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Abstract

We prove that the classic REINFORCE stochastic policy gradient (SPG) method
converges to globally optimal policies in finite-horizon Markov Decision Processes
(MDPs) with any constant learning rate. To avoid the need for small or decaying
learning rates, we introduce two key innovations in the stochastic bandit setting,
which we then extend to MDPs. First, we identify a new exploration property of
SPG: the online SPG method samples every action infinitely often (i.0.), improving
on previous results that only guaranteed at least two actions would be sampled i.0.
This means SPG inherently achieves asymptotic exploration without modification.
Second, we eliminate the assumption of unique mean reward values, a condition
that previous convergence analyses in the bandit setting relied on, but that does
not translate to MDPs. Our results deepen the theoretical understanding of SPG in
both bandit problems and MDPs, with a focus on how it handles the exploration-
exploitation trade-off when standard optimization and stochastic approximation
methods cannot be applied, as is the case with large constant learning rates.

1 Introduction

Policy gradient (PG) methods constitute one of the most popular classes of algorithms for reinforce-
ment learning (RL). In the PG paradigm, a learner acts according to a parameterized policy; the
expected return is directly optimized by computing its gradient with respect to the policy parameters
and performing stochastic gradient ascent. PG methods have played a key role in the advancements
of deep RL (Lillicrap et al., 2019} Schulman et al., | 2017alb): combined with deep neural networks,
PG algorithms have shown strong empirical performance across many domains, including robotics
Akkaya et al.| (2019), games [Vinyals et al.|(2019), and large language model training (Rafailov et al.
2024} Ouyang et al., 2022).

Despite PG methods’ conceptual simplicity and rich set of practical applications, known theoretical
guarantees on their performance come with restrictive assumptions. In particular, convergence proofs
either require oracle access to the exact gradient (Liu et al.| [2024; |Agarwal et al., 2020), which is akin
to demanding that the reward function and dynamics of the environment are known to the learner,
or they impose harsh constraints on the learning rate used for stochastic gradient ascent (Me1 et al.|
2024b; [Klein et al, [2024). Both of these assumptions are violated in typical applications. In the
stochastic setting, where the rewards and transition probabilities are unknown and must be estimated
from interaction with the environment, convergence of the classic REINFORCE algorithm (Williams|
1992) has only been shown under the assumption that the learning rate is either sufficiently small
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(Klein et al., [2024)) or decaying (Zhang et al.,[2020)). In this work we study REINFORCE with the
standard softmax parameterization, and narrow the gap between theory and practice by providing the
first proof in the stochastic setting that REINFORCE will globally converge to an optimal policy in
tabular finite-horizon Markov Decision Processes (MDPs) with any constant learning rate. Along the
way we show new results about the stochastic gradient bandit algorithm (Sutton and Barto, [2018;
Mei et al. 2024a)), which is the special case induced by applying REINFORCE to a bandit problem.
Specifically, we show that the stochastic gradient bandit algorithm automatically achieves sufficient
exploration for global convergence with an arbitrary constant learning rate; in doing so we remove a
key assumption in prior work, and thus resolve an open problem posed by Mei et al.| (2024a). Our
results in the bandit setting extend to a more general “nonstationary bandit problem”, where the
reward function is allowed to drift mildly across timesteps. This extension is then embedded into the
RL setting where, with some additional arguments, we derive the convergence of REINFORCE. In
summary, the main contributions of this work are threefold:

i) We show that the stochastic gradient bandit algorithm will select every arm infinitely
often (i.0.) in any bandit problem and with any learning rate. We find it surprising that
this strong property emerges from such a simple algorithm, without any explicit hacks to
encourage exploration. We obtain a counterpart result in the RL setting, but the bandit case
is independently interesting, and also critical for our second contribution:

ii) In the bandit setting we remove the central assumption of Mei et al.| (2024a)), that no two
arms have the same expected reward, and prove that the stochastic gradient bandit algorithm
still converges to an optimal policy. For bandits this assumption is impossible to verify
without access to the true reward function (at which point the bandit problem is already
solved), but more importantly it renders the extension to RL virtually impossible.

iii) In RL we provide the first proof that REINFORCE converges with large learning rates in the
stochastic setting. This requires the first two contributions: the exploration result is applied
directly to RL, and the bandit result is extended to a nonstationary bandit problem that can
be embedded into an MDP.

Positioning our work, to our best knowledge, we note that existing convergence results for stochastic
policy gradient methods typically suffer from one of the following drawbacks: (i) they rely on
decaying learning rate schedules for convergence guarantees (Zhang et al., 2020; Ding et al., [2022,
2024} Mei et al., 2023)), a requirement not aligned with the constant rates commonly used in practice;
(ii) results for constant learning rates (Mei et al.| [2024b; Klein et al.| 2024) provide guarantees only
for rates considered impractically small; or (iii) they are restricted to the simplest bandit settings
(Mei et al., [2024a), limiting their applicability to RL. Filling this gap, our work provides rigorous
convergence guarantees for stochastic PG (SPG) with practical learning rates in RL settings, without
requiring uniqueness of the optimal policy.

2 Challenges of Non-Unique Solutions

2.1 Non-Uniqueness of Policies in RL

In standard optimization, it is well known that gradient-based algorithms can exhibit non-convergence
of their parameters (or iterates) when multiple optimal solutions exist (Absil et al.,|2005)). To avoid
this challenge, existing results for the SPG algorithm in the K-armed bandit setting (Mei et al.|
2024bja)) rely on the following assumption, which implies the uniqueness of the globally optimal
policy.

Assumption 2.1 (True mean reward has no ties). For all a,b € [K], if a # b, then r(a) # r(b).

In Assumption [K] := {1,..., K} denotes the set of K arms, and r(a) is the true mean
reward for arm a € [K]. Assumption [2.1|implies that there is a unique optimal arm, which we
denote ™ := arg max,¢ (k] r(a). This results in a unique one-hot globally optimal policy 7* with
7*(a*) = 1and 7*(a) = 0 for all @ # a*.

However, extending to the RL setting presents the challenge of multiple optimal policies, a scenario

which is not prevented by the straightforward extension of Assumption [2.1] to each state, since
Assumption only constrains immediate rewards. In contrast to bandits, RL involves sequential
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Figure 1: Classical examples of finite-horizon MDPs.

decisions where different action sequences (trajectories) can yield the same maximal cumulative
reward. This situation is common in tasks like navigation with alternative optimal paths. As a specific
example, consider the tree-structured MDP shown in Fig. [1a|(state space S = {s1, ..., s13}, action
space A = {aj, a2, asz}). Here, both s; — s9 — s5 and s; — s3 — sg are optimal paths with total
reward 3. Because previous bandit convergence analyses (Mei et al., | 2024bla) critically rely on the
assumption of a unique optimal policy, they cannot be directly applied to RL problems exhibiting
such non-uniqueness.

2.2 SPG Policy Non-Convergence in the Presence of Ties

On the other hand, Mei et al.|(2024b, Remark 5.3) conjectured that the SPG algorithm could still
achieve convergence even without Assumption Their conjecture was based on the idea that
SPG has a “self-reinforcing” property, causing the probability of only one arm to eventually become
dominant and converge to 1, thus resulting in a stationary one-hot optimal policy as ¢ — oo. That
is, m¢(a*) — 1 for only one optimal arm as ¢ — oo, almost surely, even when multiple optimal
arms exist. If this behavioral property holds, the latter part of the convergence proof can utilize the
contradiction-based arguments presented in (Mei et al.| [2024b, Theorem 5.1, Claim 2).

Our first major finding, supported by both empirical evidence and theoretical analysis, is that the
aforementioned conjecture is incorrect: SPG-like algorithms do not necessarily converge to a single
policy in the presence of multiple solutions. To demonstrate this, we designed a bandit experiment
with two optimal arms (mean 0.2) and one suboptimal arm (mean —0.1). Using the stochastic gradient
bandit algorithm (Mei et al.,[2024a, Algorithm 1) on a softmax policy (6 := 0, where 6, are the policy
parameters at time ¢) for 10° iterations (n € {1,10}), Fig. reveals that, while the total probability
of optimal arms converges to 1 (3, 4. m;(a) — 1), the probabilities of individual optimal arms (1
and 2) display non-stationary behavior (e.g. arm 2 fluctuates significantly with 7 = 1). We observed
analogous behavior in a similar experiment on a tree-structured MDP using REINFORCE (Williams),
1992) (n € {0.1,0.5}), as shown in Fig. where optimal action probabilities from state s; fail to
converge to a unique action. More importantly, we prove the following theorem, rigorously justifying
the phenomena observed in simulations.

Proposition 2.2 (Non-Stationary Convergence). In the bandit setting, where the mean reward has
ties, using Algorithm[I|with any 1 € ©(1), for all a € A*,

limsup 0 (a) = co as. €))
t

In other words, (m)i>0 does not converge to any one-hot policy.

Proof sketch 1. First, we analyze the dynamics of (6;(a))¢>0 induced by Algorithm |1} By (Bramson
et al.,[2004} |Davis, |1969 Theorem 1.4), this process must either converge or fluctuate unboundedly.
Because it can be shown that >, , 7 (a)(1 — m(a)) = oo, the total variance of the increments

0:+1(a) — 0¢(a) is not summable. This implies non-convergence.

2.3 Limitations of Standard Analysis

Global convergence for SPG algorithms is typically established through a two-stage proof: (i)
establish convergence to a stationary point, and (ii) demonstrate (often by contradiction) that the
attained stationary point is globally optimal. This methodology originates from seminal work on PG
in the exact gradient setting (Agarwal et al.,[2020, Theorem 5.1).
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Figure 2: Fig. [2alshows that the total probability of optimal arms converges to 1, but the probabilities
of individual optimal arms are non-stationary (i.e. 7(a;) oscillates). Fig. [2bfshows similar non-
stationary behavior for optimal actions in an RL setting with multiple optimal trajectories.

Our findings demonstrate two key points: (i) ties in trajectory or policy value can exist in RL settings
regardless of assumptions on immediate rewards; and (ii) the typical two-stage proof strategy for
arguing global convergence of SPG cannot be directly extended to RL. However, as shown in the next
section and suggested by the above simulations, convergence results can be obtained even with ties,
but this requires new analysis. This is primarily because our approach needs to carefully reason about
the per-timestep expected progress in distinguishing optimal from suboptimal actions despite the
presence of these ties. Specifically, we prove that the learned policy eventually converges to assign all
probability mass to the optimal set (a form of “generalized one-hot policy”), i.e. >, 4. T¢(a) — 1
ast — oo.

3 An Illustrative Bandit Setting

This section presents new insights into the exploration properties of the SPG algorithm. We first
analyze the simplest bandit setting for illustration and then extend the results to RL.

3.1 Stochastic Gradient Bandit

We consider a stochastic multi-armed bandit problem with K > 2 arms and rewards bounded in
[—R, R] (where R > 0). At each iteration ¢ > 1, the learner selects an arm a; € [K] :={1,..., K}
and observes a reward r; sampled from a fixed distribution P,, € M;([—R, R])|'| The true mean

reward for arm a € [K] is r(a) := ffR xP,(dz). The set of optimal arms is denoted A* :=
arg max,e(x] r(a).

The learner aims to find a policy 7 € M ([K]) that maximizes expected reward. We use the softmax
parameterization over RX: for § € R¥ and a € [K],

exp(6(a))

mo(a) := . 2)
Zbe[K] exp(6(b))
The optimization problem the learner is solving thus has the objective
max g 1. (3)

fERK

We study the stochastic gradient bandit algorithm (Algorithm [T, which performs stochastic gradient
ascent on Eq. (Sutton and Barto}, 2018} Mei et al.,2024b). Given 6, and learning rate > 0 the
algorithm iteratively updates parameters using the information it receives from single interactions.
The stream of parameters generated will be referred to as (6;);>0, and we will use 7, := ; for the
policy used to select a;1.

3.2 A Novel Exploration Lemma

We detail the reason why existing results (Me1 et al., 2024a) do not generalize, even to bandit settings
with reward ties. Mei et al.| (2024a, Lemma 2) establishes an exploration property for SPG, showing

'Where M (S) denotes the collection of probability distributions over the set S.



Algorithm 1 Stochastic gradient bandit algorithm

1: input 6y € R 5 >0
2: fort > 0do

3:  Selectas1 ~ 7y, and observe ry 1 ~ Py, .

4 Orr1(aryr) < Oi(aprr) +n(1 = mp(aesr))resr
5. fora € [K], a # a1 do

6: 9t+1(a) — 975((1) — 777Tt(a)7't+1.

7:  end for

8: end for

that at least two distinct arms are sampled i.0. Their subsequent convergence proof (Mei et al., [2024a,
Theorem 2) relies on the argument that at least one of these i.0. sampled actions must be optimal.
However, in the presence of reward ties, it is possible for two actions to share the same reward value
(the sub-optimal action’s interval from (Mei et al.l 2024al Eq. (15)) no longer exists). Consequently,
the arguments that construct a contradiction to show “at least one of these i.0. sampled actions must
be optimal” are no longer valid.

