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ABSTRACT

Building scalable models to learn from diverse, multimodal data remains an open
challenge. For vision-language data, the dominant approaches are based on con-
trastive learning objectives that train a separate encoder for each modality. While
effective, contrastive learning approaches introduce sampling bias depending on
the data augmentations used, which can degrade performance on downstream
tasks. Moreover, these methods are limited to paired image-text data, and cannot
leverage widely-available unpaired data. In this paper, we investigate whether
a large multimodal model trained purely via masked token prediction, without
using modality-specific encoders or contrastive learning, can learn transferable
representations for downstream tasks. We propose a simple and scalable network
architecture, the Multimodal Masked Autoencoder (M3AE), which learns a uni-
fied encoder for both vision and language data via masked token prediction. We
provide an empirical study of M3AE trained on a large-scale image-text dataset,
and find that M3AE is able to learn generalizable representations that transfer well
to downstream tasks. Surprisingly, we find that M3AE benefits from a higher text
mask ratio (50-90%), in contrast to BERT whose standard masking ratio is 15%,
due to the joint training of two data modalities. We also provide qualitative analy-
sis showing that the learned representation incorporates meaningful information
from both image and language. Lastly, we demonstrate the scalability of M3AE
with larger model size and training time, and its flexibility to train on both paired
image-text data as well as unpaired data.

1 INTRODUCTION

With the rapid advances in neural architectures (Vaswani et al., 2017) and hardware performance,
self-supervised pre-training has made tremendous progress in natural language processing (NLP) and
vision (He et al., 2021; Devlin et al., 2018; Bao et al., 2021; Brown et al., 2020). The underlying
idea, often referred as masked token prediction, is conceptually simple: the model learns to predict a
removed portion of the data. Masked token prediction has enabled highly successful methods for
pre-training in NLP and vision, including Transformer (Vaswani et al., 2017), GPT (Brown et al.,
2020), BERT (Devlin et al., 2018), and MAE (He et al., 2021). These pre-trained representations
have been shown to generalize well to various downstream tasks. The cornerstone of these successes
is that these methods excellently leverage large and diverse datasets. Indeed, with the scaling up
of data diversity and model capacity, there is still no sign of plateau on generalization to various
downstream tasks (Devlin et al., 2018; He et al., 2021).

Driven by the successes in NLP and vision, there has been significant interest in improving visual
representation learning by training on large and diverse multimodal datasets that contains both images
and text. These datasets, such as CC12M (Changpinyo et al., 2021) and YFCC100M (Thomee
et al., 2015), are often much more scalable than explicitly labeled datasets such as ImageNet (Deng
et al., 2009), and the diverse language data can provide rich supervision to train more generalizable
representations.

The dominant paradigm for multimodal pre-training is cross-modal contrastive learning, such as
CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021). These methods show that cross-modal
contrastive learning models, trained on giant corpora of paired image-and-text, can generalize well to
various downstream tasks. Despite these progresses, a major limitation for contrastive learning is that
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Figure 1: Multimodal masked autoencoder (M3AE) consists of an encoder that maps language tokens and
image patches to a shared representation space, and a decoder that reconstructs the original image and language
from the representation.

it requires paired image-and-text data and therefore cannot leverage widely available unpaired data.
In addition, contrastive learning based methods use separate encoders for image and text, making it
difficult for models to access information from different modalities at the same time. The separation
of image and text encoders hinder the joint understanding of image and text.

To address the above limitations for visual representation learning, we propose a simple and scalable
architecture called the multimodal masked autoencoders (M3AE) for learning a single unified model
on large image and language data, without using modality-specific encoders or contrastive learning.
Based on MAE (He et al., 2021), M3AE is trained purely via masked token prediction. Our key
idea is to treat an image-and-text pair as a long sequence of tokens consisting of embeddings of
image patches and text. M3AE is trained simply by masking random patches of the input image and
language tokens, and learning to reconstruct the masked pixels and text.

In this paper, we provide an empirical study of M3AE trained on the multimodal CC12M (Changpinyo
et al., 2021) dataset, and find that M3AE is able to learn generalizable representations that transfer
well to downstream tasks such as image classification and out-of-distribution detection. We find
that multimodal pre-training of M3AE on CC12M achieves significantly higher performance on the
ImageNet-1k linear classification benchmark (Russakovsky et al., 2014) compared to pre-training
on images only (MAE). Our strong results for M3AE demonstrate the generalization benefits of
multimodal training for learning transferable representations across datasets.

