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Abstract

Before deploying outputs from foundation models in high-stakes tasks, it is im-
perative to ensure that they align with human values. For instance, in radiology
report generation, reports generated by a vision-language model must align with hu-
man evaluations before their use in medical decision-making. This paper presents
Conformal Alignment,2 a general framework for identifying units whose outputs
meet a user-specified alignment criterion. It is guaranteed that on average, a pre-
scribed fraction of selected units indeed meet the alignment criterion, regardless
of the foundation model or the data distribution. Given any pre-trained model
and new units with model-generated outputs, Conformal Alignment leverages
a set of reference data with ground-truth alignment status to train an alignment
predictor. It then selects new units whose predicted alignment scores surpass a
data-dependent threshold, certifying their corresponding outputs as trustworthy.
Through applications to question answering and radiology report generation, we
demonstrate that our method is able to accurately identify units with trustworthy
outputs via lightweight training over a moderate amount of reference data. En route,
we investigate the informativeness of various features in alignment prediction and
combine them with standard models to construct the alignment predictor.

1 Introduction

Large-scale, pre-trained foundation models are remarkably powerful in generating relevant and
informative outputs of various forms for diverse downstream tasks, marking a new era of artificial
intelligence [34, 57, 47]. However, it has been recognized that they can be prone to factual errors [43],
hallucinations [15, 51], and bias [4], among others. These issues raise prevalent societal concerns
regarding the reliable use of foundation models in high-stakes scenarios [7, 6]. It remains a significant
challenge to ensure that outputs from these highly complex models align with human values [36].

Towards uncertainty quantification of black-box models, conformal prediction [50, CP] offers a
versatile, distribution-free solution. While CP has been applied to classification and regression
tasks addressed by foundation models [25, 27, 46, 48, 54, 2], its use to ensure the alignment of
general-form outputs remains largely unexplored. Recently, [36] propose to generate multiple outputs
for one input until it is guaranteed that at least one output meets a specific alignment criterion. Such
a guarantee, however, may not be immediately practical, as users must still determine (manually)
which output(s) is aligned. [32] modify the machine-generated outputs to ensure factuality with
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high probability, which in turn may sacrifice model power by making responses vague.3 As such,
determining guarantees that are practically meaningful for downstream tasks and developing methods
to achieve them remain an active research area.

This paper introduces a distinct type of guarantee: we aim to certify whether each model output is
aligned or not, such that those certified are ensured to be mostly correct. This guarantee is directly
relevant to downstream tasks, as it allows immediate and reliable use of the certified outputs without
further modifications. On the other hand, we abstain from deploying model outputs for units (data
points) that are not selected—intuitively, those are where the model lacks confidence (i.e., “knowing
they do not know”), and they can be evaluated by human experts. Such a practice therefore provides
an automated pipeline for the safe deployment of model-generated outputs.

Present work. We present Conformal Alignment (CA), a general framework that determines when
to trust foundation model outputs with finite-sample, distribution-free guarantees. The framework is
based on CP ideas, but unlike standard CP that searches the sampling space to construct a prediction
set that contains a desired output, we leverage the quantified confidence as an instrument to select
units whose already-generated outputs are trusted. Given any model and any alignment criterion,
Conformal Alignment ensures that a prescribed proportion of the selected units’ model outputs indeed
meet the alignment criterion.4 Concretely, suppose m ∈ N+ new units awaiting outputs. Given an
error level α ∈ (0, 1), Conformal Alignment controls the false discovery rate (FDR) in selecting units
with trustworthy outputs:

FDR = E
[∑m

i=1 1{i selected and not aligned}∑m
i=1 1{i selected}

]
≤ α, (1.1)

where the expectation is taken over the randomness of the data. FDR control offers an interpretable
measure of the quality of selected deployable units. Our method builds upon the Conformalized
Selection framework [18, 17], leveraging a holdout set of “high-quality” reference data to guide
the selection with calibrated statistical confidence for trusted outputs. Like in CP, (1.1) holds in
finite-sample as long as the holdout data are exchangeable with the new units.

Our method inherits CP’s (1) rigor, providing distribution-free, finite-sample error control, and (2)
versatility, applicable to any model and any alignment criterion. In addition, by selecting rather
than modifying outputs, our approach preserves the (3) informativeness of the original outputs, and
remains (4) lightweight, e.g., avoiding the need to retrain large models.

Demonstration of workflow. We illustrate the pipeline of Conformal Alignment via a use case
in radiology report generation (detailed in Section 5) in Figure 1: each prompt corresponds to an
X-ray scan, for which a vision-language model generates a report. Our framework identifies a subset
of generated reports that are reliable in the sense that at least, say 99%, of the selected reports are
guaranteed to be aligned if they were to be compared with a human expert report.

The workflow begins with (test) prompts Dtest, corresponding to X-ray scans X ∈ X . A foundation
model f : X 7→ Y generates a report f(X) ∈ Y for each scan. However, only high-quality reports
should be handed over to doctors for clinical decisions. To achieve this, we leverage a set of X-ray
scans that are independent of the model’s training process, each with human expert reports available.
These scans are randomly split into a training set Dtr and a calibration set Dcal. Conformal Alignment
trains a predictor on Dtr for predicting the alignment score that assess how likely a generated output
aligns. Finally, new reports are selected if their predicted alignment scores exceed a data-driven
threshold, which is delicately set with Dcal such that the FDR is strictly controlled at the desired level.

Practical relevance. We apply Conformal Alignment to two use cases—question answering and
radiology report generation—to demonstrate its efficiency. With quite lightweight training of the
alignment predictor (for example, training a tree-based model would suffice), we are able to accurately
identify trustworthy outputs and select as many of them as possible. En route, we exhaustively
investigate practical aspects such as the efficacy of various predictors in these applications and the
amount of “high-quality” data needed for accurate selection to guide practical deployment.

3See Appendix D.7 for more detailed discussion on the types of guarantees.
4In this work, we use “alignment” to refer to a desired property of an output that may vary with the context.
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Figure 1: Pipeline of Conformal Alignment instantiated in the radiology report generation example.

2 Problem setup

Suppose we have a pre-trained foundation model f : X 7→ Y that maps a prompt to an output.
Throughout, we view the model as given and fixed. Assume access to a set of holdout units
D = (Xi, Ei)

n
i=1, where Xi ∈ X is the input prompt and Ei ∈ E is any reference that may be used

in judging alignment. An alignment function A : Y × E 7→ R takes as input the generated output
f(X) and the reference E, and outputs an (true) alignment score A = A(f(X), E) [36]. In the
radiology report generation example, A might be the similarity score between the machine-generated
report f(X) and a human expert report E. We shall detail the choice of A in each use case. Note that
for a unit without reference information, the alignment score of its generated output is unknown, and
we do not seek to evaluate it, which often requires expert annotation or human judgment.

