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Abstract
Graph neural networks aim to learn representa-
tions for graph-structured data and show impres-
sive performance, particularly in node classifi-
cation. Recently, many methods have studied
the representations of GNNs from the perspective
of optimization goals and spectral graph theory.
However, the feature space that dominates rep-
resentation learning has not been systematically
studied in graph neural networks. In this paper,
we propose to fill this gap by analyzing the feature
space of both spatial and spectral models. We de-
compose graph neural networks into determined
feature spaces and trainable weights, providing
the convenience of studying the feature space ex-
plicitly using matrix space analysis. In particular,
we theoretically find that the feature space tends
to be linearly correlated due to repeated aggrega-
tions. In this case, the feature space is bounded
by the poor representation of shared weights or
the limited dimensionality of node attributes in ex-
isting models, leading to poor performance. Mo-
tivated by these findings, we propose 1) feature
subspaces flattening and 2) structural principal
components to expand the feature space. Exten-
sive experiments verify the effectiveness of our
proposed more comprehensive feature space, with
comparable inference time to the baseline, and
demonstrate its efficient convergence capability.

1. Introduction
Graph Neural Networks (GNNs) have shown great potential
in learning representations of graph-structured data, such as
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social networks, transportation networks, protein interaction
networks, etc. (Fan et al., 2019; Wu et al., 2020; Khoshraftar
& An, 2022). In this paper, we focus on node representation
learning, which is one of the most important tasks in this
line of research, where the key is to represent nodes in an
informative and structure-aware way.

There are two different types of graph neural networks.
One is spatial, which aggregates information from neigh-
boring nodes and updates the representation of the central
node. (Velickovic et al., 2018; Xu et al., 2018; Huang et al.,
2020a). The spectral type, on the other hand, treats the
graph structure matrix, such as the Laplacian matrix, as a
transformation for the nodes’ attributes (signals) in the spec-
tral domain (Defferrard et al., 2016; Chien et al., 2021; He
et al., 2021; 2022). The aim is to develop flexible functions
for the graph structure so that the signals of the nodes can
fit the labels appropriately.

Recently, several perspectives for analyzing GNN represen-
tations have emerged, such as general optimization func-
tions, denoising frameworks, and spectral graph theory (Zhu
et al., 2021; Ma et al., 2021; Balcilar et al., 2021). How-
ever, as a determinant of representation learning, feature
spaces have not been systematically studied for graph neural
networks. In general representation learning, performance
depends heavily on the construction of feature spaces with
accessible data (Bengio et al., 2013).

In this paper, we propose to fill this gap and investigate the
feature space for both spatial and spectral GNNs. Specifi-
cally, for theoretical investigations, we first abstract a linear
approximation of the GNNs following the studies (Wu et al.,
2019a; Xu et al., 2018; Wang & Zhang, 2022). Then, we de-
compose the GNN components with and without parameters
in the linear approximation, where the latter is considered
as a feature space built by node attributes and graph struc-
ture (e.g., adjacency or Laplacian matrices), and the former
denotes the learnable parameters to reweight the features.

Taking advantage of the convenience of decomposition, we
examine the feature space of current models. Motivated by
that GNNs are expected to fit arbitrary objective, a more
comprehensive feature space reflects better representability
without any assumption about the data distribution. How-
ever, we find theoretically that the feature subspaces of cur-
rent GNNs are bounded by the weight-sharing mechanism
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and the limited dimensionality of the node attributes. In or-
der to alleviate the above restrictions and expand the feature
space, we proposed 1) feature subspace flattening and 2)
structural principal components, respectively. Specifically,
the former reweights all feature subspaces independently
to obtain a fully expressed representation. The latter adds
the principal components of graph structure matrices as a
”complement” to the original feature space. It is emphasized
that our proposal makes no assumptions about the graph
or the target, which enjoys good generality. We perform
extensive experiments on both homophilic and heterophilic
datasets to demonstrate the superiority of the proposal.

Our contributions are listed below:

• Starting from representation learning, we provide
the first study of the feature space formed in graph-
structured data. Based on this view, we study typical
spatial and spectral GNNs and identify two problems
of existing GNNs caused by bounded feature spaces.

• We then propose two modifications: 1) feature sub-
space flattening and 2) structural principal components
to expand the whole feature space.

• Extensive experiments are performed on homophilic
and heterophilic datasets, and our proposal achieves
significant improvements, e.g. an average accuracy
increase of 32% on heterophilic graphs.

2. Preliminaries
In this paper, we focus on the undirected graph G = (V, E),
along with its node attributes of V as X ∈ Rn×d and adja-
cency matrix A ∈ Rn×n to present E . GNNs take the input
of the node attributes and the adjacency matrix, and out-
put the hidden node representations, as H = GNN(X,A) ∈
Rn×d. By default, we employ the cross-entropy loss func-
tion in the node classification task to minimize the difference
between node label Y and the obtained representation as
L(H,Y ) = −

∑
i Yi log softmax(Hi).

Spatial GNNs (with non-parametric aggregation) mostly
fall into the message-passing paradigm. For any given node,
it essentially aggregates features from its neighbors and
updates the aggregated feature,

H
(k+1)
i = σ

(
fu

(
H

(k)
i , fa

(
Âij , H

(k)
j ; j ∈ Ni

)))
, (1)

where σ (·) is a non-linear activation function, H(k) indi-
cates the hidden representation in k-th layer, fa and fu
are the aggregation and updating functions (Balcilar et al.,
2021), Â = (D + I)−1/2(A + I)(D + I)−1/2 is the re-
normalized adjacency matrix using the degree matrix D,
and Ni denotes the 1-hop neighbors.

Here, we provide two examples to specify this general ex-
pression. One is the vanilla GCN1 (Kipf & Welling, 2017)
that adopts the mean-aggregation and the average-update,
whose formulation is:

H(k+1) = σ
(
ÂH(k)W (k)

)
. (2)

The second example shows a different update scheme with
skip-connection (Xu et al., 2018; Li et al., 2019; Chen et al.,
2020), which is defined as follows,

H(k+1) = σ
(
α(k)H(0)W

(k)
0 + ÂH(k)W

(k)
1

)
, (3)

where α(k) controls the weight of each layer’s skip-
connection, W (k)

0 ,W
(k)
1 are the transformation weights for

the initial layer and the previous one, respectively.

Spectral GNNs (polynomial-based) originally employ the
Graph Fourier transforms to get filters (Chung & Graham,
1997), such as using the eigendecomposition of the Lapla-
cian matrix: L̂ = I−Â = UΛUT . In recent years, methods
of this type have focused more on approximating arbitrary
global filters using polynomials (Wang & Zhang, 2022; Zhu
& Koniusz, 2020; He et al., 2021), which has shown superior
performance and is written as

H =

K∑
k=0

γ(k)Pk(L̂)σ(XW1)W2, (4)

where Pk(·) donates a polynomial’s k-order term; γ(k) is the
adaptive coefficients and W1,W2 are learnable parameters.

In this paper, we focus on the typical instances of the two
types of graph neural networks, as indicated in the parenthe-
ses above. For spatial models, we focus on those with non-
parametric aggregation, excluding learnable aggregation
such as (Velickovic et al., 2018) in the analytical parts. Con-
sidering the spectral type, we focus on polynomial-based
models, and other spectral filters are not included in this pa-
per, e.g. (Levie et al., 2018; Thanou et al., 2014). It is worth
noting that these cases dominate the state of the art, and we
still include other methods in empirical comparisons.

Primary observation. From the review of GNN models,
we can conclude that usually, the node attributes X and
the graph structure matrices L̂/Â are computed first and
then some parameter matrices are applied to obtain the final
node representation. Starting from this observation, in the
following, we extract a linearly approximated framework
including GNNs that first construct feature spaces and then
apply parameters to reweight them to obtain node represen-
tations.

