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ABSTRACT

We explore a class of adversarial attacks targeting the activations of language mod-
els to derive upper-bound scaling laws on their attack susceptibility. By manipu-
lating a relatively small subset of model activations, a, we demonstrate the ability
to control the exact prediction of a significant number (in some cases up to 1000)
of subsequent tokens t. We empirically verify a scaling law where the maximum
number of target tokens predicted, tmax, depends linearly on the number of to-
kens a whose activations the attacker controls as tmax = κa. We find that the
number of bits the attacker controls on the input to exert a single bit of control on
the output (a property we call attack resistance χ) is remarkably stable between
≈ 16 and ≈ 25 over orders of magnitude of model sizes and between model
families. Compared to attacks directly on input tokens, attacks on activations are
predictably much stronger, however, we identify a surprising regularity where one
bit of input steered either via activations or via tokens is able to exert a surpris-
ingly similar amount of control over the model predictions. This gives support for
the hypothesis that adversarial attacks are a consequence of dimensionality mis-
match between the input and output spaces. A practical implication of the ease
of attacking language model activations instead of tokens is for multi-modal and
selected retrieval models. By using language models as a controllable test-bed
to study adversarial attacks, we explored input-output dimension regimes that are
inaccessible in computer vision and greatly extended the empirical support for the
dimensionality theory of adversarial attacks.
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v[0,38] += -0.16 
v[0,40] += 1.717 
v[0,51] += -1.30 
v[0,61] += 4.093 
v[0,120] += -0.66 

v[0,198] += -4.93 
v[0,261] += 0.074 
v[0,401] += 0.158 
v[0,410] += 0.822 
v[0,414] += 3.166 

v[0,465] += -0.84 
v[0,476] += 5.678 
v[0,498] += 8.186 
v[0,552] += 0.632 
v[0,578] += 2.167 

v[0,619] += -2.71 
v[0,622] += -0.91 
v[0,631] += 3.011 
v[0,698] += -3.44 
v[0,703] += -1.10 

v[0,743] += 1.771 
v[0,772] += 3.212 
v[0,802] += -3.37 
v[0,939] += 7.616 
v[0,1016] += -6.30

A simple math problem: 1 + 2 = Oh, Death was 
never enemy of  ours! We laughed at him, we leagued with him, 
old chum. No soldier's paid to kick against His powers. We 
laughed, — knowing that better men would come, And greater 
wars: when each proud fighter brags He wars on Death, for 
lives; not men, for flags.

(d) Changing all 1024 dimensions of the “A” token

A simple math problem: 1 + 2 = turtle
(c) Changing just 25 dimensions of the “A” token

(b) Attack success vs target length 

(e) Attack – target scaling

Figure 1: (a) A diagram showing an attack on the activations (blue vectors) of a language model
that leads to the change of the predicted next token from species to friend. The maximum number
of tokens whose values can be dictated precisely, tmax, can be read off the attack success rate plots
(b), and it scales linearly with the number of attack tokens a (e). An example of attacking just 25
dimensions (out of 1024) of the first token embedding is shown in (c), leading to the prediction of
turtle, while attacking all 1024 dimension is shown in (d), leading to reciting a 40-token poem.
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1 INTRODUCTION

Adversarial attacks pose a major challenge for deep neural networks, including state-of-the-art vi-
sion and language models. Small, targeted perturbations to the model input can have very large
effects on the model outputs and behaviors. This raises concerns around model security, safety and
reliability, which are increasingly practically relevant as machine learning systems get deployed in
high-stakes domains such as medicine, self-driving, and complex decision making. While most
work has focused on attacking image classifiers, where adversarial examples were first identified
(Szegedy et al., 2013), large language models (LLMs) both 1) provide a natural, controllable test-
bed for studying adversarial attacks more systematically and in otherwise inaccessible regimes, and
2) are of a great importance on their own, since they are increasingly becoming a backbone of many
advanced AI applications.

An adversarial attack on an image classifier is a small, targeted perturbation added to its continuous
input (e.g. an image) that results in a dramatic change of the resulting classification decision from
one class to another, chosen by the attacker. Working with language models, we immediately face
two core differences: their input is a series of discrete tokens, not a continuous signal, and the
model is often used in an autoregressive way (popularly referred to as ”generative”) to generate a
continuation of a text, rather than classification. In this paper, we side step the discrete input issue
by working with the continuous model activations (sometimes referred to as the residual stream
(Elhage et al., 2021)) that the discrete tokens get translated to by the embedding layer at the very
beginning of the model. We resolve the second issue by viewing a language model as a classifier
from the continuous activations (coming from input tokens) to a discrete set of t-token continuations
that are drawn from V t possibilities (V being the vocabulary size of the model). We compare these
activation attacks to token substitution attacks as well.

We hypothesize that the mismatch between the dimensions of the input space (that the attacker can
control) and the output space is a key reason for adversarial susceptibility of image classifiers, con-
cretely the much larger input dimension over the output one. A similar argument can be traced
through literature (Goodfellow et al., 2015; Abadi et al., 2016; Ilyas et al., 2019; Fort & Lakshmi-
narayanan, 2024).