Given the failure of existing approaches with reward ties, new analytical results are required for
convergence proofs, even in the bandit setting. Our second key finding is a generalized exploration
property for SPG: we establish that despite reward ties, every arm is sampled i.0. To formalize this,
we define N;(a) as the number of times action a € [K] has been sampled up to iteration ¢ > 1, i.e.

t
Ni¢(a) := Zﬂ{as =a}. 4)
s=1
The asymptotic count is Noo(a) := lim;_, o, N¢(a), which is either finite or infinite. If Noo(a) < oo,
action a is only sampled finitely many times; if N, (a) = oo, action a is sampled i.o.

Lemma 3.1 (Bandit Exploration). Using Algorithmwith any constant learning rate n € ©(1),
every arm is almost surely played infinitely often. That is, Va € [K] : Noo(a) = 0o almost surely.

Proof sketch 2. For any arm a’ € [K] such that N (a’) < oo, the Extended Borel-Cantelli
(Breiman, 1992) Lemma implies ).~ m(a’) < oo. Since such an arm is sampled only finitely
many times, its parameter 6;(a’) remains bounded, sup, |6;(a’)| < oo, and its probability con-
verges to zero: lim; . m(a’) = 0. Without loss of generality, let a € [K] be an arm with
Noo(a) < oo. The condition lim;_, o, 7;(a) = 0 requires that some parameter grows unboundedly,
i.e. lim; oo maxq e[ 0:(a’) = oo. To preserve the total probability mass, this necessitates that

some parameter must diverge to negative infinity: lim;_, o ming (k] 0¢(a’) = —oc. Thus, there
exists at least one arm b € [K] such that lim inf,_,, 6;(b) = —oco. Furthermore, since the sum of
probabilities for finitely sampled arms is finite, any arm b with lim inf;_,, 6;(b) = —oo must be

sampled infinitely often (N (b) = 00).

We use these properties of arms a (finitely sampled, bounded parameter) and b (infinitely sampled,
parameter unbounded below) to construct a proof by contradiction. The fact that arm b is sampled
infinitely often despite its parameter repeatedly dropping to arbitrarily low values implies that 6,(b)
must periodically increase to become larger than 6;(a) (and other bounded parameters) infinitely
often. Consider the event C; := {0;(b) < 0,(a), a; = b}. We first show that if 6;(b) < 6;(a) and the
parameter update causes 6;41(b) > 6;11(a), this implies a; = b. We then prove that the event C
occurs only a finite number of times. However, for arm b to be sampled infinitely often (Noo (b) = 00)
while lim inf 6;(b) = —oo and 6;(a) is bounded, it must be sampled infinitely often during periods
when 6, (b) < 6:(a). This contradicts the finding that C; occurs only finitely often, proving our initial
assumption (N (a) < oo for some arm a) is false.

3.3 Convergence Without the Assumption of Unique Rewards

Our new result about the exploration of SPG in the bandit setting, Lemma (3.1} allows us to remove an
assumption necessary for the results of prior work (Mei et al.| 2024alb), namely that there are no ties
in the true mean rewards of the arms (Assumption [2.1). However, this requires new analysis beyond
the exploration proof. In this section we sketch out the steps used to show our central result in the
bandit setting: that Algorithm [T|converges almost surely regardless of the learning rate.



Theorem 3.2 (Convergence in Bandits). In the bandit setting of Section[3.1|without Assumption
Algorithmwith any 1 € O(1) almost surely converges to playing optimal arms,

Jim Z mi(a) =1 as. Q)

acA*

The proof of this theorem breaks into two propositions, the first of which being that the sum of
parameters of optimal arms tends to infinity (excluding the trivial case where all arms are equally
good and Section [3.1] holds vacuously).

Proposition 3.3 (Infinite Optimal Parameters). If A* # [K] then lim; o0 D, 4+ 0¢(a) = 00 as.

The second proposition states that all finite arms individually have their parameters diverge to negative
infinity.

Proposition 3.4 (Negative Infinite Suboptimal Parameters). For every suboptimal arm b € K]\ A*,
1imt_,oo Ot(b) = —00 a.s.

Equipped with these two propositions, the proof of Theorem [3.2]becomes straightforward enough
that we need not resort to a proof sketch:

Proof of Theorem[3.2] If A* = [K] then ) _,.m(a) = 1 for all ¢ > 0 and the result
holds vacuously. Henceforth suppose A* # [K]. We have that lim; ,oc Y, 4 me(a) =
1= limy 00 3 pe gy 4+ Te(D), s0 it suffices to show that, for all b € [K]\ A", lim¢,o0 T (b) = 0.
To this end fix b € [K] \ A*. We have the following bound from expanding the definition of 7;:

. . exp(0:(b))
R S S 0) F & ©
. exp(6:(D)) .
< fll)rgo m (exp(z) >z, A* C [K])(7)
hmt—>oo exp(ot (b))

= — ) (3)
limg o0 Y qea- Oi(a)

Proposition [3.4]implies that the upper limit in Eq. (8) approaches 0 and Proposition [3.3]implies that

the lower limit goes to infinity. Thus lim;_,, 7 (b) = 0, concluding the proof. O

The proofs of Propositions [3.3]and [3.4]are long and technical, and we refer the reader to the appendix
for the details.

4 Reinforcement Learning

The results in RL depend on the results of Section [3] but in order to apply them we will need to
port them to a slightly generalized bandit problem. We describe the necessary modifications in the
following subsection, before proceeding to MDPs.

4.1 Nonstationary Bandit Setting

We still consider a K -armed bandit, with K > 2 and rewards in [— R, R]. The interaction between
the learner and the environment is much the same as in Section [3.1] with the exception that now the
reward distributions are allowed to change across timesteps. That is, we change out the distribution
P, € My([-R, R]) of rewards given that arm « is played with a sequence of such distributions
(P!)¢>1, and the reward at each iteration ¢ > 1 is sampled from P} € M;([—R, R]); we also allow
the expected rewards given that an arm is played to vary over time, so r(a) becomes (r*(a));>1, and
we have E[r;|a; = a] = r'(a).

However, we constrain the setting in two ways. First, we suppose that there exists a filtration
(Ft)e>0 such that Pt rt are F;_;-measurable and a;, 7; are F;-measurable. Intuitively, F; contains
the information available to the learner at iteration ¢, and this assumption means that the reward
distributions (and thus their means) may only depend on the arms played and rewards observed



up to the current timestep, as well as additional sources of randomness that are independent of the
future. The second constraint on the environment is that we assume the existence of a “true” mean
reward vector 7 € [~ R, R]¥, and suppose that there exists some random timestep 7 such that, for all
t>7andalla € [K], [r(a) — r*(a)| < A/3, where A := min, e (] r(a)£r(v) |7(@) — 7(b)| is the
minimum nonzero gap in the “true” mean reward between any two arms. This says that eventually
the expected reward of playing arm a will settle down to a neighbourhood of r(a), and in particular
that the arms in A* := arg max,¢[x] r(a) have the highest expected reward after iteration 7. Given
these modifications to the bandit setting, we can extend the results of Section [3| with minimal changes.
The algorithm stays exactly the same, with the only modification to Algorithm [I]being that, at line 3,

riy1 ~ P,, . becomes 1y 1 ~ P;:;ll.

t+1

After extending all the bandit results to the nonstationary bandit setting, we can finally apply them
for a result in RL.

4.2 Reinforcement Learning Setting

We consider a finite-horizon MDP, defined by the tuple M = (H,S, A, {ri } 7= AP =S p)s
where H = {0,1,..., H — 1} is the index set of timesteps in an episode; S = So U ... U Sy_1 and
A= ApU...UAg_; are finite state and action spaces, respectively, with Sy, (Ap = Uses, As)
being the sets of possible states and (actions) at step h € H, and Ay is the set of possible actions
from state s; 7, : Sp X Ap — [—R, R] is a reward function that is bounded by R > 0; P}, :
Sp X Ap — M;(Shy1) is the transition function; and p : Sg — M;(Sp) is the initial state
distribution. We denote 7 := (7)1 ! as a time-dependent policy where 7" : S}, — M (Ay) is
the policy in the horizon h. An episode proceeds under the following protocol. At the beginning of
the episode, the learner selects a non-stationary policy 7. The episode then evolves through sg ~ p
and aj, ~ 7" (- |s1), 41 ~ pu(-|sn, an), rn = ri(an, sp) for all h € H. We define the trajectory

7 := (80,00, 70,81,---,SH—-1,aH—1,7H—1). Therefore, the probability of a given trajectory T is
Pr(7) = p(so)m”(aolso)po(silso, ao) . .. mr—1(am—1|sm—1) 9
We also define the value functions and action-value functions for h € H
H-1
Vi (s) == E7 [ > rwlsn = s} (10)
h!=h
H-1
Q7 (s,a) = E’T{ Z The|Sp = S,ap = a] (11)
h'=h

The goal is to find a time-dependent policy 7* that maximizes the state-value function at time 0, i.e.
Vi (p) i= B[V (5)]:
7 € argmax V' (p) . (12)

We also define optimal state and state-action value function, V;* := V7 and Q} := Q7 . In this
paper, we focus on softmax parameterized policies. Specifically, we parameterize each 7" by 6" for

all h € H by
exp(0"(s,a))

2o exp(0(s, a’))
where 0" € R with A;, == Y s, |As| for all b € H. To improve the readability, we will
sometimes write 7 in place of 7g, and 7} in place of 7T§Lh. The true gradient of the Eq. is

T (als) := (13)

H-1 H-1

ovy(s) -« 0 e B )
20 a) |0 a) BT nlor) ,;) r"} - [(H[ah =l —m(als) hz:; rh} (9

where I[a;, = a] is the indicator function of whether action «a is played in the horizon h, for all
s € Sp,a € A, h € H. Since we are in the stochastic setting, we will use REINFORCE estimator
to estimate the gradient and update the parameters

m = <HZ1 "h’) (H[ah =a] - W?(MS)) (15)

h'=h



Algorithm 2 REINFORCE

1: for each episode do
2: Sample a trajectory T using p, {7, } i, {Pr}r—"

3: foralla € |Al, s €S| do

4: Use Egq. to update 6(s, a)
5. end for

6: end for

The REINFORCE algorithm is shown in Algorithm 2]

We first show an exploration result, the counterpart to the exploration result shown above in the bandit
setting, before sketching the proof of our main theorem in RL.

4.3 RL Exploration Lemma

Lemma 4.1. Running REINFORCE with any n € O(1) in a finite-horizon MDP M, for all h € H,
for all reachable s € Sy, and for all a € A, we have, almost surely, that every reachable state action
pair will be visited i.o, i.e Noo(s,a) = 0.

Proof sketch 3. First, we show that for all horizon i € H, if s € S}, is reachable and played i.o,
then all actions a € S are also played i.0 by Lemma[3.1] Next, we use induction to show that for all
horizon h € H, if s € S}, is reachable visited i.0, then s” € Sy, 11 is also visited i.0. Therefore, for all
h € H, all reachable state-action pairs (s,a) € S x A will be played i.o.

4.4 Convergence in finite-horizon MDP

Theorem 4.2 (Convergence in RL). For the MDP defined as above, using REINFORCE with constant
learning rate n € ©(1), we have, almost surely, for all s € S, Vi (s) — Vi (s) ast — oo

Proof sketch 4. We show the convergence theorem using the backward induction. Suppose for all

horizon h € {I/,...,H — 1}, we have >___ ,. m*(a|s) — 1 for all s € S),, we want to show
that 3 c 4- 7~ 1(als) — 1forall s € Sj,_;. Since > aca nl(als) — 1forall s € S, where
he{l,...,H— 1}, we know that there exists time step 7 s.t V" (s) — V7" (s) < g, where ¢ is the

minimum non-zero gap between two Q-values. For all a € A, _,, there exists a minimum gap of g in
the Q-value. Therefore, applying the bandit convergence result, we know that  J _ 4. " als) = 1

ast — oo forall s € S,_1. Recursively, we know that for all s € So, Y ,c 4 79, (als) — 1 as
t — oo. ’

We also provide the statement and proof of convergence rate in the appendix (Theorem [E.3).