1GCN (Kipf & Welling, 2017) is also an instance of spectral
GNNs, and here we categorize it into spatial type due to its critical
role of bridging spectral GNNs to spatial interpretations.
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Table 1. Feature space and parameters for GNN models (better viewed in color)
Original formula∗ Linear approximation formulations

GCN
H(k+1) = σ

(
ÂH(k)W (k)

)
H(K) = ÂKX

∏K−1
i=0 W (i)

(Kipf & Welling, 2017)
GIN

H(k+1) = σ
(
(ϵ(k)I + Â)H(k)W

(k)
0

)
W

(k)
1 H(K) =

∑K
t=0 Â

kX
∑

{q0,··· ,qK−t−1}⊆{ϵ(0),··· ,ϵ(K−1)}
∏

i qi ·
∏K−1

j=0 W
(j)
0 W

(j)
1(Xu et al., 2018)

GCNII
H(l+1) = σ

((
(1− α(l))ÂH(l) + α(l)H(0)

) (
(1− β(l))I + β(l)W (l)

))
H(K) =

∑K−1
l=0 ÂlX

∏L−1
i=L−l(1− α(i))α(L−l−1)

∏L−1
j=L−l−1 W

(j)}+ ÂK
∏K−1

h=0 (1− α(h))W (h)

(Chen et al., 2020)
ARMA

H(K) = σ(L̃H(K−1)W1 +XW2) H(K) =
∑K

t=0 L̃XW t
2W

K−t
1(Bianchi et al., 2021)

APPNP
H(k+1) = (1− α)ÂH(l) + αH(0);H(0) = σ(XW1)W2 H(K) =

∑K
t=0 (1− α)tÂlH(0) +

∑t−1
i=0 α(1− α)iÂiH(0)W1W2(Klicpera et al., 2019)

ChebyNet∗∗
H =

∑K
k=0 Pk(L̂)XW (k) H(K) =

∑K
t=0 Pt(L̂)XW (t)

(Defferrard et al., 2016)
GPRGNN

H =
∑K

k=0 γ
(k)L̂kσ(XW1)W2 H(K) =

∑K
t=0 L̂

tXγ(t)W1W2(Chien et al., 2021)
BernNet

H =
∑K

k=0
1
2K

(
K
k

)
γ(k)(2I − L̂)K−kL̂kσ(XW1)W2 H(K) =

∑K
t=0

∑t
j=0

1
2j

(
K
j

)
L̂t

∑t
j=0 γ

(j)W1W2
(He et al., 2021)

∗ Without specification, H(0) = X .
∗∗ Tk(x) denotes Chebyshev polynomial P0(x) = 1, P1(x) = x, Pk(x) = 2xPk−1 − Pk−2.

3. Analysis
To perform theoretical investigations of the feature space,
we abstract a linear approximation of GNNs based on the
success of linearisation attempts of Wu et al. (2019a); Xu
et al. (2018); Wang & Zhang (2022). Specifically, we pro-
vide a general formulation for the linear approximation of
arbitrary graph neural networks. GNN(X, Â) as:

H = GNN(X, Â) =

T−1∑
t=0

Φt(X, Â)Θt, (5)

where Φt(X, Â) ∈ Rn×dt is the non-parametric feature
space constructing function that inputs the graph data (e.g.,
node attributes and graph structure) and outputs a feature
subspace, Θ ∈ Rdt×c is the parameter space to reweight the
corresponding feature subspace for each class c, and T is a
hyper-parameter of the number of the feature subspaces that
the GNN contains. In general, in this linear approximation, a
GNN model forms T feature subspaces, i.e., Φt, and outputs
the addition of all the reweighted subspaces using the re-
spective parameters Θt. Note that the (total) feature space is
the union of the subspaces as Φ = {Φt}t=0,1,··· ,T−1. Simi-
larly, we have the (total) parameters Θ = {Θt}t=0,1,··· ,T−1.
Besides, the number of the subspaces T that a GNN model
obtains is not parallel with its layer/order, for which we will
provide some examples in the later revisiting subsection.

In the following, we will first identify the feature space Φ
and the parameters Θ for existing GNNs. Then, from the
perspective of the feature space, we analyze the common
mode across different model lines. Finally, we investigate
and summarize the problems behind this mode.

3.1. Revisiting Existing Models

Spatial GNNs (with non-parametric aggregation). We
first transform the recursive formula of spatial GNNs,

e.g., (1), into an explicit formula, by iterating from the initial
node attributes that H(0) = X and ignoring the activation
function. Following Section 2, we consider two examples
of spatial GNNs: the vanilla GCN (Kipf & Welling, 2017)
and the one with skip-connections (Xu et al., 2018).

The linear approximated explicit formula of a K-layer is:

H(K) = ÂKX

K−1∏
i=0

W (i), (6)

which forms single feature space Φ0 = ÂKX and parame-
ters Θ0 =

∏K−1
i=0 W (i) with T = 1. It is a perfect example

that the number of GNN layers K is not identical to the
number of the subspaces T a GNN forms. While (3) fur-
thermore considers skip-connections, whose K-layer linear
approximated explicit formula is formualted as:

H(K) =

K−1∑
i=0

ÂiXα(K−1−i)W
(K−1−i)
0

K−1∏
j=K−i

W
(j)
1

+ ÂKX

K−1∏
h=0

W
(h)
1 .

(7)

By this decomposition, this GCN with skip-connections
consists of T = K + 1 feature subspaces. It forms each
feature subspace as Φt = ÂtX . For the first T − 1 sub-
spaces, the according respective parameters is denoted as
Θt;t<T−1 = α(K−1−t)W

(K−1−t)
0

∏T−1
j=K−t W

(t)
1 , and for

for the last ΦT , the parameter is ΘT =
∏T−1

h=0 W
(h)
1 . Please

refer to Appendix A.1 for the derivation.

Spectral GNNs (polynomial-based). This type is speci-
fied by the explicit formula as (4). We remove the activation
function, and obtain the linear approximation of a K-order
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Figure 1. Distribution of the mutual correlation values between the
later feature (sub)spaces to the previous total ones.

spectral GNNs as:

H(K) =

K∑
k=0

Pk(L̂)Xγ(k)W (0). (8)

We put the learnable polynomial coefficient γ(k) together
with the parameter matrices. We also combine the shared
parametric matrices in (4) as W (0) = W1W2. In this way,
(8) forms T = K + 1 feature subspaces, each denoted as
Φt = Pt(L̂)X , and the parameters used to reweight the re-
spective subspaces are Θt = W (0)W (1). See Appendix A.2
for further derivations.

In Table 1, we summarize typical instances of spatial and
spectral methods, using different colors to distinguish the
feature space Φ (orange) and the parameters Θ (blue). It
shows that the proposed extracted view (5) can support most
methods in both spatial and spectral domains.

3.2. Analysis of the Feature Space

In this section, we first give a theoretical argument that the
feature subspace of current GNNs obeys asymptotically lin-
ear correlation (see Proposition 3.1). Then, we find that the
current weight-sharing mechanism weakens the expressive-
ness of the feature space when the strict linear correlation is
satisfied (see Theorem 3.2). In the remainder, we analyze
the case where the feature subspaces do not obey strict linear
correlation. We find that the feature space is insufficient
when the dimensionality of the node attributes is limited and
no assumptions can be made about the feature construction
(e.g., heterophily).

Table 1 shows that the feature space Φ in spatial and spectral
GNNs is formulated by the multiplication of graph structure
matrices function and node attributes, e.g. Φk = Pk(L̂)X .
We consider ÂkX to be the basic element for each fea-
ture subspace since other forms such as Pk(L̂)X and L̂
are all linear transformations of Â. Given this, it can be

concluded that the feature subspaces of GNNs are sequen-
tially appended as the spatial layers or the spectral orders of
GNNs increase, with the latter subspace being the result of
applying the aggregation function to the former.

This monotonous construction of the feature space will lead
to a high linear correlation between each feature subspace
as presented in Proposition 3.1.
Proposition 3.1. (its proof can be found in Appendix A.3)
Suppose the feature subspaces are constructed sequentially
by {Φt = ÂtX}t. As i ∈ Z increases, the subspace Φt+i

gradually tends to be linearly correlated with Φt.

To better understand the property of Proposition 3.1, we pro-
vide a quantitative demonstration using the feature space of
GPRGNN (Chien et al., 2021) as an example. We mea-
sure the linear correlation of the appended k-th feature
(sub)space with the previous ones by calculating the mutual
correlation values:

Ek
i = max

j=0,··· ,k−1
µ(L̂jX, L̂kX·i), (9)

where i is the index of the column in L̂kX , and
µ(M0,M1) = maxdu∈M0,dv∈M1

cos(du, dv) is the mutual-
coherence of two matrices, based on the cosine distance
cos. In Figure 1, we visualize the distribution of {Ek

i } of
all the columns with k = 1, 2, 3, 4. It confirms that the
linear correlation improves significantly with the number
of subspaces. Therefore, both theoretical discussions and
visualizations show a trend of increasingly linear correla-
tions between feature subspaces with an increasing number
of GNN layers/orders.

Since we are dealing with a gradually linear correlation, in
the following we identify two questions about the current
feature construction when this condition is strictly fulfilled
or not, respectively.

Issue 1: Constraint from the weight sharing mechanism.
From Table 1 we see that existing GNNs usually share pa-
rameter weights between different subspaces. Under the
condition of linear correlation, we provide a direct argument
that using the weight-sharing method limits the expressive-
ness of the feature space.
Theorem 3.2. (its proof can be found in Appendix A.4)
Suppose Φa,Φb ∈ Rn×d are two linearly correlated feature
subspaces, i.e. there exists Wa ∈ Rd×d such that ΦaWa =
Φb, and suppose a matrix B ∈ Rn×c, c << d. If B can be
represented by using both subspaces with a common weight
WB , i.e., γaΦaWB + γbΦbWB = B and γa, γb ∈ R, then
B can always be represented by only one subspace Φa, i.e.,
ΦaW

′
B = B and W ′

B ∈ Rd×c.