For a test set Dtest = {Xn+j}mj=1, we aim to select a subset S ⊆ [m] := {1, . . . ,m} such that most
of their (unobserved) alignment scores exceed a pre-fixed threshold c ∈ R. The error is measured by

FDR = E

[∑
j∈[m] 1{An+j ≤ c, j ∈ S}

max(|S|, 1)

]
,

where | · | denotes the cardinality of a set. In particular, we aim to enforce that FDR ≤ α for a
pre-specified level α ∈ (0, 1). The FDR measures the averaged proportion of selected units that
are not aligned, thereby directly quantifying the “cost” of deploying outputs in S. Such a measure
(under different terminologies) appears to be considered empirically in selective prediction, although
a rigorous control has been lacking therein (see e.g., [52, 49, 37]). Besides FDR control, it is also
desirable that as many units can be safely deployed, which translates into maximizing the power:

Power = E

[ ∑
j∈[m] 1{An+j > c, j ∈ S}

max(
∑

j∈[m] 1{An+j > c}, 1)

]
. (2.1)

It should be emphasized that our framework prioritizes FDR control over power, in that we strictly
enforce the former while optimizing the latter under the constraints. This is related to but slightly
differs from the selection with controlled risk setting in selective prediction [11, 12]; see Section B.1
for more details. Such a setup is motivated by scenarios such as medical decision-making and
knowledge access, where the cost of committing a type-I error (i.e., selecting a non-aligned unit)
can be grave, and should be of primary concern. In addition, we define power as the proportion
among truly aligned units, instead of the number of selections—indeed, if a foundation model is not
powerful in generating aligned outputs, to begin with, it is natural that only a few of the outputs shall
be deployed.

2.1 Related works

Uncertainty quantification and conformal prediction for foundation models. Conformal predic-
tion [50, 26, 41] is a distribution-free framework for uncertainty quantification of generic prediction
algorithms. This work adds to the growing literature that applies/extends CP to foundation models,
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which varies in definitions of uncertainty and alignment, types of guarantees, rules for decision-
making, etc. Below, we summarize representative ideas and contrast them with the present work.

A line of work applies CP to construct prediction sets that cover the outcome for a single test unit
in classification or regression problems addressed by language models [25, 27, 46, 48, 54]. While
desired, their reliability in downstream tasks is only empirically evaluated: we note that coverage
of prediction sets does not carry over to the selected units [18, 19]. In contrast, this work applies to
outputs of general forms, considers multiple units simultaneously, and offers guarantees relevant to
downstream tasks. In particular, our methodology is built upon the series of papers in conformalized
selection [18, 17]. While they aim to find large values of outcomes, we motivate and tailor the
framework for the alignment of foundation models (a more detailed discussion is in Appendix B.2).

Two works [36, 32] addressing the alignment of foundation models with CP ideas have been briefly
discussed in Section 1. Our setup draws ideas from [36], but the guarantees we provide differ from
both. In particular, our method may be better suited to situations where it is desirable to avoid
modifying the outputs or enlarging candidate sets which requires retraining the models.

More generally, [24, 29, 16] investigate the metric of uncertainty for natural language outputs.
This is orthogonal to the present work, as our method is compatible with any alignment criterion.
Nevertheless, our work adds to the discussion on desirable uncertainty quantification guarantees.

Selective prediction. Our framework is closely related to the idea of selective prediction, where
one is allowed either to predict or to abstain from making a prediction [9, 11, 12, 33, 1]. In the
context of large language models, [23, 53, 40, 55] have similarly considered the goal of teaching
the model not to predict when the model is uncertain about its output, but theoretical guarantees
on the alignment of the selected outputs are lacking. In contrast, this work rigorously formalizes
the guarantee and provides an end-to-end framework that achieves it under a mild exchangeability
condition. As mentioned earlier, the strict control of FDR is closely connected to the “selection with
controlled risk” setting in selective prediction [11, 12], which aims to control a slightly different error
measure; we provide a detailed comparison of the error measures and methods in Appendix B.1.

Alignment of foundation models. There is a rapidly growing literature on the alignment of founda-
tion models, wherein topics include alignment evaluation [30, 42], prompt design [22], training with
human feedback [3, 35, 38], among others [8]. We rely on commonly-used alignment criteria in our
applications [44, 29, 24]. However, we achieve strict error control via post-hoc adjustment/selection,
instead of deriving training strategies to improve certain alignment metrics of the model.

3 Conformal Alignment

Given a set of data D with reference information, our procedure starts by splitting D into two disjoint
sets: the training set Dtr and the calibration set Dcal. With a slight abuse of notation, we shall also
use Dtr and Dcal to denote the indices of the units in the sets when the context is clear. We then
fit a model g : X → R on Dtr to predict the alignment score based on X (which may also involve
information from f ). Next, we generate model outputs f(Xi) and compute the predicted alignment
scores Âi = g(Xi) for every i ∈ [n+m]. We shall use (Ai, Âi)i∈Dcal to determine the selection set.

Following the framework of conformalized selection [18, 17], we gather statistical evidence for
trustworthy outputs via hypothesis testing, where the null hypothesis for j ∈ [m] is

Hj : An+j ≤ c. (3.1)

Rejecting Hj then reflects evidence that the (true) alignment score of unit j is above the threshold c,
and therefore the generated output f(Xn+j) is aligned. Under this framework, the task of selecting
aligned units boils down to simultaneously testing the m hypotheses specified in (3.1). For this
purpose, we construct the conformal p-value: for any j ∈ [m],

pj =
1 +

∑
i∈Dcal

1{Ai ≤ c, Âi ≥ Ân+j}
|Dcal|+ 1

. (3.2)

It can be shown that when the test unit is exchangeable with the calibration units, the p-value defined
above is valid in the sense that P(pj ≤ t, An+j ≤ c) ≤ t for any t ∈ (0, 1) [18]. Intuitively, when
a generated output is likely to be aligned, we expect Ân+j to have a large magnitude, and pj to be
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small. As a result, we reject the null hypothesis—that is, declaring a sufficiently large alignment
score—for a small pj , where the threshold for p-values is determined by the Benjamini-Hochberg
(BH) procedure [5]. Concretely, let p(1) ≤ . . . p(m) denote the ordered statistics of the p-values; the
rejection set of BH applied to the conformal p-values is S = {j ∈ [m] : pj ≤ αk∗/m}, where

k∗ = max
{
k ∈ [m] : p(k) ≤

αk

m

}
,

with the convention that max∅ = 0. We describe the complete procedure in Algorithm 1, and
establish its validity in Theorem 3.1. For notational simplicity, we denote Zi = (Xi, Ei) for all
i ∈ [n+m] (note that Ei is not observable for i > n).

Algorithm 1 Conformal Alignment

Input: Pre-trained foundation model f ; alignment score function A; reference dataset D =
(Xi, Ei)

n
i=1; test dataset Dtest = (Xn+j)

m
j=1; algorithm for fitting alignment predictor G; align-

ment level c; target FDR level α.
1: Compute the alignment score Ai = A(f(Xi), Ei), ∀i ∈ D.
2: Randomly split D into two disjoint sets: the training set Dtr and the calibration set Dcal.
3: Fit the alignment score predictor with Dtr: g ← G(Dtr).
4: Compute the predicted alignment score: Âi ← g(Xi), ∀i ∈ Dcal ∪ Dtest.
5: for j ∈ [m] do
6: Compute the conformal p-values pj according to Equation (3.2).
7: end for
8: Apply BH to the conformal p-values: S ← BH(p1 . . . , pm).

Output: The selected units S.

Theorem 3.1. Suppose that for any j ∈ [m], {Zn+j} ∪ {Zi}i∈Dcal are exchangeable conditional on
{Zn+ℓ}ℓ ̸=j , i.e., for any permutation π of {1, . . . , n, n+ j} and any {z1, . . . , zn, zn+j}, it holds that

P
(
Z1 = z1, . . . , Zn = zn, Zn+j = zn+j | {Zn+ℓ}ℓ ̸=j

)
= P

(
Z1 = zπ(1), . . . , Zn = zπ(n), Zn+j = zπ(n+j) | {Zn+ℓ}ℓ ̸=j

)
.

Suppose the predicted alignment score {Âi}i∈Dcal∪Dtest have no ties almost surely and supx |g(x)| ≤
M̄ for some M̄ > 0. Then for any α ∈ (0, 1), the output S from Algorithm 1 satisfies FDR≤ α.

