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Abstract
We introduce RNA-FRAMEFLOW, the first gen-
erative model for 3D RNA backbone design. We
build upon SE(3) flow matching for protein back-
bone generation and focus on establishing RNA-
specific data augmentations and evaluation proto-
cols. Our formulation of rigid-body frames and
loss functions account for larger, more conforma-
tionally flexible RNA backbones (13 atoms) vs.
proteins (4 atoms). Towards tackling the lack of
diversity in 3D RNA datasets, we explore training
with structural clustering and cropping augmenta-
tions. Additionally, we define a suite of in silico
evaluation metrics to measure whether designed
RNAs are globally self-consistent (via inverse
folding followed by forward folding) and locally
recover RNA-specific structural descriptors. The
most performant version of RNA-FRAMEFLOW
generates locally realistic backbone structures of
40-150 nucleotides that are 41% globally self-
consistent on average (scTM ≥ 0.45), with fast
sampling speeds of ∼4 seconds per backbone.

1. Introduction
Why RNA design? Proteins, and the diverse structures they
can adopt, drive all essential biological functions in cells.
Deep learning has led to breakthroughs in structural model-
ing and design of proteins (Jumper et al., 2021; Dauparas
et al., 2022; Watson et al., 2023; Abramson et al., 2024),
driven by the abundance of 3D data from the Protein Data
Bank (PDB) (Khakzad et al., 2023). Concurrently, we have
witnessed a surge in interest in Ribonucleic Acids (RNA)
and RNA-based therapeutics like CRISPR and mRNA vac-
cines (Doudna and Charpentier, 2014; Metkar et al., 2024).
RNAs play a dual role as carriers of genetic information cod-
ing for proteins (mRNAs) as well as performing functions
driven by tertiary structural interactions (riboswitches and
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ribozymes). While there is growing interest in designing
structured RNAs for biotechnology and medicine (Damase
et al., 2021), the current toolkit for 3D RNA design uses
classical algorithms and heuristics to assemble RNA motifs
as building blocks (Han et al., 2017; Yesselman et al., 2019).
The use of hand-crafted heuristics and motifs may not fully
capture the geometric interactions and conformational dy-
namics that govern RNA functionality. This presents an
exciting opportunity for generative models to go beyond hu-
man intuition by learning from existing 3D RNA structures
in the Protein Data Bank (PDB).

Challenges of RNA modeling. The primary challenge
for deep learning on RNA structure is the paucity of raw
3D structural data, underscoring the absence of ML-ready
datasets for model development. Protein structure is primar-
ily driven by hydrogen bonding along the backbone, and
current geometric deep learning models incorporate this in-
ductive bias through backbone frames to represent residues
(Yim et al., 2023a; Jumper et al., 2021). RNA structure,
however, is more conformationally flexible and is driven by
base pairing and base stacking interactions across strands
(Vicens and Kieft, 2022). Additionally, the RNA equiva-
lent of amino acids – nucleotides – include significantly
more atoms (13 compared to 4) which necessitates a gener-
alization of backbone frames where the placement of most
atoms is parameterized by torsion angles. These complex-
ities manifest as poor performance in RNA representation
learning pipelines like AlphaFold3 (Abramson et al., 2024)
and earlier deep learning methods (Kretsch et al., 2023).

Contributions. We introduce RNA-FRAMEFLOW, the
first geometric generative model for 3D RNA backbone
design. We adapt FrameFlow (Yim et al., 2023b), an SE(3)
equivariant flow matching model for proteins, and represent
RNA nucleotides as 3D rigid-body frames that parameterize
all 13 atoms. Alongside RNA-specific modifications to the
data preparation and loss formulations for FrameFlow, we
develop an evaluation pipeline to benchmark RNA backbone
design models’ capabilities at recovering local and global
structure. Our best model is trained on RNA of lengths 40-
150 from the PDB and can unconditionally sample locally
plausible backbones with ∼41% self-consistency. We hope
our engineering contributions will make deep learning for
3D RNA design and its evaluation more broadly accessible.
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Figure 1. The RNA-FRAMEFLOW pipeline for 3D backbone generation. Our implementation builds upon FrameFlow (Yim et al.,
2023b) and establish RNA-specific data preparation and evaluation protocols. (1) Each nucleotide in the RNA backbone is converted into
a frame to parameterise the placement of C4′ by a translation, C3′ − C4′ −O4′ by a rotation, and the rest of the atoms via 8 torsion
angles Φ. (2) We train generative models on all RNA structures in the PDB of length 40-150 nucleotides. We also explore training with
structural clustering and cropping augmentations. (3) We establish evaluation protocols for measuring the recovery of local structural
metrics as well as global self-consistency of designed structures via inverse folding followed by forward folding.

2. Method
We are concerned with building a generative model that
unconditionally outputs all-atom RNA backbone samples.
For a target sequence length of Nres nucleotides, we aim to
generate a real-valued tensor X of shape Nres × 13× 3 rep-
resenting 3D atomic coordinates for each of the 13 backbone
atoms per nucleotide.

