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Abstract

We prove that the classic REINFORCE stochastic policy gradient (SPG) method
converges to globally optimal policies in finite-horizon Markov Decision Processes
(MDPs) with any constant learning rate. To avoid the need for small or decaying
learning rates, we introduce two key innovations in the stochastic bandit setting,
which we then extend to MDPs. First, we identify a new exploration property of
SPG: the online SPG method samples every action infinitely often (i.o.), improving
on previous results that only guaranteed at least two actions would be sampled i.o.
This means SPG inherently achieves asymptotic exploration without modification.
Second, we eliminate the assumption of unique mean reward values, a condition
that previous convergence analyses in the bandit setting relied on, but that does
not translate to MDPs. Our results deepen the theoretical understanding of SPG in
both bandit problems and MDPs, with a focus on how it handles the exploration-
exploitation trade-off when standard optimization and stochastic approximation
methods cannot be applied, as is the case with large constant learning rates.

1 Introduction

Policy gradient (PG) methods constitute one of the most popular classes of algorithms for reinforce-
ment learning (RL). In the PG paradigm, a learner acts according to a parameterized policy; the
expected return is directly optimized by computing its gradient with respect to the policy parameters
and performing stochastic gradient ascent. PG methods have played a key role in the advancements
of deep RL (Lillicrap et al., 2019; Schulman et al., 2017a,b): combined with deep neural networks,
PG algorithms have shown strong empirical performance across many domains, including robotics
Akkaya et al. (2019), games Vinyals et al. (2019), and large language model training (Rafailov et al.,
2024; Ouyang et al., 2022).

Despite PG methods’ conceptual simplicity and rich set of practical applications, known theoretical
guarantees on their performance come with restrictive assumptions. In particular, convergence proofs
either require oracle access to the exact gradient (Liu et al., 2024; Agarwal et al., 2020), which is akin
to demanding that the reward function and dynamics of the environment are known to the learner,
or they impose harsh constraints on the learning rate used for stochastic gradient ascent (Mei et al.,
2024b; Klein et al., 2024). Both of these assumptions are violated in typical applications. In the
stochastic setting, where the rewards and transition probabilities are unknown and must be estimated
from interaction with the environment, convergence of the classic REINFORCE algorithm (Williams,
1992) has only been shown under the assumption that the learning rate is either sufficiently small
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(Klein et al., 2024) or decaying (Zhang et al., 2020). In this work we study REINFORCE with the
standard softmax parameterization, and narrow the gap between theory and practice by providing the
first proof in the stochastic setting that REINFORCE will globally converge to an optimal policy in
tabular finite-horizon Markov Decision Processes (MDPs) with any constant learning rate. Along the
way we show new results about the stochastic gradient bandit algorithm (Sutton and Barto, 2018;
Mei et al., 2024a), which is the special case induced by applying REINFORCE to a bandit problem.
Specifically, we show that the stochastic gradient bandit algorithm automatically achieves sufficient
exploration for global convergence with an arbitrary constant learning rate; in doing so we remove a
key assumption in prior work, and thus resolve an open problem posed by Mei et al. (2024a). Our
results in the bandit setting extend to a more general “nonstationary bandit problem”, where the
reward function is allowed to drift mildly across timesteps. This extension is then embedded into the
RL setting where, with some additional arguments, we derive the convergence of REINFORCE. In
summary, the main contributions of this work are threefold:

i) We show that the stochastic gradient bandit algorithm will select every arm infinitely
often (i.o.) in any bandit problem and with any learning rate. We find it surprising that
this strong property emerges from such a simple algorithm, without any explicit hacks to
encourage exploration. We obtain a counterpart result in the RL setting, but the bandit case
is independently interesting, and also critical for our second contribution:

ii) In the bandit setting we remove the central assumption of Mei et al. (2024a), that no two
arms have the same expected reward, and prove that the stochastic gradient bandit algorithm
still converges to an optimal policy. For bandits this assumption is impossible to verify
without access to the true reward function (at which point the bandit problem is already
solved), but more importantly it renders the extension to RL virtually impossible.

iii) In RL we provide the first proof that REINFORCE converges with large learning rates in the
stochastic setting. This requires the first two contributions: the exploration result is applied
directly to RL, and the bandit result is extended to a nonstationary bandit problem that can
be embedded into an MDP.

Positioning our work, to our best knowledge, we note that existing convergence results for stochastic
policy gradient methods typically suffer from one of the following drawbacks: (i) they rely on
decaying learning rate schedules for convergence guarantees (Zhang et al., 2020; Ding et al., 2022,
2024; Mei et al., 2023), a requirement not aligned with the constant rates commonly used in practice;
(ii) results for constant learning rates (Mei et al., 2024b; Klein et al., 2024) provide guarantees only
for rates considered impractically small; or (iii) they are restricted to the simplest bandit settings
(Mei et al., 2024a), limiting their applicability to RL. Filling this gap, our work provides rigorous
convergence guarantees for stochastic PG (SPG) with practical learning rates in RL settings, without
requiring uniqueness of the optimal policy.

2 Challenges of Non-Unique Solutions

2.1 Non-Uniqueness of Policies in RL

In standard optimization, it is well known that gradient-based algorithms can exhibit non-convergence
of their parameters (or iterates) when multiple optimal solutions exist (Absil et al., 2005). To avoid
this challenge, existing results for the SPG algorithm in the K-armed bandit setting (Mei et al.,
2024b,a) rely on the following assumption, which implies the uniqueness of the globally optimal
policy.

Assumption 2.1 (True mean reward has no ties). For all a, b ∈ [K], if a ̸= b, then r(a) ̸= r(b).

In Assumption 2.1, [K] := {1, . . . ,K} denotes the set of K arms, and r(a) is the true mean
reward for arm a ∈ [K]. Assumption 2.1 implies that there is a unique optimal arm, which we
denote a∗ := argmaxa∈[K] r(a). This results in a unique one-hot globally optimal policy π∗ with
π∗(a∗) = 1 and π∗(a) = 0 for all a ̸= a∗.

However, extending to the RL setting presents the challenge of multiple optimal policies, a scenario
which is not prevented by the straightforward extension of Assumption 2.1 to each state, since
Assumption 2.1 only constrains immediate rewards. In contrast to bandits, RL involves sequential
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(a) Tree MDP (b) Chain MDP

Figure 1: Classical examples of finite-horizon MDPs.

decisions where different action sequences (trajectories) can yield the same maximal cumulative
reward. This situation is common in tasks like navigation with alternative optimal paths. As a specific
example, consider the tree-structured MDP shown in Fig. 1a (state space S = {s1, . . . , s13}, action
space A = {a1, a2, a3}). Here, both s1 → s2 → s5 and s1 → s3 → s8 are optimal paths with total
reward 3. Because previous bandit convergence analyses (Mei et al., 2024b,a) critically rely on the
assumption of a unique optimal policy, they cannot be directly applied to RL problems exhibiting
such non-uniqueness.

2.2 SPG Policy Non-Convergence in the Presence of Ties

On the other hand, Mei et al. (2024b, Remark 5.3) conjectured that the SPG algorithm could still
achieve convergence even without Assumption 2.1. Their conjecture was based on the idea that
SPG has a “self-reinforcing” property, causing the probability of only one arm to eventually become
dominant and converge to 1, thus resulting in a stationary one-hot optimal policy as t→∞. That
is, πt(a

∗) → 1 for only one optimal arm as t → ∞, almost surely, even when multiple optimal
arms exist. If this behavioral property holds, the latter part of the convergence proof can utilize the
contradiction-based arguments presented in (Mei et al., 2024b, Theorem 5.1, Claim 2).

Our first major finding, supported by both empirical evidence and theoretical analysis, is that the
aforementioned conjecture is incorrect: SPG-like algorithms do not necessarily converge to a single
policy in the presence of multiple solutions. To demonstrate this, we designed a bandit experiment
with two optimal arms (mean 0.2) and one suboptimal arm (mean−0.1). Using the stochastic gradient
bandit algorithm (Mei et al., 2024a, Algorithm 1) on a softmax policy (θ0 := 0, where θt are the policy
parameters at time t) for 105 iterations (η ∈ {1, 10}), Fig. 2a reveals that, while the total probability
of optimal arms converges to 1 (

∑
a∈A∗ πt(a)→ 1), the probabilities of individual optimal arms (1

and 2) display non-stationary behavior (e.g. arm 2 fluctuates significantly with η = 1). We observed
analogous behavior in a similar experiment on a tree-structured MDP using REINFORCE (Williams,
1992) (η ∈ {0.1, 0.5}), as shown in Fig. 2b where optimal action probabilities from state s1 fail to
converge to a unique action. More importantly, we prove the following theorem, rigorously justifying
the phenomena observed in simulations.

Proposition 2.2 (Non-Stationary Convergence). In the bandit setting, where the mean reward has
ties, using Algorithm 1 with any η ∈ Θ(1), for all a ∈ A∗,

lim sup
t

θt(a) =∞ a.s. (1)

In other words, (πt)t≥0 does not converge to any one-hot policy.

Proof sketch 1. First, we analyze the dynamics of (θt(a))t≥0 induced by Algorithm 1. By (Bramson
et al., 2004; Davis, 1969, Theorem 1.4), this process must either converge or fluctuate unboundedly.
Because it can be shown that

∑
t≥0 πt(a)(1 − πt(a)) = ∞, the total variance of the increments

θt+1(a)− θt(a) is not summable. This implies non-convergence.

2.3 Limitations of Standard Analysis

Global convergence for SPG algorithms is typically established through a two-stage proof: (i)
establish convergence to a stationary point, and (ii) demonstrate (often by contradiction) that the
attained stationary point is globally optimal. This methodology originates from seminal work on PG
in the exact gradient setting (Agarwal et al., 2020, Theorem 5.1).
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Figure 2: Fig. 2a shows that the total probability of optimal arms converges to 1, but the probabilities
of individual optimal arms are non-stationary (i.e. πt(a1) oscillates). Fig. 2b shows similar non-
stationary behavior for optimal actions in an RL setting with multiple optimal trajectories.

Our findings demonstrate two key points: (i) ties in trajectory or policy value can exist in RL settings
regardless of assumptions on immediate rewards; and (ii) the typical two-stage proof strategy for
arguing global convergence of SPG cannot be directly extended to RL. However, as shown in the next
section and suggested by the above simulations, convergence results can be obtained even with ties,
but this requires new analysis. This is primarily because our approach needs to carefully reason about
the per-timestep expected progress in distinguishing optimal from suboptimal actions despite the
presence of these ties. Specifically, we prove that the learned policy eventually converges to assign all
probability mass to the optimal set (a form of “generalized one-hot policy”), i.e.

∑
a∈A∗ πt(a)→ 1

as t→∞.

3 An Illustrative Bandit Setting

This section presents new insights into the exploration properties of the SPG algorithm. We first
analyze the simplest bandit setting for illustration and then extend the results to RL.

3.1 Stochastic Gradient Bandit

We consider a stochastic multi-armed bandit problem with K ≥ 2 arms and rewards bounded in
[−R,R] (where R > 0). At each iteration t ≥ 1, the learner selects an arm at ∈ [K] := {1, . . . ,K}
and observes a reward rt sampled from a fixed distribution Pat

∈ M1([−R,R]).1 The true mean
reward for arm a ∈ [K] is r(a) :=

∫ R

−R
xPa(dx). The set of optimal arms is denoted A∗ :=

argmaxa∈[K] r(a).

The learner aims to find a policy π ∈M1([K]) that maximizes expected reward. We use the softmax
parameterization over RK : for θ ∈ RK and a ∈ [K],

πθ(a) :=
exp(θ(a))∑

b∈[K] exp(θ(b))
. (2)

The optimization problem the learner is solving thus has the objective

max
θ∈RK

π⊤
θ r . (3)

We study the stochastic gradient bandit algorithm (Algorithm 1), which performs stochastic gradient
ascent on Eq. (3) (Sutton and Barto, 2018; Mei et al., 2024b). Given θ0 and learning rate η > 0 the
algorithm iteratively updates parameters using the information it receives from single interactions.
The stream of parameters generated will be referred to as (θt)t≥0, and we will use πt := πt for the
policy used to select at+1.

3.2 A Novel Exploration Lemma

We detail the reason why existing results (Mei et al., 2024a) do not generalize, even to bandit settings
with reward ties. Mei et al. (2024a, Lemma 2) establishes an exploration property for SPG, showing

1Where M1(S) denotes the collection of probability distributions over the set S.
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Algorithm 1 Stochastic gradient bandit algorithm

1: input θ0 ∈ RK , η > 0
2: for t ≥ 0 do
3: Select at+1 ∼ πt, and observe rt+1 ∼ Pat+1

.
4: θt+1(at+1)← θt(at+1) + η(1− πt(at+1))rt+1.
5: for a ∈ [K], a ̸= at+1 do
6: θt+1(a)← θt(a)− ηπt(a)rt+1.
7: end for
8: end for

that at least two distinct arms are sampled i.o. Their subsequent convergence proof (Mei et al., 2024a,
Theorem 2) relies on the argument that at least one of these i.o. sampled actions must be optimal.
However, in the presence of reward ties, it is possible for two actions to share the same reward value
(the sub-optimal action’s interval from (Mei et al., 2024a, Eq. (15)) no longer exists). Consequently,
the arguments that construct a contradiction to show “at least one of these i.o. sampled actions must
be optimal” are no longer valid.

Given the failure of existing approaches with reward ties, new analytical results are required for
convergence proofs, even in the bandit setting. Our second key finding is a generalized exploration
property for SPG: we establish that despite reward ties, every arm is sampled i.o. To formalize this,
we define Nt(a) as the number of times action a ∈ [K] has been sampled up to iteration t ≥ 1, i.e.

Nt(a) :=

t∑
s=1

I{as = a}. (4)

The asymptotic count is N∞(a) := limt→∞ Nt(a), which is either finite or infinite. If N∞(a) <∞,
action a is only sampled finitely many times; if N∞(a) =∞, action a is sampled i.o.
Lemma 3.1 (Bandit Exploration). Using Algorithm 1 with any constant learning rate η ∈ Θ(1),
every arm is almost surely played infinitely often. That is, ∀a ∈ [K] : N∞(a) =∞ almost surely.
Proof sketch 2. For any arm a′ ∈ [K] such that N∞(a′) < ∞, the Extended Borel-Cantelli
(Breiman, 1992) Lemma implies

∑∞
t=0 πt(a

′) < ∞. Since such an arm is sampled only finitely
many times, its parameter θt(a

′) remains bounded, supt |θt(a′)| < ∞, and its probability con-
verges to zero: limt→∞ πt(a

′) = 0. Without loss of generality, let a ∈ [K] be an arm with
N∞(a) <∞. The condition limt→∞ πt(a) = 0 requires that some parameter grows unboundedly,
i.e. limt→∞ maxa′∈[K] θt(a

′) = ∞. To preserve the total probability mass, this necessitates that
some parameter must diverge to negative infinity: limt→∞ mina′∈[K] θt(a

′) = −∞. Thus, there
exists at least one arm b ∈ [K] such that lim inft→∞ θt(b) = −∞. Furthermore, since the sum of
probabilities for finitely sampled arms is finite, any arm b with lim inft→∞ θt(b) = −∞ must be
sampled infinitely often (N∞(b) =∞).