Does a significant vulnerability to activation attacks pose a practical vulnerability given that a typical
level of access to a large language model stays at the level of input tokens (especially for commer-
cial models)? While token access is standard, there are at least two very prominent cases where an
attacker might in fact access and control the activations directly: 1) Retrieval, and 2) Multi-modal
models. Retrieval: Borgeaud et al. (2022) uses a database of chunks of documents that are on the
fly retrieved and used by a language model. Instead of injecting the retrieved pieces of text directly
as tokens, a common strategy is to encode and concatenate them with the prompt activations directly,
skipping the token stage altogether. This gives a direct access to the activations to whoever controls
the retrieval pipeline. Multi-modal models: Alayrac et al. (2022) insert embedded images as acti-
vations in between text token activations to allow for a text-image multi-modal model. Similarly to
the retrieval case, this allows an attacker to modify the activations directly. It is likely that similar
approaches are used by other vision-LMs as well as LMs enhanced with other non-text modalities,
posing a major threat.

Related work. Understanding a full LLM-based system instead of just analyzing the main model
has been highlighted in Debenedetti et al. (2023) as very relevant to security, as the add-ons on top
of the main LLM open additional attack surfaces. Similar issues have been highlighted among open
questions and problems in reinforcement learning from human feedback (RLHF, Bai et al. (2022))
(Casper et al., 2023). Modifying model activations directly was also done in Zou et al. (2023a).

Scaling laws for language model performance, as a function of the parameter count and the amount
of data, have been identified in Kaplan et al. (2020), refined in Hoffmann et al. (2022) and worked
out for sparsely-connected models in Frantar et al. (2023). Similar empirical dependencies are
also frequent in machine learning beyond performance prediction, e.g. the dependence between
classification accuracy and near out-of-distribution robustness (Fort et al., 2021). Scaling laws have
been identified in biological neural networks, for example between the number of neurons and the
mass of the brain in mammals (Herculano-Houzel, 2012), and birds (Kabadayi et al., 2016), showing
that performance scales with the log of the number of pallial or cortical neurons.
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Using activation additions (Turner et al., 2023) shows some level of control over model outputs. A
broad exploration and literature on model jail-breaking can also be seen in the light of adversarial
attacks. Zou et al. (2023b) uses a mixture of greedy and gradient-based methods to find token
suffixes that ”jail-break” LLMs. Wang et al. (2023) claims that larger models are easier to jailbreak
as a consequence of being better at following instructions. Attacks on large vision models, such as
CLIP (Radford et al., 2021) are discussed in e.g. Fort (2021b;a), and the first successful transferable
vision attacks on vLLMs are demonstrated in (Fort & Lakshminarayanan, 2024).

2 THEORY

Problem setup. Given an input string that gets tokenized into a series of s integer-valued tokens
S (each drawn from a vocabulary of size V as Si ∈ {0, 1, . . . V − 1}), a language model f can
be viewed as a classifier predicting the probabilities of the next-token continuation of that sequence
over the vocabulary V . Were we to append the predicted token to the input sequence, we would be
running the language model in its typical, autoregressive manner. Given this new input sequence,
we could get the next token after, and repeat the process for as long as we need to.

Let’s consider predicting a t-token sequence that would follow the input context. There are V t such
possible outputs. This process is now mapping an s-token input sequence, for which there are V s

many combinations, into its t-token continuation, for which there are V t combinations. Out of the
s input tokens, we could choose a subset of a ≤ t that would be the attack tokens the attacker can
control. In this setup, we have a controllable classification experiment where the dimension of the
input space a (that the attacker controls), and the dimension of the target space, t, that they wish to
determine the outputs in, are experimental dials that we can set and control explicitly.

Attacking activation vectors. To match the situation to the usual classification setup, we need a
continuous input space. Instead of studying the behavior of the full language model mapping s (or
a) discrete tokens into probabilities of t-token sequences, we can first turn the input sequence S into
activation vectors, each of dimension d, (sometimes referred to as the residual stream (Henighan
et al., 2023)) as fbefore(S ∈ {0, 1, . . . , V − 1}s) = v ∈ Rs×d, and then propagate these activations
through the rest of the network as fafter(v).

The goal of the attacker is to come up with a perturbation P to the first a token activations (an
arbitrary choice) within the vector v such that the argmax autoregressive sampling from the model
would yield the target sequence T as the continuation of the input sequence S. Practically, this means
that we can imagine computing the activations v from the input sequence S by the embedding layer,
adding the perturbation P to it, and passing it on through the rest of the model to get the next token
logits. If the attack is successful, then argmaxfafter(v + P ) = T0. For the jth target token, we
get the activations of the input string S concatenated with (j − 1) tokens of the target sequence,
fbefore(S + T [: j]), add the perturbation P (that does not affect the activations of more than the
first a tokens a ≤ |S| ≤ |S + T [: j]|), and for a successful attack obtain the prediction of the next
target token as argmaxfafter(fbefore(S + T [: j]) + P ) = Tj . What is described here is a success
condition for the attack P towards the target sequence T rather than a process to actually compute
it practically, which is detailed in Section 3.

Input and output space dimensions. In a typical image classification setting, the number of classes
is low, and consequently so is the dimension of the output space compared to the input space. For
example, CIFAR-10 and CIFAR-100 have 10 and 100 classes respectively (Krizhevsky et al., a;b)
(with 32×32×3 = 3072-dimensional images), ImageNet has 1,000 classes (Deng et al., 2009), and
ImageNet-21k 21,000 (log2(21, 000) ≈ 14) (Ridnik et al., 2021) with 224 × 224 × 3 = 150, 528-
dimensional images.

In comparison, predicting a single token output for a language model already gives us V ≈ 50, 000
classes (for the tokenizer used in our models, typical numbers are between 10,000, and several
100,000s), and moving to t-token continuations gives us an exponential control over the number of
classes. For this reason, using a language model as a controllable test-bed for studying adversarial
examples is very useful. Firstly, it allows us to control the output space dimension, and secondly, it
opens up output spaces of much higher dimensions than would be accessible in standard computer
vision problems. In our experiments, we study target sequences of up to t ≈ 1000 tokens, giving us
V t ≈ 216000 options or effective classes in our “classification” problem. For our LLM experiments,
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we actually get to realistic regimes in which the dimension of the space of inputs the attacker controls
is much lower than the dimension of the space of outputs.