2.1. Representing RNA Backbones

This work introduces a frame analog for nucleic acids that
deals with the underlying complexity of working with their
backbones. Unlike protein residues with just 4 atoms in
the backbone, nucleic acid residues contain 12 atoms along
the backbone. As shown in Figure 1, we use the C4′, C3′,
and O4′ atoms as the reference frame as done by More-
head et al. (2023). All other backbone atoms are associated
with 8 torsions Φ = {ϕ1 → ϕ8}, ϕi ∈ SO(2) that are
predicted post-hoc after frame generation; these atoms are
C1′, C2′, N9 (or N1), O3′, O5′, P,OP1, and OP2.

The Gram-Schmidt process is used on v1, v2 defined by the
vectors along the C4′ − O4′ and C4′ − C3′ bonds; the
C5′ plays the role of Cβ and is imputed after the frames
have been created. The 8 torsions, in order, are C3′ − C2′,
O4′ − C1′, C1′ − N9, C3′ − O3′, C5′ − O5′, O5′ − P ,
P − OP1, and P − OP2. During sampling, Adenine (A)
is the default nucleic acid base whose idealized geometry is
obtained from Gelbin et al. (1996). Geometric imputation is
not tractable given the complexity of torsion angles. Given
the torsion angles, we autoregressively place non-frame
atoms in order of the torsions Φ in Figure 1, constructing
the final all-atom RNA backbone structure.

Choice of RNA frame. We choose C3′, C4′, and O4′ as
they spatially shift the least in naturally occurring RNA
(Harvey and Prabhakaran, 1986). The non-frame backbones
- such as the remaining atoms in the ribose sugar ring (C1′,
C2′) and the farther away Phosphorous (P ) and two Oxy-
gens (OP1, OP2) - are parameterized by torsion angles to
account for their relative conformational flexibility. Ring
puckering refers to the planar rotation of the ribose sugar
ring about the C4′ − C5′ bond. It affects how the RNA
interacts with interaction partners to form complexes (e.g.,
protein-RNA) with high binding affinities (Clay et al., 2017).
To reduce the sensitivity of our generative model to highly
mobile atoms, we settle on the current frame composition.

2.2. SE(3) Flow Matching on RNA Frames

A simultaneous rotation and translation (r, x) forms an
orientation-preserving rigid-body transformation. The set
of all such transformations in 3 dimensions is the Special
Euclidean group SE(3). For RNA and proteins, a frame
T = (r, x) exists in this SE(3) group as they too can be
decomposed into an absolute rotation and translation from
the global origin. Formally, SE(3) ∼= SO(3)⋉ R3. Com-
pared to expensively generating raw Cartesian coordinates,
generating new RNA backbones using the frame represen-
tation entails performing flow matching on the space of
SE(3). Fortunately, Chen and Lipman (2024) and Yim
et al. (2023b) provide the necessary ingredients to perform
flow matching on SE(3). Specifically, we can decompose a
frame T ∈ SE(3) into a rotation r ∈ SO(3), the group of
orientation-preserving rigid-body rotations, while a transla-
tion x trivially belongs to R3.
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Training. Given a random frame T0 ∼ p0(T0) and ground
truth frame T1 ∼ p1(T1) from the target distribution, we
construct the conditional flow Tt by following the geodesic
between T0 and T1; this geodesic generalizes the linear
interpolation on manifolds (like the SE(3) group) as shown
by Chen and Lipman (2024):

Tt = expT0
(t · logT0

(T1)). (1)

Here, exp(·) and log (·) are the exponential and logarithmic
maps that enable taking random walks on a manifold (like
SE(3)). Conveniently, by decomposing a frame T = (r, x)
into separate rotation and translation terms, we can obtain
closed-form geodesics for SO(3) and R3. Sampling t ∼
U(0, 1), this gives us two independent flows for rotations
and translations:

Translations: xt = tx1 + (1− t)x0 (2)
Rotations: rt = expr0(t · logr0(r1)). (3)

The random translation x0 is sampled from R3 and random
rotation r0 is sampled from U(SO(3)), a generalization of
the uniform distribution for the group of rotations, SO(3).
The logarithmic and exponential maps for rt help perform
random walks for rotations in the SO(3) space and are
trivial to compute using Rodrigues’ formula. We can do this
parallelly for a set of RNA frames T = {T1, · · · , TN} to
get the conditional flow Tt.

Suppose {(r̂t, x̂t)}Nn=1 = vθ(Tt, t) are the predicted
frames in Tt. The ground truth vector field ut can also
be decomposed into rotation and translation:

Translations: ut(x
(n)|x(n)

0 , x
(n)
1 ) = x

(n)
1 (4)

Rotations: ut(r
(n)|r(n)0 , r

(n)
1 ) = log

r
(n)
t

(r
(n)
1 ). (5)

We can now compute separate losses on SO(3) and R3.
Optimizing the following objective allows us to train the
flow matching model on SE(3):

LSE(3) = Et,p0(T0),p1(T1)

[
1

(1− t)2

N∑
n=1

{∥∥∥x̂(n)
t − x

(n)
1

∥∥∥2
R3

+
∥∥∥ logr(n)

t
(r̂

(n)
1 )− log

r
(n)
t

(r
(n)
1 )

∥∥∥2
SO(3)

}]
.