It shows an expressiveness bound of the feature subspaces
when they are linearly correlated. While this linearly de-
pendency can be used as redundancy and is widely used in
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areas such as dictionary learning (Elad, 2010). In particu-
lar, an over-determined linear system can be relaxed to an
under-determined one when linearly correlated columns are
added to the regressor matrix, making it easier to optimize.
However, the condition of this benefit is not met in existing
GNNs due to the weight-sharing mechanism. In the next
section, we propose a modification to break this constraint.

Issue 2: Constraint from limited dimensionality of node
attributes. Proposition 3.1 clarifies the tendency of linear
correlation between the feature subspaces, but in the first
few, this property may not be strictly satisfied. It makes the
weight-sharing not so flawed and also weakens the effective-
ness of the corresponding modification. In the following,
we give a discussion of the condition that the feature spaces
are not necessarily linearly correlated, and we consider two
limiting scenarios of the dimension d of the node attributes,
since the respective discussions are strongly orthogonal.

First, if d → n, X itself is a sufficient feature space if X
is sparse (e.g., bag-of-words features) or each column is
linearly independent. Besides, the weight-sharing method
sums different feature subspaces by learnable weights γ
for each. As a result, the optimized sum promotes more
of the subspaces that are closer to the labels. Therefore,
the core is the assumptions of subspace construction (e.g.,
homophilic assumptions and hyperparameter search for ag-
gregation functions) and more flexible polynomial functions
(e.g., Chebysheb and Bernstein). They all have been widely
studied, where the performance of weight-sharing methods
is convincing, such as (Wang & Zhang, 2022).

On the other hand, when d << n, the node attributes X
have a thin shape, making the regression system strictly
over-determined. In addition, without any assumption about
the feature space construction, there is hardly an exact solu-
tion, even when using linearly correlated copies to perform
the expansion (which we will discuss in the next section).
Therefore, compared to homophilic graphs, heterophilic
graphs are a more severe case, especially since there is
hardly any assumption about the feature space construction.
For this situation, we propose the other modification below.

4. Proposed Method
Here, we first propose 1) feature subspace flattening for the
detrimental condition caused by the weight-sharing mecha-
nism given by Theorem 3.2 and Proposition 3.1. Then, to
compensate for the second case when the dimensionality
of the node attributes is limited, we propose 2) structural
principal components to expand the original feature space.

4.1. Modification 1: Feature Subspaces Flattening

For the first problem, we encourage each feature subspace
to be independently expressed of each other in the model

and weight them separately. Before giving supporting proof,
we provide an illustration of this modification in Figure 2.
The benefit of this proposal is given in the following.

Theorem 4.1. (its proof can be found in Appendix A.5)
Suppose Φa,Φb ∈ Rn×d are two linearly correlated feature
subspaces, i.e., there exits Wa ∈ Rd×d such that ΦaWa =
Φb, and a matrix B ∈ Rd×c, c << d. If B can be expressed
by Φa, i.e., ΦaWB = B, then using both subspaces Φa and
Φb independently, i.e., ΦaWa + ΦbWb = B, the optimum
is more easily achieved than a weight-sharing style.

It follows from this theorem that feature subspace flatten-
ing is more effective than weight-sharng methods when
the feature subspaces tend to be linearly correlated. For
further discussion on parameter matrices that are stacked
(e.g., GCN), please refer to Appendix A.7, where the same
conclusion is maintained.

𝑊(")

𝐴#

𝑊($)

𝐴#

𝑊(%)

𝐴#

𝑋

𝐻

𝑋

𝑃"(𝐿') 𝑃$(𝐿') 𝑃%(𝐿')

𝑊(")

𝛾(")

𝐻

𝐻 = 𝐴%!𝑋&𝑊(#)
%

#&'
𝐻 = (𝑃# 𝐿+ 𝑋𝑊(#)

%

#&'

+ 𝑆𝑊(𝐻 = (𝛾#𝑃# 𝐿+ 𝑋𝑊(')
%

#&'

Spatial GNN Spectral GNN FE-GNN

𝑃"(𝐿') 𝑃$(𝐿') 𝑃%(𝐿') 𝑆

𝑋

𝑊(") 𝑊($) 𝑊(%) 𝑊&

𝐻
Parameters
Feature space

𝛾($) 𝛾(%)

Figure 2. Architecture of our proposal

4.2. Modification 2: Structural Principal Components

Next, we consider the second issue that the dimension of the
node attributes is limited. We propose to expand the whole
feature space by introducing other feature subspaces.

There are two criteria that we consider. One is that the
introduced feature subspace should be highly uncorrelated
with the existing feature subspace, otherwise, according
to the analysis in the previous section, it may not be the
same as the previously proposed modification under this
condition. The other is that the dimension of the introduced
subspace should not be too large, otherwise noise might be
included and the computational cost would also increase.

Considering this, for graph-structured data, there are two
data matrices, i.e., node attributes and graph structure matri-
ces, and the former has been explicitly exploited as one of
the feature subspaces in most GNN models, as summarized
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Table 2. Overall performance of FE-GNN in node classification

Type Baseline Time (ms) Homophilic graphs Heterophilic graphs

Cora CiteSeer PubMed Computers Photo Squirrel Chameleon Actor

Spatial

MLP - 76.70±0.15 76.67±0.26 85.11±0.26 82.62±0.21 84.16±0.13 37.86±0.39 57.83±0.31 38.99±0.17
GCN 17.42±1.64 87.69±0.40 79.31±0.46 86.71±0.18 83.24±0.11 88.61±0.36 47.21±0.59 61.85±0.38 28.61±0.39
GAT 18.06±1.18 88.07±0.41 80.80±0.26 86.69±0.14 82.86±0.35 90.84±0.32 33.40±0.16 51.82±1.33 33.48±0.35

GraphSAGE 10.72±0.25 87.74±0.41 79.20±0.42 87.65±0.14 87.38±0.15 93.59±0.13 48.15±0.45 62.45±0.48 36.39±0.35
GCNII 8.48±0.24 87.46±0.31 80.76±0.30 88.82±0.08 84.75±0.22 93.21±0.25 43.28±0.35 61.80±0.44 38.61±0.26
APPNP 23.74±2.08 87.92±0.20 81.42±0.26 88.16±0.14 85.88±0.13 90.40±0.34 39.63±0.49 59.01±0.48 39.90±0.25

Spectral
ChebyNet 20.26±1.03 87.17±0.19 77.97±0.36 89.04±0.08 87.92±0.13 94.58±0.11 44.55±0.28 64.06±0.47 25.55±1.67
GPRGNN 23.55±1.26 87.97±0.24 78.57±0.31 89.11±0.08 86.07±0.14 93.99±0.11 43.66±0.22 63.67±0.34 36.93±0.26
BernNet 36.88±0.84 87.66±0.26 79.34±0.32 89.33±0.07 88.66±0.08 94.03±0.08 44.57±0.33 63.07±0.43 36.89±0.30

Unified

GNN-LF 52.77±4.50 88.12±0.06 83.66±0.06 87.79±0.05 87.63±0.05 93.79±0.06 39.03±0.08 59.84±0.09 41.97±0.06
GNN-HF 53.28±4.51 88.47±0.09 83.56±0.10 87.83±0.10 86.94±0.06 93.89±0.10 39.01±0.51 63.90±0.11 42.47±0.07

ADA-UGNN 14.36±0.21 88.92±0.11 79.34±0.09 90.08±0.05 89.56±0.09 94.66±0.07 44.58±0.16 59.25±0.16 41.38±0.12

FE-GNN (C) 15.8±0.11 89.45±0.22 81.96±0.23 90.27±0.49 90.79±0.08 95.36±0.14 67.82±0.26 73.33±0.35 40.54±0.15
FE-GNN (M) 14.6±0.32 89.09±0.22 81.76±0.23 89.93±0.23 90.60±0.11 95.45±0.15 67.90±0.23 73.26±0.38 40.91±0.22

in Table 1. On the contrary, structure matrices are used only
in combination with node attributes. Given these conditions,
we propose to construct the expansion subspace using the
truncated SVD of the structural matrix, called structural
principal components as modification 2. It naturally pro-
vides orthogonal subspaces, and the truncated form limits
the dimension of the matrices. Thus, two criteria are met.
Specifically, we extract the low-dimensional information for
the graph structure to obtain its principal components:

S = Q̃Ṽ ; Â = QV RT , (10)

where Q̃, Ṽ are the principal components and the corre-
sponding singular values. Besides, we prove the effective-
ness of this modification in the following theorem.