We use these properties of arms a (finitely sampled, bounded parameter) and b (infinitely sampled,
parameter unbounded below) to construct a proof by contradiction. The fact that arm b is sampled
infinitely often despite its parameter repeatedly dropping to arbitrarily low values implies that θt(b)
must periodically increase to become larger than θt(a) (and other bounded parameters) infinitely
often. Consider the event Ct := {θt(b) < θt(a), at = b}. We first show that if θt(b) ≤ θt(a) and the
parameter update causes θt+1(b) > θt+1(a), this implies at = b. We then prove that the event Ct

occurs only a finite number of times. However, for arm b to be sampled infinitely often (N∞(b) =∞)
while lim inf θt(b) = −∞ and θt(a) is bounded, it must be sampled infinitely often during periods
when θt(b) < θt(a). This contradicts the finding that Ct occurs only finitely often, proving our initial
assumption (N∞(a) <∞ for some arm a) is false.

3.3 Convergence Without the Assumption of Unique Rewards

Our new result about the exploration of SPG in the bandit setting, Lemma 3.1, allows us to remove an
assumption necessary for the results of prior work (Mei et al., 2024a,b), namely that there are no ties
in the true mean rewards of the arms (Assumption 2.1). However, this requires new analysis beyond
the exploration proof. In this section we sketch out the steps used to show our central result in the
bandit setting: that Algorithm 1 converges almost surely regardless of the learning rate.
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Theorem 3.2 (Convergence in Bandits). In the bandit setting of Section 3.1 without Assumption 2.1,
Algorithm 1 with any η ∈ Θ(1) almost surely converges to playing optimal arms,

lim
t→∞

∑
a∈A∗

πt(a) = 1 a.s. (5)

The proof of this theorem breaks into two propositions, the first of which being that the sum of
parameters of optimal arms tends to infinity (excluding the trivial case where all arms are equally
good and Section 3.1 holds vacuously).
Proposition 3.3 (Infinite Optimal Parameters). If A∗ ̸= [K] then limt→∞

∑
a∈A∗ θt(a) =∞ a.s.

The second proposition states that all finite arms individually have their parameters diverge to negative
infinity.
Proposition 3.4 (Negative Infinite Suboptimal Parameters). For every suboptimal arm b ∈ [K] \ A∗,
limt→∞ θt(b) = −∞ a.s.

Equipped with these two propositions, the proof of Theorem 3.2 becomes straightforward enough
that we need not resort to a proof sketch:

Proof of Theorem 3.2. If A∗ = [K] then
∑

a∈A∗ πt(a) = 1 for all t ≥ 0 and the result
holds vacuously. Henceforth suppose A∗ ̸= [K]. We have that limt→∞

∑
a∈A∗ πt(a) =

1− limt→∞
∑

b∈[K]\A∗ πt(b), so it suffices to show that, for all b ∈ [K] \ A∗, limt→∞ πt(b) = 0.
To this end fix b ∈ [K] \ A∗. We have the following bound from expanding the definition of πt:

lim
t→∞

πt(b) = lim
t→∞

exp(θt(b))∑
a∈[K] exp(θt(a))

(Eq. (2)) (6)

≤ lim
t→∞

exp(θt(b))∑
a∈A∗ θt(a)

(exp(x) ≥ x , A∗ ⊂ [K]) (7)

=
limt→∞ exp(θt(b))

limt→∞
∑

a∈A∗ θt(a)
. (8)

Proposition 3.4 implies that the upper limit in Eq. (8) approaches 0 and Proposition 3.3 implies that
the lower limit goes to infinity. Thus limt→∞ πt(b) = 0, concluding the proof.

The proofs of Propositions 3.3 and 3.4 are long and technical, and we refer the reader to the appendix
for the details.

4 Reinforcement Learning

The results in RL depend on the results of Section 3, but in order to apply them we will need to
port them to a slightly generalized bandit problem. We describe the necessary modifications in the
following subsection, before proceeding to MDPs.

4.1 Nonstationary Bandit Setting

We still consider a K-armed bandit, with K ≥ 2 and rewards in [−R,R]. The interaction between
the learner and the environment is much the same as in Section 3.1, with the exception that now the
reward distributions are allowed to change across timesteps. That is, we change out the distribution
Pa ∈ M1([−R,R]) of rewards given that arm a is played with a sequence of such distributions
(P t

a)t≥1, and the reward at each iteration t ≥ 1 is sampled from P t
at
∈M1([−R,R]); we also allow

the expected rewards given that an arm is played to vary over time, so r(a) becomes (rt(a))t≥1, and
we have E[rt|at = a] = rt(a).

However, we constrain the setting in two ways. First, we suppose that there exists a filtration
(Ft)t≥0 such that P t, rt are Ft−1-measurable and at, rt are Ft-measurable. Intuitively, Ft contains
the information available to the learner at iteration t, and this assumption means that the reward
distributions (and thus their means) may only depend on the arms played and rewards observed

6



up to the current timestep, as well as additional sources of randomness that are independent of the
future. The second constraint on the environment is that we assume the existence of a “true” mean
reward vector r ∈ [−R,R]K , and suppose that there exists some random timestep τ such that, for all
t ≥ τ and all a ∈ [K], |r(a)− rt(a)| ≤ ∆/3, where ∆ := mina,b∈[K] : r(a)̸=r(b) |r(a)− r(b)| is the
minimum nonzero gap in the “true” mean reward between any two arms. This says that eventually
the expected reward of playing arm a will settle down to a neighbourhood of r(a), and in particular
that the arms in A∗ := argmaxa∈[K] r(a) have the highest expected reward after iteration τ . Given
these modifications to the bandit setting, we can extend the results of Section 3 with minimal changes.
The algorithm stays exactly the same, with the only modification to Algorithm 1 being that, at line 3,
rt+1 ∼ Pat+1

becomes rt+1 ∼ P t+1
at+1

.

After extending all the bandit results to the nonstationary bandit setting, we can finally apply them
for a result in RL.

4.2 Reinforcement Learning Setting

We consider a finite-horizon MDP, defined by the tuple M = (H,S,A, {rh}H−1
h=0 , {Ph}H−1

h=0 , ρ),
whereH = {0, 1, . . . ,H − 1} is the index set of timesteps in an episode; S = S0 ∪ . . . ∪ SH−1 and
A = A0 ∪ . . . ∪ AH−1 are finite state and action spaces, respectively, with Sh (Ah = ∪s∈Sh

As)
being the sets of possible states and (actions) at step h ∈ H, and As is the set of possible actions
from state s; rh : Sh × Ah → [−R,R] is a reward function that is bounded by R > 0; Ph :
Sh × Ah → M1(Sh+1) is the transition function; and ρ : S0 → M1(S0) is the initial state
distribution. We denote π := (πh)H−1

h=0 as a time-dependent policy where πh : Sh →M1(Ah) is
the policy in the horizon h. An episode proceeds under the following protocol. At the beginning of
the episode, the learner selects a non-stationary policy π. The episode then evolves through s0 ∼ ρ
and ah ∼ πh( · |sh), sh+1 ∼ ph( · |sh, ah), rh = rh(ah, sh) for all h ∈ H. We define the trajectory
τ := (s0, a0, r0, s1, . . . , sH−1, aH−1, rH−1). Therefore, the probability of a given trajectory τ is

Pr(τ) = ρ(s0)π
0(a0|s0)p0(s1|s0, a0) . . . πH−1(aH−1|sH−1) (9)

We also define the value functions and action-value functions for h ∈ H

V π
h (s) := Eπ

[ H−1∑
h′=h

rh′

∣∣∣∣sh = s

]
(10)

Qπ
h(s, a) := Eπ

[ H−1∑
h′=h

rh′

∣∣∣∣sh = s, ah = a

]
(11)

The goal is to find a time-dependent policy π∗ that maximizes the state-value function at time 0, i.e.
V π
0 (ρ) := Es∼ρ[V

π
0 (s)]:

π∗ ∈ argmax
π

V π
0 (ρ) . (12)

We also define optimal state and state-action value function, V ∗
h := V π∗

h and Q∗
h := Qπ∗

h . In this
paper, we focus on softmax parameterized policies. Specifically, we parameterize each πh by θh for
all h ∈ H by

πh
θh(a|s) :=

exp(θh(s, a))∑
a′ exp(θh(s, a′))

(13)

where θh ∈ RAh with Ah :=
∑

s∈Sh
|As| for all h ∈ H. To improve the readability, we will

sometimes write πt in place of πθt and πh
t in place of πh

θh
t

. The true gradient of the Eq. (12) is

∂V π
0 (s)

∂θht (s, a)
= Eπ

[
∂

∂θht (s, a)
log πt(ah|sh)

H−1∑
h=0

rh

]
= Eπ

[
(I[ah = a]− πh

t (a|s))
H−1∑
h=0

rh

]
(14)

where I[ah = a] is the indicator function of whether action a is played in the horizon h, for all
s ∈ Sh, a ∈ Ah, h ∈ H. Since we are in the stochastic setting, we will use REINFORCE estimator
to estimate the gradient and update the parameters

∂̂V π
0 (s)

∂θh(s, a)
=

( H−1∑
h′=h

rh′

)(
I[ah = a]− πh

t (a|s)
)

(15)
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Algorithm 2 REINFORCE

1: for each episode do
2: Sample a trajectory τ using ρ, {πθh}

H−1
h=1 , {Ph}H−1

h=1
3: for all a ∈ |A|, s ∈ |S| do
4: Use Eq. (15) to update θ(s, a)
5: end for
6: end for

The REINFORCE algorithm is shown in Algorithm 2.

We first show an exploration result, the counterpart to the exploration result shown above in the bandit
setting, before sketching the proof of our main theorem in RL.

4.3 RL Exploration Lemma

Lemma 4.1. Running REINFORCE with any η ∈ Θ(1) in a finite-horizon MDPM, for all h ∈ H,
for all reachable s ∈ Sh and for all a ∈ As we have, almost surely, that every reachable state action
pair will be visited i.o, i.e N∞(s, a) =∞.
Proof sketch 3. First, we show that for all horizon h ∈ H, if s ∈ Sh is reachable and played i.o,
then all actions a ∈ S are also played i.o by Lemma 3.1. Next, we use induction to show that for all
horizon h ∈ H, if s ∈ Sh is reachable visited i.o, then s′ ∈ Sh+1 is also visited i.o. Therefore, for all
h ∈ H, all reachable state-action pairs (s, a) ∈ S ×A will be played i.o.

4.4 Convergence in finite-horizon MDP

Theorem 4.2 (Convergence in RL). For the MDP defined as above, using REINFORCE with constant
learning rate η ∈ Θ(1), we have, almost surely, for all s ∈ S0, V πt

0 (s)→ V ∗
0 (s) as t→∞

Proof sketch 4. We show the convergence theorem using the backward induction. Suppose for all
horizon h ∈ {h′, . . . ,H − 1}, we have

∑
a∈A∗

s
πh
t (a|s) → 1 for all s ∈ Sh, we want to show

that
∑

a∈A∗
s
πh−1
t (a|s) → 1 for all s ∈ Sh−1. Since

∑
a∈A∗

s
πh
t (a|s) → 1 for all s ∈ Sh, where

h ∈ {h′, . . . ,H − 1}, we know that there exists time step τ s.t V ∗
h (s)− V πt

h (s) ≤ δ
3 , where δ is the

minimum non-zero gap between two Q-values. For all a ∈ Ash−1
, there exists a minimum gap of δ

3 in
the Q-value. Therefore, applying the bandit convergence result, we know that

∑
a∈A∗

s
πh−1
t (a|s)→ 1

as t → ∞ for all s ∈ Sh−1. Recursively, we know that for all s ∈ S0,
∑

a∈A∗
s
π0
θt
(a|s) → 1 as

t→∞.

We also provide the statement and proof of convergence rate in the appendix (Theorem E.3).

4.5 Simulations

We conduct several experiments to illustrate the convergence behavior of REINFORCE algorithm
in the finite-horizon setting. Experiments are performed using a chain MDP (Fig. 1b) with state
space S = {s0, . . . , s3, T1, T2}, where T1 and T2 are terminal states, and action space A = {a0, a1}.
Taking action a0 in any state yields a mean reward of 0.5 and transitions to a terminal state T1. Taking
action a1 in state si (i ∈ {0, 1, 2}) yields a mean reward of −0.5 and transitions to state si+1. In
state s3, action a1 yields a mean reward of 7 and transitions to a terminal state T2. The policy is
parameterized using a softmax function, and parameters are initialized to 0 ∈ R|S|×|A|. For each
learning rate η, the REINFORCE algorithm is run for 105 episodes across 30 seeds. Performance is
evaluated by measuring the average suboptimality gap from the initial state distribution ρ, defined
as V ∗

0 (ρ)− V πt
0 (ρ), over the 30 seeds. Our first experiment (Fig. 3a) demonstrates the benefits of

using a large learning rate. Previous convergence analysis of REINFORCE (Theorem 4.1 Klein et al.,
2024) relies on small constant learning rates, which can significantly impede practical training speed.
For instance, the analysis in Klein et al. (2024) guarantees convergence with η = 1

5H2R
√
T

, where T

is the number of training episodes. In our environment (H = 4, R = 7, T = 105), this corresponds
to an extremely small learning rate η ≈ 10−7. Therefore, we evaluated REINFORCE algorithm with
larger learning rates η ∈ {0.00001, 0.001, 0.1}. Fig. 3a shows that the suboptimality gap remains
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nearly constant for η = 0.00001, whereas it decreases substantially faster as η increases from 0.001
to 0.1. This demonstrates the practical benefit of employing larger learning rates for accelerated
convergence, supported by our theoretical guarantees. We further explore the effect of even larger
learning rates η ∈ {0.5, 1, 2}, presented in Fig. 3b. These rates, while potentially accelerating
learning if updates are favorable, generally slow down convergence compared to the moderately large
rates. The suboptimality curves exhibit more abrupt changes and show less consistent improvement
over episodes. The large shaded regions indicate significantly higher variance with these very
large learning rates. This suggests that large steps can easily push parameters away from optimal
configurations, leading to prolonged exploration of suboptimal regions until a corrective update is
sampled. Finally, Fig. 4 illustrates the evolution of the learned policy for optimal actions at each
horizon. For all learning rates, we observe, on average, that the probability of selecting optimal
actions converges first for the last horizon, then for the second-to-last, and so on, proceeding backward
through the horizon. This backward convergence pattern in policy probabilities is consistent with
our proof strategy for the convergence of the REINFORCE algorithm, which relies on a backward
induction approach. We also extend our experiments to demonstrate the relationship between the
algorithm’s performance and different learning rates. Details on the experimental setups and results
can be found in the section Appendix F. Overall, we consistently find a "bowl-shaped" relationship
between the learning rate and performance, meaning both exessively small and exessively large
learning rates lead to high suboptimality, while middling values achieve the smallest suboptimality.
The specific shape and optimal point of this bowl vary significantly with the environment’s structure.

Remark 4.3. It is worth noting that not all environments exhibit this specific backward convergence
pattern in learning optimal policy. However, the presence or absence of this pattern in empirical
observations does not invalidate our main theoretical result.

(a) Benefits of using larger learning rates. (b) Drawbacks of using exessively large learning
rates.

Figure 3: Fig. 3a shows that using a larger learning rate can improve the performance of REINFORCE,
while Fig. 3b shows that excessively large learning rates have substantial variance, which can slow
down the convergence rate.