(6)

Sampling. For an RNA sequence of length N , we initialize
a random point cloud of frames {Ti} ∈ SE(3)N oriented
and spatially placed by the constituent random rotations and
translations. We integrate from t = 0.0 to t = 1.0 using
an ODE solver for NT steps. Here, we use an Euler solver
to predict T1 = {(r(n)1 , x

(n)
1 )}Nn=1 as T̃1 = (r̃1, x̃1) =

vθ(Tt, t). Given a specific frame, we compute the next

translation xt+∆t = xt + ∆t · (x̃1 − xt). Likewise, we
use the geodesic to compute the next rotation rt+∆t =
exprt(ct · logrt(r̃1)), where c is a tunable hyperparameter
governing the exponential sampling schedule.

2.3. Architecture

Following Yim et al. (2023b;a), we use the structure module
from AlphaFold2 (Jumper et al., 2021) comprising Invariant
Point Attention (IPA). We also use an auxiliary MLP head to
predict torsion angles Φ. We provide hyperparameters, ob-
jective functions, and additional experimental setup details
in Appendix A.1.

2.4. Objective

To accommodate several moving parts in SE(3) flow match-
ing, we use the following multi-loss:

Ltot = LSO(3) + LR3 + Laux, (7)
where Laux = Lbb + Ldist + Ltors. (8)

Each loss term is weighted by a tunable scalar hyper-
parameter, influencing its contribution to the total loss.
LSO(3) and LR3 are the primary losses coming from SE(3)
Flow Matching as described in Section 2.2. Addition-
ally, Laux is an auxiliary multi-part loss that operates on
the all-atom structure extracted from the generated frames.
We summarise all our losses as follows. Suppose S =
{C4′, C3′, O4′} is the set of frame atoms and a, b ∈ S are
ground truth atomic coordinates,

• Lbb: A direct all-atom MSE computed between gener-
ated and ground truth coordinates of atoms in the frame.
Later, in Appendix B.1, we ablate whether including
additional anchor atoms to account for the larger size
of RNA nucleotides. Given a generated coordinate â,

Lbb =
1

kN

N∑
i=1

∑
a∈S

∥a(0)i − â
(0)
i ∥2. (9)

• Ldist: A pairwise distance loss computed between
ground truth and generated coordinates. First, all-to-all
coordinate differences are computed between ground
truth and generated structures before taking another
difference between the two pairwise difference tensors.
Let d(ij)ab = ∥a(1)n − b

(1)
m ∥ represents this ground truth

distance between a, b. Given a generated distogram
inter-residue loss d̂ijab,

Lbb =
1

|S| ·N

N∑
i=1,j=1

∑
a,b∈S

∥d(ij)ab − d̂
(ij)
ab ∥2. (10)

• Ltors: A angular loss on the 8 predicted torsions by
the auxiliary MLP head. This enables supervision on
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the angles from the ground truth computed from the
all-atom structure. Suppose ϕj ∈ Φi is the ground
truth torsion angles for a residue i, we wish to ensure
the angles are close to the unit circle while being close
to the ground truth angles. Given a set of generated
angles Φ̂i,

Ltors =
1

N

N∑
i=1

∑
ϕj∈Φi

(
∥ϕij − ϕ̂ij∥2 + ∥∥ϕij∥ − 1∥

)
.

(11)

3. Experiments
3D RNA Dataset. RNAsolo (Adamczyk et al., 2022) is a
recent dataset containing a diverse range of RNA sequences
of varying lengths and their corresponding 3D structures
extracted from isolated RNAs, protein-RNA complexes, and
DNA-RNA hybrids from the Protein Data Bank (PDB), an
online repository of proteins and related biomolecules. The
dataset contains 14,366 samples (structure and sequence)
available at a resolution ≤4Å (1Å = 0.1nm). From RNA-
solo, we select sequences of lengths between 40 and 150
nucleotides (5,319 in total) as they have prominent, well-
folded tertiary structures than smaller sequences with rela-
tively disordered folds (Boivin et al., 2019).

Evaluation. Following the protein backbone design liter-
ature (Yim et al., 2023a;b; Lin and AlQuraishi, 2023), we
generate 50 backbones for target lengths uniformly sampled
between 40 and 150. We then compute three indicators of
quality for these backbones:

• Validity (scTM ≥ 0.45): We inverse fold each gen-
erated backbone using gRNAde (Joshi et al., 2023)
and pass Nseq = 8 generated sequences into Rho-
Fold (Shen et al., 2022). We then compute the self-
consistency TM-score (scTM) between the predicted
RhoFold structure and our backbone at the C4′ level.
We say a backbone is valid if scTM≥ 0.45; this thresh-
old corresponds to roughly the same fold between two
RNA strands (Zhang et al., 2022). We expand on this
framework in Figure 4.