Theorem 4.2. (its proof can be found in Appendix A.6)
Suppose the dimensionality of the node attributes is much
smaller than the number of nodes, i.e., d << n,X ∈ Rn×d,
and a z-truncated SVD of L̂, which satisfies ||UzSz−L̂||2 <
ϵ, where ϵ is a sufficiently small constant. Then the linear
system (Φk, UzSz)W

′
B = B can achieve a miner error than

the linear system ΦkWB = B.

So far, we have introduced two modifications, and together
they contribute to a new proposed GNN model called Fea-
ture Expanded Graph Neural Network (FE-GNN). It is
shown in Figure 2 and formulated as follows,

H =

K∑
k=0

Pk(L̂)XW (k) + SWs. (11)

It constructs the feature space in two ways. The first part
inherits the polynomial-based GNNs and takes advantage
of the multiplication of the polynomials of the structural
matrix Pk(L̂) and the node attributes X . Second, we use
the principal components of the structural matrices to form

another feature subspace S. In addition, FE-GNN uses
independent parameter matrices W (k) and Ws to reweight
each feature subspace to provide flexible reweighting.

In particular, the Φk and S feature spaces can have unbal-
anced scales and lead to poor reweighting. Therefore, we
add a column-wise normalization to ensure that each column
of each feature subspace contributes equally to the whole
feature space. Finally, to better verify the importance of the
feature space view, our implementation is purely linear with-
out any deep artifices such as activation functions or dropout
except for the cross-entropy loss, while we obey the original
implementation for the baselines and their non-linearity is
preserved.

4.3. Discussion

Our analysis and proposal make few assumptions about the
distribution of node attributes, the graph structure, or even
their relationships. Since the point view of the feature space
is not an analysis method proposed specifically for graph
structure data or GNNs, our investigations are more general
and jump out of the limitations of other views. For example,
graph denoising (Zhu et al., 2021) and spectral graph theory
view (Balcilar et al., 2021) both ignore the property of node
attributes, which is the key for our second proposal, and in-
stead focus on the transformations of the structure matrices.
We provide a more comprehensive comparison of related
work in section 5.

In our proposed method, the first modification that flattens
the feature subspace improves the effectiveness of each
feature subspace, but the number of parameters must be
higher because no parameter matrices are shared. In exper-
iments, we surprisingly found relatively low training time
costs compared to baselines. Furthermore, the second mod-
ification can be misinterpreted as an arbitrary addition of
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Figure 3. Analysis of the deep artifices on FE-GNN.

structural information. With this in mind, we will conduct
additional experiments with other information extraction
methods. Besides, in our approach, the aggregation process
can be abstracted as preprocessing to further speed up the
training process. We leave this as future work; in our ex-
periments, aggregations are computed during each training
session for a fair comparison.

Finally, it is worth noting that the linear approximation is
adopted for the non-linear GNNs for the following reasons:
1) it allows us the convenience of a deeper view of the
GNN models, 2) linearization is a quite normal setting in
the theoretical analysis in general machine learning and
deep learning analysis, since the non-linearity can hardly
provide rigorous arguments (Wu et al., 2019b; Maddox et al.,
2021), and 3) the proposed model is fully consistent with
the analytical view of linearity.

5. Other Related Work
Unified perspectives for GNNs. There have been several
perspectives for studying GNNs representations. Balcilar
et al. (2021) first bridge the spatial methods to the spec-
tral ones, that they assign most of the spatial GNNs with
their corresponding graph filters. More specifically, they
begin with GNN models’ convolution matrix and then sum-
marize their frequency responses. Ma et al. (2021) regard
the aggregation progress of GCN (Kipf & Welling, 2017),
GAT (Velickovic et al., 2018), and APPNP (Klicpera et al.,
2019) as graph signal denoising problem, which aims to
recover a clean signal from an objective and a certain de-
noising regularization term. Given this, the authors consider
generalize the smoothing regularization term to and propose
ADA-UGNN. However, it also ignores the property of node
attributes but focusing on the flexibility of the denoising
functions. Zhu et al. (2021) give a more comprehensive
summary of GNNs from an optimization view, which partly
overlaps with (Ma et al., 2021)’s opinions of graph signal
denoising. They propose GNN-LF/HF with adjustable ob-
jective that behaves as a low/high-pass filter.

Trend of flattening feature subspaces. In addition to
these unified investigations of GNN representations, an-
other line of related literature is the trend of flattening fea-
ture subspaces and the inclusive of graph structure matri-
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ces. Initial connection (Li et al., 2019; Chen et al., 2020)
is a partial of our first modification that disentangles the
dependency between the first two subspaces. There also
methods include graph structure information independently,
such as LINK (Lim et al., 2021) includes the whole adja-
cency matrix directly bearing a high parameter consumption.
Distance encoding technique encodes the local position us-
ing graph structure matrices to supplementary node fea-
tures (Dwivedi et al., 2020), however, the point view of
feature space is untouched. Maurya et al. (2021) also adopt
the independent weight for each feature subspace. However,
they perform feature selection at the subspace level, while
our proposal treats all columns of each subspace equally.
Moreover, FE-GNN specifically treats the graph structure
as an information source instead of carrying out message-
passing. More empirical comparisons are shown in Table 14
in Appendix B.8.

Generally, there have been some scattered attempts to verify
the extension perspective of the feature space in the existing
work, but due to the lack of a proposal for this view, no
more essential conclusions have been drawn.

Over-smoothing. Similar to the linear correlation be-
tween each feature subspace (see Proposition 3.1), the strong
similarity between node embeddings has been studied exten-
sively, e.g., in the over-smoothing problem (Li et al., 2018;
Huang et al., 2020b; Cai & Wang, 2020; Sun et al., 2022).
However, our view is from a column-wise perspective (i.e.,
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hidden dimension) and discusses the correlation between
the columns of the feature subspaces, while over-smoothing
investigations usually focus on the row-wise perspective
(i.e., node dimension) and consider the similarity of the
output representations of the nodes. They are obviously
different, and a further study of these two should also be an
interesting future work.

6. Experiments
We evaluate FE-GNN2 on: (1) node classification results,
(2) ablation studies, and (3) efficiency check.

Dataset. We implement our experiments on homophilic
datasets, i.e., Cora, CiteSeer, PubMed, Computers, and
Photo (Yang et al., 2016; Shchur et al., 2018), and het-
erophilic Chameleon, Squirrel, and Actor (Rozemberczki
et al., 2021; Pei et al., 2020). Among them, Chameleon and
Squirrel are two cases that bear problem 2, i.e., limited di-
mension of node attributes and no homophilic assumptions
to use. More details can be found in the appendix B.

Baselines. We compare a list of state-of-the-art GNN
methods. For spatial GNNs we have GCN (Kipf &
Welling, 2017), GAT (Velickovic et al., 2018), Graph-
SAGE (Hamilton et al., 2017), GCNII (Chen et al., 2020)
and APPNP (Klicpera et al., 2019), where MLP is in-
cluded as a special case. For spectral methods we take
ChebyNet (Defferrard et al., 2016), GPRGNN (Chien et al.,
2021) and BernNet (He et al., 2021). We also cover the
recent unified models, ADA-UGNN (Ma et al., 2021) and
GNN-LF/HF (Zhu et al., 2021). FE-GNN uses the Cheby-
shev or monomial polynomials to construct the feature
space, and we refer to the corresponding versions as FE-
GNN (C) and FE-GNN (M), respectively. Please refer to
Appendix B.2 for more details on the implementation.

6.1. Node Classification

We test on the node classification task with random
60%/20%/20% splits and summarize the results of 100
runs in Table 2, reporting the average accuracy with a 95%
confidence interval. We observe that FE-GNN has almost
the best performance on homophilic graphs. In particular,
compared to the current SoTA method ADA-UGNN (Ma
et al., 2021), which unifies the objectives in both spatial and
spectral domains, our FE-GNN achieves a 1.1% accuracy
improvement on average on 5 homophilic graph datasets.
We attribute the superior performance of GNN-LF/HF on
Citeseer to its complex hyperparameter tuning, where more
fine-grained constraints of the parameters can be found,
which we consider as future work in section 7. Furthermore,

2Our code is available at
https://github.com/sajqavril/
Feature-Extension-Graph-Neural-Networks.git

Table 3. Ablation study of 1) flattening feature subspaces
Cora CiteSeer Chameleon Squirrel

k=2 89.15±0.86 81.97±1.10 73.41±1.40 67.37±0.83

k=2 (WS) 87.21±0.83 78.39±0.72 72.94±1.22 66.01±1.31

k=4 88.56±2.01 80.19±0.84 73.27±1.56 67.40±0.90

k=4 (WS) 87.28±1.38 77.72±0.86 73.23±1.72 66.43±1.72

k=8 88.92±0.88 81.11±0.89 73.85±1.52 67.93±2.04

k=8 (WS) 86.92±1.66 77.32±0.33 73.15±1.83 66.63±2.38

k=16 88.26±0.14 80.54±1.03 73.88±1.53 67.82±1.54

k=16 (WS) 87.34±1.98 78.60±0.70 72.94±1.79 66.65±2.15

FE-GNN achieves on average 32.0% improvement on three
heterophilic graph datasets than the GCN baseline. It is
worth highlighting the huge margin of FE-GNN over others
on Chameleon and Squirrel, where they perfectly fit our
assumption of the second modification, i.e., heterophilic
and limited dimensionality of node attributes. The results
of the ablation studies are also consistent with this.

