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ABSTRACT
While Variational GraphAuto-Encoder (VGAE) has presented promis-

ing ability to learn representations for documents, most existing

VGAE methods do not model a latent topic structure and there-

fore lack semantic interpretability. Exploring hidden topics within

documents and discovering key words associated with each topic

allow us to develop a semantic interpretation of the corpus. More-

over, documents are usually associated with authors. For example,

news reports have journalists specializing in writing certain type

of events, academic papers have authors with expertise in certain

research topics, etc. Modeling authorship information could benefit

topic modeling, since documents by the same authors tend to re-

veal similar semantics. This observation also holds for documents

published on the same venues. However, most topic models ignore

the auxiliary authorship and publication venues. Given above two

challenges, we propose a Variational Graph Author Topic Model

for documents to integrate both semantic interpretability and au-

thorship and venue modeling into a unified VGAE framework. For

authorship and venue modeling, we construct a hierarchical multi-

layered document graph with both intra- and cross-layer topic

propagation. For semantic interpretability, three word relations

(contextual, syntactic, semantic) are modeled and constitute three

word sub-layers in the document graph. We further propose three

alternatives for variational divergence. Experiments verify the ef-

fectiveness of our model on supervised and unsupervised tasks.
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• Information systems→ Data mining; Document topic mod-
els; • Computing methodologies→ Topic modeling.
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1 INTRODUCTION
Due to the explosion of documents, there is a need to automati-

cally organize overwhelmed corpus. One effective method is to infer

low-dimensional document representations, which could fulfill real-

world tasks, e.g., document classification [39]. Recently, Variational

Graph Auto-Encoder (VGAE) [12] has presented promising ability

to learn effective document representations. However, when mod-

eling documents, we usually assume a latent topic structure [2].

Each document is represented by a topic distribution, each topic is

interpreted by its key words. Such topic structure offers semantic
interpretability and allows us to better understand the main theme

of the corpus. However, most VGAE methods do not model the

notion of topics, leading to uninterpretable representations.

As an important statistical tool for exploratory analysis of text

corpora, topic model allows us to explore latent topics within docu-

ments. Moreover, a document is usually associated with authors.

For example, news reports have journalists specializing in writing

a certain category of events; scientific papers have authors with

expertise in certain research topics. Modeling authors could benefit

topic model, since documents by the same authors reveal similar se-

mantics, and authorship could connect these documents and jointly

infer their topics. This observation also holds for venues, e.g., pa-

pers from the same journal exhibit similar research areas. However,

traditional topic models, e.g., LDA [2], infer topics based on plain

text only, without auxiliary authorship or venues. Recently, Author
Topic Models [28] are proposed for authorship and venue modeling.

Challenges.Most existing graph neural networks for text em-

bedding, e.g., TextGCN [39], lack topic modeling, leading to uninter-

pretable representations. Although there exist a few studies [6, 34]

modeling the concept of topics, topics are learned in advance by

existing models to construct the graph, independently from graph

convolution. In contrast, our proposed model integrates both VGAE

and topic modeling into a unified architecture where the learned

topic proportions of documents enjoy semantic interpretability.

Some works recognize the value of topic modeling. However,

models, e.g., LDA [2] and the recent GATON [38], ignore authorship

and venues of documents. Authorship and venues indicate semantic

similarities, and modeling them could uncover meaningful topics.

Author topic models, e.g., ATM [28] and ACT [30], consider au-

thorship and venues. However, they mainly infer topics for authors

and fail to also learn topics for documents. As a result, automatically

organizing documents, e.g., classification, remains unsolved.

Approach.Motivated by above challenges, we designVariational
Graph Author Topic Model (VGATM) to achieve both semantic

interpretability and authorship (venue) modeling. Specifically, we

extend VGAE and unify it with topic modeling. For authorship and

venue modeling, we design a document layer, an author layer, and

a venue layer, and construct a hierarchical multi-layered document

graph as the corpus. For semantic interpretability, we model three
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word relations (contextual, syntactic, and semantic) as three word

sub-layers. Topics are propagated both within each layer to capture

graph structure and across different layers for semantic learning.

In addition, we also investigate the variational divergence term

in our model, which acts as the prior. We propose three alternatives:

i) Gaussian prior with KL divergence; ii) Dirichlet prior with KL

divergence; and iii) Gaussian prior with Wasserstein distance.

Contributions. First, we propose VGATM unifying VGAE and

topic model to jointly achieve semantic interpretability and author-

ship modeling. Our model also accommodates publication venues

of documents. For semantic interpretability, we construct a three

word sub-layers to describe contextual, syntactic, and semantic

word relations. Second, to model authorship and venues, we de-

sign a hierarchical multi-layered document graph, and simulate

intra- and cross-layer topic propagation to integrate auxiliary data

into documents’ topic proportions. Third, we propose three design

alternatives for variation divergence to improve topic modeling.

2 RELATEDWORK
Graph neural networks are designed to learn vertex representa-

tions. Variational Graph Auto-Encoder (VGAE) [12] extends VAE

[10] where Graph Convolutional Network (GCN) [11] is the ver-

tex encoder. ARVGA [26] improves VGAE by adversarial training.

DGVAE [15] replaces Gaussian prior with Dirichlet. Graphite [8]

extends the decoder of VGAE by an iterative graph refinement

strategy. CGVAE [19] investigates the application in chemistry. ML-

HNE [41] constructs a multi-layered graph. All these models are

not topic models and lack semantic interpretability.

To explore the latent topics within documents, topic models are

proposed. LDA [2] is a graphical model. Recently, neural topic mod-

els attract more attention. NVDM [23] extends VAE for topic mod-

eling. ProdLDA [29] and DVAE [3] design Dirichlet prior, WHAI

[43] uses Gamma prior. WLDA [25] applies Wasserstein distance

in the word space. More recently, topic models are based on graph

structure. GATON [38] designs a bipartite graph for topic propaga-

tion. GraphBTM [45] improves biterm topic model using graphs.

DHTG [34] and HyperGAT [6] use existing topic models to con-

struct graphs. They fail to consider auxiliary authors and venues.

Author Topic Model (ATM) [28] derives topics for authors. ACT

[30] improves ATM by modeling venues. CAT [31] further models

paper citations. They do not infer topics for documents. CNTM [16]

infers topics for both documents and authors, but fails to consider

venues. There are topic models for document graphs [1, 4, 40, 42].

They consider first-order neighbors only. Recently, higher-order

adjacency is considered [33, 35]. They are proposed for the direct

connection (citation), and ignore authorship and venues.

Previously, text classification models are based on CNN [9] and

RNN [18]. Recently, graph models present promising ability, e.g.,

TextGCN [39], TensorGCN [20], HGAT [17], etc. They are not topic

models and fail to consider authorship or venues. The recent TV-

GAE [36] models topics, but still ignores authorship and venues.

3 PRELIMINARIES
Here, we introduce preliminaries. Table 1 summarizes notations.

We are given a corpus of documents C = {D,A,V,X} with
authors and venues.D = {d𝑖 } is a set of documents. Each document

Table 1: Summary of math notations.

Notation Description

C a corpus

D a set of documents

W vocabulary

A a set of authors

V a set of publication venues

X edge connections among documents

G a hierarchical multi-layered document graph based on corpus C
U a set of vertices of G, we have U = D ∪W ∪A ∪V
E a set of edges of G, we have X ⊆ E
O a set of vertex types

T a set of edge types

𝐾 number of topics

𝑞(z𝑖 ) variational posterior distribution of vertex 𝑖 , parameterized by our encoder

log𝑝 (·|·) log-likelihood of generation, or reconstruction term

𝑝 (z) predefined prior distribution

R divergence metric

z̃(𝑙 )
𝑖

the representation after linear projection at the 𝑙-th convolutional step

z(𝑙 )
𝑖

topic proportion of vertex 𝑖 output by the 𝑙-th convolutional step at Eq. 9

˜h
(𝐿)
𝑤 topic proportion representing document 𝑑’s whole content at Eq. 13

𝑀 number of negative samples at Eq. 25

𝑑 contains 𝑁𝑑 words in the vocabulary W, i.e., d = {𝑤𝑑,𝑛}
𝑁𝑑
𝑛=1

⊆
W. Document 𝑑 has a sequence of𝐴𝑑 authors a𝑑 = {𝑎𝑑,𝑛}

𝐴𝑑
𝑛=1

⊆ A
and a venue 𝑣𝑑 ∈ V . Besides, we also observe edges X connecting

documents, such as citations between papers. 𝑥𝑑𝑖 ,𝑑 𝑗 = 1 if there is an

edge between 𝑑𝑖 and 𝑑 𝑗 , otherwise 𝑥𝑑𝑖 ,𝑑 𝑗 = 0. We model undirected

edges, 𝑥𝑑𝑖 ,𝑑 𝑗 = 𝑥𝑑 𝑗 ,𝑑𝑖 . We will use edge and link interchangeably.