Figure 4: These figures show the convergence rate of the optimal policy in each horizon for different
learning rates. In particular, we observe that the optimal policy of the last horizon will converge first,
then the second-to-last one until the first horizon. This observation aligns with our analysis.

9



5 Conclusions and Future work

This work enhances our understanding of the convergence properties of the widely used REINFORCE
algorithm. Our novel proof offers deeper insights into the exploration effects of stochastic gradient
methods and raises new research questions. Notably, recent findings by Mei et al. (2024a) indicate a
convergence rate of O(log(t)/t) for stochastic gradient bandit algorithms. This has a gap with the
established O(1/t) lower bound for SPG Mei et al. (2021), suggesting a potential for accelerated
convergence in bandit settings and, by extension, in RL setting. As demonstrated in Fig. 3b, REIN-
FORCE with excessively large learning rates exhibits high variance, impeding convergence. Future
work could explore optimal learning rate schedules to harness the initial benefits of larger rates while
subsequently mitigating variance. Other promising directions include extending the convergence
result for REINFORCE to function approximation setting.
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☞ In this appendix we will deal repeatedly with almost sure events, i.e. events that occur
with probability 1. We typically mention this throughout the proofs, except for in one
important case where “a.s.” is omitted to reduce clutter: whenever statements involving
conditional expectations (by extension conditional probabilities, variances) do not have
an explicit probabilistic quantification, they are understood to hold almost surely. Of
course, this is the only possible interpretation for such statements, since conditional
expectations are only defined up to a set of measure 0.

A Technical Tools

We begin with some fundamental results from probability theory. The first is a generalization of the
Borel-Cantelli Lemma.
Lemma A.1 (Extended Borel-Cantelli Lemma, Corollary 5.29 of Breiman (1992)). Given a filtration
(Ft)t≥0 and a sequence of events (At)t≥0 with At ∈ Ft for all t ≥ 0,∑

t≥0

I[At] =∞
a.s.⇐⇒

∑
t≥0

P(At|Ft−1) =∞ . (16)

That is, (At)t≥0 occurs i.o. if and only if
∑

t≥0 P(At|Ft−1) is infinite, up to a set of measure zero.

Our analysis relies critically and repeatedly on the celebrated inequality of Freedman. The version
we will use is similar to the one stated by Mei et al. (2024a,b). Since we require a general filtration,
we include the original statement by Freedman below in Lemma A.2, followed by the statement and
derivation of the form most convenient to us in Lemma A.3. Whenever we mention “Freedman’s
inequality” elsewhere in this work it shall refer to the latter.
Lemma A.2 ((Original) Freedman’s Inequality, Theorem 1.6 of Freedman (1975)). Given a filtered
probability space with filtration (Ft)t≥0, an adapted sequence of random variables (Xt)t≥1, and
constants a, b > 0, if ∀t ≥ 1 : E[Xt|Ft−1] = 0 and |Xt| ≤ 1 then

P
(
∃t ≥ 1 :

∑
i∈[t]

Xi ≥ a ,
∑
i∈[t]

Var[Xi|Fi−1] ≤ b
)
≤ exp

(
−a2

2(a+ b)

)
. (17)

Lemma A.3 (Freedman’s Inequality). Let (Xt)t≥1 be a random sequence adapted to the filtration
(Ft)t≥0, B ≥ 0 be a constant such that ∀t ≥ 0 : |Xt| ≤ B, and denote Vt :=

∑
i∈[t] Var[Xi|Fi−1].

For any δ ∈ (0, 1], it holds with probability 1− δ that

∀t ≥ 1 :
∣∣∣∑
i∈[t]

Xi − E[Xi|Fi−1]
∣∣∣ ≤ 20

√
Vt + 4B2 + 1 log

(Vt + 2

δ

)
. (18)

Remark A.4. The derivation of Lemma A.3 closely follows the proof of Theorem C.3 of Mei et al.
(2024b). We aimed for a simple bound rather than a tight one.

Proof. Fix ϵ ∈ (0, 1), and let St :=
∑

i∈[t] Xi and Vt :=
∑

i∈[t] Var[Xi|Fi−1]. First we will
suppose that E[Xt|Ft−1] = 0 and |Xt| ≤ 1 for all t ≥ 1, and show that

P
(
∃t ≥ 1 : St ≥ 10

√
Vt + 1 log

(Vt + 2

ϵ

))
≤ ϵ . (19)

For x ≥ 1 let g(x) := 3 log((x+ 2)2/ϵ), and we have

g(x) +
√

g(x)x (20)

≤ 6 log((x+ 2)/ϵ) +
√
3x

√
log((x+ 2)2/ϵ) ((x+ 2)2/ϵ ≤ (x+ 2)2/ϵ2) (21)

≤ 6 log((x+ 2)/ϵ) +
√
3x log((x+ 2)2/ϵ) (log((x+ 2)2/ϵ) ≥ log(4) ≥ 1) (22)

≤ 6 log((x+ 2)/ϵ) + 2
√
3x log((x+ 2)/ϵ) ((x+ 2)2/ϵ ≤ (x+ 2)2/ϵ2) (23)

≤ 6 log((x+ 2)/ϵ) + 4
√
x+ 1 log((x+ 2)/ϵ) (24)

≤ 10
√
x+ 1 log((x+ 2)/ϵ) . (25)

12



Setting x := Vt in Eq. (25) yields

P
(
∃t ≥ 1 : St ≥ 10

√
Vt + 1 log

(Vt + 2

ϵ

))
(26)

≤ P
(
∃t ≥ 1 : St ≥ g(Vt) +

√
g(Vt)Vt

)
(27)

=
∑
i≥0

P(∃t ≥ 1 : St ≥ g(Vt) +
√
g(Vt)Vt , i ≤ Vt < i+ 1) (28)

=
∑
i≥0

P(∃t ≥ 1 : St ≥ g(i) +
√
g(i)i , Vt ≤ i+ 1) (g ,

√
· are increasing) (29)

≤
∑
i≥0

exp

(
−

(
g(i) +

√
g(i)i

)2
2
(
g(i) +

√
g(i)i+ i+ 1

)) .

(Lemma A.2 with a := g(i) +
√
g(i)i and b := i+ 1) (30)

To control the term appearing in the exp above, we will use the following inequality, which holds for
u ≥ 2 and i ≥ 0: (

u+
√
ui
)2

2
(
u+
√
ui+ i+ 1

) =
u
(
u+ 2

√
ui+ i

)
2
(
u+
√
ui+ i+ 1

) (31)

=
u

3
· 2u+ 6

√
ui+ 3i+ u

2u+ 2
√
ui+ 2i+ 2

(32)

≥ u/3 . (u ≥ 2) (33)

Since g(i) ≥ 3 log(4) ≥ 2, we can combine the above two displays by setting u := g(i) and conclude

P
(
∃t ≥ 1 : St ≥ 10

√
Vt + 1 log

(Vt + 2

ϵ

))
≤

∑
i≥0

exp(−g(i)/3) (34)

= ϵ
∑
i≥0

1

(i+ 2)2
(35)

= ϵ
∑
i≥2

i−2 (36)

= ϵ(π2/6− 1) (
∑

i≥1 i
−2 = π2/6) (37)

≤ ϵ . (38)

We are finished showing Eq. (19). We can apply this result to both (Xt)t≥0 and (−Xt)t≥0, setting
ϵ := δ/2 in each application, whence a union bound guarantees that, with probability at least 1− δ,

∀t ≥ 1 :
∑
i∈[t]

|Xi| < 10
√
Vt + 1 log

(Vt + 2

δ/2

)
(39)

≤ 10
√
Vt + 1

(
log

(Vt + 2

δ

)
+ log(2)

)
(40)

≤ 20
√
Vt + 1 log

(Vt + 2

δ

)
. (41)

Given a random sequence (Xt)t≥1 that satisfies |Xt| ≤ B for some B ≥ 1, we can apply Eq. (41) to
the sequence (Xt/B)t≥1:

∀t ≥ 1 :
∑
i∈[t]

|Xi/B| < 20
√
Vt/B2 + 1 log

(Vt/B
2 + 2

δ

)
(42)

≤ 20
√
Vt/B2 + 1 log

(Vt + 2

δ

)
(Vt/B

2 ≤ Vt) (43)

⇒
∑
i∈[t]

|Xi| ≤ 20
√
Vt +B2 log

(Vt + 2

δ

)
, (44)
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with probability 1− δ. Combining Eq. (41), which holds for |Xt| ≤ 1, and Eq. (44), which holds for
|Xt| ≤ B where B ≥ 1, and upper bounding max(B2, 1) ≤ B2 +1, we can remove the requirement
that B ≥ 1 and conclude that, if E[Xt|Ft−1] = 0 and |Xt| ≤ B for all t ≥ 1, with probability 1− δ

∀t ≥ 1 :
∑
i∈[t]

|Xi| ≤ 20
√
Vt +B2 + 1 log

(Vt + 2

δ

)
. (45)

To remove the assumption that ∀t ≥ 1 : E[Xt|Ft−1] = 0 and get the desired result, we apply
Eq. (45) to (Xt − E[Xt|Ft−1])t≥1, noting that if |Xt| ≤ B then |Xt − E[Xt|Ft−1]| ≤ 2B.

The following result applies Freedman’s Inequality to a sequence of bounded, and eventually (condi-
tionally) self-bounded, random variables. It says that if the conditional expectations are not summable
then the variables themselves will not be summable. We expect that the result is folklore, but cannot
find a reference.

Lemma A.5 (Freedman Divergence Trick). Let (Xt)t≥1 be a random sequence adapted to the
filtration (Ft)t≥0 and B ≥ 0 be a constant such that ∀t ≥ 0 : |Xt| ≤ B. Suppose∑

t≥1 E[Xt|Ft−1] = ∞ and, for some random (a.s. finite) index τ ≥ 1 and constant C ≥ 0,
for all t ≥ τ , Var[Xt|Ft−1] ≤ CE[Xt|Ft−1]. Then

∑
t≥1 Xt =∞ a.s.

Remark A.6. Note that the result does not require τ to be a stopping time.

Proof. For t ≥ 0 let St :=
∑

i∈[t] Xi, St :=
∑

i∈[t] E[Xi|Fi−1], and Vt :=
∑

i∈[t] Var[Xi|Fi−1].
For any δ ∈ (0, 1], we can apply Freedman’s Inequality (Lemma A.3) to (Xt)t≥1. This gives that,
with probability 1− δ, for any t ≥ τ ,

St ≥ St − 20
√
Vt + 4B2 + 1 log

(
Vt + 2

δ

)
(46)

= St − Sτ + Sτ − 20
√
Vt − Vτ + Vτ + 4B2 + 1 log

(
Vt − Vτ + Vτ + 2

δ

)
(47)

≥ St − Sτ − τB − 20
√
Vt − Vτ + (4 + τ)B2 + 1 log

(
Vt − Vτ + τB2 + 2

δ

)
(|Xt| ≤ B) (48)

≥ St − Sτ − τB − 20

√
C(St − Sτ ) + (4 + τ)B2 + 1 log

(
C(St − Sτ ) + τB2 + 2

δ

)
.

(Var[Xi|Fi−1] ≤ CE[Xi|Fi−1] for t ≥ i ≥ τ ) (49)

By assumption limt St =∞, so limt St − Sτ =∞ as well. Clearly, the subtrahend in the display
above is o(St−Sτ ). Hence, taking the limit of t→∞, we have limt St =∞ with probability 1− δ.
Since δ was arbitrary, this also holds with probability one (by taking δ → 0).

Finally, we will need a classic result of Doob.

Lemma A.7 (Doob’s Martingale Convergence Theorem (Doob, 2012)). Given a random se-
quence (Xt)t≥1 adapted to the filtration (Ft)t≥0, if ∀t ≥ 1 : E[Xt|Ft−1] ≤ Xt−1 and
supt≥0 E[−min(Xt, 0)] <∞, then (Xt)t≥1 converges a.s. In particular, Xt → X a.s. as t→∞,
where X := lim supt Xt and E[|X|] <∞.

B Bandits

In this section all results are stated in the bandit setting described in Section 3.1. We begin with a
simple but crucial property of Algorithm 1, which follows from a symmetry of the update rule.

Lemma B.1 (Conservation of mass). For all t ≥ 0,
∑

a∈[K] θt(a) =
∑

a∈[K] θ0(a).
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Proof. Proceeding by induction, the base is tautological; recalling that at is the arm played at time t,
we have ∑

a∈[K]

θt+1(a) = θt+1(at) +
∑

a∈[K]\{at}

θt+1(a) (50)

= θt(at) + η(1− πt(at))rt(at) +
∑

a∈[K]\{at}

[θt(a)− ηπt(a)rt(at)] (51)

= ηrt(at) +
∑

a∈[K]

[θt(a)− ηπt(a)rt(at)] (52)

= ηrt(at) +
∑

a∈[K]

θt(a)− ηrt(at)
∑

a∈[K]

πt(a) (53)

=
∑

a∈[K]

θt(a) . (
∑

a∈[K] πt(a) = 1) (54)

The rest of the proofs in this section will refer to the filtration (Ft)t≥0 defined byFt := σ((ai, ri)i<t),
and we adopt the shorthands Et[ · ] := E[ · |Ft] and Vart[ · ] := Var[ · |Ft]. The following result is
a stronger version of Lemma 2 of Mei et al. (2024a), and it guarantees that Algorithm 1 explores
enough to keep trying all arms forever regardless of the observations.

Lemma 3.1 (Bandit Exploration). Using Algorithm 1 with any constant learning rate η ∈ Θ(1),
every arm is almost surely played infinitely often. That is, ∀a ∈ [K] : N∞(a) =∞ almost surely.