4.5 Simulations

We conduct several experiments to illustrate the convergence behavior of REINFORCE algorithm
in the finite-horizon setting. Experiments are performed using a chain MDP (Fig. with state
space S = {so, ..., 83,11, >}, where T and T, are terminal states, and action space A = {ay, a1 }.
Taking action ag in any state yields a mean reward of 0.5 and transitions to a terminal state 7. Taking
action a; in state s; (¢ € {0, 1,2}) yields a mean reward of —0.5 and transitions to state s;;1. In
state s3, action a; yields a mean reward of 7 and transitions to a terminal state 75. The policy is
parameterized using a softmax function, and parameters are initialized to 0 € RISI*IAl For each
learning rate 7, the REINFORCE algorithm is run for 10° episodes across 30 seeds. Performance is
evaluated by measuring the average suboptimality gap from the initial state distribution p, defined
as Vi (p) — Vi (p), over the 30 seeds. Our first experiment (Fig. [3a) demonstrates the benefits of
using a large learning rate. Previous convergence analysis of REINFORCE (Theorem 4.1 [Klein et al.|
2024) relies on small constant learning rates, which can significantly impede practical training speed.
For instance, the analysis in Klein et al.[(2024) guarantees convergence with n = W, where T'

is the number of training episodes. In our environment (H =4, R =7,T = 10%), this corresponds
to an extremely small learning rate 7 = 10~ 7. Therefore, we evaluated REINFORCE algorithm with
larger learning rates 77 € {0.00001,0.001,0.1}. Fig.|3a|shows that the suboptimality gap remains



nearly constant for n = 0.00001, whereas it decreases substantially faster as n increases from 0.001
to 0.1. This demonstrates the practical benefit of employing larger learning rates for accelerated
convergence, supported by our theoretical guarantees. We further explore the effect of even larger
learning rates € {0.5,1, 2}, presented in Fig. These rates, while potentially accelerating
learning if updates are favorable, generally slow down convergence compared to the moderately large
rates. The suboptimality curves exhibit more abrupt changes and show less consistent improvement
over episodes. The large shaded regions indicate significantly higher variance with these very
large learning rates. This suggests that large steps can easily push parameters away from optimal
configurations, leading to prolonged exploration of suboptimal regions until a corrective update is
sampled. Finally, Fig. [ illustrates the evolution of the learned policy for optimal actions at each
horizon. For all learning rates, we observe, on average, that the probability of selecting optimal
actions converges first for the last horizon, then for the second-to-last, and so on, proceeding backward
through the horizon. This backward convergence pattern in policy probabilities is consistent with
our proof strategy for the convergence of the REINFORCE algorithm, which relies on a backward
induction approach. We also extend our experiments to demonstrate the relationship between the
algorithm’s performance and different learning rates. Details on the experimental setups and results
can be found in the section Appendix [F} Overall, we consistently find a "bowl-shaped" relationship
between the learning rate and performance, meaning both exessively small and exessively large
learning rates lead to high suboptimality, while middling values achieve the smallest suboptimality.
The specific shape and optimal point of this bowl vary significantly with the environment’s structure.

Remark 4.3. 1t is worth noting that not all environments exhibit this specific backward convergence
pattern in learning optimal policy. However, the presence or absence of this pattern in empirical
observations does not invalidate our main theoretical result.

Average suboptimaiiy (V; 9) - VI (o)

(a) Benefits of using larger learning rates. (b) Drawbacks of using exessively large learning
rates.

Figure 3: Fig. shows that using a larger learning rate can improve the performance of REINFORCE,
while Fig. [3b|shows that excessively large learning rates have substantial variance, which can slow
down the convergence rate.
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Figure 4: These figures show the convergence rate of the optimal policy in each horizon for different
learning rates. In particular, we observe that the optimal policy of the last horizon will converge first,
then the second-to-last one until the first horizon. This observation aligns with our analysis.



5 Conclusions and Future work

This work enhances our understanding of the convergence properties of the widely used REINFORCE
algorithm. Our novel proof offers deeper insights into the exploration effects of stochastic gradient
methods and raises new research questions. Notably, recent findings by |[Mei et al.|(2024a)) indicate a
convergence rate of O(log(t)/t) for stochastic gradient bandit algorithms. This has a gap with the
established O(1/t) lower bound for SPG [Mei et al.| (2021), suggesting a potential for accelerated
convergence in bandit settings and, by extension, in RL setting. As demonstrated in Fig.[3b, REIN-
FORCE with excessively large learning rates exhibits high variance, impeding convergence. Future
work could explore optimal learning rate schedules to harness the initial benefits of larger rates while
subsequently mitigating variance. Other promising directions include extending the convergence
result for REINFORCE to function approximation setting.
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Iy

In this appendix we will deal repeatedly with almost sure events, i.e. events that occur
with probability 1. We typically mention this throughout the proofs, except for in one
important case where “a.s.”” is omitted to reduce clutter: whenever statements involving
conditional expectations (by extension conditional probabilities, variances) do not have
an explicit probabilistic quantification, they are understood to hold almost surely. Of
course, this is the only possible interpretation for such statements, since conditional
expectations are only defined up to a set of measure 0.

A Technical Tools

We begin with some fundamental results from probability theory. The first is a generalization of the
Borel-Cantelli Lemma.

Lemma A.1 (Extended Borel-Cantelli Lemma, Corollary 5.29 of Breiman| (1992))). Given a filtration
(Ft)e>0 and a sequence of events (Ay)>o with Ay € Fy for allt > 0,

D IA] =00 €5 Y P(AFo) = oo (16)

t>0 t>0

That is, (Ay)¢>0 occurs i.o. if and only if ), P(A;|F;—1) is infinite, up to a set of measure zero.

Our analysis relies critically and repeatedly on the celebrated inequality of Freedman. The version
we will use is similar to the one stated by [Mei et al.| (2024alb)). Since we require a general filtration,
we include the original statement by Freedman below in Lemmal[A.2] followed by the statement and
derivation of the form most convenient to us in Lemma[A3] Whenever we mention “Freedman’s
inequality” elsewhere in this work it shall refer to the latter.

Lemma A.2 ((Original) Freedman’s Inequality, Theorem 1.6 of [Freedman|(1975)). Given a filtered
probability space with filtration (Fi)i>0, an adapted sequence of random variables (X);>1, and
constants a,b > 0, if Vt > 1 : E[Xy|Fi—1] =0 and | X¢| < 1then

—a?
>1: E i=a, g ilFic1] <0) < S5 |
]P’(Elt >1 2 X;>a 2 Var[ X;|F;_1] b) exp <2(a n b)) (17)

Lemma A.3 (Freedman’s Inequality). Let (X;);>1 be a random sequence adapted to the filtration
(Fi)t>0, B > 0 be a constant such that ¥t > 0 : | X;| < B, and denote V, := Zie[t] Var[X;|F;—1].
For any ¢ € (0, 1), it holds with probability 1 — § that

Vi1 ‘ P = E[Xiu:i—l]‘ <20V/V;, +4B2 1 1log (Vt;z) . (18)
i€[t]

Remark A.4. The derivation of Lemma[AZ3]closely follows the proof of Theorem C.3 of Mei et al.
(2024b)). We aimed for a simple bound rather than a tight one.

Proof. Fix € € (0,1), and let S, := 37,y Xi and V; = >°, ) Var[X;|F;_1]. First we will
suppose that E[X;|F;_1] = 0 and | X;| < 1 forall ¢ > 1, and show that

IP’(EItz 1:8,> 10\/mlog(vt+2)) <e. (19)

€

For z > 1let g(z) := 3log((z + 2)?/¢), and we have

9(x) + v g(x)z (20)
< 6log((x +2)/€) + V3z\/log((z + 2)2/¢) (x+2)2/e < (x+2)%/e%) (21)
< 6log((z +2)/e) + V3zlog((x +2)*/e)  (log((x +2)?/e) > log(4) > 1) (22)
< 6log((z +2)/e) + 2V3zlog((z + 2)/e) (z+2)%e < (z+2)?/e?) (23)
< 6log((z +2)/€) + 4vVx + Llog((x +2)/¢) (24)
< 10V + Llog((z +2)/e). (25)
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Setting  := V; in Eq. (23) yields

P(thl S, > 10V/V; + lg( t+2)) (26)
<P(Et>1: 8 >9(V)+Vo(Vi)Vi) 27)
=Y PEt>1:8>gVi)+Vg(VVi, i <Vi<i+1) (28)

>0
_ZIP’Ht>1 Sy > g(i) +Vg(i)i, Vs <i+1) (g, +/- are increasing) (29)
i>0
. /7. N\ 2
<Zexp( (g * ) >
i>0 Z)+V +Z+]‘)

(Lemmaw1th a:=g(i) 4+ \/g(@)iand b := i + 1) (30)

To control the term appearing in the exp above, we will use the following inequality, which holds for
u>2and ¢ > 0:

(u—i—\/ﬁ)z B u(u—i—?ﬁ—&—i)

= 31
20u+Vui+i+1)  2(u+Vaui+it+1) GD
_u 2u+ 6vVui+3i+u (32)
3 2u+2Vui+2i+ 2
> u/3. (u>2) (33)
Since g(7) > 3log(4) > 2, we can combine the above two displays by setting u := ¢(4) and conclude
(Ht >1:8,>10y/V; + log< )) <3 exp(—g(i)/3) (34)
i>0

—¢ Z ; (35)

= (14 2)2
=ey i’ (36)

i>2

=e(n?/6—1) sy @72 =72/6) 37)
<e. (38)

We are finished showing Eq. (19). We can apply this result to both (X;);>o and (—X;);>0, setting
€ := /2 in each application, whence a union bound guarantees that, with probability at least 1 — d,

Vi1 X < 10V + 1og(vg/+22) (39)
1€[t]

§10\/Vt+1(log(w 2>+log(2)> (40)

gzomlog(vt;z). (1)

Given a random sequence (X;);>1 that satisfies | X;| < B for some B > 1, we can apply Eq. to
the sequence (X;/B);>1:

vi>1: Y |Xi/B| < 20y/Vi/B? + 1lo (M) 42)
i€[t]
Vi+2 2
< 20\/Vi/B? + Tlog . ) (V,/B* < V;) (43)
= 31Xl < 20y/Vi b BPlog (V7). (44)
1€[t]
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with probability 1 — 6. Combining Eq. (1), which holds for |Xt| < 1, and Eq. (44)), which holds for
| X;| < B where B > 1, and upper bounding max(B2,1) < B? + 1, we can remove the requirement
that B > 1 and conclude that, if E[X;|F;—1] = 0 and | X;| < B for all ¢ > 1, with probability 1 — §

ve> 13 X <200V + B2+ 1lo (Vt”) 45)

1€ [t]
To remove the assumption that V¢ > 1 : E[X;|F;—1] = 0 and get the desired result, we apply
Eq. . 43) to (X; — E[X|F;—1])+>1, noting that if | X;| < B then |X; — E[X;|F;_1]| < 2B. O

The following result applies Freedman’s Inequality to a sequence of bounded, and eventually (condi-
tionally) self-bounded, random variables. It says that if the conditional expectations are not summable
then the variables themselves will not be summable. We expect that the result is folklore, but cannot
find a reference.

Lemma A.5 (Freedman Divergence Trick). Let (X;);>1 be a random sequence adapted to the
filtration (Fy)i>0 and B > 0 be a constant such that ¥t > 0 : |X;| < B. Suppose
> i1 BE[X¢|Fi1] = oo and, for some random (a.s. finite) index T > 1 and constant C' > 0,

forallt > 7, Var[X;|Fy_1] < CE[Xy|F;_1]. Then Y-, X; = 00 as.

Remark A.6. Note that the result does not require 7 to be a stopping time.

Proof. Fort > 0let Sy := Zie[t] X;, Sy = Zie[t] E[X;|Fi—1], and V; := Zie[t] Var[X;|F;—1].
For any § € (0, 1], we can apply Freedman’s Inequality (Lemma [A.3)) to (X;);>1. This gives that,
with probability 1 — §, for any ¢ > 7,

9
S, > 35, — 20\/V, + 4B? 1 lg( t ) (46)

o Vi— V. + V.42
:St—ST+ST—20\/\4—VT+VT+4BQ+1log<t ; + ) 47)
o Vi~ V. +7B2+2
St—ST—TB—QO\/Vt—VT+(4+T)B2+llog<t “;T +

(|X¢| < B) (48)

T _T 2
St—S-,——TB—2O\/C(St—ST)+(4+T)B2+110g(C(St STES+TB +2>.

(Var[Xi|]-}_1] S C]E[X7|./_'.l_1] for ¢ Z 7 Z 7') (49)

Y

By assumption lim; S = 00, 80 lim; Sy — S, = oo as well. Clearly, the subtrahend in the display
above is o(S; — S ). Hence, taking the limit of t — oo, we have lim; S; = co with probability 1 — 6.
Since § was arbitrary, this also holds with probability one (by taking § — 0). O

Finally, we will need a classic result of Doob.

Lemma A.7 (Doob’s Martingale Convergence Theorem (Doob, 2012)). Given a random se-
quence (X;)i>1 adapted to the filtration (F;)i>o, if ¥t > 1 : E[X}|Fi—1] < Xy—1 and
sup;so E[— min(Xy, 0)] < oo, then (Xy)i>1 converges a.s. In particular, X, — X a.s. ast — 00,
where X := lim sup, X; and E[| X|] < co.

B Bandits

In this section all results are stated in the bandit setting described in Section[3.1] We begin with a
simple but crucial property of Algorithm [I] which follows from a symmetry of the update rule.

Lemma B.1 (Conservation of mass). Forallt >0, ) ¢y 0i(a) =3 (k) fo(a).
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Proof. Proceeding by induction, the base is tautological; recalling that a; is the arm played at time ¢,
we have

Z Orv1(a) = Or1(ar) + Z Orv1(a) (50)
a€[K] a€[K]\{a:}
= 0¢(ar) +n(1 — me(ar))re(as) + [0:(a) — nmi(a)ri(a)] (5D
a€[K]\{a:}
=nri(a) + Y [0e(a) — nme(a)re(ar)] (52)
a€[K]
=nri(a) Z O¢(a) — nre(at) Z m(a) (53)
a€[K] a€[K]
=) 6ia (e mla) = 1) (54)
a€[K]
O

The rest of the proofs in this section will refer to the filtration (F;);>¢ defined by F; := o ((ai, 7i)i<t)s
and we adopt the shorthands E,[-] := E[- |F;] and Var[-] := Var[- |F;]. The following result is
a stronger version of Lemma 2 of [Mei et al| (2024a), and it guarantees that Algorithm [T explores
enough to keep trying all arms forever regardless of the observations.