As in [33], when no edges X are observed, we induce 𝜅NN edges

using documents’ content similarity. We include X because we will

use it to construct a document graph for author topic modeling.

Given C, a corpus of documents with auxiliary authors and

venues, as input, our goal is to output topic proportions for |D| doc-
uments to preserve textual content D, authorship A, and venues

V where we use edge connections X as assisted graph structure.

Definition 3.1 (Variational Graph Auto-Encoder (VGAE)).

Given documentsD and a graph structureX as inputs, VGAE learns a
mapping function𝑞 to project documents to𝐾-dimensional embedding
space by 𝑞(Z|D,X) ∈ R |D |×𝐾 , preserving content D and graph
structure X. VGAE aims to maximize the following objective.

L = E𝑞 (Z |D,X) log 𝑝 (X|Z) − R[𝑞(Z|D,X)||𝑝 (Z)] . (1)

Encoder 𝑞(Z|D,X) is variational posterior parameterized by a Graph
Convolutional Network [11]. Decoder is log-likelihood log𝑝 (X|Z)
reconstructing the graph structure. Divergence R pushes variational
posterior to a predefined prior 𝑝 (Z). VGAE uses KL divergence as R.

In this paper, we will extend VGAE as a topic model and incor-

porate auxiliary authorship A and publication venuesV .

Definition 3.2 (Wasserstein Distance). Wasserstein distance
is a metric to measure the distance between two probability distri-
butions. Let P(R𝐾 ) be the set of Borel probability measures on 𝐾-
dimensional space R𝐾 . For 𝜌 ≥ 1, and two 𝐾-dimensional probability
measures u and v in P(R𝐾 ), their 𝜌-Wasserstein distance is

𝑊𝜌 (u, v) =
(

inf

𝜋∈Π (u,v)

∫
R𝐾 ×R𝐾

| |𝑥 − 𝑦 | |𝜌𝑑𝜋 (𝑥,𝑦)
)
1/𝜌

. (2)

Here, Π(u, v) is the set of all probability measures on R𝐾 × R𝐾 with
u and v as marginal distributions.
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We will investigate the effect of Wasserstein distance as the

alternative of KL divergence for prior regularization in our model.

4 HIERARCHICAL MULTI-LAYERED GRAPH
Given C, to design graph convolution to obtain topic proportions

of documents, we need to construct a document graph using C.
Below we first define a multi-layered graph. Then we extend it to a

hierarchical multi-layered structure. See Fig. 1(a) for an overview.

4.1 Multi-Layered Document Graph
Considering author and document as vertices, we connect authors

and documents with authorship edges. Similarly, for documents’

words and venues, edges are contents and publications, respec-

tively. Formally, a multi-layered document graph G = {U, E,O,T }
consists of a vertex set U and an edge set E, and is associated

with two mapping functions 𝜃 and 𝜗 . The vertex mapping func-

tion 𝜃 : U → O projects each vertex 𝑖 ∈ U to a specific type

𝑜 ∈ O = {document, word, author, venue}. Each type 𝑜 corre-

sponds to a graph layer containing vertices of the same type. The

edge mapping function 𝜗 : E → T projects edge 𝑒𝑖 𝑗 between

vertices 𝑖 and 𝑗 to an edge type 𝑡 ∈ T={document-word, document-

author, document-venue}. These three types are cross-layer edges.

We further construct four types of intra-layer edges: document-

document, author-author, venue-venue, and word-word. Edges be-

tween documents X defined above can be citations between aca-

demic papers, hyperlinks between Web pages, or 𝜅NN edges based

on documents’ content similarity. Author-author edges are collabo-

ration co-authorship. We do not discover appropriate methods for

venue-venue edges, we simply add self-loop edges for venues. We

will define word-word edges shortly. Thus, there are |O| = 4 graph

layers.U = D∪W∪A∪V andX ⊆ E. Fig. 1(a) contains 4 graph
layers, black and green edges are intra- and cross-layer edges.

4.2 Three Word Sub-Layers
We now define word-word edges. As shown by topic model litera-

ture [5], word co-occurrence has a significant impact on topic inter-

pretability. In our model, word-word edges depict the co-occurred

connections. Thus, to improve topic quality, we build word-word

edges using three word relations, i.e., contextual, syntactic, and se-

mantic, which extend the word layer above to be three sub-layers.

Contextual word sub-layer describes the local co-occurrence
of words within the corpus. Following [39], we use point-wise mu-

tual information (PMI) to capture contextual relation with a fixed-

size sliding window strategy. We slide the window on a sequence of

words within the corpus to obtain contextual co-occurrence relation,
after which, for each pair of words (𝑤𝑖 ,𝑤 𝑗 ), we calculate PMI score.

𝑆𝑐𝑡𝑥 (𝑤𝑖 ,𝑤 𝑗 ) = log

𝑝 (𝑤𝑖 ,𝑤 𝑗 )
𝑝 (𝑤𝑖 )𝑝 (𝑤 𝑗 )

. (3)

𝑝 (𝑤𝑖 ,𝑤 𝑗 ) is the probability of word pair (𝑤𝑖 ,𝑤 𝑗 ) co-occurring in
the same sliding window, and 𝑝 (𝑤𝑖 ) and 𝑝 (𝑤 𝑗 ) represent the proba-
bility of respective word occurring in a sliding window.We estimate

𝑝 (𝑤𝑖 ,𝑤 𝑗 ) =
𝑁𝑐𝑡𝑥 (𝑤𝑖 ,𝑤𝑗 )

𝑁𝑐𝑡𝑥
and 𝑝 (𝑤𝑖 ) = 𝑁𝑐𝑡𝑥 (𝑤𝑖 )

𝑁𝑐𝑡𝑥
. 𝑁𝑐𝑡𝑥 (𝑤𝑖 ,𝑤 𝑗 ) is the

number of co-occurrences of word pair (𝑤𝑖 ,𝑤 𝑗 ) across all sliding
windows, and 𝑁𝑐𝑡𝑥 (𝑤𝑖 ) and 𝑁𝑐𝑡𝑥 (𝑤 𝑗 ) are similarly defined for a

single word 𝑤𝑖 and 𝑤 𝑗 , respectively. 𝑁𝑐𝑡𝑥 is the total number of

sliding windows. After calculating PMI scores for all pairs of words,

for each word, we select its top-5 PMI scores as its neighboring

words and construct edges as contextual co-occurrence relation.

Syntactic word sub-layer represents the syntactic dependency
relation between words. Following [20], we use Stanford CoreNLP

parser [21] to extract dependency between words. For each pair of

words (𝑤𝑖 ,𝑤 𝑗 ), we calculate syntactic co-occurrence score by

𝑆𝑠𝑦𝑛 =
𝑁𝑠𝑦𝑛 (𝑤𝑖 ,𝑤 𝑗 )

𝑁𝑐𝑜-𝑜𝑐𝑐𝑢𝑟 (𝑤𝑖 ,𝑤 𝑗 )
. (4)

𝑁𝑠𝑦𝑛 (𝑤𝑖 ,𝑤 𝑗 ) is the number of times thatword pair (𝑤𝑖 ,𝑤 𝑗 ) presents
syntactic dependency, which is normalized by 𝑁𝑐𝑜-𝑜𝑐𝑐𝑢𝑟 (𝑤𝑖 ,𝑤 𝑗 ),
the number of total co-occurrences of (𝑤𝑖 ,𝑤 𝑗 ). For each word, its

top-5 syntactic scores denote its syntactic co-occurrence neighbors.

