to-data). We conducted experiments to train classi-
fiers to detect and categorize Alzheimer’s disease
(AD)-related symptoms from medical records. We
discovered that using a combination of gold data
plus bronze and/or silver achieved better perfor-
mances than using gold data only, especially for
minority categories, and that the LLM annotations
and hallucinations were helpful for augmenting the
training data, despite some noise and errors.

Our findings suggest that LLM can be a valuable
tool for medical data annotation when used care-
fully, especially when the data is scarce, sensitive,
or costly to obtain and annotate. By using LLM
hallucinations, we can create synthetic data that
does not contain real patient information, and that
can capture some aspects of the clinical language
and domain knowledge. However, our approach
also has some ethical and practical challenges, such
as ensuring the quality, diversity, validity, and reli-
ability of the LLM annotations and hallucinations,
protecting the privacy and security of the data and
the model, and avoiding the potential harms and
biases of the LLM outputs.

For future work, we will investigate other meth-
ods and techniques for enhancing and regulating
the LLM annotations and hallucinations, such as

using prompts, feedback, or adversarial learning.
And we would also tackle the ethical and practical
issues of using LLM for medical data annotation,
by adhering to the best practices and guidelines for
responsible and trustworthy AI. We also intend to
apply our approach to other clinical text processing
tasks, such as relation extraction, entity linking,
and clinical note generation.

6 Limitations

Despite the promising results, our approach has sev-
eral limitations that need to be acknowledged and
addressed in future work. First, our experiments
are based on the experimented LLMs and a sin-
gle clinical task (AD-related signs and symptoms
detection). It is unclear how well our approach
can generalize to other LLMs, and other clinical
tasks. Different LLMs may have different hallu-
cination patterns and biases, and different clinical
tasks may have different annotation criteria and
challenges. Therefore, more comprehensive and
systematic evaluations are needed to validate the
robustness and applicability of our approach.

Second, our approach relies on the quality and
quantity of the LLMs annotations and hallucina-
tions, which are not guaranteed to be consistent or
accurate. The LLMs produces irrelevant, incorrect,
or incomplete annotations or hallucinations, which
will introduce noise or confusion to the classifier.
Moreover, the LLMs may not cover the full spec-
trum of the AD-related signs and symptoms, or
may generate some rare or novel symptoms that
are not in the gold dataset. Therefore, the LLMs’
annotations and hallucinations may not fully reflect
the true distribution and diversity of the clinical
data. To mitigate these issues, we suggest using
some quality control mechanisms, such as filtering,
sampling, or post-editing, to improve the LLMs’
outputs. Fine tuning on high quality gold data can
partially address these problems. We also suggest
using some data augmentation techniques, such as
paraphrasing, synonym substitution, or adversarial
perturbation, to enhance the LLMs’ outputs.

Third, our approach may raise some ethical and
practical concerns regarding the use of LLMs for
medical data annotation, especially its hallucina-
tions. Although not observed in this work, there
is still a slight possibility that the LLMs may pro-
duce some sensitive or personal information that
may breach the privacy or consent of the patients
or the clinicians. The LLMs may also generate



No. Sentence LLM annotation Human comments
1 [Pt] was profoundly weak, but was no longer

tachycardic and had a normal blood pressure.
Requires assistance Over-inference

2 Her husband is a pediatric neurologist at
[Hospital].

Notice/concern by others Over-inference

3 Neck is supple without lymphadenopathy. Physiological changes Miss negation

Table 4: Examples of the LLM’s incorrect annotations from the silver data

some misleading or harmful information that may
affect the diagnosis or treatment of the patients or
the decision making of the clinicians. Therefore,
the LLM outputs should be used with caution and
responsibility, and should be verified and validated
by human experts before being used for any clinical
purposes. We also suggest using some anonymiza-
tion or encryption techniques to protect the confi-
dentiality and security of the LLM outputs.
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A Annotation Guideline

The annotation guideline comprises the main part
of the prompts used in this work. It is created by
experts and revised based on LLM outputs. The
version used in this work is as follows:

|Start of annotation schema|

These classes are as follows:

|Class begin|
Class 1:
|Title begin| Cognitive impairment |Title end|
|Definition begin|
(collect broadly, will not be specific to AD).

Cognitive impairment is when a person has
trouble remembering, learning,
concentrating, or making decisions that
affect their everyday life.