Lemma 3.1 (Bandit Exploration). Using Algorithm|(I|with any constant learning rate 1 € ©(1),
every arm is almost surely played infinitely often. That is, Va € [K| : Noo(a) = oo almost surely.

Proof. The first step is to show that, for any arm b € [K], if |{t > 0 : a; = b}| < oo then
sup, |0:(b)| < oo a.s. Picking b € [K] and setting m := sup({0} U {t > 0 : a; = b}), without
assuming [{¢ > 0 : a; = b}| < co we have the bound

sup 10:(D)| < |60(b)] + sup Z 10;(b) — 0;—1(b)] (triangle inequality) (55)
i€ [t]
< [0o(®)] + D 10:(b) = -1 ()] (Cine 105(0) = 01 (b)] > 0) (56)
i>1
=100+ Y 10:(0) — i1 (D) + D 10:(b) — i1 ()] (57)
i€[m] i>m
<16o(®)| + Y nR+ > nRmo,(b) (update rule of Algorithm[T) (58)
1€[m] i>m
< 6o(b)] + nR(m+ Y m(b)) (g nRmo, (b) > 0) (59)
t>0
= a(b). (60)

Also, the Extended Borel-Cantelli Lemma (Lemma |A.1) applied to (F;);>0 with the event sequence
Ay := {a; = b} implies

D Tar =0 < oo £ Y " my(bh) < oo (61)
t>0 t>0

If[{t >0 : a; = b}| <ocothenm < ooand ), [[a; = b] < oo, and the latter inequality together
with Eq. implies Y, 7 (b) < oo a.s, thus Eq. yields sup, [0:(b)| < a(b) < co as. A
union bound over b € [K] implies that almost surely

Voe[K]: {t>0:a=b} <o = ab) <. (62)

We are ready to fix an arm a € [K] and show that the event £ := {|{t > 0 : a; = a}| < oo} has
probability 0. For the remainder of the proof until the almost the very end we will work under the
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assumption that £ occurs. On £ we have a(a) < oo a.s, which implies 3, 7¢(a) < oo a.s, which
in turn implies lim; 7, (a) = 0 a.s. The definition of m;(a) gives us

exp(f:(a))

li%n m(a) = 11 Zb exp(Gt(b)) (Eq. @) (63)
> hm Zbexp(exp((ﬂ)t)(b)) (a(a) > 16:(a)]) (64)

so from lim; 7;(a) = 0 a.s. we get lim; max,e (k) 0¢(b) = 0o a.s. Then conservation of mass
(Lemma B.1) implies that lim; min,c k) 0¢(b) = —oo a.s. By Eq. (62) all arms that are selected only
ﬁnltely 0 te have parameters bounded away from —oo a.s, so there is a.s. an arm b that is played
i.0. with liminf; 6;(b) = —oo. We will refer to such an arm as b for the remainder of the proof.
However, because b is played i.o, another application of the Extended Borel-Cantelli Lemma (to
(Ft)e>0 with events A, := {a; = b}) yields ), m¢(b) = oo a.s. Since ), m(a) < 0o a.s, we
have that 7 (b) > m(a), and equivalently 6;(b) > 6;(a), for infinitely many ¢ > 0 a.s. In summary,
0,(b) oscillates from being arbitrarily low to being larger than 6;(a) > —a(a)

We will now argue that, for sufficiently large ¢, if 6;(b) < 0;(a) but 6;11(b) > 6;+1(a) then a, = b.
Let T be the minimum timestep such that, for all ¢ > T,

m% 0:(c) > log(nR) + a(a), and a;#a. (66)
ce

Since we are working on the event £ we have a; = a for only finitely many ¢, log(nR) + a(a) < oo
a.s, and lim; max.c(x) 0 (c) = oo a.s; taken together, these observations imply that 7" < oo exists
a.s.

For t > T, suppose 6;(b) < 6,(a) and a; # b, and we must show

9t+1(b) < 9t+1 (G,) (67)
= 0u(b) —nme(b)re(ar) < 0r(a) — nme(a)re(ar) (a; ¢ {a,b}) (68)
< nre(ad)(m(a) — me(b)) < Oi(a) — 0:(b). (69)
Since 0;(b) < 0;(a) we have m;(b) < m;(a), and standard inequalities yield
nre(a:)(mi(a) — me(b)) < nR(me(a) — m (b)) (0 < me(a) — me (b)) (70)
_ . exp(fi(a)) — exp(6:(b))
TS e o 00) v
exp(fe(a)) — exp(f:(b))
<k exp(max ek 0¢(c))
(XCecein) exp(0e(c)) > exp(maxce) O(c))) (72)
exp(6:(a)) — exp(6:(b))
L) (B (. ala) = BN 7
=1 —exp(0:(b) — 0:(a)) (74)
<1 — (14 04(b) — 6(a)). (exp(z) > 1+ z) (75)

Thus Eq. holds and we have established that, for all t > T, if 6,(b) < 0;(a) and 0;11(b) >
0:+1(a) then a; = b. Since ;(b) fluctuates from below 6, (a) to above it i.0, we have that the events
in the sequence (B;);>¢ defined by B, := {0;(b) < 0,(a), a; = b} € Fy41 occur i.0. a.s. Applying
the Extended Borel-Cantelli Lemma to (F);>0 and (By);>o implies that ), P(B;|F;) = oo a.s.
However, -

P(Bi|Fi) = 1[0:(b) < 0:(a)]m:(b) < mi(a), (76)
50 > 50 P(Bi]Fr) < X250 me(a) < ocoas.

At this point we have that, on event &, both >, P(B:|F;) < oo as. and >, P(B¢|F:) = oo
a.s. Since these events are mutually exclusive they both occur with probability 0, and since they are
jointly exhaustive we have P(€) = 0. O

21t is easy to see that ;(b) must also become arbitrarily large i.0, but this is not necessary for the proof.
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The proof of our main result in the bandit setting, that lim;_, Zae e m¢(a) = 1, is broken into
two propositions: the first guarantees that lim; .o ), 4~ 0¢(a) = oo, in particular that as the time
steps get large at least one a € A* will have an arbitrarily large parametelﬂ; the second proposition
says that lim; . 6,(b) = —oo for all b € [K] \ A*. Taken together, the propositions imply that
eventually some (potentially time step dependent) optimal arm dominates every suboptimal arm,
establishing Convergence in Bandits (Theorem [3.2). We now turn to proving the two propositions.

The subsequent proofs will go a little smoother with some extra notation; we define A =
ming pe(K)ir(a)£r(v) [T(a) — 7(b)| to be the minimum nonzero gap between expected rewards of
arms and r(A*) := max,¢[x] r(a) to be the maximum attainable expected reward. Finally, we over-
load 74 (-) to take sets as input, i.e, given S C [K] we let 74(S) := > .5 7:(a) be the probability
that an arm in S is selected. With these abbreviations in hand, the first proposition is as follows.

Proposition 3.3 (Infinite Optimal Parameters). If A* # [K] then lim; oo ), 4+ 0¢(a) = 00 as.

Proof. Fort > 0,let Xy := 3, 4. Or+1(a) —04(a), suchthat 3°5_o Xi = 3", 4 Oer1(a) —bo(a).
By the update rule of Algorithm|[I] note also that

Xi=n Z (Ia; = a] — m(a))rs . (77)

acA*

The conditional expectation of X; given F; can be lower bounded by

B Xi] = ) Eeflfa; = a]X] Cacp llar = a] = 1) (78)
a€[K]
=Y Eifllar = aln(l — m(A"))re] + > Eifllar = bln(—my(A*))ry]
acA* be[K]\A*
(Eq. (77)) (79)
= (1 —m(A") Y Bylllay = alre] —nm(AY) Y Eyflla; = blr]
a€A* be[K]\A*

(m; is F-measurable) (80)
=n(1 = m(A%) Y m(a)r(a) —nm(AT) > m(b)r(d)

a€A* be[K]\A*
E¢[l[a; = - Jre] = me(-)r(-)) (81)

> (1 —m(A7)) Y mla)r(AT) —nm(A) Y m(b)(r(AT) —A)

a€A* be[K]\A*
(r(a) = r(A") , r(b) <r(A%) —A)(82)
= (A7) (1 — me (A7) (r(A") — (r(4") — A))
Qacar mi(a) = m(A"), D pepar mi(b) = 1 — (A7) (83)
= (A7) (1 = (A%))A, (84)

3Excluding the trivial case where A* = [K], i.e. all arms are equally good.
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and the conditional variance can be upper bounded by

Var,[X;] < E;[X?] (85)
= Y Eflla = a] X7] e Tlar = a] = 1) (86)
a€[K]
= 3" Eufllae = a) (n(1 — m(A)re) T+ Y Eelllae = b)(— nme(A*)re) ]
acA* bE[K]\A*
(Eq. (T7)) (87)
(1 — Wt(A* R2 Z Et CLt = a]] + ’I7 Tt A* Z ]Et at = b
acA* be[K]\A*

(r? < R?)(88)
=0 (1= m(A)’R* Y m(a) + n°me(A)R> Y m(b)

a€A* be[K]\A*
(Ee[Ilay = - ]] = me(-)) (89)
= 1R (1 = mu(A) (A7) + (A7) (1 = i (A7)
(ZaeA* mi(a) = m(A*), Zbe K]\ A* m(b) =1 —m (A*)) (90)
= PRy (A") (1 — m(AY)). 1)

Thus for all ¢ > 0 we have Var,[X;] < nRZ2ATE[X,], |X;| < nR, and X, is F;1-measurable.
Setting b := nR, 7 := 0, and ¢ := nR*A~!, we need only to prove that ), ,E;[X;] = oo, at
which point we can apply the Freedman Divergence Trick (Lemma[AZ3) to conclude

lim ) Ger1(a) —fola) = Y Xy = o0 as, 92)
acA* t>0
= lim % 0:(a) = oo as. Cae- Po(a) < 00) (93)
acA*

Thus in the remainder of the proof we turn our attention to showing Z»O +[X¢] = co. Applying
Eq. (84) and nA > 0, we need only show that

D (A1 = m(A%)) =00, (94)
t>0
Lemma 3.1]together with () # A* # [K] implies that
> Tar € AT =) Tfa; ¢ A*] = o0 as. (95)
>0 >0

Since P(a; € A*|F;) = m(A*) and P(a; ¢ A*|F;) = 1 — m;(A*), the Extended Borel-Cantelli
Lemma (Lemma A.1) applied to Eq. (95) furnishes 3, m:(A*) = >_,54(1 — m(A")) = oo as.
We now break into cases to show that Eq. . 94)) holds regardless of the behavior of 7 (A*).

If m,(A*) > 1/2 only finitely often then we can set u := max{t > 0 : m;(A*) > 1/2} for

. e (A*
PRV SIER AVSIEDY t(2 ) oo (96)
t>0 t>u
Similarly, if 7 (.A*) < 1/2 only finitely often then u := max{t > 0 : m(A*) < 1/2} gives us
1 _ *
3w (AT (1 - (A7) >ZM . 97)
t>0 t>u

We can narrow our focus to the case where m;(A*) is both above and below 1/2 i.0. In particular,
there must be infinitely many ¢ > 0 such that 7, (A*) < 1/2 but 7y, , , (A*) > 1/2, and for such ¢ we
have

> aca- €XP(Orr1(a))

vl (AY) = .
T A = S B (@) T Screna D01 ()

(Eq. 2)) (98)
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The above equation is of the form z/(x + y), where x := > _ . exp(fi41(a)) and y :=
2 opepr)\ A+ €XP(0r41(D)). Since /(z + y) is increasing in x and decreasing in y for z,y > 0,
and |0;41(c) — 0:(c)| < nRforall ¢ € [K], we can maximize the right hand side for the upper bound

2aca- Xp(0:(a) + nR)

4 < . 99
Tou (A7) > acar exp(bi(a) +nR) + Zbe[K]\A* exp(0:(b) — nR) >
Also, my(A*) < 1/2yields 37, 4. exp(0i(a)) < X pecipp a- exP(0:(b)), s0
> aca- exp(Bi(a) + nR) (100)
2 aea- exp(0:(a) +nR) + 3¢ g\ a- P (0:(b) — nR)
_ exp(nR) 3, 4- exp(0:(a)) (101)

exp(nR) ZaeA* exp(0:(a)) + exp(—nR) Zbe[K]\A* exp(0:(b))
exp(nR) 3 ca- exp(f:(a))
(exp(nR) + exp(—nR)) 3_ e 4~ exp(0:(a))
Qe exp(0(a)) < Xopexp a- exp(0:(b))) (102)
exp(nR) exp(2nR)

= exp(yR) + exp(—nR)  exp(2nR) + 1 (103)

Connecting the above displays, there are infinitely many ¢ > 0 with 7;(A*) < 1/2 and 7, , (A*)
1/2, and for such ¢ we have 1 — 7y, , (A*) > 1 —exp(2nR)/(exp(2nR) + 1) = (exp(2nR) + 1)~ 1.
Therefore g, , , (A*)(1 — 79, (A*)) > (2exp(2nR) + 2) ! i.0, establishing Eq. . O

v

The second proposition has a more complicated proof, due to the technical difficulty added by having
multiple suboptimal arms with the same expected value. Controlling the suboptimal arms will be
much more convenient with the following extra notation. Letting n := |{r(a) : a € [K]}| be
the size of the range of the expected reward vector 7, we partition the arms into (®;);¢[,], Where
Q; = argminge[x)\u, .., r(a). Thus @4 is the set of arms with minimal expected reward, ®s is
the set of arms with the second lowest expected reward, and so forth, culminating with ®,, = A*.
Given i € [n], we will use the shorthands & := U;;®; and @j = U;»;®;. Note that ®; and <I>;F
are the sets of arms with lower, respectively higher, expected reward than the arms in ®;. First we
will conjure up a couple bound that hold for the increments of suboptimal parameters.