Semantic word sub-layer connects words with similar seman-

tic meaning, captured by pretrained word embeddings [27]. For

each pair (𝑤𝑖 ,𝑤 𝑗 ), we calculate semantic co-occurrence score.

𝑆𝑠𝑒𝑚 = cos(𝑔(𝑤𝑖 ), 𝑔(𝑤 𝑗 )) . (5)

𝑔(𝑤𝑖 ) and 𝑔(𝑤 𝑗 ) respectively denotes the word embedding of 𝑤𝑖
and𝑤 𝑗 . cos(·, ·) is cosine similarity. Again, for each word, the top-5

semantically related words are its neighbors as semantic relation.

In Fig. 1(a), three sub-layers of words share the same set of

vertices, i.e., words, but the edge connections are different, since

different co-occurrence relations link different words as neighbors.

Encapsulating three sub-layers of words into above multi-layered

document graph, we obtain a hierarchical multi-layered structure.

5 METHODOLOGY
We introduceVariationalGraphAuthor TopicModel (VGATM), ex-

tending VGAE as a topic model with auxiliary authors and venues.

As an overview, we describe the generative process of VGATM.

Following LDA, given a corpus C, we generate observations: con-
tent D, authors A, venuesV , and edges between documents X.

(1) For each word𝑤 ∈ W, author 𝑎 ∈ A, and venue 𝑣 ∈ V:

(a) Draw 𝐾-dimensional topic proportion z𝑤 ∼ 𝑝 (z𝑤), z𝑎 ∼
𝑝 (z𝑎), and z𝑣 ∼ 𝑝 (z𝑣).

(2) For each document 𝑑 ∈ D:

(a) Draw 𝐾-dimensional topic proportion z𝑑 ∼ 𝑝 (z𝑑 ).
(b) Draw each word𝑤𝑑,𝑛 ∼ 𝑝 (𝑤𝑑,𝑛 |z𝑑 , z𝑤𝑑,𝑛 ), 𝑛 = 1, 2, ..., 𝑁𝑑 .

(c) Draw each author 𝑎𝑑,𝑛 ∼ 𝑝 (𝑎𝑑,𝑛 |z𝑑 , z𝑎𝑑,𝑛 ), 𝑛 = 1, 2, ..., 𝐴𝑑 .

(d) Draw a venue 𝑣𝑑 ∼ 𝑝 (𝑣𝑑 |z𝑑 , z𝑣𝑑 ).
(e) If 𝑑’s label 𝑦𝑑 exists, draw a label 𝑦𝑑 ∼ 𝑝 (𝑦𝑑 |z𝑑 ).

(3) For each pair of documents 𝑑𝑖 and 𝑑 𝑗 where 𝑑𝑖 , 𝑑 𝑗 ∈ D:

(a) Draw an edge indicator 𝑥𝑑𝑖 ,𝑑 𝑗 ∼ 𝑝 (𝑥𝑑𝑖 ,𝑑 𝑗 |z𝑑𝑖 , z𝑑 𝑗 ).
Maximizing log-likelihood L(C) is intractable, as in VGAE [12],

we instead maximize its evidence lower bound below.

L = E𝑞 (ZD ,ZW ,ZA ,ZV )
( ∑︁
𝑑∈D

[log𝑝 (d|z𝑑 ,ZW ) + log𝑝 (a𝑑 |z𝑑 ,ZA )

+ log 𝑝 (v𝑑 |z𝑑 ,ZV ) + 𝜆𝑙𝑎𝑏𝑒𝑙 log 𝑝 (y𝑑 |z𝑑 )] +
∑︁

𝑑𝑖 ,𝑑 𝑗 ∈D
log 𝑝 (𝑥𝑑𝑖 ,𝑑 𝑗 |z𝑑𝑖 , z𝑑 𝑗 )

)
− 𝜆𝑝𝑟𝑖𝑜𝑟 (R[𝑞(ZD ) | |𝑝 (Z)] + R[𝑞(ZW ) | |𝑝 (Z)] + R[𝑞(ZA ) | |𝑝 (Z)]
+ R[𝑞(ZV ) | |𝑝 (Z)]).

(6)

We use upper letter ZD ∈ R |D |×𝐾
as a collection of latent topics of

all the documents, and ditto for ZW , ZA , ZV . 𝐾 is the number of
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Figure 1: Model architecture. (a) Given a corpus with auxiliary authors and venues, we construct a hierarchical multi-layered
document graph with three word relations. (b) For the first 𝐿 − 1 convolution steps, we simulate intra-layer propagation within
each graph layer. (c) For the 𝐿-th convolution, we first average three word relations by mean pooling. (d) We then aggregate
auxiliary data across layers to documents. (e) Finally, we use learned topic proportions of documents to reconstruct the corpus.

topics. d and a𝑑 are the content and authors of𝑑 , respectively. 𝜆𝑙𝑎𝑏𝑒𝑙
controls label supervision. When labels are not observed, 𝜆𝑙𝑎𝑏𝑒𝑙 = 0

for unsupervised learning. 𝜆𝑝𝑟𝑖𝑜𝑟 controls prior regularizer.

𝑞(·) = 𝑞(·|D,A,V,X) is variational posterior where we omit its

conditions to avoid clutter. We also make structured mean-field as-

sumption, 𝑞(ZD ,ZW ,ZA ,ZV ) = 𝑞(ZD )𝑞(ZW )𝑞(ZA )𝑞(ZV ) =∏
𝑑∈D 𝑞(z𝑑 )

∏
𝑤∈W 𝑞(z𝑤)

∏
𝑎∈A 𝑞(z𝑎)

∏
𝑣∈V 𝑞(z𝑣). The first two

rows at Eq. 6 concern data reconstruction, and the next two rows are

divergences R that push variational posteriors to predefined priors

as regularization. Eq. 6 is our objective function for maximization.

Variational posteriors 𝑞(·) are probabilistic encoders parame-

terized by graph convolutional networks in our model, and log-

likelihood, log𝑝 (·|·), in the first two rows are decoders. Below we

design the technical details of encoders, decoders, and divergences

using the constructed hierarchical multi-layered document graph.

5.1 Graph Convolutional Encoder
We seek a graph convolutional encoder that derives topic propor-

tions for documents preserving both graph structure and corpus

semantics. Thus, we propose intra-layer and cross-layer topic prop-

agation for structure modeling and semantic learning, respectively.

5.1.1 Intra-Layer Topic Propagation. Each graph layer contains
one type of vertices and edges. We simulate intra-layer propaga-

tion to capture topology of each layer. Due to the heterogeneity

of vertices, different types of vertices preserve different feature

spaces. To unify heterogeneous vertices, we design a type-specific

transformation to project feature spaces of different types to the

same low-dimensional space. For a vertex 𝑖 ∈ U with type 𝑜 ∈ O,

z̃(𝑙 )
𝑖

= W(𝑙 )
𝑜 z(𝑙−1)

𝑖
. (7)

𝑙 is the 𝑙-th convolutional step. Previous works [11] call it the 𝑙-th

convolutional layer, but to distinguish it from our multi-layered

graph, we call it convolutional step. z(𝑙−1)
𝑖

is the output of previous

step, and z(𝑙=0)
𝑖

is the input feature.W(𝑙 )
𝑜 is type-specific parameter.

Three word sub-layers share the sameW(𝑙 )
𝑜 due to the same type.

Neighbors of vertex 𝑖 share semantics with it to different de-

grees, e.g., some citations discuss similar research, while others are

coincidence. We design a type-specific attention within each layer.