• Diversity: Among the valid samples, we compute
the number of unique structural clusters formed us-
ing qTMclust (Zhang et al., 2022) and take the ratio
to the total number of generated samples. Two struc-
tures are considered similar if their TM-score ≥ 0.45.
This metric shows how much each generated sample
varies from others across various sequence lengths.

• Novelty: Among the valid samples, we use
US-align (Zhang et al., 2022) to compute how struc-
turally dissimilar the generated backbones are from the
training distribution. For every generated backbone,
we compute the TM score to every training sample,

and then take the highest average - a metric we call
pdbTM, aligning with the protein design literature.

• Structural Measurements: We measure bond dis-
tances, bond angles, and torsion (dihedral) angles from
the generated samples, and then match this to empirical
distributions from our training dataset and idealized
geometries from Gelbin et al. (1996).

On 3D self-consistency. The protein design community
has broadly used self-consistency as a proxy for experimen-
tal success; popularly, this metric is called designability
with a sample being designable (i.e., there exists a string of
amino acids that yield that fold) if self-consistency RMSD
(scRMSD) is below a threshold, typically 2 Å. We move
away from scRMSD as used by Yim et al. (2023b;a); Watson
et al. (2023); Lin and AlQuraishi (2023) to accommodate
the high conformational complexity of RNA, where strict
global alignments may penalize otherwise realistic back-
bone samples.

Training. Our filtered training dataset with sequences of
lengths between 40 and 150 consists of 5,319 samples. For
the denoiser, we use 6 IPA blocks and an additional torsion
predictor head, the latter being a 3-layer MLP that takes in
node embeddings from the IPA module to predict 8 torsion
angles. Our final model contains 16.8M trainable param-
eters. We use the Adam optimizer with a learning rate of
0.0001, β1 = 0.9, β2 = 0.999. We train for 120K gradient
update steps on four NVIDIA GeForce RTX 3090 GPUs for
15 hours with a batch size of B = 20. Each batch comprises
padded samples from randomly selected structural clusters
across sequence lengths.

4. Results
4.1. Global Evaluation of Generated RNA Backbones

We begin by analyzing RNA-FRAMEFLOW’s samples using
the aforementioned evaluation metrics. For validity, we re-
port percentage of samples with scTM≥ 0.45; for diversity,
we report the ratio of unique structural clusters to total valid
samples; and for novelty, we report the highest pdbTM to
a match from the PDB. For each sequence length between
40 and 150, at intervals of 10, we generate 50 backbones.
Table 1 reports these metrics across different variants for
the number of denoising steps NT . We compare our model
to protein-RNA-DNA complex co-design model MMDIFF
(Morehead et al., 2023). As the original version of MMDIFF
was trained on shorted RNA sequences, we retrain it on our
sequence length split of RNAsolo. Additionally, we inverse
folded MMDIFF’s backbones using gRNAde.

We identify NT = 50 as the best-performing model that bal-
ances validity, diversity, and novelty; furthermore, it takes
4.74 seconds (averaged over 5 runs) to sample a backbone
of length 100, as opposed to 27.3 seconds for MMDIFF with
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Figure 2. Structural measurements from 600 generated backbone samples compared to random Gaussian point cloud as a sanity check.
Our model can recapitulate local structural descriptors. (Subplots 1-3) Histograms of inter-nucleotide bond distances, bond angles
between nucleotide triplets, and torsion angles between every four nucleotides. (Subplot 4): RNA-centric Ramachandran plot of structures
from RNAsolo (purple) and generated backbones (white).

MODEL % VALID ↑ DIVERSITY ↑ NOVELTY ↓
NT = 50 41.0 0.606 0.541
NT = 10 16.7 0.62 0.70
NT = 100 20.0 0.61 0.69
NT = 500 20.0 0.57 0.67

MMDIFF 0.0 - -

Table 1. RNA backbone generation results. The best performing
model uses NT = 50 timesteps for denoising.

100 diffusion steps. We note that increasing NT does not im-
prove validity despite allowing the model to perform more
updates to atomic coordinate placements. Our model also
out-performs MMDIFF. On manual inspection, samples
from MMDIFF had significant chain breaks and discon-
nected floating strands; see Appendix C.1.

4.2. Local Evaluation with Structural Measurements

For our best-performing model at NT = 50, histograms of
bond distance, bond angles, and torsion angles are in Figure
2. We include the Earth Mover’s Distance (EMD) between
measurements from the training and generated distributions
as an indicator of local realism (using 30 bins for each
quantity). An ideal generative model will score an EMD
of 0 across all categories (i.e., consistent with the training
set comprising naturally occurring RNA). In Table 2, we
observe EMD values from our best-performing NT = 50
model’s backbones being significantly closer to 0 compared
to MMDIFF and random Gaussian all-atom point clouds
(akin to an untrained model) which serve as sanity checks.
We include histograms for MMDIFF in Appendix C.1.