The proof of Theorem 3.1 is adapted from [18], and we include it in Appendix A for completeness.
Remark 3.2. The exchangeability condition required in Theorem 3.1 is satisfied when the samples
in Dcal ∪ Dtest are i.i.d., or when Dcal is drawn from a set of samples without replacement, or when
they are nodes on graphs in the transductive setting [14]. The assumption of no ties is without loss of
generality, since one can always add a small random noise to break the ties.

The following proposition characterizes the power (2.1), as well as the fraction of selected units
that can be deployed with confidence, when the samples are i.i.d. The proof is in Appendix A.2. A
finite-sample power analysis based on concentration inequalities is in Appendix A.3.
Proposition 3.3. Under the same condition of Theorem 3.1, assume further that (Xi, Ei)i∈[n+m]

are i.i.d. Define H(t) = P(A ≤ c, g(X) ≥ t) and t(α) = sup{t : t
P(H(g(X))≤t) ≤ α}. Suppose that

there exists a sufficiently small ε > 0 such that t
P(H(g(X))≤t) < α for t ∈ [t(α)− ε, t(α)], then

lim
|Dcal|,m→∞

Power = P(H(g(X)) ≤ t(α) |A > c).

lim
|Dcal|,m→∞

1

m

m∑
j=1

1{j ∈ S, An+j > c} = P(H(g(X)) ≤ t(α), A > c).

Figure 2 visualizes the asymptotic cutoff on g(X) beyond which will be selected by our method:
it is the smallest value such that the red area on the right is less than α-proportion of red and blue
areas combined. The area of the blue part on the right of the cutoff is thus the asymptotic fraction
of selected units, whose proportion among the entire blue area is the asymptotic power. Intuitively,
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given a model (i.e., fixing areas for the red and blue), the power of Conformal Alignment depends
on how well g discerns those A > c against those A ≤ c. Therefore, it is important to identify
features that informs the alignment of the outputs; we will elaborate on this point and deliver practical
recommendations in our experiments in Sections 4 and 5. In addition, the fraction of deployable units
(blue) additionally depends on the model power, i.e., the fraction of units whose outputs are indeed
aligned. These two factors both affect the fraction of units selected by our method (the blue area on
the right of the cutoff), which will also be demonstrated in the experiments.

4 Experiments for question answering (QA)
density

g(X)

A > cA ≤ c

cutoff on  
for selection

̂A

Figure 2: Visualization of asymp-
totic selection rule (red dashed
line), with density curves of g(X)
for A ≤ c (red) and A > c (blue).

In this section, we implement and evaluate Conformal Align-
ment in question-answering tasks, where we consider a con-
versational question answering dataset TriviaQA [21] and a
closed-book reading comprehension dataset CoQA [39]. For
each QA dataset, we use language models OPT-13B [57] and
LLaMA-2-13B-chat [47] without finetuning to generate an
answer f(Xi) via top-p sampling for each input Xi following
the default configuration. The alignment score Ai measures
how well the generated answer matches the true reference an-
swers provided in both datasets. Following [24, 29], we let
Ai ∈ {0, 1} indicate whether the rouge-L score [28] between
the LLM-generated answer and reference answer is no less than
0.3, and set c = 0. See Appendix C.1 for more details.

Dataset partition. Recall D is the reference dataset and Dtest is the test set we select from. We
fix |Dtest| = 500 and split D as follows. Fixing γ1, γ2 ∈ (0, 1), γ1 + γ2 < 1, we randomly sample
⌊(γ1 + γ2) · |D|⌋ instances without replacement from D as Dtr for training the alignment predictor g.
Within Dtr, a random subset of size ⌊γ1 · |D|⌋ is reserved for hyperparameter tuning in computing
certain features to be introduced later, while the others are used in fitting g given the features. We then
set the calibration set Dcal = D\Dtr. For the results presented in this section, γ1 = 0.2, γ2 = 0.5.
Additional ablation studies for the choice of (γ1, γ2) are summarized in Section 4.1.

Alignment score predictor. With the training set Dtr, according to Algorithm 1, our goal is to train
an alignment score predictor g that maps Xi to Âi—the estimated probability for Ai > c—based
on available information such as the input, model parameters, and outputs. To this end, we train a
classifier with binary label Ai and the following features (as preparation, we additionally randomly
generate 19 answers for each input, leading to M = 20 answers in total for each input):

• Self-evaluation likelihood (Self_Eval). Following [22, 29], we ask the language model itself to
evaluate the correctness of its answer and use the likelihood, P(true), as a measure of confidence.

• Input uncertainty scores (Lexical_Sim, Num_Sets, SE). Following [24], we compute a set of
features that measure the uncertainty of each LLM input through similarity among the M = 20
answers. The features include lexical similarity (Lexical_Sim), i.e., the rouge-L similarity
among the answers. In addition, we use a natural language inference (NLI) classifier to categorize
the M answers into semantic groups, and compute the number of semantic sets (Num_Sets) and
semantic entropy (SE). Following [24, 29], we use an off-the-shelf DeBERTa-large model [13] as
the NLI predictor.

• Output confidence scores (EigV(J/E/C), Deg(J/E/C), Ecc(J/E/C)). We also follow [29] to
compute features that measure the so-called output confidence: with M generations, we compute
the eigenvalues of the graph Laplacian (EigV), the pairwise distance of generations based on the
degree matrix (Deg), and the Eccentricity (Ecc) which incorporates the embedding information of
each generation. Note that each quantity is associated with a similarity measure; we follow the
notations in [29] and use the suffix J/E/C to differentiate similarities based on the Jaccard metric,
NLI prediction for the entailment class, and NLI prediction for the contradiction class, respectively.

We use all above features to train the alignment predictor with standard ML models including logistic
regression, random forests, and XGBoost. Existing works often use individual features in calibrating
model confidence [22, 29, 24]; in this regard, we evaluate these features by using each individual
feature to train the predictor g and reporting the resulting power, which delivers additional insights
upon their informativeness in predicting model alignment.
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Figure 3: Realized FDR (blue) and power (red) for conformal alignment applied to the TriviaQA
dataset (with γ1 = 0.2, γ2 = 0.5) at various FDR target levels. The top row corresponds to the results
from OPT-13B and the bottom row to those from LLaMa-2-13B-chat; each column corresponds to a
value of |D|. Shading represents the area between one standard deviation above and below the mean.
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Figure 4: Comparison of FDR and power between Conformal Alignment and the heuristic baseline
where we select units by thresholding self-evaluation scores Self_Eval with a cutoff at 1−the target
FDR level. The comparison is conducted on the TriviaQA dataset.

4.1 Experiment results

This section reports the results on the TriviaQA dataset, where a subset of 8000 questions are
considered, with the alignment predictor trained via logistics regression; additional results when the
predictor is trained via random forest and XGBoost are in Appendix D.1. Parallel results on the
CoQA dataset with 7700 questions can be found in Appendix D.2. We also provide QA examples in
Table 1 in Appendix D.5 to illustrate the performance of our method.

Conformal Alignment strictly controls the FDR while heuristic baseline does not. Fig-
ure 3 shows the realized FDR and power for Conformal Alignment at target FDR levels α ∈
{0.05, 0.1, . . . , 0.95}, averaged over 500 independent experiments. The FDR curves demonstrate the
finite-sample error control. It is worth noting that the FDR is tightly controlled; it becomes a constant
for sufficiently large α under which all units can be selected without violating the FDR.