𝛼𝑖 𝑗 = softmax

(
LeakyReLU(b(𝑙 )⊤𝑜 [z̃(𝑙 )

𝑖
| |z̃(𝑙 )
𝑗

])
)
, 𝑗 ∈ N𝑜 (𝑖) . (8)

N𝑜 (𝑖) is the set of 𝑖’s homogeneous neighbors sharing the same type

𝑜 with vertex 𝑖 , [·| |·] is concatenation operation, and b(𝑙 )⊤𝑜 ∈ R2𝑘𝑙
is learnable parameter. Finally, we aggregate topics of 𝑖’s neighbors.

z(𝑙 )
𝑖

= tanh

(
1

2

(z̃(𝑙 )
𝑖

+
∑︁

𝑗∈N𝑜 (𝑖 )
𝛼𝑖 𝑗 z̃

(𝑙 )
𝑗

)
)
. (9)

z(𝑙 )
𝑖

contains latent topics of both itself and its homogeneous neigh-

bors, and graph structure is captured. We repeat above intra-layer

topic propagation until the (𝐿 − 1)-th convolutional step where 𝐿

is the total number of steps in the encoder network. To summarize,

z(𝑙 )
𝑖

= 𝑓

(
z(𝑙−1)
𝑖

, {z(𝑙−1)
𝑗

| 𝑗 ∈ N𝑜 (𝑖)}
)
, where 𝑙 = 1, 2, ..., 𝐿−1. (10)

We obtain z(𝐿−1)𝑤,𝑐𝑡𝑥 , z
(𝐿−1)
𝑤,𝑠𝑦𝑛 , z

(𝐿−1)
𝑤,𝑠𝑒𝑚 for three sub-layers of words;

z(𝐿−1)
𝑑

, z(𝐿−1)𝑎 , z(𝐿−1)𝑣 for documents, authors, and venues, respec-

tively. This process is illustrated by Fig. 1(b) where orange arrows

denote the direction of intra-layer propagation within each layer.

5.1.2 Cross-Layer Topic Propagation. We now define the 𝐿-th

convolutional step. As in previous works [36], as a topic model, our

main goal is to use auxiliary information, i.e., authors and venues,

to infer topics of documents. We thus focus on document modeling

first, after which, we introduce the design of other vertices.

Each document𝑑 nowhas four sets of neighbors, words {𝑤𝑑,𝑛}
𝑁𝑑
𝑛=1

,

authors {𝑎𝑑,𝑛}
𝐴𝑑
𝑛=1

, venue {𝑣𝑑 }, and homogeneous neighborsN𝑑𝑜𝑐 (𝑑)
connected by X. Since different sets represent different types, we

should distinguish them to preserve corpus heterogeneity. We thus

evaluate attention between 𝑑 and neighbors within each set.

Hierarchical Propagation. We use 𝑑’s words {𝑤𝑑,𝑛}
𝑁𝑑
𝑛=1

for

illustration. Since we model three word relations and obtain z(𝐿−1)𝑤,𝑐𝑡𝑥 ,

z(𝐿−1)𝑤,𝑠𝑦𝑛 , and z(𝐿−1)𝑤,𝑠𝑒𝑚 at Eq. 10 for the same word 𝑤 , we first unify

them by a cross-word-layer mean pooling, illustrated by Fig. 1(c).

z(𝐿−1)𝑤 = mean(z(𝐿−1)𝑤,𝑐𝑡𝑥 , z
(𝐿−1)
𝑤,𝑠𝑦𝑛 , z

(𝐿−1)
𝑤,𝑠𝑒𝑚), (11)
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which is then input to the 𝐿-th step. After linear transformation at

Eq. 7, we have z̃(𝐿)
𝑑

and z̃(𝐿)𝑤 for document 𝑑 and word𝑤 , respec-

tively. We evaluate attention between document 𝑑 and its words.

𝛼𝑑,𝑤 = softmax

(
LeakyReLU(b⊤ [z̃(𝐿)

𝑑
| |z̃(𝐿)𝑤 ])

)
(12)

where𝑤 ∈ {𝑤𝑑,𝑛}
𝑁𝑑
𝑛=1

, and b⊤ ∈ R2𝑘𝑙 is parameter for cross-layer

attention. Based on the attention, we aggregate words by

˜h
(𝐿)
𝑤 =

∑︁
𝑤

𝛼𝑑,𝑤 z̃
(𝐿)
𝑤 , (13)

representing the aggregated topics of 𝑑’s whole content, containing
three co-occurrence relations. We use h to denote the whole neigh-

bors. This process is hierarchical, since each word is first averaged

across three word sub-layers, then aggregated with 𝑑’s other words.

Above we use 𝑑’s words for illustration. For other types of neigh-

bors, we repeat Eq. 12–13 and obtain
˜h
(𝐿)
𝑑 ,

˜h
(𝐿)
𝑎 , and

˜h
(𝐿)
𝑣 , repre-

senting 𝑑’s whole homogeneous neighbors, authors, and venues.

Sequence of Authors.When authors are not listed alphabet-

ically, they usually present a sequence of contribution, e.g., aca-

demic publications, which reveals the strength of edge connection

between these authors and the document. As an author topic model,

we aim to incorporate such information and propose a sequence-

aware attention. Specifically, when we evaluate attention between

document 𝑑 and its authors 𝑎 ∈ {𝑎𝑑,𝑛}
𝐴𝑑
𝑛=1

, we extend Eq. 12,

𝛼𝑑,𝑎 = softmax

(
𝛿 (𝑑, 𝑎) × LeakyReLU(b⊤ [z̃(𝐿)

𝑑
| |z̃(𝐿)𝑎 ])

)
. (14)

We add a decay term 𝛿 (𝑑, 𝑎), whose value should decrease when

the sequence of author 𝑎 increases. In this paper, we define

𝛿 (𝑑, 𝑎) = (1/2)𝑠 (𝑑,𝑎)−1 . (15)

𝑠 (𝑑, 𝑎) is the sequence of 𝑎 in 𝑑 . 𝑠 (𝑑, 𝑎) = 1 if 𝑎 is the first author.

Two authors 𝑎𝑖 and 𝑎 𝑗 with equal contribution have 𝑠 (𝑑, 𝑎𝑖 ) =

𝑠 (𝑑, 𝑎 𝑗 ). Here, the value of 1/2 is chosen, mainly because it performs

well on our datasets. Others values are possible, depending on the

datasets. Although more complicated attentions are also possible,

for simplicity, we design Eq. 15 and leave others as future work.

Reparameterization.Having obtained { ˜h(𝐿)
𝑑 ,

˜h
(𝐿)
𝑤 ,

˜h
(𝐿)
𝑎 ,

˜h
(𝐿)
𝑣 }

for four graph layers, we propagate them across layers to document

𝑑 (Fig. 1(d)). 𝜂 controls the importance of cross-layer propagation.

𝝁𝑑 = (1 − 𝜂) × 1

2

(z̃(𝐿)
𝑑

+ ˜h
(𝐿)
𝑑 ) + 𝜂 ×mean( ˜h(𝐿)

𝑤 , ˜h
(𝐿)
𝑎 , ˜h

(𝐿)
𝑣 ) (16)

Since we aim to output both mean and covariance from the final

convolutional step, we repeat Eq. 11–16 twice and obtain 𝝁𝑑 and

𝚺𝑑 for each document 𝑑 . Assuming isotropic Gaussian with zero

mean is the prior, we sample topic proportion z𝑑 = z(𝐿)
𝑑

∈ R𝐾 by

reparameterization trick [10]. For clarity, we omit superscript (𝐿).

z𝑑 = z(𝐿)
𝑑

= 𝝁𝑑 + (𝚺𝑑 )1/2𝝐, where 𝝐 ∼ 𝒩(0, I). (17)

We will analyze the alternatives of Gaussian at Sec. 5.2. Here z𝑑 is

the output of the 𝐿-th convolutional step. It contains graph topo-

logical structure within each layer by intra-layer propagation, and

preserves latent semantics from three relations of words, authors,

and venues by cross-layer propagation. To summarize, z𝑑 ∼ 𝑞(z𝑑 )
where 𝑞(z𝑑 ) is parameterized by our graph convolutional encoder.

We now introduce other vertices. For the final convolution of

words, we use Eq. 11 for cross-word-layer mean pooling and obtain

z(𝐿−1)𝑤 , which is then input to an intra-layer convolution at Eq. 10.

𝝁𝑤 = 𝑓𝜇

(
z(𝐿−1)𝑤 , {z(𝐿−1)

𝑤′ |𝑤 ′ ∈ N𝑤𝑜𝑟𝑑 (𝑤)}
)

𝚺𝑤 = 𝑓Σ

(
z(𝐿−1)𝑤 , {z(𝐿−1)

𝑤′ |𝑤 ′ ∈ N𝑤𝑜𝑟𝑑 (𝑤)}
)
.

(18)

Finally, we apply Eq. 17 and obtain z𝑤 for every word. For authors

and venues, we simply repeat intra-layer convolutional step at Eq.