The attacker controls a part of the activation vector v with a perturbation P that has non-zero ele-
ments in the first a token activations. a determines the expressivity of the attack and therefore the
attack strength. Unlike an attack on the discrete input tokens, each drawn from V possibilities, con-
trolling a d-dimensional vector of floating point numbers per token, each number of 16 bits itself,
offers a vastly larger dimensionality to the attacker (although of course the model might not be utiliz-
ing the full 16 bits after training, signs of which we see in Section 4). There are 216

d

possible single
token activation values, compared to just V for tokens. For example, for d = 512 and V = 50000

(typical numbers), 216
d

= 22048, while V ≈ 216.

Scaling laws. The core hypothesis is that the ability to carry a successful adversarial attack depends
on the ratio between the dimensions of the input and output spaces. The success of attacking a
language model by controlling the activation vectors of the first a tokens, hoping to force it to
predict a specific t-token continuation after the context, should therefore involve a linear dependence
between the two. Let us imagine a tmax, the maximum length of a target sequence the attacker
can make the model predict with a attack tokens of activations. The hypothesized dependence is
tmax ∝ a, or

tmax = κa , (1)
where the specific scaling constant κ is the attack multiplier, and tells us how many tokens on the
output can a single token worth of activations on the input control. We can test the scaling law in
Eq. 1 by observing if the maximum attack length t scales linearly with the attack length a. The
specific attack strength κ is empirically measured and specific to each model.

If we were to use only a fraction f of the activation vector dimensions in the a attack tokens, the
effective dimension the attacker controls would equivalently decrease by a factor of f . Therefore the
revised scaling law would be tmax = κfa. We verify that the effect of the fraction of dimensions on
the successful target length is the same as varying the attack length a. tmax = κfa.

In Fort (2023), the authors develop a single perturbation P called a multi-attack that is able to change
the classification of n different images to n arbitrary classes chosen by the attacker. This effectively
increases the dimension of the output space by a factor of n, while keeping the attack dimension of
P constant, which is a useful fact for us. We run experiments in this setup as well, where we want a
single activation perturbation P to continue a context S1 by a target sequence T1, S2 by T2, and so
on all the way to Sn to Tn. The dimension of the output space increases by a factor n, and therefore
the maximum target length tmax now scales as tmaxn = κfa. The revised scaling law is therefore
tmax = κfa/n.

The attack strength κ is model specific and empirically determined. However, our geometric theory
suggests that it should be linearly dependent on the dimension of the activations of the model. Let
us consider a simple model where χ bits of control on the input are needed to determine a single bit
on the output, and let us call χ the attack resistance. For a vocabulary of size V , each output token
is specified by log2 V bits. A single token has an activation vector specified by d p-bit precision
floating point numbers. There are therefore dp bits the attacker controls by getting a hold of a single
token of activations. The attack strength κ, which is the number of target tokens the attacker can
control with a single token of an attack activation, should therefore be χκ log2 V = dp. We assume
χ to be constant between models (although adversarial training probably changes it), and therefore
our theory predicts that κ = dp

χ log2 V for a fixed attack resistance χ. For a fixed numerical precision
and vocabulary size, the resulting scaling is κ ∝ d, i.e. the attack strength is directly proportional
to the dimension of the activation vector (also called the residual stream), and we observe this
empirically in e.g. Table 1. Having obtained empirically measured values of κ, we can estimate
the attack resistance χ, which we do in Section 4. In the simplest setting, we would expect χ = 1,
which would mean that a single dimension of the input controls a single dimension of the output.
The specifics of the way input and output spaces map to each other are likely complex and the reason
for why χ > 1.

Comparison to token-level substitution attacks. As a comparison, we tried looking for token
substitution attacks as well, which are significantly less expressive. For those, the attacker can
change the first a integer-valued tokens on the input (instead of their high-dimensional activations;
the geometric of the input manifolds is discussed in e.g. (Fort et al., 2022)), trying to make the model
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produce the attacker-specified t-token continuation as before. If the geometric theory from Section 2
holds, the prediction would be that the attack strength would go down by a factor proportional to the
reduction in the dimension of the input space the attacker controls. Going from adp bits of control to
a log2 V bits corresponds to a dp/ log2 V reduction, which means that the attack multiplier κtoken

for the token substitution method is predicted to be related to the activation attack strength κ as
κtoken = κ log2 V

dp . For d = 512 and V = 50000, the log2 V
dp ≈ 2 × 10−3. Our results are shown in

Section 4, specifically in Table 2. In addition, it is very likely that the full 16 bits of the activation
dimensions are not used, and that instead we should be using a peffective < p.
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Figure 2: A diagram showing the t = 3 multi-token
target prediction after an attack on a = 2 token activa-
tions.

Problem setup. A language model takes
a sequence of s integer-valued tokens S =
[S1, S2, . . . , Ss], each drawn from a vo-
cabulary of size V , Si ∈ {0, 1, . . . , V −1},
and outputs the logits z over the vocabu-
lary for the next-word prediction z ∈ RV .
These are the unscaled probabilities that
turn into probabilities as p = softmax(z)
over the vocabulary dimension. As de-
scribed in Section 2, we primarily work
with attacking the continuous model acti-
vations rather than the integer-valued to-
kens themselves.