For a nucleotide i along the generated chain, we compare the
distribution of dihedrals using Ramachandran plots for RNA.
(Keating et al., 2011) introduce η−θ plots that track the sep-
arate dihedral angles formed by {C4′i, Pi+1, C4′i+1, Pi+2}
and {Pi, C4′i, Pi+1, C4′i+1} respectively. We show these
RNA Ramachandran plots in Figure 2 and observe that
RNA-FRAMEFLOW can recapitulate the underlying tor-
sional distribution.

MODEL
EMD ↓
(DIST)

EMD ↓
(ANGLES)

EMD ↓
(TORSIONS)

NT = 50 0.167 0.11 2.36

MMDIFF (ORIGINAL) 1.38 0.43 3.06
MMDIFF (RNASOLO) 0.396 0.21 3.23
GAUSSIAN 29.00 6.35 4.37

Table 2. Ablations of loss terms on Earth Mover’s Distance scores
for structural measurements compared to ground truth measure-
ments from RNAsolo. The first row corresponds to the baseline
model. Our model can recapitulate local structural descriptors and
achieves the best EMD scores.

4.3. Generation Quality Across Sequence Lengths

We next investigate how sequence length affects the global
realism of generated samples (scTM). Figure 3 (Left)
shows RNA-FRAMEFLOW performs for different sequence
lengths. We observe our model generates samples with high
scTM for specific sequence lengths like 50, 60, 70, and 120
while generating poorer quality structures for other lengths.
We partially attribute the heavy fluctuation of TM-scores
to the inherent length bias of RhoFold; see Appendix A.2.
With a better structure predictor, we expect an increase in
valid samples that meet the 0.45 TM-score threshold.

We also analyze the novelty of our generated samples
(pdbTM) in Figure 3 (Middle). We are particularly inter-
ested in samples that lie in the right half with high scTM
and low pdbTM. We observe that RNAsolo has a high com-
position of samples with high structural similarity; running
qTMclust (Zhang et al., 2022) on our filtered training
dataset from RNAsolo reveals only 342 unique clusters
from 5,319 samples, which indicates that the model does
not encounter a diverse set of samples during training. This
results in many generated samples looking similar to the
training distribution (for instance, the pdbTM ≈ 0.9 and
scTM ≈ 0.9 for samples of length 120, indicating close
likeness to existing RNA). We include two such examples in
Figure 3 (Right): both yield relatively high pdbTM scores
and look similar to their respective closest matching chain
from RNAsolo. Similarly, we include figures on validity
and novelty for MMDIFF’s samples in Appendix C.1
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Figure 3. Validity and novelty of generated backbones. (Left) scTM of backbones of lengths 40-150 with the mean and spread of
scTM for each length. (Middle) Scatter plot of self-consistency TM-score (scTM) and novelty (pdbTM) across lengths. Vertical and
horizontal dotted lines represent TM-score thresholds of 0.45. (Right) Selected samples with high pdbTM scores (colored) with the
closest, aligned match from the PDB (gray). Our model generates valid backbones for certain sequence lengths and has a tendency to
recapitulate the most frequent folds in the PDB (e.g., tRNAs, small rRNAs).

MODEL % VALID ↑ DIVERSITY ↑ NOVELTY ↓
BASELINE 41.0 0.606 0.541
CLUST 2.0 0.775 0.498
CLUST + CROP 11.0 0.858 0.474

Table 3. Impact of data preparation strategies. Increasing the
diversity of the training dataset using a combination of strategies
improves diversity and novelty of generated structures but also
leads to less designs passing the validity threshold.

4.4. Data Preparation Protocols

We observe an overrepresentation of RNA strands of certain
lengths (mostly corresponding to tRNA or 5S ribosomal
RNA) in RNAsolo, resulting in our models generating close
likenesses for those lengths, achieving high self-consistency.
To avoid this memorized recapitulation and promote in-
creased diversity in our samples, we sought to develop data
preparation protocols to balance RNA folds across sequence
lengths. We also train the models on these data splits for
120K gradient steps, with evaluation results reported in Ta-
ble 3 showing improved diversity and novelty at the cost of
validity (full results in Appendix C.2).

• Structural Clustering: We cluster RNAsolo using
qTMclust (Zhang et al., 2022); we consider two
structures similar if their TM-score is above 0.45.
When creating a batch for training, we sample random
clusters and within them, a random structure from each
cluster. This ensures a batch does not comprise solely
of samples for a single sequence length or is domi-
nated by overrepresented RNA from RNAsolo. There
are only 342 structural clusters for the 5,319 samples
within sequence lengths 40-150, which highlights the
lack of diversity in RNA structural data.