Lemma B.2 (Bounds on the Expectation and Variance of Increments for Suboptimal Arms). For any
i € [n —1], for any b € ®;, we have the bounds:

B0 (0) = 0:0)] < m6) (1= m(®))r(h) = ((6) + A)mi(8]) + R (87)) , (104)

Var[0:41(b) — 0:(b)] < n*R*m(b)(1 — 74(b)). (105)
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Proof.

E[0¢11(b) — ( )]
Ia; = a](Or41(b) — 04(D))] O aerx llae = a] = 1) (106)

:EM

= bln(1 — me(b))re] + Z E¢[Ilar = aln(—me(b))re]
a€[K]\{b}
(update rule of Algorithmm) (107)
=n(1 = m (b)) Ee[lay = blre] — nme(d) > Eelllar = alr]
a€[K]\{b}
(m¢ is Fy-measurable) (108)

= n(1 — m(b))m (b)r(b) — ne (D) Z mi(a)r(a) (Ei[lla; = - re] = me(-)r(-)) (109)

a€[K]\{b}
=) (1= m@)r®) = > ml@r®) = Y mler) - > mld)r(d)
ac®;\{b} cedF ded;
(110)
<) (L= m®)r®) =) > mla) = (r®)+4) Y mle)+ R Y m(d))
ac®;\{b} cedf ded;
(r(c) >r(b)+ A, r(d) > —R)(111)
= i (6) (1 = m (@) (b) = (r(b) + A)m (@) + Bmy(@7)) (112)
Var[0;11(b) — 0:(0)] < Ee[(Gr+1(b) — 0:(b))?] (113)
= > Eefllar = a](0r41(6) = 0:(0)°]  (Cepiqy e = a] = 1) (114)
a€[K]
<Eiflfa, = 0J” R*(L—m(0)°] + Y Eufllas = aln’R>my(b)°]

a€[K]\{b}
(update rule of Algorithm[T)) (115)

<P R*(1 = my(0))*m(b) + 0 R?mi(0)* (1 — 74 (b))
(]Et[]l[at = H = Wt(')) (116)
= 1 R?*my(b)(1 — my(b)) - (117)
O]

The next proposition will be applied inductively to control the relationship between the expectation
and variance of arbitrary suboptimal arms.

Lemma B.3. For constants C', C' > 0and i € [n— 1], ifall b € ®; satisfy lim;_, o, 6,(b) = —o0
a.s. then there a.s. exists a finite timestep T such that, for allc € ®; 1, Y, 4 0-(a) > C+C"0-(c).

Proof. Without loss of generality suppose C’ > 1. Throughout the proof we will use the following
two constants, which depend on C' and C”:

Uy :=C'(KnR+ Klog(8RK/A+ K))+ C, and (118)
Uz := nR + log(S8RK/A + 1). (119)
Fix e € (0, 1], and define
2
D :=sup —z + 201/1 + 4K22R? 4 4nR2z/Alog <2+477/][%(m/A> , (120)
x>0 €

noting that D < oo. Propositionsays thatlim; ), 4. 0¢(a) = oo a.s, and we have by assumption
that lim, 6,(b) = —oo a.s. for all b € ®; . Together these observations guarantee an a.s. finite
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timestep p such that

> 0u(a) > Uy + D > —D > max 0,(b). (121)
acA* bed;
Consider the collection of sequences {(X})¢, : b € ®; } defined by X := 6,(b) — 0;_1(b), and
the sequence (Y;);>,, defined by Y; := " _ 1. 6,(a) — 6,1 (a). Foreach b € ®;, (X?);>,, satisfies
the requirements of Freedman’s Inequality (Lemrna with B := nR; also (Yt)t> . does with
B := KnR. Therefore we can apply Freedman’s Inequality with § := ¢/ K to all of these sequences
simultaneously and take a union bound to conclude that, with probability 1 —e(|®; | +1)/K < 1—e¢,

2+ Vary,_1[Y?
Z 0¢(a) — 0,(a) > Z Ep_1[Y}] - 20\/1 +4K2n2R? 4 Z Vary_1[V?] log < D <kt Vark—1| k]) 7

e/K
acA* n<k<t pn<k<t /

(122)

2+ Zu<k§t Vark_l [X]Z]
e/K ’

n<k<t n<k<t

Vbe @) 1 0,(b) — 0,(b) < > Era[X{]+ 20\/1 +4°R% + > Varg_1[X}]log
(123)
for all ¢ > p. Let £ denote the event that both Egs. (122)) and (I123) hold at all such ¢. We will argue
that, on &,
> 0i(a) > Uy >0 > max 0, (b) (124)
a€A* bed;

for all t > p by strong induction. Thus let ¢ > u, and suppose that Eq. holds with % in place of
t, for all 4 < k < t, noting that it holds for k = p by the definition of . Egs. and together
imply that

R? AnR?
Van_1[¥i] < B [¥i] < =

Ep—1[Y3], (125)

for k > p, so the assumption that event £ holds implies

> 0(a)= > Ou(a) - D (126)

a€A* a€A*
>U,+D-D=0. (Eq. (IZ1)) (127)

Now pick an arbitrary b € ®;". Without loss of generality, say b € ®; for some j < i. Foru <k <t
the inductive hypothesis implies that there exists a € A* such that 65 (a) > U; /K. Thus

(@) /(@) = m(a) /mi(P;) (@ C &7, ac®f)(128)
> exp(U;/K)/K (max, ¢ g 01 (b) < 0) (129)
>1+4R/A, (130)

where the final inequality above follows from U; > K log(K + 4K/A). Defining the constant
v = (A/24+7r(b)+ R)/(A+ r(b) + R), we have v < (A + 4R)/(2A + 4R), which implies
/(1 =7) <1+4R/A < (@] )/wk( ). Therefore

(9

— (@) (131)

;)=
= m,(®7) (m( 7) A+ m(@))) (132)

= m(®1) (A +7(b) + R) > (A/2 +r(b) + R)(1 — mi(®;)) (133)

= me(@7)(A +7(0) = R(1 — m(®)) — me(®])) = (A/2 +7(b))(1 — m(D;)) (134)

= AL - m(®,))/2 > (- m(®,))r(b) — T(@)(A +1(5)) + R (T ).
(135)

| \%

Combining Egs. (T04) and (I33) produces
A
Eroa[Xf] < —=m(b) (1 = mi(@5)). (136)
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From Eq. ( we have mj,(a) > mp(®;) > m(P;), so 1 — mx(®;) > 1/2. Thus Egs. (105)
and (136) together provide

A
B [Xf] < —T=m(b) (137)

A
< — e Vary,_1[X}]. (138)

Eqs. (123) and (138) imply

0,(b) = 0,(b) — 0,,(b) + 0,,(b) (139)
<0u(b)+D (140)
~D+D=0. (141)

Since b € ®; was arbitrary, this concludes the inductive argument. We have shown that, on &,
Eq. (124) holds.

Define the stopping time v by

V::min{t2u:<Vb€<I>i:9( <U2> (Zet <U1)or(max9t(b)>0)},

a€A* bed;
(142)

and define (Z4):>, by Zi := > e, MaX(Omin(z,1)(0), 0). We will show that (Z;);>,, is a super-
martingale, i.e. forall t > u, E;[Z;41 — Z¢] < 0. If t > v then we have E;[Z;11 — Zt] = 0, so
assume t < v. Let B:={b€ ®; : 0;(b) >nR}and C := {c € ®; : 0;(c) < nR}, so

Bi[Zip1 — Zi) = Y Ee[max(6;41(b),0) — max(6;(b), 0)] (t < v) (143)
bed;
= ZIEt [max(6¢41(b),0) — max(6:(b),0)] + ZEt [max(0:4+1(c),0) — max(6:(c),0)] .
beB ceC (144)

The terms in the sum on the left of Eq. (T44) can be bounded by
E;[max(041(b), 0) — max(6y(b), 0)] = Ey[0e41(b) — (D))
(10:41(b) = 0:(b)] < nR, 0:(b) > 0+ nR) (145)
A
< T m(B)(1 — m(®)), (146)

where the last inequality above comes from Eq. (136) and the fact that v > tE| For the sum on the
right of Eq. (T44), we can bound the terms by

E¢[0r41(c) = 01(c)] = Ei[l[ar = c](Or41(c) — 0i(c))] + Ei[l[ar # c](Or+1(c) — Oi(c))]  (147)
< Ei[l[a; = ] Rn] + Eq[l[as # c]me(c) R .
(update rule of Algorithm|[T)) (148)

< 2nRm(c). (149)
Combining Egs. (T44), (T46) and (T49) produces
A
Ey[Zis1 — Zi] < _”7 (1—7me(®:)) Y me(b) + 29R D me(c) (150)
beB cec
nA
= 77(1 — m(®;))m(B) + 2nRm(C) . (151)

*Specifically, v > t implies the inductive hypothesis that was used to prove Eq. (136), and ®; can be replaced
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If m¢(C) = 0 then the above is negative, so we may assume 7¢(C) > 0. Since v > ¢, there is some
b € &, with 6,(b) > Us > 1R, so

ﬂt(B)/m(C) Zﬂ't(b)/ﬂ't(C) (152)
o __exp(8u(b) 53
= e exp (1) (9
> L(UQ) (definitions of B and C) (154)
nexp(nk)
=exp(U2 —nR)/K (155)
> (8RK/A)/K (Uz > nR +1og(8RK/A)) (156)
—SR/A. (157)

Also from v > t, we have that ZaeA* 0+(a) > Uy, so at least one a € A* satisfies 6;(a) > Uy /K.
Fixing such an a gives

(1 = m(®4))/me(C) = me(a) /7 (C) (158)
> exp(U1/K —nR)/K (like Eq. (I53)) (159)
> (8Rn/A + K)/K (U > KnR + K log(S8RK/A + K)) (160)
= 8R/A+1. (161)
We will break into two cases, first assuming that 7;(®;) < 1/2. In this case we can upper bound
Eq. (I51) by
nA nAa
_7(1 = m(®;))me(B) + 2nRme(C) < —Tﬂt(B) + 2nRm(C) (162)
—2nRn(C) + 2nRm(C) (Eq. (I37)) (163)
0. (164)
On the other hand, if 7, (®;) > 1/2 then
1/2 < m(B) + m(C) (165)
< m(B)(1+ A/8R) (Eq. (T57)) (166)
2R
Ty m(B). (167)
Starting once more from the right hand side of Eq. (T31)), we have
IR (0 (@) (B) + 20Rm(C) < 5+ R (1 (@) + 20R(€)
2 : =2 4R+ A)2 :
(Eq. (167)) (168)
AJ2
< -2nR- (8R/A +1)m(C) + 2nRm(C)

4R+ A/2
(Eq. (T61)) (169)

=0. (170)

In concert, Egs. and (170) together with Eq. (I51) imply that E;[Zy1 — Z;] < 0 when
uw<t<uv. Therefore (Zt)t> 1 1s a submartingale, and 1t is clear from its definition that Z; is bounded

below by O at all times. We can apply Lemma and conclude that (Z;);>, converges a.s. to a
random variable Z with E[|Z]] < cc.

We will again break into two cases, first assuming that v = oo, i.e. the stopping time never stops.
In this case lim; Z; = lim; ), 4, max(6;(b),0), and this quantity will a.s. converge to a finite
value; because each summand is nonnegative, this implies that all b € ®; satisfy lim sup, 0:(b) < oco.
From the assumption that Ve € ®; : lim;6;(c) = —oo, we have that, for all b € &, =
o, U D, limsup, 6,(b) < co. By Proposition there a.s. exists a finite timestep 7 such that

Y wear br(a) >C+C’ max,cq-  limsup, 0:(c) > C+C’ max cq- 0 (c), as desired.