The tokens S are first passed through the
embedding layer of the language model, producing a vector v of d dimensions per token, v =
fbefore(S). (These are the activations that the attacker can modify by adding a perturbation vector
P .) After that, the activations pass through the rest of the language model, as fafter(v) = z, to
obtain the logits for the next-token prediction. The full language model mapping tokens to logits
would be fafter(fbefore(S)) = z, we just decided to split the full function f : S → z into the
two parts, exposing the activations for an explicit manipulation. The split need not happen after the
embedding layer, but rather after L transformer layers of the model itself. While we ran exploratory
experiments with splitting later in the model, we nonetheless performed all our detailed experiments
with activations directly after the embedding layer.

An attack on activations. The attacker controls the activation perturbation P that gets added to
the vector v in order to modify the next-token logits towards the token desired by the attacker.
The modified logits are z′ = fafter(fbefore(S) + P ), where P, the attack vector, is of the shape
P ∈ Rs×d (the same as v), however, we allow the attacker to control only the activations of the first
a ≤ s tokens. This is an arbitrary choice and other variants could be experimented with. The attack
comprises the first a tokens, leaving the remaining s− a tokens separating the attack from its target.
We experiment with the effect of this separation in Section G.

While the attacker controls the activations of the first a tokens in the context, the model as described
so far deals with affecting the prediction of the next token immediately after the s tokens in the
context. As discussed in Section 2, we want to predict t-token continuations instead.

Loss evaluation and optimization. To evaluate the loss L(S, T, P ) of the attack P on the context
S towards the target multi-token prediction T , we compute the standard language modeling cross-
entropy loss, with the slight modification of adding the perturbation vector P to the activations after
the embedding layer. The algorithm is shown in Figure 8.

To find an adversarial attack, we first choose a fixed, randomly sampled context of size S, define
the attack length (in tokens) a, choose a target length t (in tokens), and a random string of t tokens
as the target sequence T . We then use the Adam optimizer (Kingma & Ba, 2014) and the gradient
of the loss specified in Figure 8 with respect to the attack vector, P , as g = ∂L(S,T,P )

∂P . Using the
gradient directly is the same technique as used in the original Szegedy et al. (2013), however, small
modifications, such as keeping just the gradient signs (Goodfellow et al., 2015) are readily available
as well. Decreasing the language modeling loss L by changing the activation attack P translates into
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making the model more likely to predict the desired t-token continuation T after the context S by
changing the activations of the first a tokens. We stop the experiment either 1) after a predetermined
number of optimization steps, or 2) once the t-token target continuation T is the argmax sampled
continuation of the context S, by which we define a successful attack.

Estimating the attack multiplier κ. Our goal is to empirically measure under what conditions
adversarial examples are generally possible and easy to find. We use random tokens sampled uni-
formly both for the context S as well as the targets T to ensure fairness. For a fixed attack length a
and a context size s ≥ a, we sweep over target lengths t in a range from 1 to typically over 1000 in
logarithmic increments. For each fixed (a, t), we repeat an experiment where we generate random
context tokens S, and random target tokens T , and run the optimization at learning rate 10−1 for
300 steps. The success of each run is the fraction of the continuation tokens T that are correctly
predicted using argmax as the sampling method. This gives us, for a specific context length s, at-
tack length a, and a target length t an estimate of the attack success probability p(a, t). The plot of
this probability can be seen in e.g. Figure 3a and Table 1 refers to the appropriate figure for each
model. The p(a, t) are our main experimental result and we empirically estimate them for a range
of language models and context sizes s.

For short target token sequences, the probability of a successful attack is high, and for long
target sequences, the attacker is not able to control the model output sufficiently, resulting
in a low probability. To p(a, t) we fit a sigmoid curve of the form σ(t, α, β) = 1 −
(1 + exp (−α (log(t)− log(tmax)))) and read-off the best fit value of tmax, for which the success
rate of the attack of length a falls to 50%. In our scaling laws, we work with these values of tmax,
however, the 50% threshold is arbitrary and can be chosen differently.

Empirically, the read-off value of the 50% attack success threshold tmax depends linearly on the
number of attack tokens a whose activations the attacker can modify. The linearity of the relationship
can be seen in e.g. Figure 6. As described in Section 2, we call the constant of proportionality the
attack multiplier κ, and it relates the attack and target lengths as tmax = κa.

We empirically observe that the attack multiplier κ depends linearly on the dimension of the model
activations used even across different models. We also theoretically expect this in Section 2. The
attack resistance χ, defined in Equation 2, can be calculated from the estimated attack multiplier κ
with the knowledge of the model activation numerical precision p (in our case 16 bits in all cases),
activation dimension d (varied from 512 to 2560), and vocabulary size V (around 50,000 for all
experiments) as χ = dp

κ log2 V . We provide these estimates in Table 1.

In Fort (2023) adversarial multi-attacks are defined and described. They are attacks in which a single
adversarial perturbation P is able to convert n inputs into n attacker-chosen classes. We ran a similar
experiment where a single adversarial perturbation P can make the context S1 complete as T1, S2

as T2, and all the way to Sn to Tn. This effectively decreases the attack length a by a factor of n, or
equivalently increases the target length by the same factor, as discussed on dimensional grounds in
Section 2. Practically, we accumulate gradients over the n (S, T ) pairs before taking an optimization
step on P . We study multi-attacks from n = 1 (the standard attack) to n = 8.

Another modification described in Section 2 is to use only a random, fixed fraction f of the dimen-
sions of the activation vector P . Its effect is to change the effective attack length from a to fa, and
we choose the mask uniformly at random.