6.2. Ablation Studies

We study the contribution of different components and hy-
perparameter effects in FE-GNN.

Does the feature flattening work? Yes. In Table 3, we
compare our proposal with a weight-sharing (WS) instance
where the principal components are retained. It shows that
over an increasing number of feature subspaces, the flatten-
ing feature subspace is always observed better performance,
which verifies the discussion of theorems 3.2 and 4.1.

When do structural principal components work? On
limited node attributes and the heterophilic case. We
evaluate FE-GNN on 5 datasets of both homophilic and het-
erophilic graphs in 3 different feature space constructions:
including w/o S, w/o Pk(L̂)Xk=0, and w/o Pk(L̂)Xk>0,
which denote the feature space constructions without graph
structure, without note attributes, and without the combina-
tion of both. In the ablation results of Table 5, we found that
w/o S works well on homophilic graphs, but fails on het-
erophilic ones (with limited node attribute dimension), while
the other two work inversely. Meanwhile, w/ S greatly im-
proves the bounded cases, and these results confirm our orig-
inal intention of proposing structural principal components.
In addition, we provide other variants in Appendix B.3
that include structural information as an extension of our
discussion in Section 4.3, and row-wise normalization in
Appendix A.8, where our proposal is comparably effective.

What proportion of the truncated SVD is appropri-
ate? 94%. We use different ratios of singular vectors
and values to construct S, i.e., the top j singular values get
r =

∑i
j=1 Vjj/

∑n
j=1 Vjj ratio of components. In Figure 6,

we show the accuracy of CiteSeer and Chameleon as the
ratio of singular values increases, where CiteSeer is robust
to variation in the ratio, while Chameleon performs best
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Table 4. Time consumption of SVD
Cora CiteSeer Chameleon Squirrel Actor

Training time (ms) 4000.01± 52.23 4103.46± 133.77 2818.21± 81.87 6096.43± 403.95 6074.39± 547.34
SVD time (ms) 3.88± 0.08 8.76± 0.05 61.80± 0.24 432.43± 0.70 3.99± 0.02

# of epochs 252 252 252 271 252
SVD time / Training time (%) 0.097 0.21 2.2 7.1 0.066

Table 5. Ablation study of 2) structural principal components
Cora CiteSeer PubMed Squirrel Chameleon

FE-GNN(C) 89.45±0.22 81.96±0.23 89.87±0.49 67.82±0.26 73.33±0.35
FE-GNN(M) 89.09±0.22 81.76±0.23 89.93±0.23 67.90±0.23 73.26±0.38

w/o norm 86.23±1.43 79.32±0.59 90.27±0.49 64.70±1.10 68.25±1.64
w/o S 89.20±0.93 81.95±0.87 89.76±0.46 43.21±0.99 61.54±1.52

w/o Pk(L̂)Xk>0 71.10±1.72 74.38±1.01 86.61±0.54 67.90±0.96 73.35±1.21

w/o Pk(L̂)Xk=0 84.70±1.05 58.60±2.19 85.84±0.45 65.75±0.63 72.61±1.60

at r = 94%. So we use 94% for further experiments. We
provide more SVD results in the Appendix B.6.

At what order is a polynomial sufficient? Around three.
We test a progressive order K of polynomials on Cora and
Chameleon as shown in Figure 4. The performance in
Cora increases from 1 to 3 and decreases slightly, while
Chameleon shows only small changes. This suggests that
order 3 is good enough to achieve near-optimal performance,
which is also an advance by flattening the feature subspaces
compared to deep GNNs. A more comprehensive compari-
son can be found in Appendix B.4.

Is linearity sufficient for constructing features? Yes.
We apply the nonlinear activation function to FE-GNN
and some deep learning training techniques, including
Dropout (Agarap, 2018) and DropEdge (Rong et al., 2020),
to verify the sufficiency of our linear implementation. In
Figure 3, we show the corresponding performance with dif-
ferent drop ratios on four datasets, where both show worse
performance when increasing the drop rate. Therefore, our
linear construction is sufficient for FE-GNN. These results
also argue for more attention to feature space construction
to avoid over-application of deep artifices.

6.3. Efficiency Check

Finally, we examine the efficiency of our proposal, includ-
ing the training time cost and the truncated SVD time. In
Table 2, we collect the training time per epoch (ms) for each
method, which shows that FE-GNN behaves at a compara-
ble time cost to other baselines, even though it bears more
computational cost from the independent feature expression.
Note that the time we report includes graph propagation
for a fair comparison, although FE-GNN can reduce it fur-
ther by constructing the feature space in a preprocessing
manner. In Figure 5 we compare the convergence time for
all methods and observe that FE-GNN consumes the mini-
mum number of training epochs while achieving the highest
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Figure 6. Sensitivity study of truncated SVD

accuracy, which exactly reveals the conclusion of easier
optimization progress from Theorem 4.1. And in table 4,
we show the training time and SVD time (as preprocessing),
from which we find that the SVD time in the total training
time is less than 10%, which confirms the applicability.

7. Conclusion
In this paper, we provide the feature space view to analyze
GNNs, which separates the feature space and the parameters.
Together, we provide a theoretical analysis of the existing
feature space of GNNs and summarize two issues. We
propose 1) feature subspace flattening and 2) structural prin-
cipal components for these issues. Extensive experimental
results verify their superiority.

Limitations Nonlinear cases are not included in our work
and will be considered in future work. Also, the correlation
between the subspaces should be studied more carefully
beyond the linear correlation property; in a sense, the pa-
rameters can be further reduced by introducing reasonable
constraints. Finally, more feature space construction meth-
ods should be discovered for future work.
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A. Derivations and Proofs
A.1. Derivation of equation (7)

Iterate (3) from H(0) = X , we have

H(0) = X (12)

H(1) = α(0)XW
(0)
0 + ÂXW

(0)
1 (13)

H(2) = α(1)XW
(1)
0 + Âα(0)XW

(0)
0 W

(1)
1 + Â2XW

(0)
1 W

(1)
1 (14)

H(3) = α(2)XW
(2)
0 + Âα(1)XW

(1)
0 W

(2)
1 (15)

+ Â2α(0)XW
(0)
0 W

(1)
1 W

(2)
1 + Â3XW

(0)
1 W

(1)
1 W

(2)
1 (16)

· · · (17)

Identify the rule of the iteration, we obtain

H(k) =

l−1∑
i=0

δ
(k)
i + ÂlX

l−1∏
h=0

W
(h)
1 , (18)

where δ
(k)
i is calculate by:

δ
(k)
i = α(k−1−i)ÂiXW

(k−1−i)
0

l−1∏
j=l−i

W
(j)
1 . (19)

We apply (19) on (18) and put α(k−1−i) back to the learnable parameters W (k−1−i)
0 , and we thus have (7).

A.2. Decomposition of BernNet

BernNet. Different from GPRGNN that utilizes Monomial polynomial, each term of Bernstein polynomial contains
another polynomial, such that:

Pk(L̂) :=
1

2K
(
K
k

)
(2I − L̂)K−kL̂k (20)

=
1

2K
(
K
k

)K−k∑
i=0

2i(−1)K−k−i
(
K−k

i

)
L̂K−i (21)

This formulation shows that each element of the BernNet, Pk, contains a k to K-ordered sub-polynomial of L̂, where K is
the order of a given BernNet. Then we merge the same-ordered element in each Pk, resulting in feature subspaces Φt, for
which each term contains the components from P0 to Pt.

Φt =

t∑
j=0

1

2K
(
K
j

)
2K−jL̂t (22)

=

t∑
j=0

1

2j
(
K
j

)
L̂t (23)

And the corresponding parameter matrix is Θt =
∑t

j=0 γ
(j)W1W2.

ChebyNet. Its derivation is almost the same as that for BernNet in feature space. Due to the complex structure of the
ChebShev polynomials, we omit this calculation and present a substitute to represent each term in Table 1, noted in the
footnote. Nevertheless, the rules for the construction of feature spaces hold, namely theorem 3.1, and only different forms
of weight distribution are applied to current GNNs in the context of this paper.
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A.3. Proofs for Proposition 3.1

First we define the linear correlation of two matrices M1,M2 ∈ Rn×d.

Definition A.1. If there exists a weight matrix W ∈ Rd×d such that ||M1W −M2||2 → 0, we consider M2 to be linearly
correlated with M1.