The other case is that v < oo; this implies either the event £ fails to occur (since € implies Eq. (124)),
orVb € ®; : 6,(b) <Usz. Onevent &, forallb € ¢,

C'0,(b) +C<C'Up+C<U1 < Y b,(a), (0+C, C'Uy+C < Uy (171)
acA*
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and setting 7 := v gives the desired result. Therefore, regardless of whether or not v < oo, the only
way we don’t have the desired result is if £ fails to occur, which happens with probability at most e.
Since € was arbitrary, it can be taken to 0, and the desired result will hold a.s. O

Having shown the above lemma, we are ready to establish that the parameters of suboptimal arms
diverge to —oo.

Proposition 3.4 (Negative Infinite Suboptimal Parameters). For every suboptimal arm b € K]\ A*,
limtﬁoo Gt(b) = —0oQ a.s.

Proof. Since ®,, = A* and Uj¢[,,)®; = [K], the set of suboptimal arms is U;c[,, —1)®;. Thus we will
perform induction over i € [n — 1], proving that all b € ®; satisfy lim; 0;(b) = —oc a.s. from the
inductive hypothesis that

Vee @7 li%n 0:(c) = —c0 as. (172)

Note that Eq. (172) is vacuously satisfied for ¢ = 1. Fix an arbitrary € € (0, 1], and define

2
D :=sup —z + 201/1 + 4K22R? + 4nR2x/Alog <2—|—477/]I%(x/A> , (173)
x>0 €

noting that D < oco. Let 7 be the first timestep such that

> 0-(a) > (K +1)D + Klog(K +4K/A) + K max 0, (b), (174)

acA* bED; 1y

and note that 7 is a stopping time. Also, 7 < oo a.s. by applying Lemma [B.3|(which is applicable due
to the inductive hypothesis in Eq. -) with C := (K +1)D + K log(K + 4K/A) and C" :=

now we can apply freedman’s lemma to both the suboptimal arm and optimal sum, and conclude
that the suboptimal arm goes to —oo wp 1 — 4. since § was arbitrary the result becomes a.s, and the
induction goes through meaning that the whole thing does.

Consider the collection of sequences {(X});~, : b € ®;,,} defined by X7 := 6;(b) — 6,1 (b), and
the sequence (Y3);~ - definedby Y; := > _ 4. 0s(a)—0;_1(a). Foreachb € <I>;+1, (X?)4s, satisfies
the requirements of Freedman’s Inequality (Lemma with B := nR; also, (Y;);>, does with
B := KnR. Therefore we can apply Freedman’s Inequality with § := ¢/ K to all of these sequences
simultaneously and take a union bound to conclude that, with probability 1 —€(|®;, ,|+1)/K < 1—e¢,

2+ Varg_1[Y?
3" Oa) = 0:(a) > Ek_l[Y,j’]zo\/1+4K2n2R2+ > Var_ [V log( Z“’f/tK el ""‘]),

acA* T<k<t T<k<t
(175)
2+ Vary_1[X?
Vbe @y 1 0(b) —0,(b) < > Erpq[XP]+20 [1+42R2+ Y Varkl[X,g]log< Z“’“S/tK Gl ’“}>,
T<k<t T<k<t €
(176)

for all ¢ > 7. Let £ denote the event that both Egs. (I73)) and hold at all such ¢. We will argue
that, on &,

> bi(a) > K (log(K +4K/A) + max 6,(b) + D) > K (log(K + 4K/A) + max 0,(b))
agA* be®; bEDT,

(177)

for all ¢ > 7 by strong induction. Thus let ¢ > 7, and suppose that Eq. (177) holds with k in place of
t, for all 7 < k < t, noting that it holds for k = 7 by the definition of 7. Egs. and together
imply that

R? 4AnR?
Vary,_1[Y3] < %Ekq[yt] <

Er_1[Yy], (178)
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for k > 7, so the assumption that event £ holds implies

> 0i(a) = > 0-(a)-D (179)
acA* acA*
> K (log(K +4K/A) + max 6,(b) + D). (180)
bed

i1

Now pick an arbitrary b € @, ;. Without loss of generality, say b € ®;, where j € [i]. ForT <k <t
the inductive hypothesis implies that there exists a € A* such that 6;(a) > log(K + 4K/A) +
max,cq— 01 (b). Thus

() /7 (®)) > mi(a) /i (P 4) (a € A* C ®f, ) (181)
o exp(B(a) o
2 Kexp(maxbe(b;r1 01 (b)) (182)
> exp(log(K +4K/A))/K (183)
>1+4R/A. (184)

Defining the constant y := (A/2+7r(b) + R) /(A +r(b) + R), we have v < (A+4R)/(2A +4R),
which implies v/(1 —v) <1+ 4R/A < 7rk(<I>;')/7rk (@ ). Therefore

m(2]) 2 k(@) (185)

= (D)) = (i (@) + 7 (®])) (186)

= wk(@;‘)(A +7r(b) + R) > (A/2+7(b) + R)(1 — 7 (®;)) (187)

= m(2))(A+7(0) = R(1 = mu(®;) — (@) = (A/2 + (b)) (1 — mi(@;)) (188)
= —A1 = m(2;))/2 > (1= m(2;))r(b) — (@) (A + (b)) + Rmp(@5) -

(189)

Combining Egs. (T04) and (T89) produces
Ep_1[X}] < —%wk(b)u — 5 (®;)). (190)

From Eq. (184) we have m(a) > mp(®; ;) > m(®;), so 1 — mp(P;) > 1/2. Thus Egs. (105)
and (190) together provide

A
Ej_1[X}] < —%ﬂ'k(b) (191)
A
< e Varg_1[X2]. (192)
Eqs. (I76) and (192) imply
<D+ max 6,(b), (194)
bed

i+1

and multiplying both sides of Eq. by K before adding K log(K + 4K/A) implies the second
inequality of Eq. (since b € @, ; was arbitrary) This concludes the inductive argument
over t > 7. We have shown that, on &, Eq. @I) holds. In fact, on event £, we can also use
Egs. and together with the fact that Y, Var,_1[X?] = oo (using Eq. ) to
conclude that lim; 6;(b) = —oo for an arbitrary b € ®;_ . This finishes off the inductive argument
overi € [n —1]. O

The above results are all that is needed for the proof of Theorem @ Next, we show that the
stochastic gradient bandit algorithm (Algorithm[I) only converges to “generalized one-hot policies"”,
ie. > ,ca-mi(a) = 1, and not true “one-hot policies”, i.e. Ja € A*,: m;(a) = 1. Among the
optimal arms, there will be permanent non-stationary behavior.
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Theorem B.4 (Theorem 1.4, Bramson et al.[(2004)). Suppose (Xi):>o is a sub-martingale with
increments (I;);>o, satisfying

E, [y {7 > )] > B [T > ba}) (195)
almost surely, for all t > 1 and fixed x > x1, for a fixed b and x1 > 0. Then,
P(either (X;):>0 converges or limsup X; = o0) =1 (196)
t—o0

Lemma B.5 (Finite total quadratic variations). Let {X;};>0 be a discrete-time sub-martingale and
I := X, — Xy_1 forallt > 1 to be an increment at time t. If { X, }1>0 converges a.s and |I;| < oo
forallt, theny o E,_1[I?] < <.

Proof. Let {X,},;>0 be a discrete-time sub-martingale. Define an increment at time ¢ by I, :=

X; — X;_q forall ¢ > 1. Note that X; = 2221 I,. Also, |I;| < oo for all ¢. Suppose {X;}:i>0
converges a.s. By Doob decomposition, X; can be uniquely written as

Xi = M; + Ay (197)
where A; := Zt Es_1[I] is predictable and non-decreasing, and M; := Zt (Is —Es_1[Ls]) is

a martingale. Let Ylt := I, —E;_1[I¢] be an increment at time ¢. Note that Y is tfoulnded, ie|Ys| < o0
for all s. Since X; = M; + A; converges a.s to a finite limit, both M; and A; must remain finite
a.s. In particular, A; cannot diverge to oo because that would force M, to diverge to —oco. However,
the increment Y; are bounded for all ¢. Hence M, cannot diverge to —oo. Therefore, {A;};>( and
{M;}+>0 converge a.s. Since A, converges and is a non-decreasing, then E,_; [I;] must converge to
0 a.s. Specifically, there must exist a timestep 7 such that for all s > 7, we have 0 < E;_4[I] < 1.
In other words, we have Es_1[[5]? < E,_1[I,] forall s > 7. Since Yoo | Es_1[[5] < oo, we know

that Y00 | Ey_1[I5]* < oo. Since {M;};>o converges a.s, then M, is pathwise bounded a.s
Pr(sup |[Mi| < 00) =1 (198)
¢

Let define a stopping time 7x := inf{¢ > 1 : |M;| > K} and a corresponding stopped martingale
Zy = Mipry. Forallt < 7g, |Zy] = M| < K. Whent = 7k, then |Z;| = |M,.| =
|IMrp—1+ Yo | < |Mry_1] + Y| < oo since Y} is bounded for all t. Therefore, Z; is a uniformly
bounded martingale, i.e there exists a constant C, s.t | Z;| < C a.s

AC st P(sup |2, < C) =1 (199)
t

Denote Y, := Z; — Z;_1 as an increment of the martingale Z;, i.e Z; = Z§=1 Y!. Note that
Y/ = Y;1{t < 7 }. Since Z; is a bounded martingale, then Z; is also bounded in L?. Specifically,

sup E[Z?] < sup E[C?] = C? a.s (200)

Note that
E(Z{i1 = 2] = El(Ze + Y1) = Z] (201)
=E[2Y/}, 2] + E[Y/] (202)
= 2E[Z,E[Y/,4]] + E[Y/},] Law of total expectation (203)
= E[V3)] (204)

Recursively, we have E[Z?] — E[Z2] = S E[Y/?] = E[>.'_, E,_1[Y/?]]. Since sup, E[Z?] <

s=1 s=1
C"? as, then
¢

]E[Z E,_1[Y/?]] exists and is finite a.s (205)

s=1

Since 3_'_, E,_1[Y7?] is non-negative and finite on expectation, then

> B[] <oo as (206)

s=1
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Note that Y, = Y;1{s < 7x }. Then,
0o [e'e] OONTK
<7})? = <
S Eealats <7 = Lt S mBealtd] = 3 Bl <o @00
In other words, for all K, the total predictable variation of martmgale M, is finite. Therefore,
Yot Es_1[Y?] < oo as. Therefore, Yoo | Var,_1[I] = > oo Es1[I2] < .
O

Lemma B.6 (Infinite total variance). In the bandit setting, where we allow ties in the expected reward
of arms, using Algorithmwith any n € Q(1), we have that for all a € A*, almost surely,

Z”t (1 —m(a)) = oo (208)

Proof. We divide into three cases: m;(a) is finitely often above %, finitely often below %, and infinitely

often above and below %. First, by Lemma we know that for all @ € [K], > ,o,m(a) =
> i>0(1 — mi(a)) = oo. In the first case, since m;(a) is only finitely often above 1,

1. m(a
Y m(a)(1 = m(a) = D Hm(a) < 5} t; ) — o0 (209)
>0 >0
The inequality is due to 2(1 — z) > £ when < 1. SImilarly, when (a) is finitely often below 1,
1.1 —m(a)
— > P e
> ma)(1 = m(a) = > Hm(a) > Sh— 00 (210)
>0 >0

The inequality is due to (1 —z) > I_T"L when x > % To show the last case, it is equivalently to show

exp(0:(a))
exp(0:(a))+>_qr 24 exp(0:(a’))”

we denote X := exp(f;(a)) and Y := 3, exp(fy(a’)). Since m(a) < i, wehave X < Y.In
order to increase 7, , (a) > %, the algorithm needs to play a: = a, so the update rule is

that the event m;(a) < % and m, ., (a) > 3 happens i.0. Since m;(a) =

Oi11(a) = 0i(a) + n(1 — m(a))ri(a) < O¢(a) +nR (211)
For other actions a’ # a, the update rule is
Or+1(a’) = Ou(a’) —nme(a’)re(a) = O(a’) —nR (212)
Since m(a) = v ‘v is an increasing function in X when X, Y" > 0, then
exp(fi+1(a))
(a) = 213
O (a) exp(fr1(a)) + Za’;éa exp(fiy1(a’)) (213)
exp(b:(a) + nR)
< 214
= S (00@) + 1B) + Loy B (OL() e
. exp(6u(a) + nR) o1
exp(b(a) +nR) + 3 g 2o exp(bi(a) — k)
X exp(nR)
= 216
X exp(nR) + Y exp(—nR) (216)

~ exp(nR) + exp(—nR)

exp(—nR
Therefore, 7, , (a)(1 — 7, (a)) > m. Hence, Y, 70, (@) (1 — 7, (@) =
00. O

Proposition 2.2 (Non-Stationary Convergence). In the bandit setting, where the mean reward has
ties, using Algorithmwith anyn € O(1), forall a € A*,

limsup 6;(a) = oo as. @)
¢

In other words, (m)i>0 does not converge to any one-hot policy.
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Proof. Denote the incremental I;(a) := n(I{a; = a} — m(a))r:(a). By the update rule (Algo-
rithm [T)), we know that

Or1(a) = O:(a) + n({ar = a} — m(a))re(ar) = b:(a) + L(a) 217)
Also, we have,
Ei[Ii(a)] = nEi[([{ar = a} — g, (a))re(ar)] (218)
= 0, (@)(1 = 7, (@))r(a) = 3 e, (a0, () (@) @19)
a’#a
= 7, (a)(r(a) — g, 7) (220)
>0 221)

Therefore, E¢[0;41(a)] > 0:(a). Hence, (0:(a))i>0 is a sub-martingale. Note that I;(a) €
[-nR,nR] for all t. Therefore, by setting x = nR > 0and b = 2 > 0, then I{I;" > ba} =
I{I; > z} = 0. Hence, E; 1[I, I{I; > z}]] = E;1[I[;/T{I;” > bx}] = 0. In other words,
the condition of Theorem is satisfied trivially. Therefore, {6;(a)}:>o can either converges to

a finite value or limsup,_, . 6;(a) = oo a.s. Suppose {0;(a)};>o converges a.s. By Lemma|[B.5]
Yoo Ei—1[I?] < co. In other words, Y= m;(a)(1 — m(a)) < co. However, by Lemma |B.6| we

know that Zt_O m¢(a)(1 — m¢(a)) = oco. Therefore, lim sup, ;(a) = oo a.s. O

C Nonstationary Bandit Setting

Proposition C.1 (Infinite Optimal Parameters). If A* # [K] then lim; 00 ), c 4+ Oi(a) = o0
almost surely.