Proof. The first step is to show that, for any arm b ∈ [K], if |{t ≥ 0 : at = b}| < ∞ then
supt |θt(b)| < ∞ a.s. Picking b ∈ [K] and setting m := sup({0} ∪ {t ≥ 0 : at = b}), without
assuming |{t ≥ 0 : at = b}| <∞ we have the bound

sup
t
|θt(b)| ≤ |θ0(b)|+ sup

t

∑
i∈[t]

|θi(b)− θi−1(b)| (triangle inequality) (55)

≤ |θ0(b)|+
∑
i≥1

|θi(b)− θi−1(b)| (
∑

i>t |θi(b)− θi−1(b)| > 0) (56)

= |θ0(b)|+
∑
i∈[m]

|θi(b)− θi−1(b)|+
∑
i>m

|θi(b)− θi−1(b)| (57)

≤ |θ0(b)|+
∑
i∈[m]

ηR+
∑
i>m

ηRπθi(b) (update rule of Algorithm 1) (58)

≤ |θ0(b)|+ ηR
(
m+

∑
t≥0

πt(b)
)

(
∑m

i=0 ηRπθi(b) > 0) (59)

=: α(b) . (60)

Also, the Extended Borel-Cantelli Lemma (Lemma A.1) applied to (Ft)t≥0 with the event sequence
At := {at = b} implies ∑

t≥0

I[at = b] <∞ a.s.⇐⇒
∑
t≥0

πt(b) <∞ . (61)

If |{t ≥ 0 : at = b}| <∞ then m <∞ and
∑

t≥0 I[at = b] <∞, and the latter inequality together
with Eq. (61) implies

∑
t≥0 πt(b) < ∞ a.s, thus Eq. (60) yields supt |θt(b)| ≤ α(b) < ∞ a.s. A

union bound over b ∈ [K] implies that almost surely

∀b ∈ [K] : |{t ≥ 0 : at = b}| <∞ =⇒ α(b) <∞ . (62)

We are ready to fix an arm a ∈ [K] and show that the event E :=
{
|{t ≥ 0 : at = a}| < ∞

}
has

probability 0. For the remainder of the proof until the almost the very end we will work under the
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assumption that E occurs. On E we have α(a) <∞ a.s, which implies
∑

t≥0 πt(a) <∞ a.s, which
in turn implies limt πt(a) = 0 a.s. The definition of πt(a) gives us

lim
t

πt(a) = lim
t

exp(θt(a))∑
b∈[K] exp(θt(b))

(Eq. (2)) (63)

≥ lim
t

exp(−α(a))∑
b∈[K] exp(θt(b))

(α(a) ≥ |θt(a)|) (64)

≥ lim
t

exp(−α(a))
K exp(maxb∈[K] θt(b))

, (
∑

b∈[K] exp(θt(b)) ≤ K exp(maxb∈[K] θt(b))) (65)

so from limt πt(a) = 0 a.s. we get limt maxb∈[K] θt(b) = ∞ a.s. Then conservation of mass
(Lemma B.1) implies that limt minb∈[K] θt(b) = −∞ a.s. By Eq. (62) all arms that are selected only
finitely often have parameters bounded away from −∞ a.s, so there is a.s. an arm b that is played
i.o. with lim inft θt(b) = −∞. We will refer to such an arm as b for the remainder of the proof.
However, because b is played i.o, another application of the Extended Borel-Cantelli Lemma (to
(Ft)t≥0 with events At := {at = b}) yields

∑
t≥0 πt(b) =∞ a.s. Since

∑
t≥0 πt(a) <∞ a.s, we

have that πt(b) > πt(a), and equivalently θt(b) > θt(a), for infinitely many t ≥ 0 a.s. In summary,
θt(b) oscillates from being arbitrarily low to being larger than θt(a) ≥ −α(a).2

We will now argue that, for sufficiently large t, if θt(b) ≤ θt(a) but θt+1(b) > θt+1(a) then at = b.
Let T be the minimum timestep such that, for all t ≥ T ,

max
c∈[K]

θt(c) ≥ log(ηR) + α(a) , and at ̸= a . (66)

Since we are working on the event E we have at = a for only finitely many t, log(ηR) + α(a) <∞
a.s, and limt maxc∈[K] θt(c) =∞ a.s; taken together, these observations imply that T <∞ exists
a.s.

For t ≥ T , suppose θt(b) ≤ θt(a) and at ̸= b, and we must show
θt+1(b) ≤ θt+1(a) (67)

⇐⇒ θt(b)− ηπt(b)rt(at) ≤ θt(a)− ηπt(a)rt(at) (at /∈ {a, b}) (68)
⇐⇒ ηrt(at)(πt(a)− πt(b)) ≤ θt(a)− θt(b) . (69)

Since θt(b) ≤ θt(a) we have πt(b) ≤ πt(a), and standard inequalities yield
ηrt(at)(πt(a)− πt(b)) ≤ ηR(πt(a)− πt(b)) (0 ≤ πt(a)− πt(b)) (70)

= ηR
exp(θt(a))− exp(θt(b))∑

c∈[K] exp(θt(c))
(71)

≤ ηR
exp(θt(a))− exp(θt(b))

exp(maxc∈[K] θt(c))
(
∑

c∈[K] exp(θt(c)) ≥ exp(maxc∈[K] θt(c))) (72)

≤ exp(θt(a))− exp(θt(b))

exp(θt(a))
(Eq. (66), α(a) ≥ θt(a)) (73)

= 1− exp(θt(b)− θt(a)) (74)
≤ 1− (1 + θt(b)− θt(a)) . (exp(x) ≥ 1 + x) (75)

Thus Eq. (69) holds and we have established that, for all t ≥ T , if θt(b) ≤ θt(a) and θt+1(b) >
θt+1(a) then at = b. Since θt(b) fluctuates from below θt(a) to above it i.o, we have that the events
in the sequence (Bt)t≥0 defined by Bt := {θt(b) ≤ θt(a), at = b} ∈ Ft+1 occur i.o. a.s. Applying
the Extended Borel-Cantelli Lemma to (Ft)t≥0 and (Bt)t≥0 implies that

∑
t≥0 P(Bt|Ft) =∞ a.s.

However,
P(Bt|Ft) = I[θt(b) ≤ θt(a)]πt(b) ≤ πt(a) , (76)

so
∑

t≥0 P(Bt|Ft) ≤
∑

t≥0 πt(a) <∞ a.s.

At this point we have that, on event E , both
∑

t≥0 P(Bt|Ft) < ∞ a.s. and
∑

t≥0 P(Bt|Ft) = ∞
a.s. Since these events are mutually exclusive they both occur with probability 0, and since they are
jointly exhaustive we have P(E) = 0.

2It is easy to see that θt(b) must also become arbitrarily large i.o, but this is not necessary for the proof.
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The proof of our main result in the bandit setting, that limt→∞
∑

a∈A∗ πt(a) = 1, is broken into
two propositions: the first guarantees that limt→∞

∑
a∈A∗ θt(a) =∞, in particular that as the time

steps get large at least one a ∈ A∗ will have an arbitrarily large parameter3; the second proposition
says that limt→∞ θt(b) = −∞ for all b ∈ [K] \ A∗. Taken together, the propositions imply that
eventually some (potentially time step dependent) optimal arm dominates every suboptimal arm,
establishing Convergence in Bandits (Theorem 3.2). We now turn to proving the two propositions.

The subsequent proofs will go a little smoother with some extra notation; we define ∆ :=
mina,b∈[K]:r(a)̸=r(b) |r(a) − r(b)| to be the minimum nonzero gap between expected rewards of
arms and r(A∗) := maxa∈[K] r(a) to be the maximum attainable expected reward. Finally, we over-
load πt(·) to take sets as input, i.e, given S ⊂ [K] we let πt(S) :=

∑
a∈S πt(a) be the probability

that an arm in S is selected. With these abbreviations in hand, the first proposition is as follows.

Proposition 3.3 (Infinite Optimal Parameters). If A∗ ̸= [K] then limt→∞
∑

a∈A∗ θt(a) =∞ a.s.

Proof. For t ≥ 0, let Xt :=
∑

a∈A∗ θt+1(a)−θt(a), such that
∑t

i=0 Xi =
∑

a∈A∗ θt+1(a)−θ0(a).
By the update rule of Algorithm 1, note also that

Xt = η
∑
a∈A∗

(I[at = a]− πt(a))rt . (77)

The conditional expectation of Xt given Ft can be lower bounded by

Et[Xt] =
∑

a∈[K]

Et[I[at = a]Xt] (
∑

a∈[K] I[at = a] = 1) (78)

=
∑
a∈A∗

Et[I[at = a]η(1− πt(A∗))rt] +
∑

b∈[K]\A∗

Et[I[at = b]η(−πt(A∗))rt]

(Eq. (77)) (79)

= η(1− πt(A∗))
∑
a∈A∗

Et[I[at = a]rt]− ηπt(A∗)
∑

b∈[K]\A∗

Et[I[at = b]rt]

(πt is Ft-measurable) (80)

= η(1− πt(A∗))
∑
a∈A∗

πt(a)r(a)− ηπt(A∗)
∑

b∈[K]\A∗

πt(b)r(b)

(Et[I[at = · ]rt] = πt(·)r(·)) (81)

≥ η(1− πt(A∗))
∑
a∈A∗

πt(a)r(A∗)− ηπt(A∗)
∑

b∈[K]\A∗

πt(b)(r(A∗)−∆)

(r(a) = r(A∗) , r(b) ≤ r(A∗)−∆) (82)

= ηπt(A∗)(1− πt(A∗))
(
r(A∗)− (r(A∗)−∆)

)
(
∑

a∈A∗ πt(a) = πt(A∗) ,
∑

b∈[K]\A∗ πt(b) = 1− πt(A∗)) (83)

= ηπt(A∗)(1− πt(A∗))∆ , (84)

3Excluding the trivial case where A∗ = [K], i.e. all arms are equally good.
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and the conditional variance can be upper bounded by

Vart[Xt] ≤ Et[X
2
t ] (85)

=
∑

a∈[K]

Et[I[at = a]X2
t ] (

∑
a∈[K] I[at = a] = 1) (86)

=
∑
a∈A∗

Et[I[at = a]
(
η(1− πt(A∗))rt

)2
] +

∑
b∈[K]\A∗

Et[I[at = b]
(
− ηπt(A∗)rt

)2
]

(Eq. (77)) (87)

≤ η2(1− πt(A∗))2R2
∑
a∈A∗

Et[I[at = a]] + η2πt(A∗)2R2
∑

b∈[K]\A∗

Et[I[at = b]]

(r2t ≤ R2) (88)

= η2(1− πt(A∗))2R2
∑
a∈A∗

πt(a) + η2πt(A∗)2R2
∑

b∈[K]\A∗

πt(b)

(Et[I[at = · ]] = πt(·)) (89)

= η2R2
(
(1− πt(A∗))2πt(A∗) + πt(A∗)2(1− πt(A∗))

)
(
∑

a∈A∗ πt(a) = πt(A∗) ,
∑

b∈[K]\A∗ πt(b) = 1− πt(A∗)) (90)

= η2R2πt(A∗)(1− πt(A∗)) . (91)

Thus for all t ≥ 0 we have Vart[Xt] ≤ ηR2∆−1Et[Xt], |Xt| ≤ ηR, and Xt is Ft+1-measurable.
Setting b := ηR, τ := 0, and c := ηR2∆−1, we need only to prove that

∑
t≥0 Et[Xt] = ∞, at

which point we can apply the Freedman Divergence Trick (Lemma A.5) to conclude

lim
t

∑
a∈A∗

θt+1(a)− θ0(a) =
∑
t≥0

Xt =∞ a.s, (92)

=⇒ lim
t

∑
a∈A∗

θt(a) =∞ a.s. (
∑

a∈A∗ θ0(a) <∞) (93)

Thus in the remainder of the proof we turn our attention to showing
∑

t≥0 Et[Xt] =∞. Applying
Eq. (84) and η∆ > 0, we need only show that∑

t≥0

πt(A∗)(1− πt(A∗)) =∞ . (94)

Lemma 3.1 together with ∅ ≠ A∗ ̸= [K] implies that∑
t≥0

I[at ∈ A∗] =
∑
t≥0

I[at /∈ A∗] =∞ a.s. (95)

Since P(at ∈ A∗|Ft) = πt(A∗) and P(at /∈ A∗|Ft) = 1 − πt(A∗), the Extended Borel-Cantelli
Lemma (Lemma A.1) applied to Eq. (95) furnishes

∑
t≥0 πt(A∗) =

∑
t≥0(1− πt(A∗)) =∞ a.s.

We now break into cases to show that Eq. (94) holds regardless of the behavior of πt(A∗).

If πt(A∗) ≥ 1/2 only finitely often then we can set u := max{t ≥ 0 : πt(A∗) ≥ 1/2} for∑
t≥0

πt(A∗)(1− πt(A∗)) ≥
∑
t>u

πt(A∗)

2
=∞ . (96)

Similarly, if πt(A∗) < 1/2 only finitely often then u := max{t ≥ 0 : πt(A∗) < 1/2} gives us∑
t≥0

πt(A∗)(1− πt(A∗)) ≥
∑
t>u

1− πt(A∗)

2
=∞ . (97)

We can narrow our focus to the case where πt(A∗) is both above and below 1/2 i.o. In particular,
there must be infinitely many t ≥ 0 such that πt(A∗) < 1/2 but πθt+1

(A∗) ≥ 1/2, and for such t we
have

πθt+1(A∗) =

∑
a∈A∗ exp(θt+1(a))∑

a∈A∗ exp(θt+1(a)) +
∑

b∈[K]\A∗ exp(θt+1(b))
. (Eq. (2)) (98)
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The above equation is of the form x/(x + y), where x :=
∑

a∈A∗ exp(θt+1(a)) and y :=∑
b∈[K]\A∗ exp(θt+1(b)). Since x/(x + y) is increasing in x and decreasing in y for x, y > 0,

and |θt+1(c)− θt(c)| ≤ ηR for all c ∈ [K], we can maximize the right hand side for the upper bound

πθt+1
(A∗) ≤

∑
a∈A∗ exp(θt(a) + ηR)∑

a∈A∗ exp(θt(a) + ηR) +
∑

b∈[K]\A∗ exp(θt(b)− ηR)
. (99)

Also, πt(A∗) < 1/2 yields
∑

a∈A∗ exp(θt(a)) <
∑

b∈[K]\A∗ exp(θt(b)), so

∑
a∈A∗ exp(θt(a) + ηR)∑

a∈A∗ exp(θt(a) + ηR) +
∑

b∈[K]\A∗ exp(θt(b)− ηR)
(100)

=
exp(ηR)

∑
a∈A∗ exp(θt(a))

exp(ηR)
∑

a∈A∗ exp(θt(a)) + exp(−ηR)
∑

b∈[K]\A∗ exp(θt(b))
(101)

<
exp(ηR)

∑
a∈A∗ exp(θt(a))

(exp(ηR) + exp(−ηR))
∑

a∈A∗ exp(θt(a))
(
∑

a∈A∗ exp(θt(a)) <
∑

b∈[K]\A∗ exp(θt(b))) (102)

=
exp(ηR)

exp(ηR) + exp(−ηR)
=

exp(2ηR)

exp(2ηR) + 1
. (103)

Connecting the above displays, there are infinitely many t ≥ 0 with πt(A∗) < 1/2 and πθt+1(A∗) ≥
1/2, and for such t we have 1−πθt+1

(A∗) > 1− exp(2ηR)/(exp(2ηR)+1) = (exp(2ηR)+1)−1.
Therefore πθt+1

(A∗)(1− πθt+1
(A∗)) ≥ (2 exp(2ηR) + 2)−1 i.o, establishing Eq. (94).

The second proposition has a more complicated proof, due to the technical difficulty added by having
multiple suboptimal arms with the same expected value. Controlling the suboptimal arms will be
much more convenient with the following extra notation. Letting n := |{r(a) : a ∈ [K]}| be
the size of the range of the expected reward vector r, we partition the arms into (Φi)i∈[n], where
Φi := argmina∈[K]\∪j<iΦj

r(a). Thus Φ1 is the set of arms with minimal expected reward, Φ2 is
the set of arms with the second lowest expected reward, and so forth, culminating with Φn = A∗.
Given i ∈ [n], we will use the shorthands Φ−

i := ∪j<iΦj and Φ+
i := ∪j>iΦj . Note that Φ−

i and Φ+
i

are the sets of arms with lower, respectively higher, expected reward than the arms in Φi. First we
will conjure up a couple bound that hold for the increments of suboptimal parameters.

Lemma B.2 (Bounds on the Expectation and Variance of Increments for Suboptimal Arms). For any
i ∈ [n− 1], for any b ∈ Φi, we have the bounds:

Et[θt+1(b)− θt(b)] ≤ ηπt(b)
(
(1− πt(Φi))r(b)− (r(b) + ∆)πt(Φ

+
i ) +Rπt(Φ

−
i )

)
, (104)

Vart[θt+1(b)− θt(b)] ≤ η2R2πt(b)(1− πt(b)) . (105)
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Proof.