Then we consider this to be a linear regression problem, i.e. M1W = M2. In this expression, each column of W
independently returns each column of M2. Without loss of generality, we take an arbitrary column as an example to give the
proof.

Suppose x ∈ Rn×1 is an arbitrary column of W and b ∈ Rn×1 is the corresponding column of M2 to recover: M1x = b,
forming an overdetermined linear system. It has no exact solution for a perfect recovery if no assumption is made about b,
e.g. b ∈ Span(B). However, its minimum error can be minimized if more entries of b→ 0, since it must have the solution
of 0 for the corresponding part of x.

Then we transfer this case to the two subspaces, i.e. Φt = UΛtUTX and Φi+t = UΛt+iUTX , and we consider the linear
regression problem:

ΦtW = Φt+i (24)

UΛtUTXW = UΛt+iUTX (25)

UTUΛtUTXW = UTUΛt+iUTX (26)

ΛtUTXW = Λt+iUTX, (27)

where Λii ∈ [−1, 1]. In the limiting condition, as i increases, more elements of Λt+i approach 0, then the corresponding
part of the regression problem will be: (ΛtUTX)C,·W = 0 as W → 0 is required as l2-norm regularization for the rest
of the linear regression. Then, as i increases, more equation constraints can be relaxed as a regularization, leaving a less
overdetermined part of the linear system. Moreover, this can be further relaxed by increasing t, because it directly removes
more equations from the system. In other words, the linear correlation W is more likely to be obtained. End of proof.

A.4. Proof for Theorem 3.2

This is quite straightforward. It uses some variations of linear algebra.

Given γaΦaWB + γbΦbWB = B, and the linearly correlation ΦaWa = Φb, then we have,

B = γaΦaWB + γbΦbWB (28)
= (γaΦa + γbΦb)WB (29)
= (γaΦa + γbΦaWa)WB (30)
= Φa(γaI + γbWa)WB . (31)

Therefore, W ′
B = Φa(γaI + γbWa)WB . End of the proof.

A.5. Proof for Theorem 4.1

Given ΦaWB = B, and two linearly correlated spaces Φa,Φb ∈ Rn×d,ΦaWa = Φb.

First, in the case of weight sharing, we solve the following linear system with a parameter matrix W ′
B ∈ Rb×c.

γaΦaW
′
B + γbΦbW

′
B = B (32)

γaΦaW
′
B + γbΦaWaW

′
B = B (33)

Φa(γaI + γbWa)W
′
B = ΦaWB , (34)

Without loss of generality, suppose B is uniquely represented by Φa using WB , then the solution is (γaI+γbWa)W
′
B = WB .

Remember that Wa is given and that it is a nearly determined system.
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Second, we consider an independent reweighting method, which is the same as flattening feature subspaces. In this case, we
solve the following linear system with two parameter matrices W a

B ,W
b
B ∈ Rb×c.

ΦaW
a
B +ΦbW

b
B = B (35)

ΦaW
a
B +ΦaWaW

b
B = B (36)

Φa(W
a
B +WaW

b
B) = ΦaWB (37)

IW a
B +WaW

b
B = WB (38)

This is an underdetermined system, such that (I,Wa)(W
a
B
T ,W b

B

T
)T = WB . Therefore, this independent reweighting is

much easier to have an optimal solution compared to weight-sharing methods. End of proof.

A.6. Proof for Theorem 4.2

We provide the proof in two ways. First, we establish a bound on the minima of the linear repression of the SVD of the
regressor matrix. Part of the proof A.3:

Assume a linear regression problem Mx = b, and M is the regressor matrix with its SVD M = UmSmV T
m .

Mx = b (39)

UmSmV T
mx = b (40)

(UmSmV T
m )−1UmSmV T

mx = (UmSmV T
m )−1b← pseudo− inverse using SVD (41)

UT
mUmx = VmS−1

m UT
mb (42)

In equation (41) we inverse the SVD (Silva, 2020) using the invertible property of UmSmV T
m , UT

mUm = VmV T
m = I . From

the equation (42) we can see that the best approximation of b is b̂ = UmUT
mb if x̂ = VmS−1

m UT
mb. Therefore, if UmUT

m → I ,
then perfect recovery can be further approached.

Then we analyze the change of the regressor matrix between a thin shape feature subspace Φk and a concatenation of
(Φk, UzSz), where Uz, Sz are the truncated singular vectors and corresponding values of structural matrices, e.g. Â.

1 For the case where only Φk is used: Since d << n, the singular vectors of Φk, Uk is column-wise full-rank, resulting
in its n rows being highly correlated. Given this, UkU

T
k constructs a rather dense matrix, far from an identity matrix,

which leads to a huge gap that uses this feature space as a regressor matrix from a perfect recovery.

2 In the concatenation case, when (Φk, UzSz) is used: the singular vector of the concatenation has a permutation
difference from the concatenation of their original singular vectors, e.g,

(Φk, UzSz) = (UkSkV
T
k , UzSz) = (Uk, Uz)DiagCat(Sk, Sz)DiagCat(V T

k , V T
z ) = U ′S′V ′T , (43)

where DiagCat() is the diagonal concatenation of two square matrices. Since U ′TU ′ = I, V ′TV ′ = I and V ′V ′T = I ,
this is a reasonable singular vector, but it is a column-wise permutation of U ′ given the order of S′. Therefore, we
represent the singular vectors and values of (Φk, UzSz) as (Uk, Uz)P and PT (Sk, Sz), where P ∈ R(d+z)×(d+z)

is a unitary permutation matrix. Next, we analyze the unitary property of the singular vector (Uk, Uz)P , i.e., if
(Uk, Uz)P ((UT

k , UT
z )P )T = (Uk, Uz)(U

T
k , UT

z )T → I .

Since d << n, we ignore the influence of UkU
T
z , UzU

T
k and UkU

T
k on the result of (Uk, Uz)(U

T
k , UT

z )T , and the Uz

part dominates the unitary of the singular vectors. Given ||UzSz − L̂||2 < ϵ, and ϵ is a small enough constant, a nearly
perfect recovery of Â is achieved by UzSz . Then the UzU

T
z is likely to be identity, given the sparsity property of the

structural matrix.

Therefore, the second concatenation of (Φk, UzSz) can achieve a minor error in the regression. End of proof.

Note that we make no assumptions about the distribution of the node attributes or labels.
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A.7. More discussion of parameter matrices will be stacked

With a bit of notation abuse, here W is the parameter matrices as Θ in the equation (5).

Proposition A.2. GNNs suppress the parameter space of W , leading to a partial expression of all columns of the entire
feature space and undermining the benefit of adding redundancy to the original one.

Proof. We summarize the constraints on W in current GNNs as the following: i) in the case of MLP-based implementa-
tion (He et al., 2020), all layers share the same W , which forces the layer-wise representation parameters into a single
matrix; and ii) in the case of layer-wise W (Kipf & Welling, 2017) (Li et al., 2019), each Wk+1 is built upon its previous
one, i.e, Wk+1 =

∏k+1
i=0 Wi. We extract the ideas of these constraints into the following example. Suppose a redundant

feature space U ′ = (d0, d1, λ0d0, λ1d1), where d0 ⊥ d1, dk ∈ R2. x ∈ Span{d0, d1} need to be recovered by the elements
in U ′.

We deploy the aforementioned two types of constraint on the undecided variables b0, b1, b2, and b3: i) b2 = b0, b3 = b1, and
ii) b2 = µb0, b3 = µb1, where µ is a trainable scalar. They align with the graph neural networks. We begin by discussing
these two cases.

Representing x in the first case, yields:

x = b0d0 + b1d1 + b0λ0d0 + b1λ1b1 (44)
= (1 + λ0)b0d0 + (1 + λ1)b1d1. (45)

Using the unique representation theorem (Hoffman & Kunze, 2004), we have (1 + λ0)b0 = a0 and (1 + λ1)b1 = a1. Put it
in a matrix multiplication format:

(
1 0 λ0 0
0 1 0 λ1

)
b0
b1
b0
b1

 =

(
a0
a1

)
, (46)

which produces: (
1 + λ0 0

0 1 + λ1

)(
b0
b1

)
=

(
a0
a1

)
. (47)

It holds the closed form that b0 = a0

(1+λ0)
, b1 = a1

(1+λ1)
.

Then, we represent x in the second case:

x = b0d0 + b1d1 + µb0λ0d0 + µb1λ1b1 (48)
= (1 + µλ0)b0d0 + (1 + µλ1)b1d1, (49)

which produces (1 + µλ0)b0 = a0 and (1 + µλ1)b1 = a1. Formulate them in a matrix multiplication:

(
1 0 λ0 0
0 1 0 λ1

)
b0
b1
µb0
µb1

 =

(
a0
a1

)
. (50)

This is a under-determined system and gives b0 = a0

(1+µλ0)
, b1 = a1

(1+µλ1)
, b2 = µa0

(1+µλ0)
, and b3 = µa1

(1+µλ1)
.