Proof. Fort > 0,let X; := Oi11(a (a), such that Zl 0 Xi = pear Otr1(a)—0o(a).
By the update rule of Algorithm Gﬁ note also that
Xe=nY_ (Ia; = a] — m(a))r:. (222)
acA*

The conditional expectation of X; given JF; can be lower bounded by

E[Xi] = ) Eiflfa; = a] Xy e ar = a] = 1) (223)
a€[K]
=Y Eiflla = aln(l — me(A))rd] + Y Eelllar = blp(—me(A*))re]
ac€A* be[K]\A*

(Eq. 222)) (224)

=n(1—m(A")) E E¢[Ila; = a]ry] — nm(A”) E E¢[Ila; = b]r]
acA* be[K]\A*
(m¢ is Fy-measurable) (225)

=n(1 - m(A%) Y m(a)r'(a) —nm(A%) Y m(b)r(d)
acA* be[K]\ A*
(Et[ﬂ[at = ]’f't] Tt ( ) ( )) (226)

> (1 —m(A%) D mla)(r(a) = A/3) —nm(AT) D m(b)(r(b) +A/3)
a€A* be[K]\A*
(Va € [K],Vt > 7,|rt(a) — r(a)] < A/3) (227)

> (1= m(A%)) Y m(a)(r(A%) = A/3) —nm(AY) D m(b)(r(A%) — 2A/3)
a€A* be[K]\A*
(r(a) =7(A*), r(b) <r(A*) — A)(228)
=nm(A)(1 — Wt(A*))(T'(.A*) —A/3—(r(A%) - 2A/3))
O aenr (@) = m(A*) ) Y peppepae me(b) = 1 — me(A*)) (229)
= nm(A*) (1 — m (A")A/3, (230)
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and the conditional variance can be upper bounded by

Var, [ X;] < E;[X?] (31)
= ) Eiflla; = a] X7] e Har = a] = 1) (232)
a€[K]
= > Eilllar = a] (n(1 = m(ADre) ]+ > Elllar = b]( = nme(A)re)’]
acA* be[K]\A*

(Eq. (]7_7[)) (233)
<1 -7 AR Y Eillla, = af) + Pm (AR Y Eyflla, = b]

acA* be[K]\A*
(r? < R?) (234)

= P(1= m(A))?R2 Y mla) + Pm(A PR Y mb)
a€A* be[K]\A*
(]Et[]l[at = H = ’/Tt(')) (235)
PR (1= m(A") (A" + o A72(1 = m(A")))
(ZaeA* mi(a) = m(A*), ZbE[K]\A* m(b) = 1 — m (A*)) (236)
PRy (A) (1 = m(A")). (237)

Thus for all t > 7 we have Var;[X;] < n3R2A'E,[X,], | X¢| < nR, and X; is F;1-measurable.
Setting b := nR and ¢ := nR*A~", we need only to prove that }_,. E,[X;] = oo, at which point
we can apply the Freedman Divergence Trick (Lemma@ to conclude

lim > Oigala) — => X, =0 as, (238)
acA* t>T
= lim Xf% 6;(a) = 0o as. uea- Bo(a) < 00) (239)
ac A*

Thus in the remainder of the proof we turn our attention to showing 3, E.[X;] = co. Applying
Eq. (230) and nA/3 > 0, we need only show that

D (AT (1 =A%) = o0, (240)
t>T
Lemma [3.1|together with () # A* # [K] implies that
Z]I[at e A" = Z]I[at ¢ A = o0 as. (241)
t>1 t>1

Since P(a; € A*|F;) = m(A*) and P(a; ¢ A*|F:) = 1 — m(A*), the Extended Borel-Cantelli
Lemma (Lemma|A.1) applied to Eq. (95) furnishes >, m(A*) =375 (1 — m(A")) = oo as.
We now break into cases to show that Eq. (240 . holds regardless of the behavior of 7 (A*).

If m¢(A*) > 1/2 only finitely often then we can set u := max{t > 0 : m;(A*) > 1/2} for

3w (AT (1 m(AY) >Z7” DN (242)

t>T t>u

Similarly, if 7, (A*) < 1/2 only finitely often then u := max{t >0 : m(A*) < 1/2} gives us

T (A*)(1 — m (AY)) > =00. (243)
2 I

t>T t>u

We can narrow our focus to the case where 7;(.A*) is both above and below 1/2 i.0. In particular,
there must be infinitely many ¢ > 0 such that 7, (A*) < 1/2 but g, , , (A*) > 1/2, and for such ¢ we
have

> aca- exp(fir1(a))

o (A7) = Paca- exp(0i1(a)) + X pe g a- exp(Or11(b)

(Eq. @)) (244)
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The above equation is of the form z/(x + y), where x := > _ . exp(fi41(a)) and y :=
2 opepr)\ A+ €XP(0r41(D)). Since /(z + y) is increasing in x and decreasing in y for z,y > 0,
and |0;41(c) — 0:(c)| < nRforall ¢ € [K], we can maximize the right hand side for the upper bound

2aca- xp(0i(a) +nR)

T ) S S e @) + 1) + S oo B0 —nB)
Also, 7 (A*) < 1/2yields 3 ¢ 4. exp(6e(a)) < D operepy a- €xP(0:(b)), so
> aea- €xp(0i(a) + nR) (246)
> aca- exp(0i(a) + nR) + 3 ek a- €xP(0:(b) — nR)
_ exp(nR) Y- e 4+ exp(fe(a)) (247)

exp(nft) Y- e a- €xp(0:(a)) + exp(—nLR) 3 e a- €xP(0:(b))
exp(nR) > yca- exp(f:i(a))
(exp(nR) + exp(—nR)) 3_ e 4~ exp(0i(a))
e exp(0(a)) < 3perp a- €xp(0:(D))) (248)
exp(nR) exp(2nR)

- exp(nR) + exp(—nR) - exp(2nR) +1° (249)

Connecting the above displays, there are infinitely many ¢ > 0 with 7;(A*) < 1/2 and 7, , (A*) >
1/2, and for such ¢ we have 1 — 7y, ., (A*) > 1 —exp(2nR)/(exp(2nR) + 1) = (exp(2nR) + 1)~ 1.
Therefore 7y, , (A*)(1 — m,,, (A*)) > (2exp(2nR) + 2) ! i.0, establishing Eq. (240). O

Proposition C.2 (Finite Suboptimal Parameters). For every suboptimal arm b € [K| \ A%,
lim; o0 0(b) = —oc0 ass.

Remark C.3. The proof remains virtually unchanged from the proof of Proposition [3.4] and the
necessary changes are identical to the ones made for the proof of Proposition [C.T}

Theorem C.4. In the non-stationary bandit setting described as above, Algorithm |I| with any
n € O(1) almost surely converges to playing optimal arms,

lim mi(a) = 1 as. (250)
t—o00
a€A*

D Reinforcement Learning

Define the MDP M = (H,S, A, {ri.}; ' {Pu}125 p)- Let Ni(s,a) i= 3o {ss = s,a; =
a} be the total number of visitations of state-action pair (s, a) until episode t. We denote that
PP (sp41 = §'|s, = s) as the probability of visiting state s in the horizon h + 1 from the state s
in the horizon h during the episode ¢. First, we extend the bandit exploration lemma (Lemma [3.1)) to
obtain its counterpart in the RL setting.

Lemma D.1 (RL exploration (Lemma ). Using the REINFORCE algorithm with any 1) € ©(1)
under the finite-horizon MDP M defined as above, for all h € H, for all reachable s € Sy, and
Sfor all a € Ag we have, almost surely, that every reachable state action pair will be visited i.o, i.e
Noo(s,a) = 0.

Proof. First, for all h € H, for a given reachable s € Sy, that is played infinite often, every action
a € A, will be played i.o. by the bandit exploration result (Lemma [3.1)) . In other words, for all
h € H , for a reachable state s that is played i.0, we have, almost surely that,

Noo(s,a) = 00 <= Zﬂf(a\s) =00 Vae€A, (251)
>0

Next, for all A € H, we want to show that every reachable state s € Sy, will be visited i.0. by
induction. Suppose for a given h € H, for some reachable s € S, and there exists an action a € A,
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such that Py y1(spy1 = §'|sp = s,ap = a) > 0 for some s’ € Sp41, if s is visited i.0, s is also
visited i.0. For the base case h = 0, for some reachable states s € S, i.e p(s) > 0 we have,

Z p(s) = o0 (252)

t>0

since p(s) is a constant for every episode. Therefore, every reachable state s € Sy is visited i.0. For
the inductive case, if any reachable states s € Sy, is visited i.0, then any reachable states s’ € Sj,41
is also visited i.0. A state s’ is reachable if there exists an action a € A, from a reachable state
s € 8y, such that P, 11(s'|s,a) > 0. Denote ¢ := minges, minge 4, Pry1(s'|s, a) be the minimum
transition probability from the horizon h to h + 1 among states and actions. For reachable s’ from s,
we have .

ZP?+1(8/|S) = Z Z Py (s']s, a)rf (als) (253)
>0 t>0 a€As
> > e ml(als) @9
a€As t>0
o (by Eq. (@51))

Therefore, if s € Sj, is reachable and visited i.0, then any reachable states s’ € Sy, 41 from s will be
visited i.0. Combined Eq. (251) and Eq. (253), for all i € H, we have that any reachable state-action
(s,a) € Sp x Ay, pairs will be visited i.0. we know that every state-action pair will be visited i.o. [

Next, we obtain the convergence of REINFORCE in the finite-horizon setting.

Theorem D.2 (RL convergence (Theoremd.2)). For the MDP defined as above, using the algorithm
REINFORCE with constant learning rate ) € ©(1), we have, almost surely, forall s € Sp, V' (s) —
Vi(s) ast — oo

Proof. We denote 0 := min, ming pe 4, a6 |Q(S,a) — Q(s,b)| > 0 to be the minimum non-zero
gap between ()-values. Denote A; = {a|a = arg max,c, r(s,a)} is the set of optimal action at
a given state s. We also denote C' := max, max, min,(Q(s,a) — Q(s,b)). We want to prove by
backward induction that for all reachable state so € So, D, Az 70(a|s) — 1 ast — oo. Suppose
forall ' € {h,..., H — 1}, for all reachable s € Sy, we have ZaeA* 7 (als) = last — oo,

we want to prove that for all reachable s € S;,_1, we have ZaeA? T 1( |s) = 1last — oo. . In
h—1

the base case h = H — 1, the REINFORCE update rule (Algorithm [2) is reduced to,
01" (s,0) = 07 (s,0) + n(llagr—1 = a] — /"~ (als))rn (255)

This is the bandit update rule (Algorithm[I)) for a given reachable state s € Sy—1. By Theorem[3.2]
for a given reachable state s € Sy_1, using the stochastic gradient bandit algorithm with constant

learning rate 7 € ©(1), we will have, almost surely that Za*eA; = a*]s) = last — oo .

By Lemma , any reachable states s € Sy _; will be sampled i.0. Hence, using REINFORCE
with € O(1), that for all reachable s € Sy_; that are played i.0, we have, almost surely,

ZaeA;{,l 7" (als) — L ast — co. In other words, V7' | (s) — Vi _,(s) ast — oo.

For inductive case, suppose for all A’ € {h,..., H — 1}, for all reachable s € S/, we have
Y acar 71 (als) — 1ast — oo, we want to prove that for all reachable s € S,_1, we have
h/

D ac A, 7~ 1(als) — 1 ast — oo . By the induction hypothesis, for all h € H, for all reachable
5 € Sp, V' (s) = Vi (s) and Q1" (s,a) = Qj(s,a) forall a € A, as t — oo. First, we note that

Vi (s) — Vit (s Zw (max Qjy (s,a) — Qi (s, a")) (256)

= Zﬂ't maXQh,(s a)— Qp(s,a")+ Qi (s,a’) — Qhi(s,a")) (257)

Ca

C
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We denote that 1y (t) == >,/ 4+ 7l (a’|s). For the first term C;, we have
hl

C, = wa,(aﬂs)(géagi Qj(s,a) — Q5 (s,a')) (258)
= >l (@]s) (max Qi (s5,0) = Qpu(5,0) (259)
a’' gAY,
< Cywe(t) (260)
since the horizon H is fixed and r;, < R for all h € H, then
max Qi (s,a) — Qjy(s,a’) < C (261)

By the induction hypothesis, we have, for all ' € {h,..., H — 1}, we have that v/ (t) — 0 as
t — oo.