Token substitution attacks. To compare the attack on activations to the more standard attack on the
input tokens themselves, we used a greedy, token-by-token, exhaustive search over all attack tokens
a at the beginning of the context S. For a randomly chosen context S, an attack length a ≤ |S|, and a
randomly chosen sequence of target tokens T , we followed the algorithm in Figure 12 to find the first
a tokens of the context that maximize the probability of the continuation T . By greedily searching
over all V possible tokens, each attack token at a time, we can guarantee convergence in aV steps.
We repeat this experiment over different values of the attack length a, and random contexts S and
targets T of length t = |T |, obtaining a similar ptoken(a, t) curve as for the activation attacks. We fit
the Eq. 3 sigmoid to it, extracting an equivalent attack multiplier κtoken, characterizing how many
tokens on the output can a single token on the input influence (the result is, unlike for the activation
attacks, much smaller than 1, of course).
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Attack and target separation within the context. The further the attack is from the target, the less
effective it might be. We therefore experiment with different sizes of the context S that separate the
first a token activations of the attack from the target tokens after S. We estimate an attack multiplier
for each s, getting a κ(s) curve that we show in Figure 3c. The attack multiplier κ looks constant
up to a point (around 100 tokens of context) and then decreases linearly in log(s). We therefore fit
a simple function of this form to our data in Figure 3c.

4 RESULTS AND DISCUSSION

We have been using the EleutherAI/pythia series of Large Language Models (Biderman et al.,
2023) based on the GPT-NeoX library (Andonian et al., 2021; Black et al., 2022) from Hugging
Face1. A second suite of models we used is the microsoft/phi-12 (Li et al., 2023). Finally, we
used a single checkpoint of roneneldan/TinyStories3 presented in Eldan & Li (2023). We
ran our experiments on a single A100 GPU on a Google Colab.

For finding the adversarial attacks on activations, we used the Adam optimizer (Kingma & Ba,
2017) at a learning rate of 10−1 for 300 optimization steps, unless explicitly stated otherwise. Our
activations were all in the float16 format, and the model vocabulary sizes were all very close
to V ≈ 50, 000. For the input context as well as our (multi-)token target sequences, we sampled
random tokens from the vocabulary uniformly. When using only a subset of the activations, as
described in Section 3, we choose the dimensions at random uniformly.
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Figure 3: A summary of adversarial attacks on activations of EleutherAI/pythia-1.4b-v0. Only
experiments varying the attack length a (in tokens whose activations the attacker controls) and the
multiplicity of context and target pairs the attack has to succeed on, n, are shown. The estimated
attack multiplier is κ = 119.0±2.9 which means that controlling a single token worth of activations
on the input allows the attacker to determine ≈ 119 tokens on the output.

Attacks on activations. We ran adversarial attacks on model activations right after the embedding
layer for a suite of models, a range of attack lengths a, target token lengths t, and multiple repetitions
of each experimental setup (with different random tokens of context S and target T each time),
obtaining an empirical probability of attack success p(a, t) for each setting. For multiple repetitions,
we also had a standard deviation of p at each set of (a, t) values. To get to lower effective values of
a and therefore weaker attacks, we use the multi-attack strategy described in Section 3 and in Fort
(2023), designing the same adversarial attack for up to n = 8 sequences and targets at once.

Figure 3 shows an example of the results of our experiments on
EleutherAI/pythia-1.4b-v0, a 1.4B model with activation dimension d = 2048. In
Figure 3a the success rates of attacks p for different values of attack length a (in tokens whose acti-
vations the attacker controls), target length t (in predicted output tokens), and the attack multiplicity

1https://huggingface.co/EleutherAI/pythia-70m
2https://huggingface.co/microsoft/phi-1
3https://huggingface.co/datasets/roneneldan/TinyStories
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Table 1: A summary of attack multipliers κ estimated from experiments for activation adversarial
attacks for various language models. d/κ is the number of dimensions of an activation needed to
control a single output token, while χ is the attack resistance (defined in Theory 3) which corre-
sponds to the number of typical bits on the input the attacker has to control in order to have a single
bit of control on the output. The pythia-* models are from EleutherAI, Phi-* from Microsoft and
TinyStories-* from roneneldan.

Model Curves Size Dimension |V | Attack Per dim Attack
d multiplier κ multiplier d/κ resistance χ

pythia-70m Fig 7 70M 512 50304 24.2 ± 0.8 21.2 ± 0.7 21.7 ± 0.7
pythia-160m Fig 8 160M 768 50304 36.2 ± 2.0 21.2 ± 1.2 21.7 ± 1.2

pythia-410m-deduped Fig 9 410M 1024 50304 70.1 ± 2.3 14.6 ± 0.5 15.0 ± 0.5
pythia-1.4b-v0 Fig 3 1.4B 2048 50304 128.4 ± 3.7 16.0 ± 0.5 16.3 ± 0.5
pythia-2.8b-v0 Fig 10 2.8B 2560 50304 104.9 ± 2.2 24.4 ± 0.5 25.0 ± 0.5

Phi-1 Fig 11 1.3B 2048 50120 42.8 ± 2.3 47.9 ± 2.6 49.0 ± 2.6
Phi-1.5 Fig 12 1.3B 2048 50120 78.4 ± 5.1 26.1 ± 1.7 26.8 ± 1.7

TinyStories-33M Fig 13 33M 768 50257 27.2 ± 2.2 28.2 ± 2.3 28.9 ± 2.3

n (how many attacks at once the same perturbation P has to succeed on simultaneously). The
higher the attack length a, the more powerful the attack and the longer the target sequence t that
can be controlled by it. We fit a sigmoid from Eq. 3 to each curve to estimate the maximum target
sequence length, tmax, at which the success rate of the attack drops to 50% (an arbitrary value).
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Figure 4: Greedy search over all at-
tack tokens to get specific target com-
pletions. In general, ≈ 8 tokens worth
of attack are needed to force a single
particular token of a response.