To demonstrate the importance of a statistically rigorous treatment, we compare Conformal Alignment
with a heuristic baseline, where one asks the language model to evaluate its confidence (i.e., the
Self_Eval feature above), and threshold the obtained likelihood {qselfj } with a cutoff of 1 − α

as if it were the “probability” of alignment, i.e., Sbaseline = {j ∈ [m] : qselfj ≥ 1 − α}. The
resulting FDR and power for the TriviaQA dataset are in Figure 4. The baseline fails to control FDR,
showing that the self-evaluation score is over-confident. In addition, it is also less powerful than
our procedure despite the higher error rate, implying that the self evaluation is less informative for
predicting alignment. Comparing LLaMA-2-13B-chat and OPT-13B, we also observe that more
powerful models may tend to be more (over-)confident in their output.
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Figure 5: Power versus target FDR levels for TriviaQA dataset when the alignment predictor is trained
with logistic regression over individual features with |D| = 2000, γ1 = 0.2, γ2 = 0.5, averaged over
500 independent experiments. Note that the FDR is always controlled though not depicted.

More powerful model enables more powerful selection. The performance of Conformal Align-
ment also varies with the language models. We observe that more powerful LLMs can generate
answers with higher accuracy which further leads to stronger signals in selection. For OPT-13B,
the largest value of FDR is 0.5; we have nearly no discoveries and the power is close to zero when
α = 0.05. In comparison, with LLaMA-2-13B-chat, FDR never exceeds 0.25, and the power is as
high as 0.50 even at an FDR level of α = 0.05. As such, one may also use the FDR/power curve
from Conformal Alignment as a measure to compare LLMs’ performance.

What feature is informative for alignment? In addition to the capability of LLMs, the features
used to train g also play a vital role in the power of selection. To compare the informativeness of the
aforementioned features for the alignment of outputs, we use one score at a time as the feature in
training g and show Power/FDR curves in Figure 5. When using the OPT-13B model, Self_Eval and
Num_Setss are the least powerful, while Deg(J) and Ecc(J) are the most powerful in predicting
alignment. Such a comparison is similar for LLaMA-2-13B-chat. We defer the FDR curves to
Figure 14 in Appendix D.3 which remain strictly controlled. We include a more detailed analysis on
feature importance via Shapley value in Appendix D.6.

How many high-quality samples are needed? The size of high-quality samples |D| needed is
important for applying Conformal Alignment. In practice, it is desired if a handful of data suffices
to accurately identify aligned outputs. To study the effect of reference sample size |D| on the
performance, in Figure 3, we vary |D| in {100, 500, 2000} with fixed γ1 = 0.2 and γ2 = 0.5. In
general, a few hundred high-quality samples suffice to achieve relatively high power, showing that
Conformal Alignment does not require too expensive extra labeling. More specifically, we observe
that when |D| increases, there is a slight improvement in power, especially when α is small; for large
values of α, the power is robust to |D|. In addition, a larger labeled sample size reduces the variance
in both FDR and Power and improves the stability in selection.

Ablation study. In Appendix D.4, we present ablation studies for the choice of γ1 and γ2 in data
splitting. In practice, larger values of γ1 and γ2 allow more samples for training the alignment
predictor but decrease the resolution of the conformal p-values. With fixed |D| and γ2, we observe
that the performance of our method is not sensitive to the choice of γ1; in particular, a small value of
γ1 (e.g., 0.2) is sufficient for powerful selection. When fixing |D| and γ1 = 0.2, we suggest setting
γ2 ∈ [0.3, 0.5] to balance the sample sizes for both the predictor training and the BH procedure.

5 Experiments for chest X-ray report generation

In this section, we apply Conformal Alignment to chest X-ray report (CXR) generation. Following the
pipeline in Figure 1, we apply our method to (a subset of) the MIMIC-CXR dataset [20]. In practice,
imagine a healthcare institute employs a foundation model to automatically generate radiology reports
based on chest radiographs. Conformal Alignment can be used to determine which reports to trust
and refer to doctors for medical decisions, and the rigorous guarantees it offers imply that 1 − α
fraction of the approved reports indeed match the results if they were to be read by a human expert.
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Figure 6: Realized FDR (blue) and power (blue) for Conformal Alignment applied to CXR report
generation with alignment predictor from logistic regression. The results are averaged over 500 runs
with γ1 = 0.2, γ2 = 0.5. Each subplot corresponds to one value of |D|.

We obtain the base foundation model f by fine-tuning an encoder-decoder model (pre-trained Vision-
Transformer and GPT2) using a separate training set. For a generated report f(Xi) with a reference
report written by a radiologist, the alignment score Ai is defined as follows: we use CheXbert [44]
to convert both reports to two 14-dimensional vectors of binary labels with each coordinate as the
indicator of positive observations; we then define Ai ∈ {0, 1} as the indicator of whether there are at
least 12 matched labels, and set c = 0. We employ the same set of features and the same procedure in
Section 4, except for Self_Eval which is not available from the current model. More details about
the experimental setup are in Appendix C.2.

5.1 Experiment results

We summarize the main findings from our experiments below; additional results with random forest
and XGBoost predictors, as well as ablation studies for the choice of hyperparameters, are deferred
to Appendix E. To illustrate the role of the alignment score predictor, we also present examples of
CXR images with reference and generated reports in Table 2 of Appendix E.4.

Tight FDR control. Figure 6 presents the FDR and power curves for Conformal Alignment where
the alignment predictor is trained with all features using logistic regression, averaged over 500
independent runs of the procedure. Again, we observe that the FDR is tightly controlled at the target
level; it remains constant for sufficiently large α since by then all units can be selected without
violating the FDR. We also observe satisfactory power, although it is lower than that is the QA tasks
since CXR generation can be a more challenging task, and the model in use is fine-tuned with a
limited number of training samples. We shall expect even higher power for better tuned models.
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Figure 7: Power at each FDR level for CXR
dataset when the alignment predictor is trained
with logistic regression over each individual
feature, fixing |D| = 2000, γ1 = 0.2, γ2 = 0.5.

Hundreds of reference data suffice. Comparing
subplots in Figure 6, as the size of the reference
data D increases, we observe a slight improvement
in power. However, we again find that |D| = 500
already suffices for powerful deployment of Con-
formal Alignment. In practice, we expect this sam-
ple size also suffices for more powerful foundation
models that are more carefully designed for this
specific task.

Informativeness of individual features. To
study the informativeness of different features for
alignment, we use one feature at a time to train the
logistic regression classifier and compare the re-
sulting power versus target FDR levels in Figure 7
from Conformal Alignment (curves showing FDR
control are in Figure 23 of Appendix E.2). In the
CXR task, features based on Jaccard similarity are
still the most powerful while those based on NLI
prediction exhibit slightly lower power. More complicated texts and more tokens in CXR reports
could be potential reasons for the relatively poor performance of NLI prediction.
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6 Discussion and limitations

We have presented Conformal Alignment, a principled framework for ensuring the alignment of
foundation model outputs with provable, distribution-free FDR control. Compared with standard
conformal prediction, we provide a solution that may be more relevant to downstream tasks than
existing ideas. We demonstrate that our framework is flexible, lightweight, and effective through
concrete applications to question answering and radiology report generation tasks, where we also
provide practical recommendations on sample size, data splitting, and feature engineering.