Et[θt+1(b)− θt(b)]

=
∑

a∈[K]

Et[I[at = a](θt+1(b)− θt(b))] (
∑

a∈[K] I[at = a] = 1) (106)

= Et[I[at = b]η(1− πt(b))rt] +
∑

a∈[K]\{b}

Et[I[at = a]η(−πt(b))rt]

(update rule of Algorithm 1) (107)

= η(1− πt(b))Et[I[at = b]rt]− ηπt(b)
∑

a∈[K]\{b}

Et[I[at = a]rt]

(πt is Ft-measurable) (108)

= η(1− πt(b))πt(b)r(b)− ηπt(b)
∑

a∈[K]\{b}

πt(a)r(a) (Et[I[at = · ]rt] = πt(·)r(·)) (109)

= ηπt(b)
(
(1− πt(b))r(b)−

∑
a∈Φi\{b}

πt(a)r(b)−
∑
c∈Φ+

i

πt(c)r(c)−
∑
d∈Φ−

i

πt(d)r(d)
)
(110)

≤ ηπt(b)
(
(1− πt(b))r(b)− r(b)

∑
a∈Φi\{b}

πt(a)− (r(b) + ∆)
∑
c∈Φ+

i

πt(c) +R
∑
d∈Φ−

i

πt(d)
)

(r(c) ≥ r(b) + ∆ , r(d) ≥ −R) (111)

= ηπt(b)
(
(1− πt(Φi))r(b)− (r(b) + ∆)πt(Φ

+
i ) +Rπt(Φ

−
i )

)
. (112)

Vart[θt+1(b)− θt(b)] ≤ Et[(θt+1(b)− θt(b))
2] (113)

=
∑

a∈[K]

Et[I[at = a](θt+1(b)− θt(b))
2] (

∑
a∈[K] I[at = a] = 1) (114)

≤ Et[I[at = b]η2R2(1− πt(b))
2] +

∑
a∈[K]\{b}

Et[I[at = a]η2R2πt(b)
2]

(update rule of Algorithm 1) (115)

≤ η2R2(1− πt(b))
2πt(b) + η2R2πt(b)

2(1− πt(b))
(Et[I[at = · ]] = πt(·)) (116)

= η2R2πt(b)(1− πt(b)) . (117)

The next proposition will be applied inductively to control the relationship between the expectation
and variance of arbitrary suboptimal arms.
Lemma B.3. For constants C , C ′ ≥ 0 and i ∈ [n− 1], if all b ∈ Φ−

i satisfy limt→∞ θt(b) = −∞
a.s. then there a.s. exists a finite timestep τ such that, for all c ∈ Φ−

i+1,
∑

a∈A∗ θτ (a) ≥ C+C ′θτ (c).

Proof. Without loss of generality suppose C ′ ≥ 1. Throughout the proof we will use the following
two constants, which depend on C and C ′:

U1 := C ′(KηR+K log(8RK/∆+K)) + C , and (118)
U2 := ηR+ log(8RK/∆+ 1) . (119)

Fix ϵ ∈ (0, 1], and define

D := sup
x≥0
−x+ 20

√
1 + 4K2η2R2 + 4ηR2x/∆ log

(
2 + 4ηR2x/∆

ϵ/K

)
, (120)

noting that D <∞. Proposition 3.3 says that limt

∑
a∈A∗ θt(a) =∞ a.s, and we have by assumption

that limt θt(b) = −∞ a.s. for all b ∈ Φ−
i . Together these observations guarantee an a.s. finite
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timestep µ such that ∑
a∈A∗

θµ(a) ≥ U1 +D ≥ −D ≥ max
b∈Φ−

i

θµ(b) . (121)

Consider the collection of sequences {(Xb
t )t>µ : b ∈ Φ−

i } defined by Xb
t := θt(b)− θt−1(b), and

the sequence (Yt)t>µ defined by Yt :=
∑

a∈A∗ θt(a)− θt−1(a). For each b ∈ Φ−
i , (Xb

t )t>µ satisfies
the requirements of Freedman’s Inequality (Lemma A.3) with B := ηR; also, (Yt)t>µ does with
B := KηR. Therefore we can apply Freedman’s Inequality with δ := ϵ/K to all of these sequences
simultaneously and take a union bound to conclude that, with probability 1− ϵ(|Φ−

i |+1)/K ≤ 1− ϵ,∑
a∈A∗

θt(a)− θµ(a) ≥
∑

µ<k≤t

Ek−1[Y
b
k ]− 20

√
1 + 4K2η2R2 +

∑
µ<k≤t

Vark−1[Y b
k ] log

(
2 +

∑
µ<k≤t Vark−1[Y

b
k ]

ϵ/K

)
,

(122)

∀b ∈ Φ−
i : θt(b)− θµ(b) ≤

∑
µ<k≤t

Ek−1[X
b
k] + 20

√
1 + 4η2R2 +

∑
µ<k≤t

Vark−1[Xb
k] log

(
2 +

∑
µ<k≤t Vark−1[X

b
k]

ϵ/K

)
,

(123)

for all t > µ. Let E denote the event that both Eqs. (122) and (123) hold at all such t. We will argue
that, on E , ∑

a∈A∗

θt(a) ≥ U1 ≥ 0 ≥ max
b∈Φ−

i

θt(b) (124)

for all t ≥ µ by strong induction. Thus let t ≥ µ, and suppose that Eq. (124) holds with k in place of
t, for all µ ≤ k < t, noting that it holds for k = µ by the definition of µ. Eqs. (84) and (91) together
imply that

Vark−1[Yk] ≤
ηR2

∆
Ek−1[Yt] ≤

4ηR2

∆
Ek−1[Yt] , (125)

for k > µ, so the assumption that event E holds implies∑
a∈A∗

θt(a) ≥
∑
a∈A∗

θµ(a)−D (126)

≥ U1 +D −D = U1 . (Eq. (121)) (127)

Now pick an arbitrary b ∈ Φ−
i . Without loss of generality, say b ∈ Φj for some j < i. For µ ≤ k < t

the inductive hypothesis implies that there exists a ∈ A∗ such that θk(a) ≥ U1/K. Thus

πk(Φ
+
j )/πk(Φ

−
j ) ≥ πk(a)/πk(Φ

−
i ) (Φ−

j ⊂ Φ−
i , a ∈ Φ+

j ) (128)

≥ exp(U1/K)/K (maxb∈Φ−
i
θk(b) ≤ 0) (129)

≥ 1 + 4R/∆ , (130)

where the final inequality above follows from U1 ≥ K log(K + 4K/∆). Defining the constant
γ := (∆/2 + r(b) + R)/(∆ + r(b) + R), we have γ ≤ (∆ + 4R)/(2∆ + 4R), which implies
γ/(1− γ) ≤ 1 + 4R/∆ ≤ πk(Φ

+
j )/πk(Φ

−
j ). Therefore

πk(Φ
+
j ) ≥

γ

1− γ
πk(Φ

−
j ) (131)

⇒ πk(Φ
+
j ) ≥ γ(πk(Φ

+
j ) + πk(Φ

−
j )) (132)

⇒ πk(Φ
+
j )(∆ + r(b) +R) ≥ (∆/2 + r(b) +R)(1− πk(Φj)) (133)

⇒ πk(Φ
+
j )(∆ + r(b))−R(1− πk(Φj)− πk(Φ

+
j )) ≥ (∆/2 + r(b))(1− πk(Φj)) (134)

⇒ −∆(1− πk(Φj))/2 ≥ (1− πk(Φj))r(b)− πk(Φ
+
j )(∆ + r(b)) +Rπk(Φ

−
j ) .

(135)

Combining Eqs. (104) and (135) produces

Ek−1[X
b
k] ≤ −

η∆

2
πk(b)(1− πk(Φj)) . (136)
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From Eq. (130) we have πk(a) ≥ πk(Φ
−
i ) ≥ πk(Φj), so 1 − πk(Φj) ≥ 1/2. Thus Eqs. (105)

and (136) together provide

Ek−1[X
b
k] ≤ −

η∆

4
πk(b) (137)

≤ − ∆

4ηR2
Vark−1[X

b
k] . (138)

Eqs. (123) and (138) imply

θt(b) = θt(b)− θµ(b) + θµ(b) (139)
≤ θµ(b) +D (140)
≤ −D +D = 0 . (141)

Since b ∈ Φ−
i was arbitrary, this concludes the inductive argument. We have shown that, on E ,

Eq. (124) holds.

Define the stopping time ν by

ν := min

{
t ≥ µ :

(
∀b ∈ Φi : θt(b) < U2

)
or

( ∑
a∈A∗

θt(a) < U1

)
or

(
max
b∈Φ−

i

θt(b) > 0

)}
,

(142)

and define (Zt)t≥µ by Zt :=
∑

b∈Φi
max(θmin(t,ν)(b), 0). We will show that (Zt)t≥µ is a super-

martingale, i.e. for all t ≥ µ, Et[Zt+1 − Zt] ≤ 0. If t ≥ ν then we have Et[Zt+1 − Zt] = 0, so
assume t < ν. Let B := {b ∈ Φi : θt(b) ≥ ηR} and C := {c ∈ Φi : θt(c) < ηR}, so

Et[Zt+1 − Zt] =
∑
b∈Φi

Et[max(θt+1(b), 0)−max(θt(b), 0)] (t < ν) (143)

=
∑
b∈B

Et[max(θt+1(b), 0)−max(θt(b), 0)] +
∑
c∈C

Et[max(θt+1(c), 0)−max(θt(c), 0)] .

(144)

The terms in the sum on the left of Eq. (144) can be bounded by

Et[max(θt+1(b), 0)−max(θt(b), 0)] = Et[θt+1(b)− θt(b)]

(|θt+1(b)− θt(b)| ≤ ηR , θt(b) ≥ 0 + ηR) (145)

≤ −η∆

2
πt(b)(1− πt(Φi)) , (146)

where the last inequality above comes from Eq. (136) and the fact that ν > t.4 For the sum on the
right of Eq. (144), we can bound the terms by

Et[θt+1(c)− θt(c)] = Et[I[at = c](θt+1(c)− θt(c))] + Et[I[at ̸= c](θt+1(c)− θt(c))] (147)
≤ Et[I[at = c]Rη] + Et[I[at ̸= c]πt(c)Rη]

(update rule of Algorithm 1) (148)
≤ 2ηRπt(c) . (149)

Combining Eqs. (144), (146) and (149) produces

Et[Zt+1 − Zt] ≤ −
η∆

2
(1− πt(Φi))

∑
b∈B

πt(b) + 2ηR
∑
c∈C

πt(c) (150)

= −η∆

2
(1− πt(Φi))πt(B) + 2ηRπt(C) . (151)

4Specifically, ν > t implies the inductive hypothesis that was used to prove Eq. (136), and Φj can be replaced
with Φi.
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If πt(C) = 0 then the above is negative, so we may assume πt(C) > 0. Since ν > t, there is some
b ∈ Φi with θt(b) ≥ U2 ≥ ηR, so

πt(B)/πt(C) ≥ πt(b)/πt(C) (152)

≥ exp(θt(b))∑
c∈C exp(θt(c))

(153)

≥ exp(U2)

n exp(ηR)
(definitions of B and C) (154)

= exp(U2 − ηR)/K (155)
≥ (8RK/∆)/K (U2 ≥ ηR+ log(8RK/∆)) (156)
= 8R/∆ . (157)

Also from ν > t, we have that
∑

a∈A∗ θt(a) ≥ U1, so at least one a ∈ A∗ satisfies θt(a) ≥ U1/K.
Fixing such an a gives

(1− πt(Φi))/πt(C) ≥ πt(a)/πt(C) (158)
≥ exp(U1/K − ηR)/K (like Eq. (155)) (159)
≥ (8Rn/∆+K)/K (U1 ≥ KηR+K log(8RK/∆+K)) (160)
= 8R/∆+ 1 . (161)

We will break into two cases, first assuming that πt(Φi) ≤ 1/2. In this case we can upper bound
Eq. (151) by

−η∆

2
(1− πt(Φi))πt(B) + 2ηRπt(C) ≤ −

η∆

4
πt(B) + 2ηRπt(C) (162)

≤ −2ηRπt(C) + 2ηRπt(C) (Eq. (157)) (163)
= 0 . (164)

On the other hand, if πt(Φi) > 1/2 then
1/2 < πt(B) + πt(C) (165)
≤ πt(B)(1 + ∆/8R) (Eq. (157)) (166)

⇒ 2R

4R+∆/2
≤ πt(B) . (167)

Starting once more from the right hand side of Eq. (151), we have

−η∆

2
(1− πt(Φi))πt(B) + 2ηRπt(C) ≤ −

∆

2
· 2ηR

4R+∆/2
(1− πt(Φi)) + 2ηRπt(C)

(Eq. (167)) (168)

≤ −2ηR · ∆/2

4R+∆/2
(8R/∆+ 1)πt(C) + 2ηRπt(C)

(Eq. (161)) (169)
= 0 . (170)

In concert, Eqs. (164) and (170) together with Eq. (151) imply that Et[Zt+1 − Zt] ≤ 0 when
µ ≤ t < ν. Therefore (Zt)t≥µ is a submartingale, and it is clear from its definition that Zt is bounded
below by 0 at all times. We can apply Lemma A.7 and conclude that (Zt)t≥µ converges a.s. to a
random variable Z with E[|Z|] ≤ ∞.

We will again break into two cases, first assuming that ν = ∞, i.e. the stopping time never stops.
In this case limt Zt = limt

∑
b∈Φi

max(θt(b), 0), and this quantity will a.s. converge to a finite
value; because each summand is nonnegative, this implies that all b ∈ Φi satisfy lim supt θt(b) <∞.
From the assumption that ∀c ∈ Φ−

i : limt θt(c) = −∞, we have that, for all b ∈ Φ−
i+1 =

Φi ∪ Φ−
i , lim supt θt(b) < ∞. By Proposition 3.3, there a.s. exists a finite timestep τ such that∑

a∈A∗ θτ (a) ≥ C + C ′ maxc∈Φ−
i+1

lim supt θt(c) ≥ C + C ′ maxc∈Φ−
i+1

θτ (c), as desired.

The other case is that ν <∞; this implies either the event E fails to occur (since E implies Eq. (124)),
or ∀b ∈ Φi : θν(b) < U2. On event E , for all b ∈ Φ−

i+1,

C ′θν(b) + C ≤ C ′U2 + C ≤ U1 ≤
∑
a∈A∗

θν(a) , (0 + C , C ′U2 + C ≤ U1) (171)
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and setting τ := ν gives the desired result. Therefore, regardless of whether or not ν <∞, the only
way we don’t have the desired result is if E fails to occur, which happens with probability at most ϵ.
Since ϵ was arbitrary, it can be taken to 0, and the desired result will hold a.s.

Having shown the above lemma, we are ready to establish that the parameters of suboptimal arms
diverge to −∞.

Proposition 3.4 (Negative Infinite Suboptimal Parameters). For every suboptimal arm b ∈ [K] \ A∗,
limt→∞ θt(b) = −∞ a.s.