In Figure 3b, we plot these tmax maximum target lengths
as a function of the attack strength a. Since the multi-
attack n allows us to effectively go below a = 1, we
actually plot a/n, the effective attack strength. Fitting
our scaling law from Eq. 1 justified on geometric and di-
mensional grounds in Section 2, we estimate the attack
multiplier for EleutherAI/pythia-1.4b-v0 to be
κ = 119.2 ± 2.9, implying that by controlling a single
token worth of activations at the beginning of a context,
the attacker can determine ≈ 119 tokens exactly on the
output. The results shown in Figure 3 only include exper-
iments with attack lengths a = 1, 2, 3, 4, 8 and n = 1, and
attack length a = 1 with a varying n = 1, 2, 4, 8. Varying
n allows us to go to ”sub”-token levels of attack strength.

Model comparison. For a number of different models,
we show the scaling laws for attack strength a (in to-
kens whose activations the attacker can control) vs tar-
get length t (in tokens) in Figure 6. For each model, we
estimate the attack multiplier κ (the number of target to-
kens the attacker can control with a 50% success rate by
attacking the activation of a single token on the input), and compute their attack resistance χ, as
defined in Eq. 3, corresponding to the number of bits the attacker needs to control on the input in
order to control a single bit on the output. We summarize these results in Table 1.

An interesting observation is that while the model trainable parameter counts span two orders of
magnitude (from 33M to 2.8B), and their activation dimensions range from 512 to 2560, the result-
ing relative attack multipliers κ/d, and the attack resistances χ stay surprisingly constant. This is
supporting evidence for our geometric view of the adversarial attack theory presented in Section 2.
The conclusion is that for the EleutherAI/pythia-* model family, we need between ≈ 15
and ≈ 25 bits controlled by the attacker on the model input (the activations of the context) in order
to control in detail the outcome of a single bit on the model output (the argmax predictions from
the model). In an ideal scenario, where a single dimension / bit on the input could influence a single
dimension / bit on the output, each activation dimension would be able to control a single token on
the output since the model activations are typically 16 bits and to determine a single token we also
need log2(V ) ≈ 16 bits. However, since we need χ > 1 bits on the input to affect one on the output,
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this means that we need χ activation dimensions to force the model to predict a token exactly as we
want. This is still a remarkable strong level of control, albeit weaker than one might naively expect.

Figure 5: Input-output space dimen-
sion comparison for successfully real-
ized adversarial attacks. The regions
edge corresponds well to the din ∝ dout
implication of the dimensional hypoth-
esis.

Replacing tokens directly. To compare the effect of
attacking the activation vectors and attacking the input
tokens directly by replacing them, we ran experiments
on the EleutherAI/pythia-70m model. For a ran-
domly chosen context of s = 40 tokens and randomly
chosen t-token target tokens (t = 1, 2, 4 in our exper-
iments) we greedily and per-token-exhaustively search
over the replacements of the first a tokens of the context
in order to make the model predict the desired t-token
sequence as a continuation. The method is described in
Section 3 in detail.

Unlike for activation attacks, the token replacement at-
tack needs more than one token on the input to influence
a single token on the output. The detailed curves showing
the attack success rate p(a, t) as a function of the attack
length a (the number of tokens the attacker can replace
by other tokens) and the target length t are shown in Fig-
ure 4, together with Eq. 3 fits to them to extract the amin,
the minimum attack length to force the prediction of a t-
token sequence. For t = 1, we get amin = 11.7 ± 0.2,
while for t = 2 amin = 16.7± 0.2 and for t = 4 amin = 33.4± 1.1. Extracting the attack multiplier
κtoken = t/amin, we get 0.085 ± 0.001, 0.120 ± 0.002 and 0.120 ± 0.004. Averaging the three
estimates while weighting them using the squares of their errors, we get κtoken ≈ 0.12. That means
that we need 1/κtoken ≈ 8 tokens to control on the input in order to force the prediction of a single
token on the output by token replacement (compared to ≈ 0.04 tokens worth for the activations
attack in Table 1).

Controlling tokens instead of activations offers the attacker a greatly diminished dimensionality
of the space they can realize the attack in. In Section 2, we discuss the comparison between
the dimensionality of the token attack (log2(V )a bits of control for an a token attack), com-
pared to the activations attack (adp bits of control for a precision p = 16 and d = 512 for
EleutherAI/pythia-70m in particular). Our geometric theory predicts that their attack mul-
tipliers should be in the same ratio as the dimensions of the spaces the attacker controls. In this
particular case, the theory predicts κtoken/κ = log2(V )/(dp) ≈ 2 × 10−3. The actual experimen-
tally estimated values give us κtoken/κ ≈ 5 × 10−3. Given how simple our theory is and how
different the activation vs token attacks are, we find the empirical result to match the prediction
surprisingly well (it is better than an order of magnitude match).

If we calculated the attack resistance χtoken for the token attack, we would get directly χtoken =
1/κtoken = 8.3. That means that ≈ 8 bits of control are needed by the attacker on the input to
control a single bit of the model predictions. This shows that the token attack is much more efficient
than the activations attack (χ ≈ 22 for this model), which makes sense given that the model was
trained to predict tokens after receiving tokens on the input rather than arbitrary activation vectors
not corresponding to anything seen during training.