The choice of alignment score in different applications remains an open problem. For example, in the
radiology report generation example, as pointed out by [56], there can be a discrepancy between the
score given by CheXbert and that given by human evaluation; as such, it will be interesting to use
our framework with actual human evaluation labels. More generally, interesting future directions
include designing implementation tailored for other appropriate applications, tackling parallel or
sequential outputs, improving power in data-scarce scenarios (e.g., with better base models and
more informative features), extending to multi-task and in-context learning settings, and generalizing
our framework to control other error notions beyond FDR that may be meaningful for downstream
decisions.
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Broader impact

It is crucial to ensure that LLM outputs are aligned with human values, especially in high-stakes
scenarios (e.g. medical decision-making). This paper provides a generic framework that identifies
reliable LLM outputs and controls the misalignment error rate in a rigorous way. The proposed
approach (conformal alignment) can be applied to a wide range of real-life scenarios, e.g. medical
decision-making (radiology report generating) and conversational chatbot (question answering).

A Deferred theory and proofs

A.1 Proof of Theorem 3.1

Let V (x, a) = 2M̄ · 1{a > c} − g(x); define also Vi = V (Xi, Ai) and V̂i = V (Xi, c) for every
i ∈ [n +m]. By construction, V̂i = −Âi; Vi equals to −Âi when Ai ≤ c and equals to 2M̄ − Âi

otherwise. The conformal p-value defined in (3.2) can be written as

pj =
1 +

∑
i∈Dcal

1{Ai ≤ c, Âi ≥ Ân+j}
1 + |Dcal|

=
1 +

∑
i∈Dcal

1{Vi ≤ V̂n+j}
1 + |Dcal|

,

which is the p-value considered in [18]. It can also be checked that {Vi}i∈Dcal ∪ {V̂n+j}j∈[m] have
not ties almost surely. Applying Theorem 2.6 of [18] concludes the proof.

A.2 Proof of Proposition 3.3

The proof is an adaptation of Proposition 2.10 of [18]. We first note that the proof of Proposition
2.10 goes through with U = 1, which is the version we shall use in what follows.

To start, as in the proof of Theorem 3.1, we take V (x, a) = 2M · 1{a > c} − g(x). Let F (v) =
P(V (X,A) ≤ v) for any v ∈ R. Then

F (v) = P(V (X,A) ≤ v) = P(A ≤ c, g(X) ≥ −v) + P(A < c, 2M − g(X) ≤ v)

= H(−v) + P(A < c, 2M − g(X) ≤ v).

As a result, F (V (X, c)) = F (−g(X)) = H(g(X)), and for any t ∈ R,

t

P(F (V (X, c)) ≤ t)
=

t

P(H(g(X)) ≤ t)
.

Invoking Proposition 2.10 of [18], we have

lim
|Dcal|,m→∞

Power =
P(F (V (X, c)) ≤ t(α), A > c)

P(A > c)

=
P(H(g(X)) ≤ t(α), A > c)

P(A > c)

= P(H(g(X)) ≤ t(α) |A > c).

Similarly,

lim
|Dcal|,m→∞

∑m
j=1 1{j∈S,An+j>c}

m = lim
|Dcal|,m→∞

Power ·
∑m

j=1 1{Aj > 0}
m

= P(H(g(X)) ≤ t(α) |A > c) · P(A > c)

= P(H(g(X)) ≤ t(α), A > c).

We have therefore completed the proof.

A.3 Finite-sample power analysis

In this part, we provide a finite-sample power analysis based on concentration inequalities. We define

F+(t) = P(g(X) ≥ t, A > c), F−(t) = P(g(X) ≥ t, A ≤ c), F (t) = P(g(X) ≥ t).
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The empirical version of these quantities are defined as

F̂+
m(t) =

1

m

m∑
j=1

1{g(Xn+j) ≥ t, An+j > c), F̂+
n (t) =

1

n

n∑
i=1

1{g(Xi) ≥ t, Ai > c),

F̂−
m(t) =

1

m

m∑
j=1

1{g(Xn+j) ≥ t, An+j ≤ c), F̂−
n (t) =

1

n

n∑
i=1

1{g(Xi) ≥ t, Ai ≤ c),

F̂m(t) =
1

m

m∑
j=1

1{g(Xn+j) ≥ t), F̂n(t) =
1

n

n∑
i=1

1{g(Xi) ≥ t),

We also define m̂+ =
∑m

j=1 1{An+j > c} as the number of truly aligned test outputs.

Proposition A.1. Under the same condition of Theorem 3.1, assume further that (Xi, Ei)i∈[n+m]

are i.i.d. For any δ ∈ (0, 1), with probability at least 1− δ,

F+(τ−)− ϵm
P(A > c) + ϵm

≤
∑m

j=1 1{g(Xn+j) ≥ τ̂ , An+j > c}∑m
j=1 1{An+j > c} ≤ F+(τ+) + ϵm

P(A > c)− ϵm
,

where

τ+ := inf

{
t :

1

n+ 1
· 1 + nF+(t) + nϵn

Fm(t)− ϵm
≤ α

}
, τ− := inf

{
t :

1

n+ 1
· 1 + nF+(t)− nϵn

Fm(t) + ϵm
≤ α

}
,

and ϵm =
√
log(8/δ/(2n)), ϵn =

√
log(8/δ)/(2m).

Proof of Proposition A.1. Fix any constant δ ∈ (0, 1). Consider the function g̃(X,A) = M ·
1{A > c} + g(X), where M > 2 supx∈X |g(x)| < ∞ is a sufficiently large constant such that
infx∈X g̃(x, c+ 1) > supx∈X g̃(x, c). Therefore, we know that for any |t| < M/2, it holds that

F+(t) = P(g̃(X,A) ≥M + t), F−(t) = P(t ≤ g̃(X,A) < M/2).

And similar relations hold for the empirical versions of these quantities. Applying the Dvoret-
zky–Kiefer–Wolfowitz (DKW) inequality [10, 31] with a union bound for the empirical c.d.f. of
g̃(X,A) for both calibration and test data, we know that with probability at least 1− δ,

sup
t

∣∣F̂+
m(t)− F+(t)

∣∣ ≤ ϵm, sup
t

∣∣F̂−
m(t)− F−(t)

∣∣ ≤ ϵm, sup
t

∣∣F̂m(t)− F (t)
∣∣ ≤ ϵm,

sup
t

∣∣F̂+
n (t)− F+(t)

∣∣ ≤ ϵn, sup
t

∣∣F̂−
n (t)− F−(t)

∣∣ ≤ ϵn, and
∣∣m̂+ − P(A > c)

∣∣ ≤ ϵm,

where recall that ϵm =
√
log(8/δ)/(2m) and ϵn =

√
log(8/δ)/(2n). We call the event that all

above holds the “good event” E∗, which happens with probability at least 1− δ.

By definition, we can show that the selection set of Conformal Alignment is equivalently S = {j ∈
[m] : g(Xn+j) ≥ τ̂}, where τ̂ = inf

{
t : F̂DR(t) ≤ α

}
, and

F̂DR(t) =
m

n+ 1
· 1 +

∑n
i=1 1{g(Xi) ≥ t, Ai ≤ c}∑m
j=1 1{g(Xn+j) ≥ t} =

1

n+ 1
· 1 + n · F̂+

n (t)

F̂m(t)
.

By the DKW inequality above, with probability at least 1− δ,

1

n+ 1
· 1 + nF+(t)− nϵn

Fm(t) + ϵm
≤ F̂DR(t) ≤ 1

n+ 1
· 1 + nF+(t) + nϵn

Fm(t)− ϵm

holds simultaneously for all t ∈ R. On the other hand, the (realized) power is

Pow :=

∑m
j=1 1{g(Xn+j) ≥ τ̂ , An+j > c}∑m

j=1 1{An+j > c} =
F̂+
m(τ̂)

m+
.
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On the good event E∗, we have

F+(τ̂)− ϵm
P(A > c) + ϵm

≤ Pow ≤ F+(τ̂) + ϵm
P(A > c)− ϵm

.