Proof. Since Φn = A∗ and ∪i∈[n]Φi = [K], the set of suboptimal arms is ∪i∈[n−1]Φi. Thus we will
perform induction over i ∈ [n− 1], proving that all b ∈ Φi satisfy limt θt(b) = −∞ a.s. from the
inductive hypothesis that

∀c ∈ Φ−
i : lim

t
θt(c) = −∞ a.s. (172)

Note that Eq. (172) is vacuously satisfied for i = 1. Fix an arbitrary ϵ ∈ (0, 1], and define

D := sup
x≥0
−x+ 20

√
1 + 4K2η2R2 + 4ηR2x/∆ log

(
2 + 4ηR2x/∆

ϵ/K

)
, (173)

noting that D <∞. Let τ be the first timestep such that∑
a∈A∗

θτ (a) ≥ (K + 1)D +K log(K + 4K/∆) +K max
b∈Φ−

i+1

θτ (b) , (174)

and note that τ is a stopping time. Also, τ <∞ a.s. by applying Lemma B.3 (which is applicable due
to the inductive hypothesis in Eq. (172)) with C := (K + 1)D +K log(K + 4K/∆) and C ′ := K.

now we can apply freedman’s lemma to both the suboptimal arm and optimal sum, and conclude
that the suboptimal arm goes to −∞ wp 1− δ. since δ was arbitrary the result becomes a.s, and the
induction goes through meaning that the whole thing does.

Consider the collection of sequences {(Xb
t )t>τ : b ∈ Φ−

i+1} defined by Xb
t := θt(b)− θt−1(b), and

the sequence (Yt)t>τ defined by Yt :=
∑

a∈A∗ θt(a)−θt−1(a). For each b ∈ Φ−
i+1, (Xb

t )t>τ satisfies
the requirements of Freedman’s Inequality (Lemma A.3) with B := ηR; also, (Yt)t>τ does with
B := KηR. Therefore we can apply Freedman’s Inequality with δ := ϵ/K to all of these sequences
simultaneously and take a union bound to conclude that, with probability 1−ϵ(|Φ−

i+1|+1)/K ≤ 1−ϵ,

∑
a∈A∗

θt(a)− θτ (a) ≥
∑

τ<k≤t

Ek−1[Y
b
k ]− 20

√
1 + 4K2η2R2 +

∑
τ<k≤t

Vark−1[Y b
k ] log

(
2 +

∑
τ<k≤t Vark−1[Y

b
k ]

ϵ/K

)
,

(175)

∀b ∈ Φ−
i+1 : θt(b)− θτ (b) ≤

∑
τ<k≤t

Ek−1[X
b
k] + 20

√
1 + 4η2R2 +

∑
τ<k≤t

Vark−1[Xb
k] log

(
2 +

∑
τ<k≤t Vark−1[X

b
k]

ϵ/K

)
,

(176)

for all t > τ . Let E denote the event that both Eqs. (175) and (176) hold at all such t. We will argue
that, on E ,∑
a∈A∗

θt(a) ≥ K
(
log(K + 4K/∆) + max

b∈Φ−
i+1

θτ (b) +D
)
≥ K

(
log(K + 4K/∆) + max

b∈Φ−
i+1

θt(b)
)

(177)

for all t ≥ τ by strong induction. Thus let t ≥ τ , and suppose that Eq. (177) holds with k in place of
t, for all τ ≤ k < t, noting that it holds for k = τ by the definition of τ . Eqs. (84) and (91) together
imply that

Vark−1[Yk] ≤
ηR2

∆
Ek−1[Yt] ≤

4ηR2

∆
Ek−1[Yt] , (178)
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for k > τ , so the assumption that event E holds implies∑
a∈A∗

θt(a) ≥
∑
a∈A∗

θτ (a)−D (179)

≥ K
(
log(K + 4K/∆) + max

b∈Φ−
i+1

θt(b) +D
)
. (180)

Now pick an arbitrary b ∈ Φ−
i+1. Without loss of generality, say b ∈ Φj , where j ∈ [i]. For τ ≤ k < t

the inductive hypothesis implies that there exists a ∈ A∗ such that θk(a) ≥ log(K + 4K/∆) +
maxb∈Φ−

i+1
θk(b). Thus

πk(Φ
+
j )/πk(Φ

−
j ) ≥ πk(a)/πk(Φ

−
i+1) (a ∈ A∗ ⊂ Φ+

i+1) (181)

≥ exp(θk(a))

K exp(maxb∈Φ−
i+1

θk(b))
(182)

≥ exp(log(K + 4K/∆))/K (183)
≥ 1 + 4R/∆ . (184)

Defining the constant γ := (∆/2+ r(b)+R)/(∆+ r(b)+R), we have γ ≤ (∆+4R)/(2∆+4R),
which implies γ/(1− γ) ≤ 1 + 4R/∆ ≤ πk(Φ

+
j )/πk(Φ

−
j ). Therefore

πk(Φ
+
j ) ≥

γ

1− γ
πk(Φ

−
j ) (185)

⇒ πk(Φ
+
j ) ≥ γ(πk(Φ

+
j ) + πk(Φ

−
j )) (186)

⇒ πk(Φ
+
j )(∆ + r(b) +R) ≥ (∆/2 + r(b) +R)(1− πk(Φj)) (187)

⇒ πk(Φ
+
j )(∆ + r(b))−R(1− πk(Φj)− πk(Φ

+
j )) ≥ (∆/2 + r(b))(1− πk(Φj)) (188)

⇒ −∆(1− πk(Φj))/2 ≥ (1− πk(Φj))r(b)− πk(Φ
+
j )(∆ + r(b)) +Rπk(Φ

−
j ) .

(189)

Combining Eqs. (104) and (189) produces

Ek−1[X
b
k] ≤ −

η∆

2
πk(b)(1− πk(Φj)) . (190)

From Eq. (184) we have πk(a) ≥ πk(Φ
−
i+1) ≥ πk(Φj), so 1 − πk(Φj) ≥ 1/2. Thus Eqs. (105)

and (190) together provide

Ek−1[X
b
k] ≤ −

η∆

4
πk(b) (191)

≤ − ∆

4ηR2
Vark−1[X

b
k] . (192)

Eqs. (176) and (192) imply

θt(b) = θt(b)− θτ (b) + θτ (b) (193)
≤ D + max

b∈Φ−
i+1

θτ (b) , (194)

and multiplying both sides of Eq. (194) by K before adding K log(K + 4K/∆) implies the second
inequality of Eq. (177) (since b ∈ Φ−

i+1 was arbitrary) This concludes the inductive argument
over t ≥ τ . We have shown that, on E , Eq. (177) holds. In fact, on event E , we can also use
Eqs. (176) and (192) together with the fact that

∑
t≥1 Vart−1[X

b
t ] = ∞ (using Eq. (105)) to

conclude that limt θt(b) = −∞ for an arbitrary b ∈ Φ−
i+1. This finishes off the inductive argument

over i ∈ [n− 1].

The above results are all that is needed for the proof of Theorem 3.2. Next, we show that the
stochastic gradient bandit algorithm (Algorithm 1) only converges to “generalized one-hot policies",
i.e.

∑
a∈A∗ πt(a) = 1, and not true “one-hot policies”, i.e. ∃a ∈ A∗, : πt(a) = 1. Among the

optimal arms, there will be permanent non-stationary behavior.
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Theorem B.4 (Theorem 1.4, Bramson et al. (2004)). Suppose (Xt)t≥0 is a sub-martingale with
increments (It)t≥0, satisfying

Et−1[I
−
t I{I−t > x}] ≥ Et−1[I

+
t I{I+t > bx}] (195)

almost surely, for all t ≥ 1 and fixed x ≥ x1, for a fixed b and x1 > 0. Then,

P(either (Xt)t≥0 converges or lim sup
t→∞

Xt =∞) = 1 (196)

Lemma B.5 (Finite total quadratic variations). Let {Xt}t≥0 be a discrete-time sub-martingale and
It := Xt −Xt−1 for all t ≥ 1 to be an increment at time t. If {Xt}t≥0 converges a.s and |It| <∞
for all t, then

∑∞
s=1 Es−1[I

2
s ] <∞.

Proof. Let {Xt}t≥0 be a discrete-time sub-martingale. Define an increment at time t by It :=

Xt − Xt−1 for all t ≥ 1. Note that Xt =
∑t

s=1 Is. Also, |It| < ∞ for all t. Suppose {Xt}t≥0

converges a.s. By Doob decomposition, Xt can be uniquely written as

Xt = Mt +At (197)

where At :=
∑t

s=1 Es−1[Is] is predictable and non-decreasing, and Mt :=
∑t

s=1(Is − Es−1[Is]) is
a martingale. Let Yt := It−Et−1[It] be an increment at time t. Note that Ys is bounded, i.e |Ys| <∞
for all s. Since Xt = Mt + At converges a.s to a finite limit, both Mt and At must remain finite
a.s. In particular, At cannot diverge to∞ because that would force Mt to diverge to −∞. However,
the increment Yt are bounded for all t. Hence Mt cannot diverge to −∞. Therefore, {At}t≥0 and
{Mt}t≥0 converge a.s. Since At converges and is a non-decreasing, then Et−1[It] must converge to
0 a.s. Specifically, there must exist a timestep τ such that for all s ≥ τ , we have 0 ≤ Es−1[Is] < 1.
In other words, we have Es−1[Is]

2 ≤ Es−1[Is] for all s ≥ τ . Since
∑∞

s=1 Es−1[Is] <∞, we know
that

∑∞
s=1 Es−1[Is]

2 <∞. Since {Mt}t≥0 converges a.s, then Mt is pathwise bounded a.s

Pr(sup
t
|Mt| <∞) = 1 (198)

Let define a stopping time τK := inf{t ≥ 1 : |Mt| ≥ K} and a corresponding stopped martingale
Zt = Mt∧τK . For all t < τK , |Zt| = |Mt| < K. When t = τK , then |Zt| = |MτK | =
|MτK−1 + YτK | ≤ |MτK−1|+ |YτK | <∞ since Yt is bounded for all t. Therefore, Zt is a uniformly
bounded martingale, i.e there exists a constant C, s.t |Zt| ≤ C a.s

∃C s.t P (sup
t
|Zt| ≤ C) = 1 (199)

Denote Y ′
t := Zt − Zt−1 as an increment of the martingale Zt, i.e Zt =

∑t
s=1 Y

′
s . Note that

Y ′
t = Yt1{t ≤ τK}. Since Zt is a bounded martingale, then Zt is also bounded in L2. Specifically,

sup
t

E[Z2
t ] ≤ sup

t
E[C2] = C2 a.s (200)

Note that

E[Z2
t+1 − Z2

t ] = E[(Zt + Y ′
t+1)

2 − Z2
t ] (201)

= E[2Y ′
t+1Zt] + E[Y ′2

t+1] (202)

= 2E[ZtEt[Y
′
t+1]] + E[Y ′2

t+1] Law of total expectation (203)

= E[Y ′2
t+1] (204)

Recursively, we have E[Z2
t ]− E[Z2

0 ] =
∑t

s=1 E[Y ′2
s ] = E[

∑t
s=1 Es−1[Y

′2
s ]]. Since supt E[Z2

t ] ≤
C ′2 a.s, then

E[
t∑

s=1

Es−1[Y
′2
s ]] exists and is finite a.s (205)

Since
∑t

s=1 Es−1[Y
′2
s ] is non-negative and finite on expectation, then

∞∑
s=1

Es−1[Y
′2
s ] <∞ a.s (206)
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Note that Y ′
s = Ys1{s ≤ τK}. Then,∑∞

s=1
Es−1[(Ys1{s ≤ τ})2] =

∞∑
s=1

1{s ≤ τK}Es−1[Y
2
s ] =

∞∧τK∑
s=1

Es−1[Y
2
s ] <∞ (207)

In other words, for all K, the total predictable variation of martingale Mt is finite. Therefore,∑∞
s=1 Es−1[Y

2
s ] <∞ a.s. Therefore,

∑∞
s=1 Vars−1[Is] =

∑∞
s=1 Es−1[I

2
s ] <∞.

Lemma B.6 (Infinite total variance). In the bandit setting, where we allow ties in the expected reward
of arms, using Algorithm 1 with any η ∈ Ω(1), we have that for all a ∈ A∗, almost surely,

∞∑
t=0

πt(a)(1− πt(a)) =∞ (208)

Proof. We divide into three cases: πt(a) is finitely often above 1
2 , finitely often below 1

2 , and infinitely
often above and below 1

2 . First, by Lemma 3.1, we know that for all a ∈ [K],
∑

t≥0 πt(a) =∑
t≥0(1− πt(a)) =∞. In the first case, since πt(a) is only finitely often above 1

2 ,∑
t≥0

πt(a)(1− πt(a)) ≥
∑
t≥0

I{πt(a) ≤
1

2
}πt(a)

2
=∞ (209)

The inequality is due to x(1− x) ≥ x
2 when x ≤ 1

2 . SImilarly, when πt(a) is finitely often below 1
2 ,∑

t≥0

πt(a)(1− πt(a)) ≥
∑
t≥0

I{πt(a) >
1

2
}1− πt(a)

2
=∞ (210)

The inequality is due to x(1−x) > 1−x
2 when x > 1

2 . To show the last case, it is equivalently to show
that the event πt(a) <

1
2 and πθt+1(a) >

1
2 happens i.o. Since πt(a) =

exp(θt(a))
exp(θt(a))+

∑
a′ ̸=a exp(θt(a′)) ,

we denote X := exp(θt(a)) and Y :=
∑

a′ ̸=a exp(θt(a
′)). Since πt(a) <

1
2 , we have X < Y . In

order to increase πθt+1(a) >
1
2 , the algorithm needs to play at = a, so the update rule is

θt+1(a) = θt(a) + η(1− πt(a))rt(a) ≤ θt(a) + ηR (211)
For other actions a′ ̸= a, the update rule is

θt+1(a
′) = θt(a

′)− ηπt(a
′)rt(a) ≥ θt(a

′)− ηR (212)

Since πt(a) =
X

X+Y is an increasing function in X when X,Y > 0, then

πθt+1(a) =
exp(θt+1(a))

exp(θt+1(a)) +
∑

a′ ̸=a exp(θt+1(a′))
(213)

≤ exp(θt(a) + ηR)

exp(θt(a) + ηR) +
∑

a′ ̸=a exp(θt(a
′))

(214)

≤ exp(θt(a) + ηR)

exp(θt(a) + ηR) +
∑

a′ ̸=a exp(θt(a
′)− ηR)

(215)

=
X exp(ηR)

X exp(ηR) + Y exp(−ηR)
(216)

≤ exp(ηR)

exp(ηR) + exp(−ηR)
(X < Y )

Therefore, πθt+1
(a)(1 − πθt+1

(a)) ≥ exp(−ηR)
exp(ηR)+exp(−ηR) . Hence,

∑
t≥0 πθt+1

(a)(1 − πθt+1
(a)) =

∞.