18 and reparameterization at Eq. 17 and output z𝑎 and z𝑣 .

5.2 Variational Divergence
Having defined graph convolutional encoder as variational poste-

rior 𝑞(z𝑖 ), we now turn to the design of the variational divergence

term at Eq. 6, which pushes 𝑞(z𝑖 ) to a predefined prior 𝑝 (z) using
R as regularization. Here, we design three modeling alternatives.

5.2.1 KL Divergence with Gaussian Prior. Following VGAE

[12], the first design is KL divergence as R and isotropic Gaussian

with zero mean as prior 𝑝 (z). Above reparameterization at Eq. 17

follows this Gaussian prior. The corresponding KL divergence is

KL[𝑞(z𝑖 ) | |𝑝 (z)] =
1

2

(tr(𝚺𝑖 ) + 𝝁⊤𝑖 𝝁𝑖 − log |𝚺𝑖 | − 𝐾). (19)

Vertex 𝑖 ∈ U. 𝑞(z𝑖 ) is our graph encoder, which outputs 𝝁𝑖 and 𝚺𝑖

as Gaussian variational posterior. tr(·) is the trace of a matrix.

5.2.2 KL Divergence with Dirichlet Prior. Inspired by the suc-

cess of Dirichlet prior in LDA [2], which improves topic quality, we

analyze Dirichlet prior as an alternative of Gaussian. We follow [29]

and evaluate Dirichlet posterior 𝑞(z𝑖 ) by Laplace approximation.

𝑞(z𝑖 ) = softmax(𝝁𝑖 + 𝚺
1/2
𝑖

𝝐), where 𝝐 ∼ 𝒩(0, I) . (20)

Having defined posterior, we approximate predefined Dirichlet

prior 𝑝 (z) = Dir(𝛼). We calculate its mean 𝝁 and covariance 𝚺 by

𝜇𝑘 = log𝛼𝑘−
1

𝐾

∑︁
𝑘 ′

log𝛼𝑘 ′ , Σ𝑘𝑘 =
1

𝛼𝑘
(1− 2

𝐾
)+ 1

𝐾2

∑︁
𝑘 ′

1

𝛼𝑘 ′
(21)

where 𝚺 is a diagonal matrix. After obtaining 𝝁 and 𝚺, we use Eq.

20 to get approximated Dirichlet prior 𝑝 (z). KL divergence is

KL[𝑞(z𝑖 ) | |𝑝 (z)] = 1

2

(
tr(𝚺−1

𝚺𝑖 ) + (𝝁 − 𝝁𝑖 )⊤𝚺−1 (𝝁 − 𝝁𝑖 ) + log
|𝚺 |
|𝚺𝑖 | − 𝐾

)
.

(22)

5.2.3 Wasserstein Distance with Gaussian Prior. Variational
divergence consists of three components, i.e., variational posterior

𝑞(z𝑖 ) defined by our graph convolutional encoder, predefined prior

𝑝 (z) investigated above, and divergence metric R. One drawback
of KL is that it is not symmetric and does not obey triangle inequal-

ity, which influences the measure of distributions in Euclidean

space. We thus analyze R and seek an alternative of KL. Inspired

by WLDA [25], which uses Wasserstein distance in the word space

and achieves improvement, we analyze Wasserstein distance in the

topic space. Convolutional encoder outputs 𝝁𝑖 and 𝚺𝑖 as Gaussian

variational posterior. We measure its distance with Gaussian prior.

Theorem 5.1. Let 𝑝 (z) = 𝒩(𝝁, 𝚺) and 𝑞(z𝑖 ) = 𝒩(𝝁𝑖 , 𝚺𝑖 ) be two
Gaussian distributions. Their 2-Wasserstein distance is [37]

𝑊2 [𝑝 (z), 𝑞(z𝑖 )] = | |𝝁 − 𝝁𝑖 | |22 + tr(𝚺 + 𝚺𝑖 − 2(𝚺
1

2 𝚺𝑖𝚺
1

2 )
1

2 ) . (23)
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Wasserstein distance between two Gaussians has an analytical

solution. Specifically, in our model the covariance of Gaussian

prior and variational posterior is diagonal, 𝚺 = diag(𝝈2) and 𝚺𝑖 =

diag(𝝈2

𝑖
), Eq. 23 can be simplified as a symmetric form

𝑊2 [𝑝 (z), 𝑞(z𝑖 )] = | |𝝁 − 𝝁𝑖 | |22 + ||𝝈2 − 𝝈2

𝑖 | |
2

2
. (24)

We will examine the effect of these three modeling alternatives.

5.3 Probabilistic Decoder
We now design a decoder to generate the observed data, which is

the log-likelihood reconstruction log𝑝 (·|·) at objective Eq. 6.
Specifically, we use textual content generation for illustration.

For a document𝑑 ∈ D, log𝑝 (d|z𝑑 ,ZW ) at Eq. 6 is the log-likelihood
of content generationwhere z𝑑 = z(𝐿)

𝑑
andZW = [z(𝐿)𝑤1

; z(𝐿)𝑤2
; ...]⊤ ∈

R |W|×𝐾
are the outputs of the graph convolutional encoder. We de-

fine log𝑝 (d|z𝑑 ,ZW ) = ∑
𝑤∈d log[𝜙 (ZWz𝑑 )𝑑𝑤 (1−𝜙 (ZWz𝑑 ))1−𝑑𝑤 ],

where 𝑑𝑤 = 1 if word𝑤 appears in document 𝑑 , otherwise 𝑑𝑤 = 0.

𝜙 (𝑥) = 1

1+exp(−𝑥 ) is sigmoid. We use inner product of document’s

and words’ topic proportions to predict each word. However, above

equation inefficiently requires summation over the entire vocabu-

lary. Empirically, we use negative sampling [24] to replace it.∑︁
𝑤:𝑑𝑤=1

[log𝜙 (z⊤
𝑑
z𝑤) +

𝑀∑︁
𝑚=1

E𝑤′∼𝑝𝑛 (𝑤 ) log𝜙 (−z⊤𝑑 z𝑤′ )] (25)

𝑀 is the number of negative samples, 𝑝𝑛 (𝑤) is a noise distribu-

tion. Above we use content generation for illustration. For authors,

venues, and connected documents, the reconstruction terms (Eq.

25) are similarly defined by replacing z𝑤 with z𝑎 , z𝑣 , and z𝑑 , respec-
tively. This decoding process is shown by Fig. 1(e) by red arrows.

If document 𝑑’s label exists, we define label generation by

ŷ𝑑 = softmax(𝑓MLP (z𝑑 )), log 𝑝 (y𝑑 |z𝑑 ) =
∑︁
𝑛

𝑦𝑑,𝑛 log𝑦𝑑,𝑛 . (26)

𝑓MLP (·) is a multi-layer perceptron, y𝑑 is a one-hot label encoding.

Up to now, we have elaborated all three modeling components.

Graph convolutional encoder simulates intra- and cross-layer topic

propagation on a hierarchical multi-layered document graph to

capture graph structure and latent semantics. Variational diver-

gence analyzes predefined prior and divergence metric. Decoder

generates the observations with both supervised and unsupervised

version. We optimize objective function Eq. 6 until convergence.

Algo. 1 at Appendix summarizes the training process of our model.

6 EXPERIMENTS
The main objective is to evaluate the quality of documents’ topics

learned from a corpus with auxiliary authorship and venues.

Datasets.We use six datasets at Table 2. Cora [22] is a corpus of

papers with abstract as content and citations as doc-doc edges. Each

paper has a sequence of authors. We extracted two independent

datasets, Machine Learning (ML) and Programming Language (PL).

Besides, we used two more datasets, HEP-TH [14] and Aminer [30]

as Physics and CS paper corpus, both with authors and venues.

COVID is a Coronavirus news corpus
1
. Each article has an editor

and published on a platform. Since no doc-doc edges are observed,

1
https://aylien.com/blog/free-coronavirus-news-dataset

Table 2: Dataset statistics.

Name #Documents #Authors #Venues #Doc-Doc Edges Vocabulary #Labels

ML 2,947 2,814 N.A. 8,146 5,814 7

PL 2,449 2,778 N.A. 7,274 5,066 9

COVID 1,500 880 169 5,706 5,083 5

HEP-TH 20,151 10,432 343 234,193 5,001 N.A.