Currently captured by patients subjective
statements as well as Dr. statements as
follows:
Forgetting appointments and dates.
Forgetting recent conversations and events.
Having a hard time understanding directions

or instructions.
Losing your sense of direction.
Losing the ability to organize tasks.
Becoming more impulsive.
Memory loss.
Frequently asking the same question or

repeating the same story over and over
(perseveration)

Not recognizing familiar people and places
Having trouble exercising judgment, such as

knowing what to do in an emergency
Difficulty planning and carrying out tasks,

such as following a recipe or keeping
track of monthly bills

meaningless repetition of own words, lack of
restraint, wandering and getting lost

lose your train of thought or the thread of
conversations

trouble finding your way around familiar
environments

problems with speech or language
feel increasingly overwhelmed by making

decisions, planning steps to accomplish
a task or understanding instructions

mental decline, difficulty thinking and
understanding, confusion in the evening
hours, delusion, disorientation, lack
of orientation, forgetfulness, making
things up, mental confusion, difficulty
concentrating, inability to create new
memories, inability to do simple math,
or inability to recognize common
things, poor judgment, impaired
communication, poor concentration,
difficulty remembering recent
conversations, names or events

forget things more often, forget important
events such as appointments or social
engagements, issues with recall,

changes in abstract reasoning ability
attention, cognition, speech, orientation,

judgment
AD, dementia, MCI: capture diagnoses

relevant to this category.
STM: short term memory loss

|Definition end|
|Class end|

|Class begin|
Class 2:
|Title begin| Notice/concern by others |Title

end|
|Definition begin|
These concerns are about cognition, mood or

daily activities, not from nurses or
doctors or medical care providers, but from
friends or family or neighbors.
family complains of something (may be

related to any class including
physiology)

noticed changes in ability, speed
concern expressed by family/friends
complaints of pt. easily angered
some examples:
Daughter reports that she repeatedly asks

the same question...had difficulties
using her smartphone.

Daughter reports that she has issues with
banking...some decrease in personal
hygiene, forgets to take meds, forgets
where food is in the house, etc.

Pt. has gone out at 1:30 a.m. without
telling anyone; they are concerned, but
pt. always has a response.

She (daughter) tells me that her mom has
repeatedly changed the medications in
the pill boxes that she has arranged
for her.

|Definition end|
|Class end|

|Class begin|
Class 3:
|Title begin| Requires assistance |Title end|
|Definition begin|
defined as Requires assistance from a person
needs help with or loss of ability with

ADLs/iADLs, difficulty with self-care,
trouble managing belongings
ADLs: dressing, eating, toileting, bathing,

grooming, mobility
iADLs: housekeepingrelated activities

(cleaning, cooking, and laundry) and
complex activities (telephone use,
medication intake, use of
transportation/driving, budget/finance
management, and shopping)

some examples:
The patient will continue to require

assistance with all complex medical,
legal and financial decision making.

She will need 24-hour supervision for her
safety.

Direct supervision is required for
medications using a pillbox.

Best not to have him use stove.
If left alone for period of time, will need

guardian alert or consider camera
surveillance.

He is able to make a meal, to dress himself,
to bathe, to shave, but continues to
need help with finances.



Wife has to remind him about appointments,
in particular.

Driving should not be permitted, and he will
need assistance with IADLs and decision
making.

Veteran does need assistance with all IADLs
and most ADLs.

Traveling out of neighborhood, driving,
arranging to take buses-limited night
driving now

Resides in assisted living facility or
nursing home

Writing checks, paying bills, balancing
checkbook-minimal (automatic payment)
N/A

Playing a game of skill-no hobbies N/A
|Definition end|
|Class end|

|Class begin|
Class 4:
|Title begin| Physiological changes |Title end|
|Definition begin|

senses: vision, hearing, smell loss, SNHL:
sensorineural hearing loss, HoH

sleep: Excessive daytime sleepiness, changes
in sleep patterns

speech/swallowing (speech difficulties also
in "Cognitive Impairment" class)

movement/gait/balance
inability to combine muscle movements:

jumbled speech, difficulty speaking,
aphasia, dysphasia, difficulty
swallowing, dysphagia, difficulty
walking, mobility, problems with gait
and balance, gait slowing