Input-output dimension summary We summarize all our successfully realized attacks in Figure 5.
The edge of the region where activation attacks are successful corresponds well to a din ∝ dout with
an attack resistance (constant of proportionality) of χ ≈ 20. Token-based attacks, while shifted to a
lower χ, have a similar shape. Notable, all successful attacks lie well below the theoretical boundary
of χ = 1 where din = dout and above which attacks should generically not be possible.

5 CONCLUSION

Our research presents a detailed empirical investigation of adversarial attacks on language model
activations, demonstrating a significant vulnerability that exists within their structure. By targeting a
very small amount of language model activations that can be hidden deep within the context window
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Table 2: Comparing activation attacks and token attacks on EleutherAI/pythia-70m. The activation
attack has a much higher attack multiplier κ = 24.2 ± 0.8 compared to the one for token attack of
κtoken ≈ 0.12. While a single token’s activation can therefore determine > 20 output tokens, the
attacker needs > 8 input tokens to control a single one by token replacement. Our experiments show
that they are a factor of 2.6× from each other, which is a close match given the simplicity of our
theory and the vastly different nature of the two attack types.

Model Attack Curves Size Dimension |V | Attack Attack
type d multiplier κ resistance χ

pythia-70m Tokens Fig 4 70M 512 50304 0.12 8.3
Activations Fig 7 70M 512 50304 24.2 ± 0.8 21.7 ± 0.7

and well separated from their intended effect, we have shown that it is possible for an attacker to
precisely control up to O(100) subsequent predicted tokens down to the specific token IDs being
sampled (for both randomly sampled and natural language token sequences). The general method is
illustrated in Figure 1.

We empirically measure the amount of target tokens tmax an attacker can control by modifying the
activations of the first a tokens in the context window, and find a simple scaling law of the form
tmax(a) = κa, where we call the model-specific constant of proportionality κ the attack multiplier.
We conduct a range of experiments on models from 33M to 2.8B parameters and measure their
attack multipliers κ, summarized in Figure 6 and Table 1.

We connect these to a simple geometric theory that attributes adversarial vulnerability to the mis-
match between the dimension of the input space the attacker controls and the output space the
attacker would like to influence. This theory predicts a linear dependence between the critical input
and output space dimensions for which adversarial attacks stop being possible, which is what we see
empirically in Figure 6. By using language models as a controllable test-bed for studying regimes of
various input dimensions (controlled by the attack length a) and output dimension (controlled by the
target sequence length t), we were able to explore parameter ranges that were not previously accessi-
ble in computer vision experiments where the study of adversarial examples was historically rooted,
and sweep a full input dimension – output dimension space of model configurations, as shown in
Figure 5.

We find that empirically, the attack multiplier κ seems to depend linearly on the model activation
dimension d rather than the model parameters, as predicted by our geometrical theory. κ/d, and as
shown in Table 1, is surprisingly constant between 16.0±0.5 and 24.4±0.5 for the EleutherAI/pythia
model suite spanning model sizes from 70M to 2.8B parameters.

We compare the activation attacks to the more standard token substitution attacks in which the
attacker can replace the first a tokens of the context in order to make the model predict a specific
t-token sequence. In Figure 4 and Table 2 we summarize our results and show that despite the token
attack being much weaker (on our 70M model) with an attack multiplier of κtoken ≈ 0.12 (meaning
that we need 8 tokens of input control to make the model predict a single output token) compared
to the activation attack κ = 24.2, the two vastly different attack types have a very similar attack
resistance χ when accounting for the vastly different dimensions of the input space of tokens and
activations. The theoretically predicted κ/κtoken = 2×10−3 is surprisingly close to the empirically
measured 5× 10−3 despite the arguable simplicity of the theory.

To make sure our findings are robust to a separation between the attack tokens and the target tokens,
we experiment with adding up to O(1000) randomly sampled tokens between the attack and the
target in Figure 3c. We find that the attack strength essentially unaffected up to 100 tokens of
separation with a logarithmic decline after. However, even a full context of separation gives a high
degree of control of the very first token activation over the next-token prediction.

Attacking activations might seem impractical since the majority of language models, especially the
commercial ones, allow users to interact with them only via token inputs. However, an increasing at-
tack surface due to multi-model models, where other modalities are added to the activations directly,
as well as some retrieval models, where retrieved documents are mixed-in likewise as activations
rather than tokens, directly justify the practical relevance of this paper.
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A ATTACK ALGORITHM

Algorithm 1 Computing loss for an activation attack P towards a t-token target sequence

1: Given activation dimension d, tokens of context S of length s = |S|, attack length a (a ≤ s),
target tokens T of length t, and an attack vector P ∈ Ra×d

2: Compute the activations of the context followed by the target v = fbefore(S + T ) ∈ R(s+t)×d

3: Add the perturbation vector to the first a tokens of v as v′ = v, v′[: a]+ = P {This is the
attack}

4: for i = 0 to t− 1 do
5: Predict logits after the s+ i tokens of the context and target zi = fafter(v

′[: s+ i])
6: Compute the cross-entropy loss ℓi between these logits zi and the target token T [i].
7: end for
8: Get the total loss for the t-token prediction as L = 1

t

∑t−1
i=0 ℓi
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(g) Microsoft Phi-1
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Figure 6: A summary of experiments to determine scaling laws for different models and to read off
their attack multiplier κ. The individual plots show the results of fits to the success rate of attacking
a language model by modifying its activations towards the target of generating t tokens as a function
of a token activations of an attack. Our theory predicts a linear dependence in each plot, while the
slope κ (the attack multiplier) is a model-specific constant.