We look into the values of bk to get the expressivity of the base D. Given the extreme case where λ0 → 0, the appended λ0d0
is constrained while the original one keeps expressing. On the contrary, when λ0 →∞, the original base d0 is constrained
by a0

(1+λ0)
or a0

(1+µγ0)
while the appended one expresses. Besides, for the second case, when µ → 0, the corresponding

bases are limited by b2, b3 → 0. Consequently, both cases lead to partial expression of the the whole feature space.

Finally, compared these two cases, i.e., (60) and (63) to (56), we find that they merely restrict the parameter space of
(b0, b1, b2, b3)

T by either sharing the values of each other or enforcing their linear dependence. Therefore, restricting the
parameter space in these two cases leads to partial expression of the the whole feature space. This proof is completed.
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A.8. The column-wise normalization in FE-GNN and in current GNNs

Does the column-wise normalization matter? It matters if the node scale is not huge. As shown in Table 5, we find
that column-wise normalization works well in most cases, except for PubMed. This may be because the large node scale of
PubMed causes the value of the normalized feature space to be tiny.

Then, we include some 10-order polynomial functions to see the different responses of column-wise normalization of these
models. Column-wise normalization is defined as forcing ∥F·i∥2 = 1, where we take F as the concatenation of the feature
space. We extend this to an arbitrary k times ∥F·i∥2 = 1, i.e., ∥F·i∥2 = k, which is equivalent to measuring the degree of
consistency of each ∥F·i∥2. Therefore, we report the standard variance of {∥F·i∥2; i = 1, 2, · · · }, and the smaller the value,
the greater the response of the column-wise normalization.

Table 6. The column-wise normalization response for different polyonmials on Cora

ChebyShev polynomial Bernstein polynomial Monomial polynomial

Cora 3.8246 4.7044e-06 0.4947
CiteSeer 34.6432 0.0023 24.4430

Chameleon 660.4274 0.7308 1039.2469
Squirrel 245.6538 0.7063 700.9365

Chebshev, Bernstein, and Monomial polynomials are compared in Table 6. The Bernstein polynomial produces the least
variance, indicating that it it promotes the most atomicity compared to other polynomials. This observation is consistent
with the narrative in the original BernNet paper (He et al., 2021), where the authors claim that the Bernstein polynomial is
more numerically stable than other polynomial functions.

B. Experimental settings
B.1. Dataset details

The datasets are concluded in Table 7, with licenses. 3 4 5 Cora, CiteSeer, and PubMed are commonly used homophilic
citation networks (Yang et al., 2016). Computers and Photo are homophilic co-bought networks from Amazon (Shchur et al.,
2018). For heterophilic datasets, we utilize hyperlinked networks Squirrel and Chameleon from (Pei et al., 2020), and Actor,
a subgraph from the film-director-actor network (Rozemberczki et al., 2021). PyG6 are employed to get these data. Each
datasets are split into three parts using random selection: 60% as the training set, 20% as the validation set, and 20% as the
test set. We set these datasets to undirected graphs as we assumed in the Preliminaries.

Table 7. Statistics of Datasets
Cora CiteSeer PubMed Computers Photo Squirrel Chameleon Actor

|V| 2,708 3,327 19,717 13,752 7,650 5,201 2,277 7,600
|E| 5,278 4,552 44,338 245,861 119,081 217,073 36,101 30,019

# Features 1433 3703 500 767 745 128 128 932
h(G) 0.81 0.74 0.80 0.78 0.83 0.22 0.23 0.22
d(G) 1.95 1.37 2.25 17.88 15.57 41.74 15.85 3.95

We report the average accuracy (micro F1 score) in the classification task with a 95% confidence interval in all the tables
and figures. For each result, we run 100 times on 10 random seeds. We employ Adam for optimization and set the early
stopping criteria as a warmup of 50 pluses patience of 200 for a maximum of 100 epochs. We conduct all the experiments
on the machine with NVIDIA 3090 GPU (24G) and Intel(R) Xeon(R) Platinum 8260L CPU @ 2.30GHz.

3Chameleon, Squirrel: https://github.com/benedekrozemberczki/MUSAE/blob/master/LICENSE
4Cora, CiteSeer, PubMed, Actor: https://networkrepository.com/policy.php
5Computers, Photo: https://github.com/shchur/gnn-benchmark/blob/master/LICENSE
6https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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B.2. Searching space for baselines hyper-parameters

For FE-GNN, we turn the following hyper-parameters by the grid search.

• Learning rate: {0.01, 0.05, 0.1}

• Weight decay: {0.0005, 0.001, 0.005, 0.01, 0.02, 0.05}

• |S| for homophilic graphs: {0, 10, 50, 100, 200, 500, 1000, 2000}

• |S| for heterophilic graphs: {500, 600, 700, 800, 900, 1000, 1500, 2000}

• Suggested |S|: the whole hundred from the 94% singular values

• Hidden size: 64

• Ranks k of the polynomial Pk(L̂): {0, 1, 2, 3}

Table 8. The universally used hyper-parameters for FE-GNN.

lr weight decay |S| hidden k

Cora 0.01 0.01 50 64 3
CiteSeer 0.01 0.02 100 64 1
PubMed 0.01 0.005 100 64 3

Computers 0.01 0.0005 1000 64 3
Photo 0.01 0.0005 500 64 3

Squirrel 0.01 0.001 2000 64 3
Chameleon 0.01 0.0005 700 64 3

Actor 0.01 0.001 10 64 0

Table 9. The turned hyper-parameters for the baselines.
lr weight decay dropout hidden layers/ranks others

MLP {0.01, 0.05} 0.0005 {0.5, 0.6, 0.8} 64 2 -

GCN {0.01, 0.05} 0.0005 {0.5, 0.6, 0.8} 64 {2,3} -
GAT {0.01, 0.05} 0.0005 {0.5, 0.6, 0.8} 64 {2,3} heads:{1,8}

GraphSAGE {0.01, 0.05} 0.0005 {0.5, 0.6, 0.8} 64 {2,3} -
GCNII {0.01, 0.05} 0.0005 0.5 64 {2,4,10} α, θ:{0.1, 0.2, 0.5, 0.8, 0.9}
APPNP {0.01, 0.05} 0.0005 0.5 64 {2,3,4,5,8} α:{0.1, 0.2, 0.5, 0.8, 0.9}
ChebNet {0.005, 0.01, 0.05} {0.0, 0.0005} {0.1, 0.2, 0.5} 64 10 -

GPRGNN {0.005, 0.01, 0.05} {0.0, 0.0005} {0.1, 0.2, 0.5} 64 10 -

BernNet {0.005, 0.01, 0.05} {0.0, 0.0005} {0.1, 0.2, 0.5} 64 10 prop drate:{0.001,0.02,0.01,0.05}
prop lr:{0.0, 0.1, 0.2, 0.5, 0.6, 0.7, 0.9}

ADA-GNN {0.05, 0.01} {0.0005, 0.00005} {0.2,0.5,0.8} 64 {2,5,10} s:{1,9,19,29}
GNN-LF 0.01 0.005 0.5 64 10 α, µ: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9}
GNN-HF 0.01 0.005 0.5 64 10 α, β: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9}

Table 8 represents the hyper-parameters searched for the baselines used in our experiments. We prioritize their original
released code repository, and the ranges of turning parameters are according to their papers.

• MLP, GCN, GAT GraphSAGE, APPNP, GCNII are implemented with PyG. 7

• ChebNet is implemented according to the code style of BernNet/GPRGNN.

• GPRGNN is implemented according to its original code repository. 8

7https://github.com/pyg-team/pytorch geometric
8https://github.com/jianhao2016/GPRGNN

17



Feature Expansion for Graph Neural Networks

• BernNet is implemented according to its original code repository. 9

• ADA-UGNN is implemented according to its original code repository. 10

• GNN-HF/LF are implemented according to its original code repository. 11

B.3. Other transformations for compacting graph structure information

We add other possible transformations to extract compacted information from the normalized adjacency matrix Â. We
compare them in detail:

• KernelPCA: a non-linear kernel PCA method using the Radial Basis Function (RBF).

• FastICA: a fast version of Independent Component Analysis, which is a linear method.

• IsoMap: a nonlinear dimensionality reduction method based on spectral theory.

• LINKX (Lim et al., 2021): an MLP architecture for graph-structured data that includes the graph adjacency matrix as
part of the feature space. Due to its inferior performance compared to other baselines, such as GCNII, we exclude it
from our main comparisons in the main context.

All of them can be easily implemented using the sklearn package. As shown in the table 10, our chosen truncated SVD
has comparable performance and we stick with it for further analysis in the main text. We regard further investigation of the
complex extraction methods as future work, which is beyond the scope of this paper.