Brain (and blood vessel-associated)
abnormalities

stroke, ischemia, blood vessel
occlusion/stenosis, infarct,
encephalomalacia, small vessel changes,
vascular/microvascular changes (in
brain), carotid artery
occlusion/disease/atherosclerosis

loss of appetite, loneliness, general
discontent, TBI, skull fracture

|Definition end|
|Class end|

|Class begin|
Class 5:
|Title begin| Cognitive assessment |Title end|
|Definition begin|
memory tests, scores irrelevant; mark all

present
Blessed Orientation Memory and Concentration

(BOMC) test: 0-10 out of 28 is normal
to minimally impaired; 11-19 is mild to
moderate impairment || VAMC BOMC
Scoring: score >10 is consistent with
the presence of dementia, score < 7 are
considered normal for the elderly

BNT: Boston Naming Test
BVMT-R: Brief Visuospatial Memory Test
CERAD-NAB: Consortium to Establish a

Registry for Alzheimer's
Disease-Neuropathological Assessment
Battery

Clock in a Box

CNS VS: Computerized Neurocognitive
Assessment Software Vital Signs

COWAT: Controlled Oral Word Association Test
CVLT: California Verbal Learning Test
DRS: Dementia Rating Scale, Mattis Dementia

Rating Scale
D-KEFS: Delis-Kaplan Executive Function

System
FAS: a test measuring phonemic word fluency

(using words starting with letters F,
A, S)

HVLT-R: Hopkins Verbal Learning Test-Revised
HVOT: Hooper Visual Organization Test
Mini Mental State Exam (MMSE; also known as

Folstein Test): >=24 and <28 out of 30
(maybe MCI) no CPT code || VAMC MMSE
Guidelines: 25-30 normal, 21-24 mild
dementia, 13-20 moderate dementia, 0-12
severe dementia || Dr. Peter Morin's
scoring: 30 normal, 28-29 MCI, 22-27
mild dementia, 14-21 moderate dementia,
0-13 severe dementia

Montreal Cognitive Assessment (MoCA): >=17
and <26 out of 30 (MCI) free, there is
also a Blind MoCA with total score of
21, not 30. || VAMC MoCA Scoring: 26-30
normal, 20-25 suggestive of mild
impairment, 15-19 suggestive of
moderate impairment, 10-14 suggestive
of significant impairment, 0-9
suggestive of severe impairment || Dr.
Peter Morin's scoring: 30 normal, 23-26
MCI, 18-22 mild dementia, 10-17
moderate dementia, 0-9 severe dementia

NAB: Neuropsychological Assessment Battery
NBSE: Neurobehavioral status exam (clinical

assessment of thinking, reasoning and
judgment, e.g., acquired knowledge,
attention, language, memory, planning
and problem solving, and visual spatial
abilities)

NCSE (Cognistat): Neurobehavioral Cognitive
Status Exam

NPT/Neuropsych test/neuropsych inventory
PASAT: Paced Auditory Serial Addition Test
Proverb interpretation (test of abstract

reasoning; part of MMSE)
RBANS: Repeatable Battery for Assessment of

Neuropsychological Status
RCFT: Rey Complex Figure Test (sometimes

ROCFT)
RFFT: Ruff Figural Fluency Test
RMT: (Warrington) Recognition Memory Test
Saint Louis University Mental Status

Examination (SLUMS): 21-26 out of 30
(MCI) free || VAMC SLUMS Scoring: high
school education 27-30 normal, 21-26
mild neurocognitive disorder, 1-20
dementia; less than high school
education 25-30 normal, 20-24 mild
neurocognitive disorder, 1-19 dementia

SDMT: Symbol Digit Modalities Test a measure
of processing speed, concept formation

Serial sevens (part of MMSE)
SILS: Shipley Institute of Living Scale
Spelling a word forward and backward (part

of MMSE)
TOMM: Test of Memory Malingering
Trail Making Test
UFOV: Useful Field of View test



VF: Verbal Fluency (test)
WAIS: Wechsler Adult Intelligence Scale
WCST: Wisconsin Card Sorting Test
WTAR: Wechsler Test of Adult Reading

|Definition end|
|Class end|

|Class begin|
Class 6:
|Title begin| Cognitive intervention/therapy

|Title end|
|Definition begin|
This includes mentions of drugs, doesn't

require pt to actually start drug or adhere
to taking drug
Aricept being taken
occupational therapy, cognitive linguistic

therapy, cognitive behavioral therapy
memory group therapy
informed pt. of memory group and she had

possible interest in this
SmartThink: (regional VA offering) large

group available to any Veteran who
would like to improve memory,
attention, or other cognitive function.