For the second term Cs, we have Q7,(s,a’) — Q} (s,a’) < ap/(t), where /() — 0 as t — oo by
induction hypothesis. Therefore,
Vhik/ (8) — Vhﬂ;t’ (S) S C’yh/ (t) + Q! (t) (262)

Denote € (t) := Cyp (t) + aps (t) and €, (t) — 0 as t — oco. Hence, for sufficiently large timestep
7, such that forall t > 7, forall b’ = h, ..., H — 1, for all reachable s € S}/, we have that

1
Vi (s) = Vit (s) < 3 (263)
where ¢ is the minimum possible gap Q-value defined as above. The existence of 7 is guaranteed

since €, (t) — 0 as t — oo . First, for a given reachable s € S;,_1, such that for any actions a € A,
we have,

ni(s,a) =rhoi(s,a) + Egop, (1s,a) Vi (s')] (264)
> rp_1(s,a) + By op, (s,a) Vi (s)] — € (265)
=Q5_1(s,a) —¢ (266)
Also, for any actions a € A, we have,
Qplq(s,a) <@y _1(s,a) < Qp_(s,a) +¢ (267)

By definition of §, for a given reachable s € Sj,_1, we know that Q} _,(s,a) — Q5 _,(s,b) > d for
any a,b € A, such that a # b, then we have

0
noa(s,0) = Qply(s,b) 26 —2e > 3 (268)
Note that 4 is a non-zero gap by definition. Note that the update rule of Algorithm 2]
H-1
05 (s,a) = 0)~1(s,a) + n(1{an—1 = a} — ;"' (als)) Z The (269)
h'=h—1

is equivalent to the update rule in the nonstationary bandit setting, by considering only the updates to
the arms at state s and the full trajectory’s rewards as the observed rewards.

Since by definition

H-1
E™[ Z Th|Sh—1 = 8,an—1 =al = Q" (s,a),
W =h—1
Zﬁ;}kl T, is an unbiased estimate of Q7' | (Sp—1,an—1), Up to nonstationarity in 7, which
eventually diminishes below /3. Also, note that
H-1
mi(s,a) =E™[ Y rwlswo1 =s,an_1=a] <R(H —h), (270)
h'=h—1
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since r(s,a) < R,Vs € S,a € A. Since the sample return Zg;ilzq rp, is a bounded, unbiased
estimator of Q7" | (sp—1, @n—1), and there is a minimum gap of § /3 between Q values among different
actions within the same state, we can apply the convergence result from the nonstationary bandit

setting (Theorem ) to conclude that ) Ar L (s) Trth_l(a,ls) — 1 as ¢t — oo for all reachable
s € Sp—1. Therefore the induction hypothesis holds, and we conclude that, using REINFORCE with
1€ O(1), Yoea 7 (als) — last — oo forall s € Sy, (or Vi (s) — V' (s) as t — oo for all
s € So). ” O

E Convergence rate

To obtain the convergence rate of the REINFORCE algorithm (Algorithm 2)), we first generalize the
convergence rate result from the bandit setting with the uniqueness assumption to the one without it.
Then, we also obtain the convergence rate in the non-stationary bandit setting before showing the rate
of the REINFORCE algorithm.

Theorem E.1. In the bandit setting where multiple arms can have a same reward, for a large enough

7, for all T > 7, the average sub-optimality decreases at a rate O( log T) Formally, for a constant c,
we have
clog(T —7)
< — 7 271
TZ< ) < HEE 70
Proof. By Eq. (84), we have
Eql6c41(A%) — 0:(A")] = nAmo, (A)(1 = m,(A%)) = 0 @72)
By Theorem 3.2] we have lim; 7y, (A*) = 1 a.s. Therefore, for a large enough ¢, we have
1
o, (A*) > 3 (273)

By Lemma 3.1} we know that every action a € [K] will be played i.0. In other words, for all a € [K],
>_¢>0 mt(a) = co. Therefore, we have

M8

(1 —mp, (A")) = (274)
t=0
Therefore, we have
ZEt Ory1(A*) — 0,(A")] = a.s (275)
By Eq. (OT)), we have
Varf41(A") — 0:(A%)] < 772R27rt (A" (1 — m(A")) (276)

Since the conditional expecation and variance of the bound sequence {60;1(A*) — 0;(A*) }4>0 are
proportional, we can use the Lemma[A.5|to show that the expectation will dominate the variance
eventually. Therefore, for all large enough ¢ > 7, for some constant C' > 0

1 t
e A* Z 1—m( (277)

It is easy to see that sup, 0:(a) < oo for all a € [K]\A*. Therefore, for a large enough ¢ > 7, we
have

1

e

0, (A*) < CZ 1 —ma, (A¥)) (278)

which implies that

> exp(fi(a) - IA*\ 01(A7) < (K — [A"|)exp(—=C Y (1 — g, (A7))) (279)

a€[K]\A*

s=T
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Therefore, we have

_ < "0\ )
1 Ura (A ) = g, (A*) (280)
7o, (a)
= > L (281)
acirgia- 70 (A7)
ac[K]\A* Larear XP(0:(a"))
exp(0:(a)) : ,
< (Jensen’s inequality) (283)
ae[KZM* A Texpl (A7)
¢
< (K = A" ) exp(=C ) (1 = mp,(A"))) (Eq. @79)) (284)
By (Mei et al., 2024a, Lemma 15) with z,, = >>'_1 (1 — 7, (A*)) > 0,201 = S (1 —
S(.A*))>OC—C>OB (K — |A*) > 1, glvesusforalltzr
t
1 2
;(1 — o, (A7) < Zlog(C(t = 7) + exp(CM)) + 155 (285)
where M = max{B, % log(C(K —|A*|)), 1 —mg, (A*)} Finally, forall s > 7 and T > 7, we have
r(a*) = (mo,,r) = Y mo,(a)(r(a®) —r(a)) < 2R(L - m, (A")) (286)
ac[K]\A*

Summing from 7 to 7', we have

- ! — 1) 4ex a2
%Z (T(a*) B ms,w) . 2R(& log(C(T T)_+T p(CM)) + )

(287)

O

Theorem E.2. In the non-stationary bandit setting, for a large enough 7, then for all T > T, the

average sub-optimality decreases at a rate O( log T) Formally, for a constant c, we have
1 log(T —
" g (rta") = (0.} ) < BT (288)
Proof. Repeating the same analysis with Eq. (230}, Eq. (237), Theorem we have, forall ¢t > 7",
¢ 2
Z 1—mg, (A*)) < 5 log(C(t = 7) + exp(CM)) + 155 (289)

where M = max{B, & log(C(K — |A*))),1 —mg_, (A*)}. Also, from the non-stationary bandit
setting, there exists 7’ such that for all ¢ > 7/,

A

r(a) = r'(a)l < 5 (290)

for all @ € [K]. Therefore, for all s > max{7’, 7"} and T' > max{7’, 7"}, we have
r(a*) — (m,, ) < 2R(1 — mp_ (A¥)) (291)

Summing from 7 := max{7’, 7"} to T, we have
2R(L 10g(C(T — 7) + exp(CM)) + =)

TZ( (o, 7 >) < —c — 12 (292)
O
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Theorem E.3. In the finite-horizon MDP setting, for a large enough T, for all T > T, for all s € Sy,

the average sub-optimality decreases at a rate O( loqg,T ). Formally, for a constant ¢, we have
1 & clogT
SV (GERGEIEE 9%)

Proof. Repeating the same analysis, we have, for each h € {0, ..., H — 1}, for all s € S}, for all
t > T,
t 2

1 s
_ 2S(A* < = _ S
3019 < g on(Cl—m) + €M) + i
where M), = max{|As| — [A%], & log(C (| A — [A3]), 1 — o, (Als)}. Also, there exists 7, such
that for all ¢ > 77,

(294)

* T A
1@n(s,) = Q" (s, loo < 5
for all @ € As. Therefore, for all horizon h € {0,...,H — 1}, for all ¢ > max{r,, 7]} and
T > max{r,, 77, }, we have

(295)

Qi(s,a") = Y mh(als)QR (s,a) < Qh(s,a*) — Y mh(als)(Qj(s,a) - %) (296)

a€A, acAg

= Y ma @) - Glsa)+ g o

a€A\Ax
< 2(H ~ WR(L -7 (A2]s) + 5 (298)
which implies
T . . N
1 * s 2R(H — h)(£1og(C(T — 1) + exp(CM)) + Z=) + (T — 13,)
T Z (Vi (s)=V;7(s)) < C h T 12C 3 h

s=max{7p,7},}
(299)
Since for all h € {0, ..., H — 1}, forall s € Sy, forall a € A, lim; Q7' (s,a) = @} (s,a), we can
take 6 — 0. Therefore,

1 2HRE log(C(T — 1) + exp(CM)) + oy
Y ) v < PR CE e @D T Be) o)

s=max{70,74}

O

F Additional experiments

Specifically, we measured the average suboptimality in the last episodes over 30 of the algorithm in
longer ChainMDP, DeepSea environment and CartPole environment. For ChainMDP, we extended
the lengths of the environment to H = {4, 5,6} and measured the average suboptimality gap across
100 learning rates (from exp(—9) to exp(1)). For each length, we observed a clear bowl-shaped
curve. As complexity (chain length) increased, the specific thresholds of the bowl shape varied
slightly, but the optimal learning rate remained consistently around 1 ~ .95. Next, we gradually
increase the complexity of our evaluation by testing the REINFORCE algorithm (Algorithm [2)
on the deep sea treasure environment. The agent operates in a square gridworld of a given depth
d = {5,6,7}). It starts at the top left corner and its goal is to reach the bottom right corner and
receive a reward of 1. The agent has two action 1 and 2. While taking action 1 leads the agent
downwards and receives no reward, taking the other leads the agent downwards and to the right and
receives a reward of —0.001. Similar to the previous environment, for different depths, we measure
the average suboptimality of the agent trained from 10¢ episodes over 30 seeds using 100 different
learning rates from exp(—9) to exp(7). We observed a similar "bowl" shape across the learning
rates. However, the thresholds are different from the previous analysis. Specifically, the learning
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Figure 5: Average last-iterate suboptimality gap of ChainMDP size 4
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Figure 6: Average last-iterate suboptimality gap of ChainMDP size 5

rate 17 = 10 has the lowest suboptimality. Finally, we evaluate the performance of the REINFORCE
algorithm (Algorithm 2) in the Cartpole environment. Specifically, we measure the average return
received by the agent from 10° episodes over 5 seeds using 7 = {107°,107%,1072, 1}. Again, we
observed a similar "bowl" shape across learning rates. The learning rate = 0.01 achieves the highest
average return (approximately 150), while the average return of the others stay around 25. Overall,
we consistently find a "bowl-shaped" relationship between the learning rate and performance, and the
specific shape and optimal point of this bowl vary significantly with the environment’s structure.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction are shown in Lemma[3:1]
Theorem[3.2] and Theorem [4.2]

Guidelines:

The answer NA means that the abstract and introduction do not include the claims
made in the paper.

The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the conclusion (Section [3)) we point out that REINFORCE exhibits high
variance when using excessively large learning rates and highlight choosing an optimal
learning rate schedule as potential future work. The specific technical limitations of all
results are apparent from the formal descriptions of the algorithms, settings, and results.
In particular we state all assumptions explicitly in the settings, including that the state and
action sets are finite and the rewards are bounded.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We numbered each theorem, formula, and proof in the paper; all results are
proved formally in the supplemental material. We have provided intuitive proof sketches
where possible.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We described the experiments in detail in Section
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Our experiments are simple enough that they can be recreated easily using
the information provided in Section[d.5] We are studying classic algorithms and use only
simulated data, which should be easily reproducible from the detailed descriptions.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We do specify the list of values for each hyperparameter (learning rate, seed,
horizon, training episodes).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All figure contain error bars except for figures that are explicitly stated to plot
individual runs for demonstrative purposes.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8.

10.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: The environments (ChainMDP and TreeMDP) are simple and the experiments
are small enough to run on any modern machine (e.g. an Intel Macbook 2019).

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We make sure to preserve anonymity, no new datasets are introduced, and we
do not conduct research on human subjects.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The focus on the paper is on theoretical guarantees of convergence for classic
algorithms, and empirical validation of the proofs. There are no specific societal impact
concerns beyond those of the field of RL as a whole.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work does not involve releasing high-risk artifacts such as pretrained
models, large-scale datasets, or generative tools that could be misused.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use any existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
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Justification: We do not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our research does not require crowdsourcing or involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our research does not require crowdsourcing or involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs.
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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