Proposition 2.2 (Non-Stationary Convergence). In the bandit setting, where the mean reward has
ties, using Algorithm 1 with any η ∈ Θ(1), for all a ∈ A∗,

lim sup
t

θt(a) =∞ a.s. (1)

In other words, (πt)t≥0 does not converge to any one-hot policy.
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Proof. Denote the incremental It(a) := η(I{at = a} − πt(a))rt(at). By the update rule (Algo-
rithm 1), we know that

θt+1(a) = θt(a) + η(I{at = a} − πt(a))rt(at) = θt(a) + It(a) (217)

Also, we have,

Et[It(a)] = ηEt[(I{at = a} − πθt(a))rt(at)] (218)

= ηπθt(a)(1− πθt(a))r(a)−
∑
a′ ̸=a

ηπθt(a
′)πθt(a)r(a

′) (219)

= πθt(a)(r(a)− π⊺
θt
r) (220)

≥ 0 (221)

Therefore, Et[θt+1(a)] ≥ θt(a). Hence, (θt(a))t≥0 is a sub-martingale. Note that It(a) ∈
[−ηR, ηR] for all t. Therefore, by setting x = ηR > 0 and b = 2 > 0, then I{I+t > bx} =
I{I−t > x} = 0. Hence, Et−1[I

−
t I{I−t > x}]] = Et−1[I

+
t I{I+t > bx}] = 0. In other words,

the condition of Theorem B.4 is satisfied trivially. Therefore, {θt(a)}t≥0 can either converges to
a finite value or lim supt→∞ θt(a) = ∞ a.s. Suppose {θt(a)}t≥0 converges a.s. By Lemma B.5,∑∞

t=0 Et−1[I
2
t ] <∞. In other words,

∑∞
t=0 πt(a)(1− πt(a)) <∞. However, by Lemma B.6, we

know that
∑∞

t=0 πt(a)(1− πt(a)) =∞. Therefore, lim supt θt(a) =∞ a.s.

C Nonstationary Bandit Setting

Proposition C.1 (Infinite Optimal Parameters). If A∗ ̸= [K] then limt→∞
∑

a∈A∗ θt(a) = ∞
almost surely.

Proof. For t ≥ 0, let Xt :=
∑

a∈A∗ θt+1(a)−θt(a), such that
∑t

i=0 Xi =
∑

a∈A∗ θt+1(a)−θ0(a).
By the update rule of Algorithm 1, note also that

Xt = η
∑
a∈A∗

(I[at = a]− πt(a))rt . (222)

The conditional expectation of Xt given Ft can be lower bounded by

Et[Xt] =
∑

a∈[K]

Et[I[at = a]Xt] (
∑

a∈[K] I[at = a] = 1) (223)

=
∑
a∈A∗

Et[I[at = a]η(1− πt(A∗))rt] +
∑

b∈[K]\A∗

Et[I[at = b]η(−πt(A∗))rt]

(Eq. (222)) (224)

= η(1− πt(A∗))
∑
a∈A∗

Et[I[at = a]rt]− ηπt(A∗)
∑

b∈[K]\A∗

Et[I[at = b]rt]

(πt is Ft-measurable) (225)

= η(1− πt(A∗))
∑
a∈A∗

πt(a)r
t(a)− ηπt(A∗)

∑
b∈[K]\A∗

πt(b)r
t(b)

(Et[I[at = · ]rt] = πt(·)rt(·)) (226)

≥ η(1− πt(A∗))
∑
a∈A∗

πt(a)(r(a)−∆/3)− ηπt(A∗)
∑

b∈[K]\A∗

πt(b)(r(b) + ∆/3)

(∀a ∈ [K],∀t ≥ τ, |rt(a)− r(a)| ≤ ∆/3) (227)

≥ η(1− πt(A∗))
∑
a∈A∗

πt(a)(r(A∗)−∆/3)− ηπt(A∗)
∑

b∈[K]\A∗

πt(b)(r(A∗)− 2∆/3)

(r(a) = r(A∗) , r(b) ≤ r(A∗)−∆) (228)

= ηπt(A∗)(1− πt(A∗))
(
r(A∗)−∆/3− (r(A∗)− 2∆/3)

)
(
∑

a∈A∗ πt(a) = πt(A∗) ,
∑

b∈[K]\A∗ πt(b) = 1− πt(A∗)) (229)

= ηπt(A∗)(1− πt(A∗))∆/3 , (230)
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and the conditional variance can be upper bounded by

Vart[Xt] ≤ Et[X
2
t ] (231)

=
∑

a∈[K]

Et[I[at = a]X2
t ] (

∑
a∈[K] I[at = a] = 1) (232)

=
∑
a∈A∗

Et[I[at = a]
(
η(1− πt(A∗))rt

)2
] +

∑
b∈[K]\A∗

Et[I[at = b]
(
− ηπt(A∗)rt

)2
]

(Eq. (77)) (233)

≤ η2(1− πt(A∗))2R2
∑
a∈A∗

Et[I[at = a]] + η2πt(A∗)2R2
∑

b∈[K]\A∗

Et[I[at = b]]

(r2t ≤ R2) (234)

= η2(1− πt(A∗))2R2
∑
a∈A∗

πt(a) + η2πt(A∗)2R2
∑

b∈[K]\A∗

πt(b)

(Et[I[at = · ]] = πt(·)) (235)

= η2R2
(
(1− πt(A∗))2πt(A∗) + πt(A∗)2(1− πt(A∗))

)
(
∑

a∈A∗ πt(a) = πt(A∗) ,
∑

b∈[K]\A∗ πt(b) = 1− πt(A∗)) (236)

= η2R2πt(A∗)(1− πt(A∗)) . (237)

Thus for all t ≥ τ we have Vart[Xt] ≤ η3R2∆−1Et[Xt], |Xt| ≤ ηR, and Xt is Ft+1-measurable.
Setting b := ηR and c := ηR2∆−1, we need only to prove that

∑
t≥τ Et[Xt] =∞, at which point

we can apply the Freedman Divergence Trick (Lemma A.5) to conclude

lim
t

∑
a∈A∗

θt+1(a)− θ0(a) =
∑
t≥τ

Xt =∞ a.s, (238)

=⇒ lim
t

∑
a∈A∗

θt(a) =∞ a.s. (
∑

a∈A∗ θ0(a) <∞) (239)

Thus in the remainder of the proof we turn our attention to showing
∑

t≥τ Et[Xt] =∞. Applying
Eq. (230) and η∆/3 > 0, we need only show that∑

t≥τ

πt(A∗)(1− πt(A∗)) =∞ . (240)

Lemma 3.1 together with ∅ ≠ A∗ ̸= [K] implies that∑
t≥τ

I[at ∈ A∗] =
∑
t≥τ

I[at /∈ A∗] =∞ a.s. (241)

Since P(at ∈ A∗|Ft) = πt(A∗) and P(at /∈ A∗|Ft) = 1 − πt(A∗), the Extended Borel-Cantelli
Lemma (Lemma A.1) applied to Eq. (95) furnishes

∑
t≥τ πt(A∗) =

∑
t≥τ (1− πt(A∗)) =∞ a.s.

We now break into cases to show that Eq. (240) holds regardless of the behavior of πt(A∗).

If πt(A∗) ≥ 1/2 only finitely often then we can set u := max{t ≥ 0 : πt(A∗) ≥ 1/2} for∑
t≥τ

πt(A∗)(1− πt(A∗)) ≥
∑
t>u

πt(A∗)

2
=∞ . (242)

Similarly, if πt(A∗) < 1/2 only finitely often then u := max{t ≥ 0 : πt(A∗) < 1/2} gives us∑
t≥τ

πt(A∗)(1− πt(A∗)) ≥
∑
t>u

1− πt(A∗)

2
=∞ . (243)

We can narrow our focus to the case where πt(A∗) is both above and below 1/2 i.o. In particular,
there must be infinitely many t ≥ 0 such that πt(A∗) < 1/2 but πθt+1(A∗) ≥ 1/2, and for such t we
have

πθt+1(A∗) =

∑
a∈A∗ exp(θt+1(a))∑

a∈A∗ exp(θt+1(a)) +
∑

b∈[K]\A∗ exp(θt+1(b))
. (Eq. (2)) (244)
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The above equation is of the form x/(x + y), where x :=
∑

a∈A∗ exp(θt+1(a)) and y :=∑
b∈[K]\A∗ exp(θt+1(b)). Since x/(x + y) is increasing in x and decreasing in y for x, y > 0,

and |θt+1(c)− θt(c)| ≤ ηR for all c ∈ [K], we can maximize the right hand side for the upper bound

πθt+1
(A∗) ≤

∑
a∈A∗ exp(θt(a) + ηR)∑

a∈A∗ exp(θt(a) + ηR) +
∑

b∈[K]\A∗ exp(θt(b)− ηR)
. (245)

Also, πt(A∗) < 1/2 yields
∑

a∈A∗ exp(θt(a)) <
∑

b∈[K]\A∗ exp(θt(b)), so∑
a∈A∗ exp(θt(a) + ηR)∑

a∈A∗ exp(θt(a) + ηR) +
∑

b∈[K]\A∗ exp(θt(b)− ηR)
(246)

=
exp(ηR)

∑
a∈A∗ exp(θt(a))

exp(ηR)
∑

a∈A∗ exp(θt(a)) + exp(−ηR)
∑

b∈[K]\A∗ exp(θt(b))
(247)

<
exp(ηR)

∑
a∈A∗ exp(θt(a))

(exp(ηR) + exp(−ηR))
∑

a∈A∗ exp(θt(a))
(
∑

a∈A∗ exp(θt(a)) <
∑

b∈[K]\A∗ exp(θt(b))) (248)

=
exp(ηR)

exp(ηR) + exp(−ηR)
=

exp(2ηR)

exp(2ηR) + 1
. (249)

Connecting the above displays, there are infinitely many t ≥ 0 with πt(A∗) < 1/2 and πθt+1(A∗) ≥
1/2, and for such t we have 1−πθt+1

(A∗) > 1− exp(2ηR)/(exp(2ηR)+1) = (exp(2ηR)+1)−1.
Therefore πθt+1

(A∗)(1− πθt+1
(A∗)) ≥ (2 exp(2ηR) + 2)−1 i.o, establishing Eq. (240).

Proposition C.2 (Finite Suboptimal Parameters). For every suboptimal arm b ∈ [K] \ A∗,
limt→∞ θt(b) = −∞ a.s.

Remark C.3. The proof remains virtually unchanged from the proof of Proposition 3.4, and the
necessary changes are identical to the ones made for the proof of Proposition C.1.

Theorem C.4. In the non-stationary bandit setting described as above, Algorithm 1 with any
η ∈ Θ(1) almost surely converges to playing optimal arms,

lim
t→∞

∑
a∈A∗

πt(a)→ 1 a.s. (250)

D Reinforcement Learning

Define the MDPM = (H,S,A, {rh}H−1
h=0 , {Ph}H−1

h=0 , ρ). Let Nt(s, a) :=
∑

t≥0 I{st = s, at =

a} be the total number of visitations of state-action pair (s, a) until episode t. We denote that
Ph+1
t (sh+1 = s′|sh = s) as the probability of visiting state s′ in the horizon h+ 1 from the state s

in the horizon h during the episode t. First, we extend the bandit exploration lemma (Lemma 3.1) to
obtain its counterpart in the RL setting.

Lemma D.1 (RL exploration (Lemma 4.1)). Using the REINFORCE algorithm with any η ∈ Θ(1)
under the finite-horizon MDPM defined as above, for all h ∈ H, for all reachable s ∈ Sh and
for all a ∈ As we have, almost surely, that every reachable state action pair will be visited i.o, i.e
N∞(s, a) =∞.

Proof. First, for all h ∈ H, for a given reachable s ∈ Sh that is played infinite often, every action
a ∈ As will be played i.o. by the bandit exploration result (Lemma 3.1) . In other words, for all
h ∈ H , for a reachable state s that is played i.o, we have, almost surely that,

N∞(s, a) =∞ ⇐⇒
∑
t≥0

πh
t (a|s) =∞ ∀a ∈ As (251)

Next, for all h ∈ H, we want to show that every reachable state s ∈ Sh will be visited i.o. by
induction. Suppose for a given h ∈ H, for some reachable s ∈ Sh and there exists an action a ∈ As

30



such that Ph+1(sh+1 = s′|sh = s, ah = a) > 0 for some s′ ∈ Sh+1, if s is visited i.o, s′ is also
visited i.o. For the base case h = 0, for some reachable states s ∈ S0, i.e ρ(s) > 0 we have,∑

t≥0

ρ(s) =∞ (252)

since ρ(s) is a constant for every episode. Therefore, every reachable state s ∈ S0 is visited i.o. For
the inductive case, if any reachable states s ∈ Sh is visited i.o, then any reachable states s′ ∈ Sh+1

is also visited i.o. A state s′ is reachable if there exists an action a ∈ As from a reachable state
s ∈ Sh such that Ph+1(s

′|s, a) > 0. Denote c := mins∈Sh
mina∈As

Ph+1(s
′|s, a) be the minimum

transition probability from the horizon h to h+ 1 among states and actions. For reachable s′ from s,
we have . ∑

t≥0

Ph+1
t (s′|s) =

∑
t≥0

∑
a∈As

Ph+1(s
′|s, a)πh

t (a|s) (253)

≥
∑
a∈As

c
∑
t≥0

πh
t (a|s) (254)

=∞ (by Eq. (251))

Therefore, if s ∈ Sh is reachable and visited i.o, then any reachable states s′ ∈ Sh+1 from s will be
visited i.o. Combined Eq. (251) and Eq. (253), for all h ∈ H, we have that any reachable state-action
(s, a) ∈ Sh×Ah pairs will be visited i.o. we know that every state-action pair will be visited i.o.

Next, we obtain the convergence of REINFORCE in the finite-horizon setting.

Theorem D.2 (RL convergence (Theorem 4.2)). For the MDP defined as above, using the algorithm
REINFORCE with constant learning rate η ∈ Θ(1), we have, almost surely, for all s ∈ S0, V πt

0 (s)→
V ∗
0 (s) as t→∞.

Proof. We denote δ := mins mina,b∈As,a ̸=b |Q(s, a)−Q(s, b)| > 0 to be the minimum non-zero
gap between Q-values. Denote A∗

h = {a|a = argmaxa∈As r(s, a)} is the set of optimal action at
a given state s. We also denote C := maxs maxa minb(Q(s, a) − Q(s, b)). We want to prove by
backward induction that for all reachable state s0 ∈ S0,

∑
a∈A∗

0
π0
t (a|s)→ 1 as t→∞. Suppose

for all h′ ∈ {h, . . . ,H − 1}, for all reachable s ∈ Sh′ , we have
∑

a∈A∗
h′
πh′

t (a|s) → 1 as t → ∞,

we want to prove that for all reachable s ∈ Sh−1, we have
∑

a∈A∗
h−1

πh−1
t (a|s)→ 1 as t→∞. . In

the base case h = H − 1, the REINFORCE update rule (Algorithm 2) is reduced to,

θH−1
t+1 (s, a) = θH−1

t (s, a) + η(I[aH−1 = a]− πH−1
t (a|s))rh (255)

This is the bandit update rule (Algorithm 1) for a given reachable state s ∈ SH−1. By Theorem 3.2,
for a given reachable state s ∈ SH−1, using the stochastic gradient bandit algorithm with constant
learning rate η ∈ Θ(1), we will have, almost surely that

∑
a∗∈A∗

h
πH−1
t (a∗|s) → 1 as t → ∞ .

By Lemma D.1 , any reachable states s ∈ SH−1 will be sampled i.o. Hence, using REINFORCE
with η ∈ Θ(1), that for all reachable s ∈ SH−1 that are played i.o, we have, almost surely,∑

a∈A∗
H−1

πH−1
t (a|s)→ 1 as t→∞. In other words, V πt

H−1(s)→ V ∗
H−1(s) as t→∞.