By the definition of τ̂ , we know that τ− ≤ τ̂ ≤ τ+ on the good event E∗. The monotonicity of
realized power as a function of selection cutoff τ̂ thus implies that

Pow ≥ F̂+
m(τ−)

m+
≥ F+(τ−)− ϵm

P(A > c) + ϵm
,

Pow ≤ F̂+
m(τ+)

m+
≤ F+(τ+) + ϵm

P(A > c)− ϵm
.

B Additional comparison with prior works

B.1 Comparison with selective prediction

For selective prediction, El-Yaniv et al. [11, 12] suggest considering the risk measure, defined (in our
context) as:

R :=
E
[∑

j∈[m] 1{An+j ≤ c, j ∈ S}
]

E
[∑

j∈[m] 1{j ∈ S}
] .

This measure is known as the marginal FDR (mFDR) in the multiple testing literature and there has
been an exhaustive discussion of its comparison with FDR. For example, Benjamini and Hochberg [5]
proposed FDR in favor of mFDR, since the latter is impossible to control in the global null case;
Storey [45] also pointed out that mFDR cannot be used for controlling the joint behavior of the
numerator (number of false selections) and the denominator (number of selections). On the other
hand, to control the risk/mFDR, [12] proposes a method that searches for the cutoff over a grid of
values, and then takes a union bound to achieve the overall error control, which might be conservative.
In contrast, our method for FDR control does not involve taking union bounds, delivering sharp
finite-sample control guarantees.

B.2 Comparison with conformalized selection

Our work instantiates conformalized selection [18] for the reliable deployment of foundation model
outputs. We detail our contributions as follows. First, we justify that selecting reliable outputs with
FDR control is a practically reasonable criterion for downstream tasks. Second, we formulate the
alignment problem as a selective prediction problem that can be tackled with conformal selection,
adapting conformal selection to the current setting. Note that while conformal selection is an
established method, its current application in job hiring and drug discovery requires numerical
outputs and predictions; the task of aligning foundation model outputs, however, does not come
with a clear numerical output. To make conformal selection applicable to our purpose, we formulate
the alignment status as a numerical indicator that could be inferred with reference information, and
then decide how to train a prediction model for the alignment score, which can therefore be used in
conjunction with the conformal selection framework. Our third contribution is the implementation
of the pipeline. In this regard, we conduct extensive numerical experiments, finding that using a
lightweight prediction model such as logistic regression or random forests with popular heuristic
(uncalibrated) uncertainty measures is often sufficient for identifying reliable outputs. This provides
a concrete and easy-to-use pipeline for practical use.

C Additional implementation details

This section contains implementation details for Section 4 and 5.
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C.1 Question answering

As is mentioned in Section 4, we adopt a subset of sample size 8000 from the TriviaQA dataset
[21]5 and a subset of sample size 7700 from the CoQA dataset [39]6. For both TriviaQA and CoQA
datasets, we follow the exact text preparation and prompt engineering procedure in [29], which we
show below. To evaluate the correctness of generated outputs, we adopt the rouge-L score [28]
that focuses on the longest common subsequence between two sequences. Following the practice in
[24, 29], a generated answer is defined to be admissible when the rouge-L score is no less than 0.3.

TriviaQA. The TriviaQA dataset can be loaded from the Python module datasets and we use the
rc.nocontext split. Prompts in use are the same as those in [29, 47] and take the following format.

Answer these questions:
Q: In Scotland a bothy/bothie is a?
A: House
Q: [sample question]
A:

CoQA. The CoQA dataset is downloaded from https://downloads.cs.stanford.edu/nlp/
data/coqa/coqa-dev-v1.0.json and the prompts are the same as those in [29, 24].

[The provided context paragraph]
[additional question-answer pairs]
Q: [question]. A:

Answers are generated using the default configurations similar to [29]; in specific, we use
num_beams=1, do_sample=True, top_p=1.0, top_k=0, temperature=1.0. For each question,
we generate M = 20 answers independently, with which we treat the first output as f(Xi) and utilize
the M outputs to calculate the similarity-base scores.

Given the generated outputs, we adopt the pipeline in [29] to calculate the uncertainty and confidence
scores. The self-evaluation score (Self_Eval), or P(True), is obtained using the same prompt in
[22] as follows:

[story]
Question: [question]
Here are some brainstormed ideas: [few_shots examples]
Possible Answer: [generated answer] Is the possible answer:
(A) True
(B) False
The possible answer is: (

The self-evaluation score is then defined as the output probability associated with the generated
answer “A)”.

Language models. We use two language models without fine-tuning for comparison in terms
of the accuracy of the generated answers: OPT-13B and LLaMA-2-13B-chat. The implemented
OPT-13B model is from Hugging Face https://huggingface.co/facebook/opt-13b and the
implemented LLaMA-2-13B-chat is from https://llama.meta.com. We utilize an off-the-shelf
DeBERTa-large model [13]7 as the NLI classifier to calculate similarities.

5https://nlp.cs.washington.edu/triviaqa/
6https://stanfordnlp.github.io/coqa/
7https://github.com/microsoft/DeBERTa
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C.2 CXR report generation

We use the subfolders p10,p11,p12 from the MIMIC-CXR dataset [20] (these are all the data we use,
including fine-tuning and subsequent experiments for Conformal Alignment) to limit the resources
required for fine-tuning. The MIMIC-CXR dataset can be accessed from the PhysioNet project
page https://physionet.org/content/mimic-cxr/2.0.0/ under the PhysioNet Credentialed
Health Data License 1.5.0.

In this application, we fine-tune a vision-language model, with the Vision Transformer google/vit-
base-patch16-224-in21k pre-trained on ImageNet-21k8 as the image encoder and GPT2 as the
text decoder. We largely follow the training procedure in [36]. In particular, each raw image is resized
to 224× 224 pixels. We then fine-tune the model on a hold-out dataset with a sample size of 43, 300
for 10 epochs with a batch size of 8, and other hyperparameters are set to default values. The training
process takes about 10 hours on one NVIDIA A100 GPU.

Once fine-tuned, the model is treated as fixed for generating reports. The data not used in fine-tuning
are used as the training, calibration, and test data in our experiments. For report generation, we
use the default configurations (max_length=512, do_sample=True) and the input of the vision-
language model consists of pixel values of images (resized to 224×224 pixels) and tokenized prompts
(tokenized via the same GPT2 model). For each image, we generate M = 10 reports independently,
with which we treat the first output as f(Xi) and utilize the M outputs to calculate the features
(similarity-based scores) for training the alignment predictor. To determine if a generated report
is admissible, we follow the practice in [36] and use the CheXbert model [44] to convert both the
generated and reference reports into 14-dimensional vectors. For each coordinate, the entry falls
into the categories “Blank”, “Positive”, “Negative” or “Uncertain”, with which we further convert
them to binary vectors with each entry indicating “Positive” or not. The alignment score Ai ∈ {0, 1}
is defined to be the indicator of whether there are at least 12 matched coordinates between the two
binary vectors. Similar to the QA task, we modify the pipeline in [29] to calculate the uncertainty
and confidence scores, in which we utilize an off-the-shelf DeBERTa-large model [13] as the NLI
classifier to calculate similarities.

D Additional experimental results for question answering

D.1 FDR/Power for TriviaQA dataset with alternative classifiers

We present the FDR/power plots when applying Conformal Alignment to the TriviaQA dataset and
the alignment predictor is trained with random forests (Figure 8) and XGBoost (Figure 9), fixing
γ1 = 0.2 and γ2 = 0.5. These figures are similar to Figure 3 (which uses logistic regression to train
the alignment predictor) in the main text. We observe similar messages as those in Section 4: the
FDR is always tightly controlled with satisfactory power. Regarding the choice of |D|, we similarly
see that 500 high-quality samples suffice for the powerful deployment of our method.