• Cropping Augmentation: We expand our training set
by cropping longer RNA strands beyond length 150 by
sampling a random crop length (in [40, 150]) and ex-

tracting a contiguous segment from the larger chain(s).
As cropped RNA are not standalone molecules and
serve only to augment the dataset, we consider a ran-
domly chosen 20% of the training set size (5,319 sam-
ples) to balance uncropped and cropped samples; this
gives an additional 1,063 cropped samples.

5. Limitations and Discussions
Altogether, our experiments demonstrate that the SE(3)
flow matching framework is sufficiently expressive for learn-
ing the distribution of 3D RNA structure and generating
realistic RNA backbones similar to well-represented RNA
folds in the PDB. Some cherry-picked examples are shown
in Figure 5. We have also identified notable limitations and
avenues for future work, which we highlight below.

Physical violations. While well-trained models usually
generate realistic RNA backbones, we do observe some
physical violations: generated backbones sometimes have
chains that are either too close by or directly clash with
one another, are highly coiled and have excessive loops and
intertwined helices that are not physically possible, or have
chain breaks. We highlight these limitations in Figure 6.

RNA tertiary structure folding is driven by base pairing and
base stacking interactions (Vicens and Kieft, 2022) which
influence the formation of helices, loops, and other tertiary
motifs. Base pairing refers to nucleotides along adjacent
chains forming hydrogen bonds, while base stacking in-
volves interactions between rings of adjacent nucleotide
bases along a chain. To the best of our knowledge, all cur-
rent deep learning models operate on individual nucleotides
and only implicitly learn base pairing and stacking. Devel-
oping explicit representations of these interactions as part
of the architecture may further minimize physical violations
and provide a stronger inductive bias for learning complex
tertiary RNA motifs.
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Generative 
Model

Inverse
Folding

Structure
PredictionAUUCG...

Noise Backbone Sequence All-atom

Compute self-consistency (TM, RMSD, GDT_TS)

Figure 4. Structural self-consistency evaluation. We sample a backbone from our model and pass it through an inverse folding model
(gRNAde) to obtain Nseq sequences. Each sequence is fed into a structure prediction model (RhoFold) to get the predicted all-atom
backbone. Self-consistency between each predicted backbone and the generated sample is measured with TM-score (we also report
RMSD and GDT_TS). For a given generated sample, we thus have Nseq TM-scores of which we take the maximum as the scTM score.

Length: 40
scTM: 0.482
scRMSD: 2.41
scGDT: 0.681
pdbTM: 0.385

Length: 50
scTM: 0.458
scRMSD: 16.91
scGDT: 0.455
pdbTM: 0.492

Length: 70
scTM: 0.763
scRMSD: 1.54
scGDT: 0.803
pdbTM: 0.652

Length: 90
scTM: 0.627
scRMSD: 12.51
scGDT: 0.241
pdbTM: 0.611

Length: 120
scTM: 0.948
scRMSD: 0.88
scGDT: 0.943
pdbTM: 0.896

Length: 130
scTM: 0.493
scRMSD: 8.53
scGDT: 0.250
pdbTM: 0.598

Figure 5. Some generated RNA backbones (colored) of varying lengths aligned with their RhoFold predicted structure (gray).
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A

B

C

D

E

Figure 6. Physical violations in generated samples. (A) Steric
clashes between generated chains (highlighted in yellow). (B)
Chain breaks and stray strands (highlighted in yellow). (C)-(E)
Excessive loops and intertwined helices.

Generalisation and novelty. We observed that the best
designs from our models (as measured by scTM score)
are sampled at lengths 70-80 and 120-130, and often have
closely matching structures in the PDB (high TM-scores).
This suggests that models can recapitulate well-represented
RNA folds in their training distribution (e.g., both tRNAs at
length 70-90 and small 5S ribosomal RNAs at length 120
are very frequent in RNAsolo). However, self-consistency
metrics were relatively poorer for less frequent lengths, sug-
gesting that the model is not designing novel folds at present.

We would also like to note that the models we use for struc-
ture prediction and inverse folding may be similarly biased
to perform well for certain sequence lengths, leading to
the overall pipeline being reliable for commonly occurring
lengths and unreliable for less frequent ones (see Appendix
A.2 for an analysis on RhoFold). We evaluated prelimi-
nary strategies for structural clustering and cropping aug-
mentations during training, which improved the novelty of
designed structures but led to fewer designs passing the
validity filter. The relative scarcity of RNA structural data
compared to proteins necessitates greater care in prepar-
ing data pipelines for generative models, which we hope to
continue improving upon.