For inductive case, suppose for all h′ ∈ {h, . . . ,H − 1}, for all reachable s ∈ Sh′ , we have∑
a∈A∗

h′
πh′

t (a|s) → 1 as t → ∞, we want to prove that for all reachable s ∈ Sh−1, we have∑
a∈A∗

h−1
πh−1
t (a|s)→ 1 as t→∞ . By the induction hypothesis, for all h ∈ H, for all reachable

s ∈ Sh, V πt

h (s)→ V ∗
h (s) and Qπt

h (s, a)→ Q∗
h(s, a) for all a ∈ As as t→∞. First, we note that

V ∗
h′(s)− V πt

h′ (s) =
∑
a′

πh′

t (a′|s)(max
a

Q∗
h′(s, a)−Qπt

h′ (s, a
′)) (256)

=
∑
a′

πh′

t (a′|s)(max
a

Q∗
h′(s, a)−Q∗

h′(s, a′)︸ ︷︷ ︸
C1

+Q∗
h′(s, a′)−Qπt

h′ (s, a
′))︸ ︷︷ ︸

C2

(257)

31



We denote that ηh′(t) :=
∑

a′ ̸∈A∗
h′
πh′

t (a′|s). For the first term C1, we have

C1 =
∑
a′

πh′

t (a′|s)(max
a∈As

Q∗
h′(s, a)−Q∗

h′(s, a′)) (258)

=
∑

a′ ̸∈A∗
h′

πh′

t (a′|s)(max
a∈As

Q∗
h′(s, a)−Q∗

h′(s, a′)) (259)

≤ Cγh′(t) (260)

since the horizon H is fixed and rh ≤ R for all h ∈ H, then

max
a∈As

Q∗
h′(s, a)−Q∗

h′(s, a′) ≤ C (261)

By the induction hypothesis, we have, for all h′ ∈ {h, . . . ,H − 1}, we have that γh′(t) → 0 as
t→∞.

For the second term C2, we have Q∗
h′(s, a′)−Qπt

h′ (s, a′) ≤ αh′(t), where αh′(t)→ 0 as t→∞ by
induction hypothesis. Therefore,

V ∗
h′(s)− V πt

h′ (s) ≤ Cγh′(t) + αh′(t) (262)

Denote ϵh(t) := Cγh′(t) + αh′(t) and ϵh(t)→ 0 as t→∞. Hence, for sufficiently large timestep
τ , such that for all t ≥ τ , for all h′ = h, . . . ,H − 1, for all reachable s ∈ Sh′ , we have that

V ∗
h′(s)− V πt

h′ (s) ≤
δ

3
(263)

where δ is the minimum possible gap Q-value defined as above. The existence of τ is guaranteed
since ϵh(t)→ 0 as t→∞ . First, for a given reachable s ∈ Sh−1, such that for any actions a ∈ As,
we have,

Qπt

h−1(s, a) = rh−1(s, a) + Es′∼Ph(.|s,a)[V
πt

h (s′)] (264)

≥ rh−1(s, a) + Es′∼Ph(.|s,a)[V
∗
h (s

′)]− ϵ (265)

= Q∗
h−1(s, a)− ϵ (266)

Also, for any actions a ∈ As, we have,

Qπt

h−1(s, a) ≤ Q∗
h−1(s, a) ≤ Q∗

h−1(s, a) + ϵ (267)

By definition of δ, for a given reachable s ∈ Sh−1, we know that Q∗
h−1(s, a)−Q∗

h−1(s, b) ≥ δ for
any a, b ∈ As such that a ̸= b, then we have

Qπt

h−1(s, a)−Qπt

h−1(s, b) ≥ δ − 2ϵ ≥ δ

3
(268)

Note that δ is a non-zero gap by definition. Note that the update rule of Algorithm 2,

θh−1
t+1 (s, a) = θh−1

h−1(s, a) + η(1{ah−1 = a} − πh−1
t (a|s))

H−1∑
h′=h−1

rh′ (269)

is equivalent to the update rule in the nonstationary bandit setting, by considering only the updates to
the arms at state s and the full trajectory’s rewards as the observed rewards.

Since by definition

Eπt [

H−1∑
h′=h−1

rh′ |sh−1 = s, ah−1 = a] = Qπt

h−1(s, a) ,

∑H−1
h′=h−1 rh′ is an unbiased estimate of Qπt

h−1(sh−1, ah−1), up to nonstationarity in πt which
eventually diminishes below δ/3. Also, note that

Qπt

h−1(s, a) = Eπt [

H−1∑
h′=h−1

rh′ |sh−1 = s, ah−1 = a] ≤ R(H − h) , (270)
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since r(s, a) ≤ R,∀s ∈ S, a ∈ A. Since the sample return
∑H−1

h′=h−1 rh′ is a bounded, unbiased
estimator of Qπt

h−1(sh−1, ah−1), and there is a minimum gap of δ/3 between Q values among different
actions within the same state, we can apply the convergence result from the nonstationary bandit
setting (Theorem C.4) to conclude that

∑
a∈A∗

h−1(s)
πh−1
t (a|s) → 1 as t → ∞ for all reachable

s ∈ Sh−1. Therefore the induction hypothesis holds, and we conclude that, using REINFORCE with
η ∈ Θ(1),

∑
a∈A∗

h
πh
t (a|s) → 1 as t → ∞ for all s ∈ Sh (or V πt

0 (s) → V ∗
0 (s) as t → ∞ for all

s ∈ S0).

E Convergence rate

To obtain the convergence rate of the REINFORCE algorithm (Algorithm 2), we first generalize the
convergence rate result from the bandit setting with the uniqueness assumption to the one without it.
Then, we also obtain the convergence rate in the non-stationary bandit setting before showing the rate
of the REINFORCE algorithm.
Theorem E.1. In the bandit setting where multiple arms can have a same reward, for a large enough
τ , for all T > τ , the average sub-optimality decreases at a rate O( log T

T ). Formally, for a constant c,
we have

1

T

T∑
s=τ

(
r(a∗)− ⟨πθs , r⟩

)
≤ c log(T − τ)

(T − τ)
(271)

Proof. By Eq. (84), we have

Et[θt+1(A∗)− θt(A∗)] ≥ η∆πθt(A∗)(1− πθt(A∗)) ≥ 0 (272)

By Theorem 3.2, we have limt πθt(A∗) = 1 a.s. Therefore, for a large enough t, we have

πθt(A∗) ≥ 1

2
(273)

By Lemma 3.1, we know that every action a ∈ [K] will be played i.o. In other words, for all a ∈ [K],∑
t≥0 πt(a) =∞. Therefore, we have

∞∑
t=0

(1− πθt(A∗)) =∞ (274)

Therefore, we have
∞∑
t=0

Et[θt+1(A∗)− θt(A∗)] =∞ a.s (275)

By Eq. (91), we have

Vart[θt+1(A∗)− θt(A∗)] ≤ η2R2πt(A∗)(1− πt(A∗)) (276)

Since the conditional expecation and variance of the bound sequence {θt+1(A∗)− θt(A∗)}t≥0 are
proportional, we can use the Lemma A.5 to show that the expectation will dominate the variance
eventually. Therefore, for all large enough t ≥ τ , for some constant C > 0

1

|A∗|
θt(A∗) ≥ C

t∑
s=τ

(1− πθs(A∗)) (277)

It is easy to see that supt θt(a) < ∞ for all a ∈ [K]\A∗. Therefore, for a large enough t ≥ τ , we
have

θt(a)−
1

|A∗|
θt(A∗) ≤ −C

t∑
s=τ

(1− πθs(A∗)) (278)

which implies that∑
a∈[K]\A∗

exp(θt(a)−
1

|A∗|
θt(A∗)) ≤ (K − |A∗|) exp(−C

t∑
s=τ

(1− πθs(A∗))) (279)
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Therefore, we have

1− πθt(A∗) ≤ 1− πθt(A∗)

πθt(A∗)
(280)

=
∑

a∈[K]\A∗

πθt(a)

πθt(A∗)
(281)

=
∑

a∈[K]\A∗

exp(θt(a))∑
a′∈A∗ exp(θt(a′))

(282)

≤
∑

a∈[K]\A∗

exp(θt(a))

|A∗| exp( 1
|A∗|θt(A∗))

(Jensen’s inequality) (283)

≤ (K − |A∗|) exp(−C
t∑

s=τ

(1− πθs(A∗))) (Eq. (279)) (284)

By (Mei et al., 2024a, Lemma 15) with xn =
∑t−1

s=τ (1 − πθs(A∗)) > 0, xn+1 =
∑t

s=τ (1 −
πθs(A∗)) > 0, c = C > 0, B = (K − |A∗|) ≥ 1, gives us for all t ≥ τ ,

t∑
s=τ

(1− πθs(A∗)) ≤ 1

C
log(C(t− τ) + exp(CM)) +

π2

12C
(285)

where M = max{B, 1
C log(C(K − |A∗|)), 1− πθτ (A∗)} Finally, for all s ≥ τ and T > τ , we have

r(a∗)− ⟨πθs , r⟩ =
∑

a∈[K]\A∗

πθs(a)(r(a
∗)− r(a)) ≤ 2R(1− πθs(A∗)) (286)

Summing from τ to T , we have

1

T

T∑
s=τ

(
r(a∗)− ⟨πθs , r⟩

)
≤

2R( 1
C log(C(T − τ) + exp(CM)) + π2

12C )

T − τ
(287)

Theorem E.2. In the non-stationary bandit setting, for a large enough τ , then for all T > τ , the
average sub-optimality decreases at a rate O( log T

T ). Formally, for a constant c, we have

1

T

T∑
s=τ

(
r(a∗)− ⟨πθs , r⟩

)
≤ c log(T − τ)

T − τ
(288)

Proof. Repeating the same analysis with Eq. (230), Eq. (237), Theorem C.4, we have, for all t ≥ τ ′′,
t∑

s=τ ′′

(1− πθs(A∗)) ≤ 1

C
log(C(t− τ) + exp(CM)) +

π2

12C
(289)

where M = max{B, 1
C log(C(K − |A∗|)), 1 − πθτ′′ (A∗)}. Also, from the non-stationary bandit

setting, there exists τ ′ such that for all t ≥ τ ′,

|r(a)− rt(a)| ≤ ∆

3
(290)

for all a ∈ [K]. Therefore, for all s ≥ max{τ ′, τ ′′} and T > max{τ ′, τ ′′}, we have

r(a∗)− ⟨πθs , r⟩ ≤ 2R(1− πθs(A∗)) (291)

Summing from τ := max{τ ′, τ ′′} to T, we have

1

T

T∑
s=τ

(
r(a∗)− ⟨πθs , r⟩

)
≤

2R( 1
C log(C(T − τ) + exp(CM)) + π2

12C )

T − τ
(292)
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Theorem E.3. In the finite-horizon MDP setting, for a large enough τ , for all T > τ , for all s ∈ S0,
the average sub-optimality decreases at a rate O( log T

T ). Formally, for a constant c, we have

1

T

T∑
s=τ

(
V ∗
0 (s)− V πs

0 (s)

)
≤ c log T

T
(293)

Proof. Repeating the same analysis, we have, for each h ∈ {0, ...,H − 1}, for all s ∈ Sh, for all
t ≥ τh,

t∑
s=τh

(1− πs
h(A∗

s|s)) ≤
1

C
log(C(t− τh) + exp(CM)) +

π2

12C
(294)

where Mh = max{|As|− |A∗
s|, 1

C log(C(|As|− |A∗
s|)), 1−πθτh

(A∗
s|s)}. Also, there exists τ ′h such

that for all t ≥ τ ′h,

||Q∗
h(s, .)−Qπt

h (s, .)||∞ ≤
∆

3
(295)

for all a ∈ As. Therefore, for all horizon h ∈ {0, ...,H − 1}, for all t ≥ max{τh, τ ′h} and
T > max{τh, τ ′h}, we have

Q∗
h(s, a

∗)−
∑
a∈As

πt
h(a|s)Q

πt

h (s, a) ≤ Q∗
h(s, a

∗)−
∑
a∈As

πt
h(a|s)(Q∗

h(s, a)−
∆

3
) (296)

=
∑

a∈As\A∗
s

πt
h(a|s)(Q∗

h(s, a
∗)−Q∗

h(s, a)) +
∆

3
(297)

≤ 2(H − h)R(1− πt
h(A∗

s|s)) +
∆

3
(298)

which implies

1

T

T∑
s=max{τh,τ ′

h}

(V ∗
h (s)−V

πt

h (s)) ≤
2R(H − h)( 1

C log(C(T − τh) + exp(CM)) + π2

12C ) + ∆
3 (T − τh)

T − τh

(299)
Since for all h ∈ {0, ...,H − 1}, for all s ∈ Sh, for all a ∈ As, limt Q

πt

h (s, a) = Q∗
h(s, a), we can

take δ → 0. Therefore,

1

T

∑
s=max{τ0,τ ′

0}

(V ∗
0 (s)− V πt

0 (s)) ≤
2HR 1

C log(C(T − τ0) + exp(CM)) + π2

12C )

T − τ0
(300)

F Additional experiments

Specifically, we measured the average suboptimality in the last episodes over 30 of the algorithm in
longer ChainMDP, DeepSea environment and CartPole environment. For ChainMDP, we extended
the lengths of the environment to H = {4, 5, 6} and measured the average suboptimality gap across
100 learning rates (from exp(−9) to exp(1)). For each length, we observed a clear bowl-shaped
curve. As complexity (chain length) increased, the specific thresholds of the bowl shape varied
slightly, but the optimal learning rate remained consistently around η ≈ .95. Next, we gradually
increase the complexity of our evaluation by testing the REINFORCE algorithm (Algorithm 2)
on the deep sea treasure environment. The agent operates in a square gridworld of a given depth
d = {5, 6, 7}). It starts at the top left corner and its goal is to reach the bottom right corner and
receive a reward of 1. The agent has two action 1 and 2. While taking action 1 leads the agent
downwards and receives no reward, taking the other leads the agent downwards and to the right and
receives a reward of −0.001. Similar to the previous environment, for different depths, we measure
the average suboptimality of the agent trained from 106 episodes over 30 seeds using 100 different
learning rates from exp(−9) to exp(7). We observed a similar "bowl" shape across the learning
rates. However, the thresholds are different from the previous analysis. Specifically, the learning
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Figure 5: Average last-iterate suboptimality gap of ChainMDP size 4

Figure 6: Average last-iterate suboptimality gap of ChainMDP size 5

rate η = 10 has the lowest suboptimality. Finally, we evaluate the performance of the REINFORCE
algorithm (Algorithm 2) in the Cartpole environment. Specifically, we measure the average return
received by the agent from 105 episodes over 5 seeds using η = {10−5, 10−4, 10−2, 1}. Again, we
observed a similar "bowl" shape across learning rates. The learning rate η = 0.01 achieves the highest
average return (approximately 150), while the average return of the others stay around 25. Overall,
we consistently find a "bowl-shaped" relationship between the learning rate and performance, and the
specific shape and optimal point of this bowl vary significantly with the environment’s structure.
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Figure 7: Average last-iterate suboptimality gap of ChainMDP size 6

Figure 8: Average last-iterate suboptimality gap of DeepSea depth 5

Figure 9: Average last-iterate suboptimality gap of DeepSea depth 6
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Figure 10: Average last-iterate suboptimality gap of DeepSea depth 7

Figure 11: Average suboptimality gap of CartPole
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