8https://huggingface.co/google/vit-base-patch16-224-in21k
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Figure 8: FDR/power plots for conformal alignment with TriviaQA dataset and random forests as the
base classifier. Details are otherwise the same as Figure 3.
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Figure 9: FDR/power plots for conformal alignment with TriviaQA dataset and XGBRF as the base
classifier. Details are otherwise the same as Figure 3.

D.2 FDR/Power on CoQA dataset

In this part, we present a set of results parallel to the main text and Section D.1 when we apply
Conformal Alignment to the CoQA dataset; details about the dataset are in Appendix C.1.

We present the FDR/power plots for the CoQA dataset when the alignment predictor is trained with
logistic regression (Figure 10), random forest (Figure 11), and XGBoost (Figure 12), fixing γ1 = 0.2
and γ2 = 0.5. We again observe similar messages as those in Section 4: the FDR remains tightly
controlled, and a sample size of |D| = 500 suffices for the powerful deployment of our method.

We also recall the baseline, where one asks the language model to evaluate its confidence (i.e., the
Self_Eval feature above), and threshold the obtained likelihood {qselfj } with a cutoff of 1− α as if
it were the “probability” of alignment, i.e., Sbaseline = {j ∈ [m] : qselfj ≥ 1− α}. In Figure 13, we
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present the results with the CoQA dataset, in which the baseline fails to control FDR for any given α
and also exhibits lower power than our proposed approach.
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Figure 10: FDR/power plots for conformal alignment with CoQA dataset and logistic regression for
training the alignment predictor. Details are otherwise the same as Figure 3.
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Figure 11: FDR/power plots for conformal alignment with CoQA dataset and random forests as the
base classifier. Details are otherwise the same as Figure 3.
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Figure 12: FDR/power plots for conformal alignment with CoQA dataset and XGBRF as the base
classifier. Details are otherwise the same as Figure 3.
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Figure 13: Comparison of Conformal Alignment at FDR level α versus the heuristic baseline applied
to CoQA dataset. Details are otherwise the same as Figure 5.

D.3 FDR for individual features

Figure 14 presents the realized FDR at each FDR target level for the TriviaQA dataset when the
alignment predictor is a logistic regression over each individual feature.
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Figure 14: The realized FDR at each FDR target level for TriviaQA dataset when the alignment
predictor is trained with logistic regression over each individual feature.
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From Figure 14, we note that FDR is always controlled for each feature. However, FDR with more
powerful LLM (LLaMA-2-13B-chat) is tightly controlled while Self_Eval and Num_Sets with
OPT-13B produce FDR and power both close to zero when α is small as their predictive power is too
low. We omit similar results when conducting the same experiment on the CoQA dataset.

D.4 Ablation studies

In this part, we present and discuss ablation studies for choosing the data splitting schemes γ1, γ2
through experiments on the TriviaQA dataset, with the alignment predictor trained via logistic
regression over all the features in the main text.

Varying γ1 (size of the tuning set). Recall that we use a random subset of size ⌊γ1|D|⌋ for tuning
hyperparameters [29] in the features, and a subset of size ⌊γ2|D|⌋ for training the alignment predictor.
We start by studying the effect of γ1 on the performance with fixed γ2. This means the sample size for
predictor training is fixed, but there is a tradeoff between the sample sizes used for hyperparameter
tuning and the calibration step. Here, logistic regression is used to train the alignment predictor and
the total number of “high-quality” data is fixed at |D| = 2000.

We show the results when we vary γ1 in {0.2, 0.4, 0.6} for the TriviaQA dataset (Figure 15) and the
CoQA dataset (Figure 16).
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Figure 15: Ablation study for the choice of γ1: FDR/power plots for conformal alignment with
TriviaQA dataset. We fix |D| = 2000, γ2 = 0.3, and use logistic regression as the base classifier.
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Figure 16: Ablation study for the choice of γ1: FDR/power plots for conformal alignment with
TriviaQA dataset: |D| = 2000, γ2 = 0.3, logistic regression as the base classifier.

In Figure 16, we can see that with fixed |D| and γ2, when γ1 increases, the power slightly decreases
due to the decreasing sample size for training the alignment score predictor and BH procedure.
Besides, we note that γ1 = 0.2 is sufficient for tuning the parameters to calculate the features.

Varying γ2 (size of the predictor training set). We proceed to study the choice of γ2, the proportion
of reference data used for training the classifier. We vary the value of γ2 while fixing the size of the
reference set |D| = 2000 and γ1 = 0.2 per our recommendation from the last part. Note that with
|D| and γ1 fixed, varying γ2 also reveals the effect of |Dcal|. We use logistic regression as the base
classifier. The results are shown for TriviaQA dataset in Figure 17 and CoQA dataset in Figure 18.

At values γ2 = 0.1 and γ2 = 0.7, we observe a slight power loss compared with the middle two
columns. The reason is that when γ2 is close to either 0 or 1, there will be unbalanced sample
sizes between D(2)

tr and Dcal, and the scarce of sample in each set will affect the performance, i.e.
causing larger variance in FDR/power or smaller power. In light of this, we suggest the choice of
γ2 ∈ [0.3, 0.5] to balance D(2)

tr and Dcal.
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Figure 17: Ablation study for the choice of γ2: FDR/power plots for conformal alignment with
TriviaQA dataset, fixing |D| = 2000, γ1 = 0.2, and using logistic regression as the base classifier.
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Figure 18: Ablation study for the choice of γ2: FDR/power plots for conformal alignment with CoQA
dataset, fixing |D| = 2000, γ1 = 0.2, and using logistic regression as the base classifier.

Question Reference answer Generated answer Alignment scores

Which company produced
the Hastings and Herald
aircraft?

Handley-Page de Havilland
Ai = 0

Âi = 0.083

How many ‘E’ tiles are
provided in a Scrabble
game?

12 2
Ai = 0

Âi = 0.190

In the 1972 film Cabaret,
Sally Bowles is working in
which club?

KitKat Kit Kat Klub
Ai = 0

Âi = 0.505

An orrery, popular in the
13th and 19th centuries,
was a model of what?

The Solar System Solar system
Ai = 1

Âi = 0.814

Of which band was Feargal
Sharkey the lead singer
until 1983?

THE UNDERTONES The Undertones
Ai = 1

Âi = 0.938

Table 1: Illustration on TriviaQA dataset with LLaMA-2-13B-chat: selection threshold τ̂ = 0.388.

D.5 Real examples in QA

D.6 Empirical evaluation of feature importance

In Figure 5 and 7, we quantify the importance of individual features in the alignment predictor via
the ROC curve. In this section, we use the Shapley value as well as the model-based score to evaluate
the individual feature importance more directly.

We used the XGBoost functionality to compute the importance scores in Figure 19d. We also
computed the Shapley value of individual features to measure their importance based on the prediction
models we use in the manuscript. As the Shapley values are model-agnostic, we present results for
three choices of g(X) with different base classifiers, including logistic regression, random forests,
and XGBoostRF, in Figure 19a, 19b, and 19c. Although the exact order of features varies in four plots,
there are features that have consistent dominating effects in all figures, e.g. Deg(J) and EigV(J)
based on the Jaccard similarity. In addition, NumSets as the feature in alignment score predictors
tends to exhibit an effect close to zero in all four figures. We should note that the aforementioned
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(a) Shapley Values: logistic regression.
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(c) Shapley Values: XGBRF
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(d) Feature importance for XGBRF extracted from
sklearn.