Aminer 114,741 143,534 50 265,345 10,018 10

Web 445,657 36,405 N.A. 565,502 10,015 N.A.

we generate 𝜅NN edges using Bag-of-Words similarity (𝜅 = 5). Web

[13] is a Web page hyperlink network. Each page is a news article

and associated with an author. See Appendix A.2 for more details.

Baselines. We consider 5 categories of baselines. i) Topic mod-
els for plain text, ProdLDA [29], WLDA [25], NSTM [44], and

DVAE [3]. ProdLDA and DVAE use Dirichlet as predefined prior.

WLDA uses Wasserstein distance in the word space. These unsu-
pervised models are not proposed for author or venue modeling.

To allow them to model authors and venues, we consider each

author and venue as a document, and the content is the aggrega-

tion of associated documents. ii) Author topic models deal with
corpus with authors, we compare to ATM [28] where topics of a

document are the average of its authors’. iii) Topic models for
document graphs, RTM [4], Adjacent-Encoder [40], and LANTM

[33]. They construct a document graph and learn topic proportions

in an unsupervised way. We extend them to consider authorship

by running on our constructed multi-layered graph. iv) Text clas-
sification models learn text embeddings with label supervision
for classification. We mainly compare to graph models, TextGCN

[39], HyperGAT [6], TVGAE [36]. TextGCN and HyperGAT are

not topic models, since text embeddings are not interpretable top-

ics. TVGAE integrates topic model into VGAE. We allow them to

model authors and venues by converting authors and venues as

documents. v) Graph embedding models are not topic models,

either. For completeness, we consider HAN [32] as supervised and

VGAE [12] as unsupervised method, both with authors and venues.

We set two convolutional steps for our model. We present three

variants, VGATM-G, VGATM-D, and VGATM-W, for Gaussian prior,

Dirichlet prior, andWasserstein distance, respectively. 𝜆𝑝𝑟𝑖𝑜𝑟 = 0.01,

𝜂 = 0.1, and 𝑀 = 5. For our supervised version, 𝜆𝑙𝑎𝑏𝑒𝑙 = 1 . For

VGATM-D, 𝛼 = 1 for Dirichlet prior. For HAN, the combination of

metapaths {DAD, DWD, DVD, DD} performs the best. Each result is

obtained by 5 independent runs. We report mean and std.dev. Code

and datasets are available at https://github.com/cezhang01/vgatm.

6.1 Quantitative Evaluation
6.1.1 Document Classification. Following LDA [2], to evaluate

topic quality, we rely on document classification. Given a corpus,

we split 80% documents for training, among which 10% are for

validation. We also observe authors, venues, graph edges, and labels

associated with training documents. During test, we infer topics of

test documents and classify them. Since we have both supervised

and unsupervised version, we conduct two classification tasks.

Supervised Training. Labels are involved for supervised train-

ing. We compare to all baselines. Supervised baselines output pre-

dicted labels for documents, which are then compared with ground-

truth labels. For completeness, we also compare to unsupervised

baselines, which output topic proportions without label prediction.

https://aylien.com/blog/free-coronavirus-news-dataset
https://github.com/cezhang01/vgatm
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(a) Number of topics on ML (b) Number of topics on PL (c) Number of topics on COVID (d) Number of topics on Aminer
Figure 2: Supervised document classification when varying the number of topics 𝐾 from 16 to 256.

Table 3: Unsupervised classification (in percentage) at 𝐾 = 64.

Model ML PL COVID Aminer

ProdLDA 69.3±0.7 53.1±2.5 73.9±1.6 64.0±0.2
WLDA 31.8±3.5 33.2±1.8 65.6±2.5 65.5±0.2
NSTM 45.2±2.6 41.3±3.2 69.0±2.1 44.6±0.3
DVAE 70.8±1.3 58.7±1.5 77.8±2.1 67.4±0.3
ATM 52.0±1.3 43.8±3.0 72.4±1.7 64.1±0.8
RTM 61.6±2.4 53.3±1.4 70.5±3.2 58.8±0.5

Adjacent-Encoder 80.5±0.6 72.2±0.9 83.7±1.0 49.6±0.3
LANTM 73.5±1.6 61.8±0.9 78.2±1.6 N.A.

VGAE 67.7±1.9 55.0±2.3 56.4±4.6 63.6±0.6
VGATM-G 81.5±0.4 73.7±0.5 83.2±1.1 98.0±0.1
VGATM-D 82.5±0.7 73.1±0.7 83.6±0.6 98.9±0.2
VGATM-W 84.4±0.3 74.8±1.2 84.7±1.3 97.7±0.4

We follow [40] and train an external 𝑘NN classifier (𝑘 = 5) using the

output topics of training documents and predict labels of test docu-

ments. Fig. 2 shows classification accuracy with different number of

topics. We exclude LANTM and TextGCN on large dataset Aminer,

since they cannot run even on a machine with 256GB memory.

Unsupervised Training. We set 𝜆𝑙𝑎𝑏𝑒𝑙 = 0 and do not observe

labels for training. For a fair comparison, we compare against unsu-

pervised baselines only. We use 𝑘NN as external classifier for both

our models and baselines. Table 3 shows the accuracy at 64 topics.

Analysis. For both classification tasks, the best baselines are

Adjacent-Encoder, LANTM, and HAN, which model document

graph but ignore three word relations. In contrast, we consider

contextual, syntactic, and semantic relations, and improve the re-

sult. VGATM-W is the best one among our variants at Table 3, which

verifies that Wasserstein is a promising alternative of KL. Dirichlet

prior performs better than Gaussian. As verified by previous work

[3], Dirichlet encourages topics to be sparser than Gaussian and

achieves a lower reconstruction error, thus improving topic quality.

6.1.2 Link Prediction. Edges reveal semantic similarity between

documents. As in RTM [4], we conduct link prediction to evaluate

topic quality. As in [40], the first task is doc-doc link prediction.

Besides, as an author topic model, we also predict authors given a

document, i.e., doc-author link prediction in our document graph.

Doc-Doc Link Prediction. During training, we observe 80%

training documents and links within them. During test, we pre-

dict links within 20% test documents. As in [40], the probability

of a link is 𝑝 (𝑥𝑑𝑖 ,𝑑 𝑗 |z𝑑𝑖 , z𝑑 𝑗 ) ∝ exp(−||z𝑑𝑖 − z𝑑 𝑗 | |22). We compare

the predicted probability against the ground-truth adjacency by

AUC [33]. Table 4(left) shows the results. LANTM and TextGCN

cannot run on large datasets and do not have results. Supervised

models (TextGCN, HyperGAT, TVGAE, and HAN) require labels

for training, thus cannot run on HEP-TH and Web with no labels.

Doc-Author Link Prediction.We then predict authors given a

document. For authors with at least three documents, we randomly

remove one document as the test doc-author links. We input the

remaining corpus to train the model. After convergence, we predict

the held-out links. Table 4 (right) summarizes the results.

Analysis. For both scenarios, our models predict links more

accurately than baselines. Compared to models with plain text, we

show the advantage of constructing document graph using auxiliary

authors and venues. Compared to models with graph structure, we

verify the benefit of modeling three word co-occurrence relations.

6.2 Topic Analysis
6.2.1 Topic Coherence. One advantage of topic models is se-

mantic interpretability: each topic is interpreted by its key words.

ZW ∈ R |W|×𝐾
is topic-word distribution. Each column is the dis-

tribution of a topic over the words, and the highest values on that

column are the key words of that topic. As in ProdLDA [29], we

evaluate the coherence of key words by an external corpus, Google

Web 1T 5-gram Version 1 [7], with NPMI as metric. Table 5 (left)

shows the results. We exclude TextGCN, HyperGAT, HAN, VGAE,

since they are not topic models. TVGAE is a supervised topic model,

thus cannot run on HEP-TH and Web with no labels. Our models

outperform baselines except one case: NSTM learns more coherent

topics on ML, possibly because it models pretrained word embed-

dings. VGATM-D is better than VGATM-G, since Dirichlet prior

achieves low reconstruction error, producing more coherent topics.