Dementia-related medications, any
interventions initiated by provider
e.g., medications, therapies.

relevant meds: cholinesterase inhibitors
(general term), Aducanumab/Aduhelm,
Memantine/Namenda/Namzaric, Razadyne
(galantamine), Exelon (rivastigmine),
Aricept (donepezil)

Pimavanserin (for
behavior/agitation/psychosis
experimental)

flickering light therapy
vitamin B12/cyanocobalamin
vitamin B1/thiamine
vitamin D/cholecalciferol (in context of

memory issues only)
|Definition end|
|Class end|

|Class begin|
Class 7:
|Title begin| Diagnostic tests of the head or

brain that are related to neurocognitive
symptoms. |Title end|

|Definition begin|
including CT, EEG, EMG, FDG-PET, MRI, PET,

PET-CT, MRA, CSF
MRA=Magnetic resonance angiography
radiology study (context: header

neuroimaging)
imaging (referring to MRI or PET imaging)
NOT capturing diagnostic test results in

separate sentences from the test name
NOT capturing imaging header if specific

info (MRI) follows
Include distant MRI (e.g., from childhood);

concussion/head trauma may be relevant
to CTE

genetic testing: APOE4 for sporadic AD,
mutations in APP, PSEN1 (PS1 protein), PSEN2

linked to early onset AD
Note MRI in context of spine or joints or EMG

in context of carpal tunnel syndrome should

not be considered.
|Definition end|
|Class end|

|Class begin|
Class 8:
|Title begin| Coping strategy |Title end|
|Definition begin|

repetition and written reminders may be a
useful tool in therapy

has been encouraged to keep mentally active
to slow the rate of cognitive decline

requires shopping list when going for
groceries otherwise she will forget
items

uses a planner for appointments
reliant on GPS for driving
memory exercise
keep mentally active
uses medication organizer

|Definition end|
|Class end|

|Class begin|
Class 9:
|Title begin| Neuropsychiatric symptoms |Title

end|
|Definition begin|

mood changes: depression, irritability,
aggression, anxiety, apathy,
personality changes, behavioral
changes, agitation

Feeling increasingly overwhelmed by making
decisions and plans.

paranoia, delusions, hallucinations
|Definition end|
|Class end|

|End of annotation schema|

B Prompts

We used 3 prompts in this work.

1. Prompt 1 is to ask LLM to annotate provided
text following the above guidelines.

Task: Annotate the text based on the
provided annotation guideline.

|Start of text|
[text here]
|End of text|

|Start of annotation guideline|
[annotation guideline here]
|End of annotation guideline|
Format output as a valid json with the

following structure:
[
{
"sentence":str,\\ The sentence that is

annotated.
"class":int \\ The class that the

sentence belongs to.
}
]



2. Prompt 2 is to ask LLM to check the annota-
tion results and explain the reasons for making
judgements.

Task: Check if the annotations of the text
based on the provided annotation
guideline are correct or not and
explain why.

|Start of text|
[text here]
|End of text|

|Start of annotation guideline|
[annotation guideline here]
|End of annotation guideline|

|Start of annotation|
[annotation here]
|End of annotation|

Format output as a valid json with the
following structure:

[
{
"sentence":str,\\ The sentence that is

annotated
"class":int, \\ The class that the

sentence belongs to.
"decision":bool, \\ Whether the

annotation is correct or not.
"reason":str \\ Explain why.
}
]

3. Prompt 3 is to ask LLM to generate a note and
conduct annotations based on the provided
guideline.

Task: Generate a clinical note and
annotate the text based on the
provided annotation guideline.

|Start of text|
[text here]
|End of text|

|Start of annotation guideline|
[annotation guideline here]
|End of annotation guideline|

Format annotation output as a valid
json with the following structure:

[
{
"sentence":str,\\ The sentence that is

annotated.
"class":int \\ The class that the

sentence belongs to.
}
]

These prompts are for reference and are slightly
modified to adapt to each LLM for format control
in practice.

C Negative Data Generation

The negative data is sampled from the notes anno-
tated by experts. It consists of data that are not an-
notated as having any AD-related symptoms. Also
sentences that are too short (<5 tokens after re-
moving punctuation and stop words) are removed.
Tables/forms/questionnaires are excluded. The ra-
tio of negative:positive data is decided based on
statistics from VHA data.

D Model Training

The system contains 3 base models. All models
are PLMs that are fine tuned on the training data.
The models are implemented using Transformers 3.
The training parameters are:

epoch=10.
optimizer=Adam.
lr=1e-3.
beats=(0.9, 0.999).
eps=1e-6.
warmup_steps=200.
weight_decay=0.01.

3https://huggingface.co/docs/transformers/index