6. Related Work
Here, we summarize recent developments in deep learn-
ing for 3D RNA modeling and design. Recent RNA struc-
ture prediction tools include RhoFold (Shen et al., 2022),
RoseTTAFold2NA (Baek et al., 2022), DRFold (Li et al.,
2023), and AlphaFold3 (Abramson et al., 2024), each with
varying performance that is yet to match the current state-
of-the-art for proteins. However, structure prediction tools
are not directly capable of designing new structures, which
this work aims to address by adapting an SE(3) flow match-
ing framework for proteins (Yim et al., 2023b). MMD-
IFF (Morehead et al., 2023), a diffusion model for protein-
nucleic acid complex generation, is also capable of design-
ing RNA structures. Our evaluation shows that our flow
matching model significantly outperforms both the original
and RNA-only versions of MMDIFF.

Joshi et al. (2023) introduce GRNADE for 3D RNA inverse
folding, a closely related task of designing new sequences
conditioned on backbone structures. We use GRNADE fol-
lowed by RhoFold in our evaluation pipeline to forward fold
designed backbones and measure structural self-consistency.
Independently and concurrent to our work, Nori and Jin
(2024) propose RNAFlow, which uses GRNADE combined
with RoseTTAFold2NA as a denoiser in the flow match-
ing setup to design RNA sequences conditioned on protein
structures. Our work tackles de novo 3D RNA backbone
generation, an orthogonal RNA design task.

7. Conclusion
We introduce RNA-FRAMEFLOW, a generative model for
3D RNA backbone design. In silico evaluations show that
our model can design locally realistic and moderately novel
backbones of length 40 – 150 nucleotides. We achieve a
validity score of 41.0% and relatively strong diversity and
novelty scores compared to diffusion model baselines and
ablated variants. While generative models can successfully
recapitulate well-represented RNA folds (e.g., tRNAs, small
rRNAs), the lack of diversity in the training data hinders
broad generalization at present. We are actively exploring
improved data preparation strategies combined with induc-
tive biases that explicitly incorporate interactions that drive
RNA structure: base pairing and base stacking. We hope
RNA-FRAMEFLOW and the associated evaluation frame-
work can serve as foundations for the community to explore
3D RNA design, towards developing conditional generative
models for real-world design scenarios (Ingraham et al.,
2022; Watson et al., 2023).
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A. Additional Experimental Details
A.1. Architectural Details

We list hyperparameters used for our denoiser model in Table 4 below:

Category Hyperparameter Value
Invariant Point Attention (IPA) Atom embedding dimension Dh 256

Hidden dimension Dz 128
Number of blocks 6
Query and key points 8
Number of heads 8
Key points 12

Transformer Number of heads 4
Number of layers 2

Torsion Prediction MLP Input dimension 256
Hidden dimension 128

Schedule Translations (training) linear
Rotations (training) linear
Translations (sampling) linear
Rotations (sampling) exponential
Number of denoising steps NT [10,50, 100, 500]

Table 4. Hyperparameters for the baseline model.

A.2. RhoFold Length Bias

We investigate the performance of RhoFold on the RNAsolo training dataset used for our generative model. Figure 7 shows
sequence length bias where RhoFold predicts structures with extremely low RMSDs for sequence lengths (like 70, 100, and
120) while predicting poor structures for other lengths with larger RMSDs. The performance across lengths is disparate (like
AlphaFold2) and may influence what is considered valid. Furthermore, RhoFold is not optimized for de novo designed RNA,
only naturally occurring RNA. To compensate for bias, we resort to a ranking instead of thresholding done by (Yim et al.,
2023a;b) when measuring validity.

B. Ablations
B.1. Composition of Backbone Coordinate Loss

We also analyze how changing the composition of atoms considered in the inter-atom losses affects performance. We
increase the number of atoms being supervised in the Lbb loss described above. Aside from the frame comprising C3′, C4′,
and O4′, we try two settings with 3 and 7 additional non-frame atoms included in the loss. For the 3 non-frame atoms, we
choose C1′, P , and O3′, and for the 7 non-frame atoms, we choose a superset C1′, P , O3′, C5′, OP1, OP2, and N1/N9.
We posit the additional supervision may increase the local structural realism, which may further improve validity, as shown
in Table 5.

FRAME COMPOSITION IN LBB % VALID ↑ DIVERSITY ↑ NOVELTY ↓
FRAME ONLY (BASELINE) 41.0 0.606 0.571
FRAME AND 3 NON-FRAME 45.0 0.281 0.794
FRAME AND 7 NON-FRAME 46.7 0.356 0.858

Table 5. Ablating composition of backbone loss Lbb. Supervising more non-frame atoms improves validity but worsens diversity and
novelty. Best per-column result is bolded.

We indeed observe increasing validity as we increase the frame complexity in the auxiliary backbone loss. The minute
RMSD contributions from disordered fragments of the RNA may be minimal, accounting for greater likeness to the RhoFold
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Figure 7. RhoFold length bias. RhoFold has a strong bias for certain sequence lengths over others. This affects its efficacy when used to
compute the 3D self-consistency of generated backbones. The blue dotted line represents the median RMSD of RhoFold predictions
to the samples from RNAsolo. To minimize the influence of this length bias, we use TM-score for self-consistency because it does not
penalize flexible regions as much as RMSD.

predicted structures, scoring relatively higher scTM scores. However, the original frame-only baseline model has better
diversity and novelty which we attribute to high local variation in atomic placements. This variation causes two generated
structures for the same sequence length to look very different at an all-atom resolution.