6.2.2 Perplexity. Following LDA [2], we evaluate perplexity to

analyze topic quality. We evaluate perplexity for 20% test docu-

ments. Perplexity, exp{− log𝑝 (D𝑡𝑒𝑠𝑡 )∑
𝑑∈D𝑡𝑒𝑠𝑡 𝑁𝑑

}, is exponential and varies

much w.r.t. its power, we thus present its power − log𝑝 (D𝑡𝑒𝑠𝑡 )∑
𝑑∈D𝑡𝑒𝑠𝑡 𝑁𝑑

for

clarity (smaller is better). Table 5 (right) shows that our models

consistently outperform baselines. Benefiting from document graph

with authors and venues, Adjacent-Encoder presents the lowest

perplexity among baselines. Compared to it, our models further con-

sider three word relations, improving ours over Adjacent-Encoder.

6.2.3 Interpretability. To understand what topics our models

capture, we randomly select two topics for each variant and present
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Table 4: Link prediction AUC (in percentage) with doc-doc link prediction (left) and doc-author link prediction (right) at 𝐾 = 64.

Category Model

Doc-Doc Link Prediction Doc-Author Link Prediction

ML PL COVID HEP-TH Aminer Web ML PL COVID HEP-TH Aminer Web

Models for plain text

ProdLDA 81.8±0.8 74.9±0.6 75.5±1.0 64.2±2.2 80.2±0.4 82.4±0.0 65.3±0.0 67.1±0.0 26.8±1.5 45.0±1.5 54.3±0.2 60.5±0.0
WLDA 52.4±0.8 54.7±1.0 67.1±1.3 62.8±0.4 79.7±0.7 79.3±0.5 31.9±0.6 31.1±0.4 33.0±1.3 33.0±0.3 47.4±0.5 35.6±1.2
NSTM 63.2±1.7 62.4±0.7 66.3±1.4 58.3±0.3 58.8±0.6 67.0±0.8 51.2±1.3 49.9±0.5 44.9±2.8 44.1±0.3 47.2±0.2 59.5±0.0
DVAE 79.9±0.8 73.1±0.4 73.4±0.2 82.0±0.1 89.8±0.3 88.3±0.0 64.8±0.3 62.9±0.8 49.4±0.7 66.7±0.3 66.3±0.2 71.7±0.0

Author topic models ATM 71.1±1.6 69.2±1.2 61.0±0.2 66.8±0.3 64.4±0.4 87.6±0.0 40.6±2.5 37.7±1.6 29.6±4.0 57.7±0.6 70.1±0.5 59.6±2.1

Models with document graph
RTM 71.0±1.0 68.1±0.5 70.5±0.3 69.7±0.8 77.5±0.7 78.4±0.1 32.1±0.4 32.7±0.1 32.2±0.4 30.2±0.0 25.8±0.1 34.9±0.1

Adjacent-Encoder 84.7±0.9 84.9±1.9 94.7±0.4 75.0±0.6 71.8±0.7 73.2±0.0 90.2±0.6 89.7±0.2 73.6±1.2 75.3±0.7 37.9±0.0 36.2±0.0
LANTM 80.6±1.2 75.4±0.7 84.9±1.1 86.1±0.3 N.A. N.A. 86.1±0.9 87.8±0.8 71.0±1.5 85.7±0.3 N.A. N.A.

Text classification models TextGCN 81.3±0.3 75.4±0.4 81.1±0.1 N.A. N.A. N.A. 56.8±0.7 50.4±1.6 47.7±5.2 N.A. N.A. N.A.

(they are supervised and cannot run on HyperGAT 83.1±0.5 79.7±0.5 87.1±0.3 N.A. 90.0±0.0 N.A. 50.0±0.8 49.6±0.7 61.8±3.1 N.A. 49.1±0.2 N.A.

HEP-TH and Web with no observed labels) TVGAE 79.1±0.7 74.7±1.0 88.2±1.0 N.A. 85.3±0.6 N.A. 65.0±0.9 65.4±0.9 72.8±1.5 N.A. 70.6±0.7 N.A.

Graph embedding models HAN 77.0±0.7 73.1±0.4 84.7±1.0 N.A. 93.2±0.1 N.A. 73.0±1.4 72.2±2.2 79.2±1.1 N.A. 71.3±1.1 N.A.

(HAN is supervised, cannot run without labels) VGAE 72.5±0.5 80.4±0.2 84.1±2.8 72.7±1.7 91.9±0.6 87.4±0.2 82.3±2.3 86.3±1.2 63.8±3.2 77.7±3.3 64.9±0.9 73.8±1.9

Our proposed models
VGATM-G 91.3±0.7 91.1±0.5 91.1±0.5 86.3±0.5 94.5±0.4 93.0±0.1 92.0±0.3 93.1±0.1 73.7±2.0 90.0±0.3 72.9±0.9 76.1±1.0
VGATM-D 91.7±1.2 90.6±0.2 91.3±0.3 87.1±0.1 94.4±0.4 93.0±0.2 92.3±0.3 93.2±0.4 74.9±0.6 90.3±0.3 74.0±1.0 76.2±0.4
VGATM-W 93.4±0.4 92.1±0.2 95.4±0.3 91.7±0.2 95.5±1.0 93.5±0.4 93.0±0.3 93.8±0.5 79.5±1.2 91.2±0.3 74.1±0.3 77.3±0.0

Table 5: Topic coherence NPMI (left) and perplexity (right) at 𝐾 = 64.

Category Model

Topic Coherence NPMI Perplexity

ML PL COVID HEP-TH Aminer Web ML PL COVID HEP-TH Aminer Web

Models for plain text

ProdLDA 10.0±0.7 9.4±0.5 12.0±0.7 10.3±0.6 9.3±0.5 21.2±0.2 7.19±0.00 7.21±0.00 7.82±0.00 7.72±0.00 8.18±0.00 8.34±0.00
WLDA 9.7±0.2 11.6±0.1 12.5±0.5 13.7±0.4 17.9±0.5 23.9±0.8 18.90±0.73 19.57±0.30 28.56±1.09 44.31±0.18 44.67±0.10 45.22±0.00
NSTM 16.0±1.0 18.6±0.6 22.0±0.6 18.2±0.5 15.5±0.3 24.0±0.3 8.46±0.00 8.34±0.00 8.38±0.00 8.39±0.00 9.00±0.00 8.93±0.00
DVAE 14.7±0.0 15.2±0.1 15.8±0.1 14.8±0.1 15.5±0.1 17.6±0.2 17.74±0.14 18.96±0.08 17.16±0.26 23.67±0.11 40.50±0.04 43.32±0.00

Author topic models ATM 10.2±0.4 12.0±0.5 9.8±0.2 10.2±0.3 15.0±0.2 23.2±0.7 6.63±0.01 6.45±0.01 7.33±0.04 7.05±0.00 7.65±0.01 7.21±0.00
Models with document graph RTM 7.3±0.2 8.9±0.5 16.2±0.5 6.6±0.3 10.8±0.3 20.9±0.4 8.07±0.01 7.93±0.01 8.98±0.04 8.04±0.00 8.89±0.01 10.28±0.19

(LANTM cannot run on large dataset Adjacent-Encoder 12.4±0.9 12.5±0.7 13.8±0.4 13.4±0.4 11.4±0.2 15.2±0.1 7.41±0.01 7.34±0.13 6.96±0.00 7.45±0.19 8.71±0.02 8.26±0.01
Aminer and Web even on 256GB machine) LANTM 9.9±1.2 9.8±0.7 8.6±0.3 10.4±1.5 N.A. N.A. 8.63±0.00 8.48±0.00 8.48±0.00 8.50±0.00 N.A. N.A.

Text classification (cannot run with no labels) TVGAE 3.3±0.5 3.8±0.5 5.2±0.5 N.A. 2.6±0.3 N.A. 10.53±0.27 10.13±0.53 11.30±0.47 N.A. 10.24±0.17 N.A.

Our proposed models
VGATM-G 13.2±0.7 19.6±1.9 19.7±0.9 15.5±1.0 21.5±0.7 19.6±0.6 5.50±0.24 5.64±0.26 6.95±0.09 5.06±0.05 5.78±0.13 5.29±0.14
VGATM-D 13.0±0.8 19.3±2.8 22.9±1.8 15.8±0.8 20.9±0.3 26.4±2.8 5.36±0.12 5.62±0.24 6.80±0.16 5.04±0.09 5.94±0.24 6.40±0.33
VGATM-W 13.6±1.1 20.5±1.0 19.4±1.8 19.0±0.0 21.7±1.1 23.7±1.7 5.23±0.15 5.13±0.30 6.55±0.20 4.94±0.06 5.75±0.28 5.60±0.41
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Figure 3: Ablation analysis of our models.