C DETAILED ATTACK SUCCESS RATE CURVES FOR DIFFERENT MODELS

D EXHAUSTIVE ATTACKS ON INPUT TOKENS

E DETAILED EXPERIMENTAL RESULTS

F USING ONLY A FRACTION OF DIMENSIONS

Another way of modifying the attack strength is to choose only a fraction f of the activation dimen-
sions the attacker controls. Our geometric theory described in Section 2 suggests that the effective
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Figure 7: Fraction of successfully realized attack tokens as a function of the number of target tokens t
for different numbers of simultaneous attacks n and the length of the attack a for EleutherAI/pythia-
70m.

100 101 102 103

Number of target tokens t

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 su

cc
es

sf
ul

 a
tta

ck
s

LLM activation attack
EleutherAI/pythia-160m

n=1 a=8 f=1.0 tmax=217.0
n=1 a=4 f=1.0 tmax=125.9
n=1 a=2 f=1.0 tmax=63.5
n=1 a=1 f=1.0 tmax=41.0
n=2 a=1 f=1.0 tmax=20.5
n=4 a=1 f=1.0 tmax=10.0
n=8 a=1 f=1.0 tmax=3.9

Figure 8: Fraction of successfully realized attack tokens as a function of the number of target tokens t
for different numbers of simultaneous attacks n and the length of the attack a for EleutherAI/pythia-
160m.

attack strength depends on the product of the attack length a, the fraction f and of the attack mul-
tiplicity as 1/n. Therefore we should be able to vary (f, a, n) as we wish and the attack strength
should only depend on fa/n. In Figure 14 we can see a comparison of experiments at the same
attack strength performed at different combinations of a, n and f . In total 12 experimental setups
are shown: 1) n = 1 and f = 1, while varying a = 1, 2, 3, 4, 8, 2) a = 1, f = 1, and n = 2, 4, 8,
3) n = 1, a = 1, and f = 1/8, 1/4, 1/2, and 4) n = 8, a = 8, and f = 1/2. All of these lie
on the theoretical predicted scaling law in Eq. 2 as tmax = κfa/n. The estimated attack multiplier
κ = 128.4± 3.7 is well within 2σ of the estimate using the varying a and n alone in Figure 3.

G CONTEXT SEPARATING THE ATTACK AND THE TARGET TOKENS

In our experiments, we attack the activations of the first a tokens of the context of length s (a ≤ s)
in order to make the model predict an arbitrary t-token sequence of tokens as its argmax con-
tinuation. In our most standard experiments a = s, which means that the attacker controls the
activations of the full context which is of exactly the same length as the attack. These are the ex-
periments in Figure 3, summary Figure 6 and the summary Table 1. To see the effect of having
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Figure 9: Fraction of successfully realized attack tokens as a function of the number of target tokens t
for different numbers of simultaneous attacks n and the length of the attack a for EleutherAI/pythia-
410m.
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Figure 10: Fraction of successfully realized attack tokens as a function of the number of tar-
get tokens t for different numbers of simultaneous attacks n and the length of the attack a for
EleutherAI/pythia-2.8b.

context tokens separating the attack from the target tokens, we ran an experiment with a fixed model
EleutherAI/pythia-70m and read off the attack multiplier κ for each context length s in a
logarithmically spaced range from 1 to 2000 (almost the full context window size). Estimating each
κ(s) involved exploring a range of target lengths a and attack multipliers n, each in turn being a
300 step optimization of the attack, as described in Section 4. The results are shown in Figure 3c.
We see that for up to 100 tokens of separation between the attack and the target tokens, there is no
visible drop in the attack multiplier κ. In other words, the attack is equally effective at forcing token
predictions immediately after its own tokens or 100 tokens down the line. After the context length
of ≈ 100 we see a linear drop in κ(s) with a log of the context length. At 2000 tokens of random
context separating the attack and the target, we still see κ ≈ 8, i.e. a single token’s activations on
the input controlling 8 tokens on the output.
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Figure 11: Fraction of successfully realized attack tokens as a function of the number of target tokens
t for different numbers of simultaneous attacks n and the length of the attack a for Microsoft/Phi-1.
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Figure 12: Fraction of successfully realized attack tokens as a function of the number of target tokens
t for different numbers of simultaneous attacks n and the length of the attack a for Microsoft/Phi-
1.5.
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Figure 13: Fraction of successfully realized attack tokens as a function of the number of tar-
get tokens t for different numbers of simultaneous attacks n and the length of the attack a for
roneneldan/TinyStories-33m.

17



Published as a conference paper at ICLR 2025

Algorithm 2 Greedy, exhaustive token attack towards a t-token target sequence

1: Given tokens of context S of length s = |S|, attack length a (a ≤ s), target tokens T of length
t, and a vocabulary of size V

2: The current context sequence starts at S′ = S
3: for i = 0 to a− 1 do
4: {Looping over attack tokens}
5: for τ = 0 to V − 1 do
6: {Looping over all possible single tokens}
7: S′[i] = τ {Trying the new token}
8: Calculate the language modeling loss Lτ for the target continuation T after the context S′.

If it is lower than the best so far, keep the τbest = τ .
9: end for

10: Update the ith attack token to the best, greedily, as S′[i] = τbest {Greedy sampling token by
token. Each token is searched exhaustively.}

11: end for
12: If the newly updated context S′ produces the continuation T as the result, the attack is success-

ful.
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Figure 14: A scaling plot showing successful attacks on Pythia-1.4B for different attack lengths a,
fraction of dimensions f , and attack multiplicities n.
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