Figure 19: Measures of Feature importance (Dataset: TriviaQA, LLM: LLaMA-2-13B-chat).

findings are also revealed in Figure 5 in the paper, where predicted scores with EigV(J), Deg(J),
and Ecc(J) have higher power and that with NumSets is much less powerful. We thank the reviewer
again for raising this question for more comparison of feature importance in the alignment score
predictor.

D.7 Comments on FDR guarantee and comparison to other frameworks

The major distinction between our method and other applications of conformal prediction on the
foundation models is the type of guarantee we pursue. This is related to the following question: how
can we use the outputs of these algorithms in practice? In short, (a) For [36], it is unclear how to pick
one answer from the multiple answers in a way that does not hinder validity. (b) Conformal actuality
[32] makes the original outputs less specific, which can hinder downstream use.

To demonstrate (a), we conducted additional experiments for more clear comparison. With the
TriviaQA dataset and the base model LLaMA-2-13B-chat, we follow the procedure in [36] and
have the following examples:

• Example 1: Question: In tennis, losing two sets 6-0 is known as a double what? True answer:
Bagel. Generated set: {‘bagel’}.
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• Example 2: Question: What was the name of the brothel in The Best Little Whorehouse
in Texas? True answer: Chicken ranch. Generated set: {‘miss monas’, ‘chicken
ranch’, ‘miss mona’s’, ‘miss monas bordello’}.

As we can see in Example 1, the generated set is very informative and can be used directly. However,
although the generated set in the second example has a high probability of covering the true answer,
it contains very different answers and is potentially confusing in practice. In other words, whether
“Chicken ranch” or “Miss Monas” is correct is unclear to the user.

In addition, as is shown in Figure 20 (left panel), we present the proportion that the size of generated
size is k for different values of k ∈ N, which shows that there are more than 40% of sets having
no less than 4 distinct items. In addition, Figure 20 (right panel) shows that in nearly 30% of the
questions, the admissible answers (with rougeL ≥ 0.3) take up less than 20% of the uncertain set,
which poses a challenge in the direct deployment of answers in the uncertain set.
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Figure 20: Additional histograms for Conformal Language Modeling: sizes of uncertainty sets and
proportions of admissible answers, where Ci denotes the uncertainty set for question No.i (Dataset:
TriviaQA, LLM: LLaMA-2-13B-chat).

E Additional experimental results for CXR report generation

E.1 Additional results with alternative classifiers

We also use random forests and XGBRF as alternative classifiers to train the alignment score predictor.
Similar to Section 5, we fix γ1 = 0.2 and γ2 = 0.5. The results are in Figure 21 for random forests,
and Figure 22 for XGBoost. As |D| increases, we observe a slight increase as well as a decrease in
variance in the power curve while FDR remains tightly controlled.
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Figure 21: FDR/power plots for conformal alignment with CXR dataset when using random forests
to train the alignment predictor. Details are otherwise the same as in Figure 6.
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Figure 22: FDR/power plots for conformal alignment with CXR dataset when using XGBRF to train
the alignment predictor. Details are otherwise the same as in Figure 6.

E.2 Informativeness of individual features

Figure 23 shows the plots of FDR in the same experiment with Figure 7. Recall that we use one
feature at a time to train the alignment score predictor. While FDR is controlled for all features,
Num_Sets and Ecc(C) tend to return empty selection sets S when α is small, which results in zero
FDR as well as zero power. Besides, Ecc(E) is also relatively less powerful, which implies that the
context of CXR report can be challenging for the Eccentricity score since the dimension embeddings
is much higher.
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Figure 23: FDR at each FDR level for CXR dataset when the alignment predictor is trained with
logistic regression over each individual feature, fixing |D| = 2000, γ1 = 0.2, γ2 = 0.5.

E.3 Ablation studies

We present ablation studies for the sample splitting hyperparameters γ1, γ2.

Varying γ1 (size of the tuning set). With |D| = 2000, γ2 = 0.3 and logistic regression as the
base classifier, we vary γ1 in {0.2, 0.4, 0.6} in Figure 24, in which both FDR and power exhibit
larger variance when γ1 is close to 1 due to limited sample size in Dtr ∪ Dcal. Thus, we recommend
γ1 = 0.2 similar to the QA tasks.

Varying γ2 (size of the predictor training set). With |D| = 2000, γ1 = 0.2, and logistic regression
as the base classifier, the proportion of the training set varies in {0.1, 0.3, 0.5, 0.7}.
In Figure 25, the plots with γ2 = 0.1, 0.3, 0.5 are comparable, but as γ2 is close to 1, implying that
the Dcal will produce p-values with a low resolution, the FDR and power are less stable. In this case,
it reveals that there are different requirements in sample size for Dtr and Dcal. To better understand
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Figure 24: Ablation study for γ1: FDR/power plots for conformal alignment with CXR dataset when
fixing |D| = 2000, γ2 = 0.3 and using logistic regression to train the alignment predictor.
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Figure 25: FDR/power plots for conformal alignment with CXR dataset: |D| = 2000, γ1 = 0.2,
logistic regression as the base classifier.

the asymmetric roles of the training and calibration sets, we further decrease the size of the reference
dataset and choose |D| = 100 to repeat the experiment.

Figure 26 further shows that too small (0.1) or too large (0.7) proportion ofDtr are both not preferred,
thus any value γ2 ∈ [0.3, 0.5] is suggested.

E.4 Real examples in report generation

To illustrate the role of the alignment score predictor, we present examples of CXR images with
reference and generated reports in Table 2. In this realization, following Algorithm 1, the selected set
is obtained by S = {i ∈ Dcal : Âi ≥ τ̂} with τ̂ = 0.592. For the first image, as highlighted in pink,
the foundation model misreads the size of the cardiac silhouette. Accordingly, the alignment score
predictor returns Âi = 0.194 < τ̂ , and the conformal alignment procedure successfully excludes this
generated report. For the second image, the conditions of the cardio-mediastinal silhouette and hilar
contours are correctly captured by the foundation model, and a correct assessment of both pleural
effusion and pneumothorax is provided.
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Figure 26: FDR/power plots for conformal alignment with CXR dataset: |D| = 100, γ1 = 0.2,
logistic regression as the base classifier.
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CXR image Reference report Generated report

Alignment scores:
Ai = 0

Âi = 0.194 < τ̂

In comparison with the study of
_, there has been a substantial
increase in opacifications
diffusely involving both lungs.
Cardiac silhouette remains
within normal limits and there
is no evidence of pleural
effusion. The appearance
suggests diffuse pulmonary
edema. However, in the
appropriate clinical setting,
widespread pneumonia or even
ARDS could be considered.

In comparison with the study
of _, there is little overall
change. Again there is a
substantial enlargement of
the cardiac silhouette with
diffuse bilateral pulmonary
opacifications consistent
with pulmonary edema. In the
appropriate clinical setting,
superimposed pneumonia would
have to be considered.

Alignment scores:
Ai = 1

Âi = 0.875 > τ̂

The lungs are well inflated
and clear. The cardiomedi
astinal silhouette, hilar con
tours, and pleural surfaces
are normal. There is no pleu
ral effusion or pneumothorax.
Mild degenerative changes are
seen throughout the thoracic
spine. IMPRESSION: No acute
cardiopulmonary process.

The cardiomediastinal and hi
lar contours are within normal
limits. The lungs are clear
without focal consolidation,
pleural effusion or pneumoth
orax. IMPRESSION: No acute
cardiopulmonary process.

Table 2: Illustration of conformal alignment with CXR examples: selection threshold τ̂ = 0.592.
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