Cora CiteSeer Chameleon Squirrel Photo

None 89.20±0.93 81.95±0.87 61.54±1.52 43.21±0.99 -
Truncated-SVD 89.45±0.22 81.96±0.23 73.33±0.35 67.90±0.23 95.45±0.15

KernelPCA 88.61±0.82 81.99±1.11 73.66±1.45 68.79±1.13 95.36±0.51

FastICA 88.77±1.09 81.92±1.00 73.32±1.37 68.12±0.97 95.30±0.22

IsoMap 88.54±0.86 82.07±1.15 67.00±1.54 54.47±0.87 94.88±0.34

LINKX - - 68.42±1.38 61.81±1.80 -

Table 10. Comparing the transformations in compacting the normalized adjacency matrix

B.4. Results of FE-GNN using different polynomial orders

In the main text, we implement the polynomial order K in the range of three based on the empirical observations, e.g.
Figure 4. Here we provide more comprehensive results for different choices of K.

Table 11 shows that we can find better K in a wider range, although the improvement may be marginal.

K 4 5 6 7 8 9

Cora 89.60± 0.30 89.44± 0.25 89.52± 0.26 89.35± 0.24 89.34± 0.22 89.08± 0.25
CiteSeer 80.66± 1.09 81.15± 1.06 81.11± 0.89 80.83± 1.07 80.54± 1.03 80.10± 1.02

Computers 91.01± 0.46 90.90± 0.51 90.98± 0.42 90.77± 0.39 90.82± 0.41 90.45± 0.32
Chameleon 73.42± 0.40 73.69± 0.43 73.62± 0.43 73.68± 0.42 73.80± 0.39 73.75± 0.38

Squirrel 68.26± 0.78 68.41± 0.88 68.55± 0.82 68.83± 0.68 68.92± 0.76 69.06± 0.93

Table 11. Comparison of different K within 10

9https://github.com/ivam-he/BernNet
10https://github.com/alge24/ADA-UGNN
11https://github.com/zhumeiqiBUPT/GNN-LF-HF
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Figure 7. More results of SVD

Table 12. Comparisons of FE-GNN on public splits

Cora CiteSeer PubMed

FE-GNN (Ours) 89.13± 1.30 79.13± 1.54 89.88± 0.64
GCNII 88.37± 1.25 77.33± 1.48 90.15± 0.43

B.5. Results of FE-GNN on public splits

We additionally add experiments of FE-GNN on the public splits from Geom-GCN (Pei et al., 2020), as shown in the
following Table 12. We can see that our proposal still achieves comparable performance. However, the linearity of FE-GNN
may constrain its capability in few-shot settings, which is also observed in SGC (Wu et al., 2019b).

B.6. More about SVD

In the main test, we append the results to CiteSeer and Squirrel to better verify the importance of the principal components
in extracting information from the adjacency matrix in Sj . As shown in Figure 7 below, we find the exact results we shared
in section 6. Cora and CiteSeer both 1) have a smoothing distribution of the singular values and 2) the information from the
graph structure is less important than the node features and their interaction, therefore the change in performance is more
stable with the introduction of more principal components. On the other hand, Chameleon and Squirrel 1) have a more
centralized distribution of singular values and 2) graph structure is more important information, resulting in a tendency of
performance to first increase and then decrease. In general, we can achieve satisfactory results on both types of data sets
when 94% of the principal components are included.

Here, we offer more intuition about the use of principal components. The principal components project and summarize
larger correlated variables into smaller and more interpretable axes of variation. It is ideal for Sj to embody the graph
structure information from the adjacency matrix because the adjacency matrix is sparse and high-dimensional, but each
node is topologically correlated. However, the different components must be distinct from each other to be interpretable,
otherwise, they just represent random directions, which leads to noise.

B.7. Comparisons of structural principal components to a random/trainable bias term

To further evaluate the contribution of the proposed SVD space - we would like to emphasize that the SVD space encodes
the structure information of the adjacency matrix, which should also be a critical character of GNNs’ feature space. To
verify that this structure information is indispensable and cannot be replaced by a structure-free matrix, we provide the
following two experiments, both of which perform the replacement on the SVD part SWs, where S is the fixed structural
principal components matrix and Ws is the corresponding learnable weight matrix.

The first experiment, labeled ’CWc (random/orthogonal)’, replaces the structural components S as a random matrix C with
the corresponding weights Wc to be learned. The other setting, denoted ’C (random/orthogonal)’, replaces the sum SWs as
a randomly initialized bias term C to be learned. For a fair comparison with the orthogonal SVD S, we add orthogonal
initialization variants to both experiments, denoted ’(orthogonal)’. And the ’(random)’ suffix represents the ’xavier normal’
initialization. The results are shown in Table 13; it shows both C and CWc perform worse than our proposal, especially on
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Table 13. Comparisons of structural principal components and learnable bias

Cora CiteSeer Chameleon Squirrel Computers Photo

FE-GNN (ours) 89.45± 0.22 81.96± 0.23 73.33± 0.35 67.90± 0.23 90.79± 0.08 95.45± 0.15
FE-GNN w/o S 89.20± 0.93 81.95± 0.87 61.54± 1.52 43.21± 0.99 88.48± 0.80 94.94± 0.79
CWc (random) 89.07± 1.17 81.54± 1.38 54.93± 1.89 43.13± 1.37 89.54± 0.83 94.56± 1.05

CWc (orthogonal) 89.31± 1.20 81.65± 1.34 55.96± 2.00 36.87± 1.09 88.62± 0.64 94.87± 0.73
C (random) 89.03± 1.34 80.83± 1.20 61.03± 2.18 43.32± 1.25 88.85± 0.89 93.46± 3.55

C (orthogonal) 89.16± 1.28 80.99± 1.24 61.17± 2.09 43.09± 1.34 88.94± 0.78 94.84± 0.79

Table 14. Comparisons of FSGNN on random 60/20/20 splits

Cora CiteSeer PubMed Chameleon Squirrel

FE-GNN (Ours) 89.45± 0.22 81.96± 0.23 90.79± 0.08 73.33± 0.35 67.90± 0.23
FSGNN 87.01± 1.61 79.45± 1.78 90.71± 0.68 66.33± 1.04 54.62± 1.57

the heterophilic Chameleon and Squirrel datasets, which justifies our discussion of the structural principal components.

B.8. More results of FSGNN (Maurya et al., 2021)

We append some experimental results of FSGNN; we adopt the grid search on the range that their original paper reported
(Table 5 of (Maurya et al., 2021)), and the results are shown in Table 14. We could see that it cannot achieve better
performance on both homophilic and heterophilic datasets.

C. Additional Feature Space Perspective Explanations
We give a simple illustration from the point of view of using graph structure data, where node attributes and graph structure
are the only sources of information. We can think of a pie chart, as shown in Figure 8, where the proportions in blue, yellow,
and green colors represent node attributes (e.g., X), graph structure (e.g., S), and their combination (e.g., LX)’s contribution
to the overall expressiveness of the feature space. Under different conditions of the graph, each part has different proportions.
For example, if the graph is more homophilic, then the combination of the part (in green) contributes more. And if the
dimensionality of node attributes is limited, then the proportion of node attributes (in blue) is compact. In general, the
task of graph representation learning is to take full advantage of all these three pieces of information. Therefore, from a
feature space view, it naturally treats each piece of information equally and aims to construct an extensive feature space that
includes all three pieces in the pie chart. In addition, it shows that FE-GNN should be less effective when d→ n, because
the feature space is essentially adequate.

However, traditional GNN models consider the graph structure as an information path to do message-massing, i.e., propose
to aggregate more hops from neighbors. Since they are restricted to avoid that the graph structure is actually another
information source, they could only include two parts in the piechart where the individual graph structure (in yellow) is
missing. Therefore, if the node attributes are limited and the graph obeys heterophily, only the feature space view can do a
good job by including the graph structure as an individual information source.

Furthermore, the difference in feature space between the homophilic and heterophilic graphs could be: the combination part
(in green) of the homophilic pie chart is much larger than that of the heterophilic one. This difference is particularly strong
when we look at another part of the feature subspace - the node attributes. The proportion of node attributes X ∈ Rn×d (in
blue) of the pie chart depends on the dimensionality d. If d→ n, (we reasonably assume that the high-dimensional node
attributes are sparse here), then the node attributes themselves could form an extensive feature space, making the proportion
large and the individual graph structure less important. However, if both the graph obeys heterophily and the node attributes
are limited, then the remaining feature subspace of the graph structure (in yellow) is so important; this is also consistent
with our ablation study in Table 5, especially for Chameleon and Squirrel.
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Homophily Heterophily

d << n

d -> n

An Example of the Proportions of GNNs’ Feature subspaces

Node attributes Graph structure The combination of both

The scenario 
when structural 
principal 
components work

Figure 8. Example diagram of feature space
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