Table 6: Top-5words of 2 randomly selected topics of VGATM.

Model Topic Key words

VGATM-G

1 hospital, nurse, children, died, clinic

2 manufacturing, import, affected, slowdown, agricultural

VGATM-D

1 employee, employees, retirees, worker, insurance

2 rugby, club, illness, match, championship

VGATM-W

1 classwork, loved, classmates, no-one, at-home

2 cases, patients, disease, diseases, deaths

top-5 words on COVID at Table 6. VGATM-G captures children’s
health and manufacture depression. VGATM-D reveals retirement
and sports. VGATM-W shows studying at home and confirmed cases.

6.3 Model Analysis
6.3.1 Effect of Authors andVenues. We test the effect of authors

and venues. We respectively remove authors and venues, and use

the remaining corpus for training. Fig. 3(a) presents doc-doc link

prediction results on HEP-TH. Our models with both information

perform the best, showing the advantage of authors and venues. We

conclude that venues are more informative on HEP-TH, since the

result drops more when removing venues than removing authors.

6.3.2 Number of Convolutional Steps. We analyze the perfor-

mance of different convolutional steps 𝐿 at Fig. 3(b), doc-doc link

prediction on ML dataset. When 𝐿 = 1, we cannot fully capture

high-order neighbors, leading to inferior results. When 𝐿 = 2, we

observe an increasing trend. However, an overly high value of 𝐿

hurts the result, since further neighbors with noise are modeled.

6.3.3 Three Word Co-occurrence Relations. Here we test the
effectiveness of three word relations by removing each one from

the complete models. Fig. 3(c) shows classification accuracy on

ML. Models with all three relations outperform other versions,

verifying that we indeed capture every word relation to improve

topic modeling. Semantic relation plays the most important role,

since disregarding it leads to the worst accuracy. Syntactic relation

is less informative, since removing it does not hurt the result much.
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6.3.4 Effect of Cross-Layer Topic Propagation. Cross-layer
topic propagation integrates auxiliary information into topic pro-

portions of documents. To test its usefulness, we remove it by setting

𝜂 = 0 at Eq. 16 and maintain intra-layer propagation only. Fig. 3(d)

summarizes classification accuracy on ML dataset. We conclude

that cross-layer topic propagation allows topics of documents to

better capture auxiliary information and improves topic quality.

7 CONCLUSION
We propose VGATM, working under supervised and unsupervised

settings. To model authors, venues, and three word relations, we

design a hierarchical multi-layered graph and three alternatives of

divergence. Experiments verify the effectiveness of VGATM.
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Algorithm 1 Training Process of VGATM

Input: Corpus C with documents D, authors A, venuesV ,

and doc-doc edge connections X, number of convolutional steps 𝐿,

number of topics 𝐾 , and number of negative samples𝑀 .

Output: Topic proportions ZD ,ZW ,ZA ,ZV .

1: Initialize model parameters W(𝑙 )
𝑜 , b(𝑙 )𝑜 , and b, for 𝑙 = 1, 2, ..., 𝐿.

2: while not converged do
//intra-layer topic propagation

3: for 𝑙 = 1, 2, ..., 𝐿 − 1 do
4: Simulate intra-layer topic propagation by Eq. 7–10.

5: end for
//cross-layer topic propagation

6: Evaluate topic proportion of document 𝑑’s whole content,
homogeneous neighbors, authors, and venues by Eq. 11–13.

7: Propagate 𝑑’s auxiliary data across layers to 𝑑 by Eq. 16.

8: Reparameterization by Eq. 17–18 as the output of encoder.

//variational divergence
9: Evaluate variational divergence Eq. 19–24.

//probabilistic decoder
10: Reconstruct corpus Eq. 25–26 using the output of encoder.

//optimization
11: Maximize objective function Eq. 6.

12: end while

A REPRODUCIBILITY SUPPLEMENT
A.1 Pseudo-Code of Training Process
We summarize the training process of our model at Algo. 1.

A.2 Dataset Preprocessing
In this section, we introduce the details of dataset preprocessing.

• ML and PL are constructed from Cora. We maintained doc-

uments associated with a sequence of authors, resulting in

2,947 and 2,449 documents, respectively. We were not able to

obtain the venue information of these documents. For both

datasets, after removing stop words and punctuations, we

maintained the most frequent 5,000 words as vocabulary.

• COVID is a publicly available Coronavirus news corpus
2
. It

is a collection of news articles related to coronavirus from

multiple publishers since the outbreak in late 2019. Each

news article is associated with one category, which we treat

as label. We selected 5 categories, namely, economy, business,
and finance, education, health, labour, and sports. For each
category, we randomly selected 300 news articles, generating

a corpus of 1,500 documents and 5 labels. Each article has

an editor and is published on a news module. In total, we

obtained 880 editors as authors and 169 modules as venues.

After removing stop words and punctuations, we maintained

the most frequent 5,000 words as vocabulary. Since no appro-

priate doc-doc edges are given, following [33], we generated

𝜅NN edges on documents’ Bag-of-Words similarity. We did

not observe much difference from 𝜅 = 5 to 𝜅 = 15, for effi-

ciency, we set 𝜅 = 5, resulting in 5,706 edges in total.

2
https://aylien.com/coronavirus-news-dataset/

Table 7: Categories and venues of Aminer dataset

Category Venues

Computational Linguistics ACL, EMNLP, NAACL, COLING, EACL

Databases and Information Systems SIGMOD, VLDE, ICDE, CIKM, IPM

Data Mining and Analysis KDD, WWW, ICDM, TKDE, SIGIR

Computer Vision and Pattern Recognition CVPR, ICCV, ECCV, TPAMI, TIP

Artificial Intelligence NeurIPS, ICML, AAAI, IJCAI, JMLR

Computer Graphics TOG, TVCG, SIGGRAPH, CGA, TVS

Theoretical Computer Science STOC, SODA, FOCS, JOC, JACM

Software Systems ICSE, ASE, FSE, TSE, PLDI

Computer Networks and Wireless Communication SIGCOMM, INFOCOM, TWC, CM, JNCA

Computing Systems TPDS, ISCA, TJSC, ICDCS, ATC

• HEP-TH is a Physics paper corpus with abstract as docu-

ment content and citations as doc-doc edges. We extracted

documentswith a sequence of authors and publication venues,

resulting in 20,151 documents, 10,432 authors, and 343 venues.

Similarly, we removed stop words and punctuations, and

maintained the most frequent 5,000 words as vocabulary.

The original dataset does not contain labels of documents.

• Aminer is an academic paper corpus
3
where each paper

is associated with a sequence of authors and published on

a journal or a conference. We used ACM-Citation-network
V8 as raw dataset. Since we did not discover any explicit

labels of documents, we labeled documents based on their

publication venues. Specifically, we used Google ScholarMet-

rics
4
as ground-truth categories. We selected 10 computer

science categories, and for each category, we selected 5 con-

ferences or journals, resulting in totally 50 venues. See Table

7 for details. We removed stop words and punctuations, and

maintained the most frequent 10,000 words as vocabulary.

• Web is a Web page hyperlink network. Each page contains

the most frequent phrases of news articles and is associated

with an author. Doc-doc edges are hyperlinks between pages.

After removing short documents, we obtained a corpus of

445,657 documents and 36,405 authors. Again, we removed

stop words and punctuations and maintained the most fre-

quent 10,000 words as vocabulary.

A.3 Experiment Environment
All the experiments were conducted on Linux server with a Tesla

K80 GPU with 11441MiB. Its operating system is CentOS Linux 7

(Core). We implemented our proposed model VGATM using Python

3.6 as programming language and TensorFlow 1.10.0 as deep learn-

ing library. Other frameworks include NumPy 1.17.4, sklearn 0.23.2,

and scipy 1.5.2. We will release code and datasets upon publication.

3
http://www.arnetminer.org/citation

4
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng

http://www.arnetminer.org/citation
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng
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