B.2. Composition of Auxiliary Loss

We ablate the inclusion of different auxiliary loss terms that guide our SE(3) flow matching setup; results are in Table 6.
Although, there is an increase in EMD for bond distances as we remove distance-based losses like backbone coordinate
loss Lbb and all-to-all pairwise distance loss (Ldist). However, we also observe the model still learns realistic distributions
despite removing different loss terms, indicating that each loss makes up for the absence of the other. Moreover, the best
model still uses all losses with any removal causing a drop in validity.

LBB LDIST LSO(3) EMD (DISTANCE) ↓ EMD (ANGLES) ↓ EMD (TORSIONS) ↓ % VALID ↑
✓ ✓ ✓ 1.5E-6 0.1086 2.360 41.0

✓ ✓ 3.0E-4 0.1433 3.850 35.0
✓ ✓ 1.5E-6 0.1180 3.727 13.3

✓ ✓ 8.4E-3 0.1891 3.598 16.7

Table 6. Ablations of loss terms on Earth Mover’s Distance scores for structural measurements compared to ground truth measurements
from RNAsolo. The first row corresponds to the baseline model. Distance-based losses like the backbone coordinate loss (Lbb) and
all-to-all pairwise distance loss (Ldist) are necessary to learn geometric properties like bond distances adequately.

Further inspecting the samples from the models without each loss term reveals structural deformities at the all-atom level.
Figure 8 shows such artifacts resulting from not enforcing geometric constraints through explicit losses.
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A B
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Figure 8. Not including auxiliary losses causes structural issues in generated RNAs. (A) RNA backbone from our baseline model with
expected adherence to bonding between nucleotides. (B) Not including the rotation loss LSO(3) causes nucleotides to have random
orientations, preventing them from connecting contiguously. (C) Not including the backbone atom loss Lbb causes intra-residue atoms to
be placed too close to one another resulting in bonds that should not exist. (D) Not including the all-to-all pairwise distance loss Ldist

causes deformations and fusing between adjacent frames, and unrealistic nucleotide placements, especially along helices and loops.

C. Additional Results
C.1. Evaluation of MMDIFF Samples

Here, we document global and local metrics from samples generated by MMDIFF. MMDIFF has a validity score of 0.0% as
all the samples have a poor scTM score below the 0.45 threshold to the RhoFold predicted backbones. Even though none of
the samples are valid, we show the average pdbTM scores for the samples, which are trivially low as there are no structures
from the PDB that match them due to poor quality.
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Figure 9. Validity and novelty of retrained MMDIFF’s generated backbones. (Left) scTM of backbones of lengths 40-150 with the
mean and spread of scTM for each length. (Middle) Scatter plot of self-consistency TM-score (scTM) and novelty (pdbTM) across
lengths. Vertical and horizontal dotted lines represent TM-score thresholds of 0.45. Overall, MMDIFF retrained on RNAsolo does not
generate realistic RNA structures.

While MMDIFF’s samples locally resemble RNA structures given realistic, manual inspection reveals multiple chain breaks
and disconnected floating strands, resulting in 0.0% validity. In 10 (Subplot 1), we see inter-residue C4′ distances slightly
varying, causing the chain breaks. Furthermore, the Ramachandran plot in Figure 10 (Subplot 4) reveals a more complex
angular distribution than found in RNAsolo, which may be a consequence of excessively folded regions or substructures that
may have folded in on themselves.
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Figure 10. Structural measurements from samples generated by MMDIFF. (Subplots 1-3) Left: histogram of inter-nucleotide bond
distances in Angstrom. Middle: histogram of bond angles between nucleotide triplets. Right: histogram of torsion (dihedral) angles
between every four nucleotides. (Subplot 4): RNA-centric Ramachandran plot of structures from RNAsolo (purple) and MMDIFF’s
generated backbones (white).

C.2. Evaluation of Data Preparation Strategies

We include global evaluation metrics for the two data preparation strategies presented in the main text, namely structural
clustering and cropping augmentation.
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Figure 11. Validity and novelty of generated backbones from model trained with only structural clustering. (Left) scTM of
backbones of lengths 40-150 with the mean and spread of scTM for each length. (Middle) Scatter plot of self-consistency TM-score
(scTM) and novelty (pdbTM) across lengths. Vertical and horizontal dotted lines represent TM-score thresholds of 0.45.
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Figure 12. Validity and novelty of generated backbones from model trained with structural clustering and cropping. (Left) scTM
of backbones of lengths 40-150 with the mean and spread of scTM for each length. (Middle) Scatter plot of self-consistency TM-score
(scTM) and novelty (pdbTM) across lengths. Vertical and horizontal dotted lines represent TM-score thresholds of 0.45.
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