Surprisingly, we find that M3AE performs best when we apply a high mask ratio (75%) on language,
while in contrast, language models like BERT (Devlin et al., 2018) conventionally use a low mask
ratio (15%) because language data are highly semantic and information-dense. We hypothesize that
M3AE benefits from a higher mask ratio on text because it enforces a better joint understanding of
vision and language during masked token prediction. We also provide qualitative analysis showing
that the learned representation incorporates meaningful information from both image and language.
Furthermore, we demonstrate the scalability of M3AE with larger model size and training time, as
well as its flexibility to train on both paired image-text data as well as unpaired data.

2 RELATED WORK

Self-supervised representation learning via reconstruction After the introduction of Transform-
ers (Vaswani et al., 2017), self-supervised language modeling has made substantial progress in recent
years. After pre-training on a large amount of unlabeled data with reconstruction loss, Large-scale
transformer language models like BERT (Devlin et al., 2018) and GPT (Brown et al., 2020) are
highly successful in learning representations that generalize well to various downstream tasks. Taking
inspiration from the success in NLP, research have proposed a wide variety of self-supervision
method (Chen et al., 2020a; Dosovitskiy et al., 2020; Bao et al., 2021; He et al., 2021). iGPT (Chen
et al., 2020a) that operates on sequences of pixels and reconstruct the unknown pixels. ViT (Doso-
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vitskiy et al., 2020) studies masked patch prediction for self-supervised learning. BEiT (Bao et al.,
2021) proposes to predict discrete tokens (Van Den Oord et al., 2017; Ramesh et al., 2021). MAE (He
et al., 2021) proposes to randomly mask patches of the input image and reconstruct the missing pixels.
Heavily inspired by MAE and BERT, our M3AE brings together image and language data and learns
a shared representation for both modalities by applying a unified masked patch and token prediction
objective.

Self-supervised representation learning via contrastive objectives Besides reconstruction, an-
other major paradigm for self-supervised learning is contrastive learning, which models similarity
and dissimilarity between two or more views of images or texts (Gao et al., 2021; Chen et al., 2020c;
He et al., 2020; van den Oord et al., 2018; Grill et al., 2020; Wu et al., 2018). SimCSE (Gao et al.,
2021) proposes constructing positive sentence pair through applying Dropout. SimCLR (Chen et al.,
2020b) studies applying random image augmentation for contrastive learning. Contrastive learning
often rely heavily on data augmentation and can therefore introduce bias during training. Our M3AE
does not rely on contrastive objectives so it can be applied without data augmentation.

Joint learning for language and image Learning representations for a single modality has high
importance as it extracts semantic formation from the raw data of modality. Learning a joint
representation for several modalities is challenging since it requires alignment between semantic
information from different modalities, of which the information contained may vary drastically.
Specifically, learning joint representation for vision and language has been a long standing problem
in artificial intelligence. Recently, CLIP (Radford et al., 2021) successfully tackled this challenge
by leveraging contrastive learning over a large dataset of aligned text-image pairs. Several works
followed this idea, further improving the joint representation. BLIP (Li et al., 2022) used noisy
web data by bootstrapping the captions with synthetic ones. SLIP (Mu et al., 2021) learned a joint
representation by combining CLIP (Radford et al., 2021) and SimCLR (Chen et al., 2020b) techniques
and leveraging both a paired dataset, and a much larger image-only dataset. DeCLIP (Li et al., 2021)
utilized more image-text pairs collected from CLIP (Radford et al., 2021) by adding multiple self-
supervised techniques. Inspired by BERT, other methods study cross-modal matching loss (Chen
et al., 2019; Lu et al., 2019; Singh et al., 2021; Tan & Bansal, 2019; Yu et al., 2022). FLAVA (Singh
et al., 2021) employs both contrastive and multimodal training objectives on paired and image-only
datasets. Perceiver (Jaegle et al., 2021) proposes cross-attention to combining language and image
modalities. CoCa (Yu et al., 2022) combines cross-modal contrastive learning and autoregressive
caption prediction. Our M3AE models provides a simple but effective alternative for learning joint
representations by processing language tokens and image patches through a shared encoder-decoder
architecture. We train our model with masked token reconstruction loss, eliminating the need to
handle each modality separately.

3 MULTIMODAL MASKED AUTOENCODER (M3AE)

In this section we introduce our method, multimodal masked autoencoder (M3AE), which consists of
an encoder that maps image and language to representation space, and a decoder that reconstructs
the original image and language from the representation. We summarize the main architecture and
training process of M3AE in Figure 1 and Figure 2.

Image-language masking. The first step of M3AE is to combine the language and image input into
a single sequence. Following standard natural language processing practice (Devlin et al., 2018), we
tokenize the input text into a sequence of discrete tokens. For image input, we divide it into regular
non-overlapping patches of pixels, following the practice of ViT (Dosovitskiy et al., 2020). Text
tokens and image patches are then concatenated into a single sequence.

For patches and tokens, we sample s random subset without replacement from a uniform distribution,
and mask (i.e., remove) the remaining ones. A high masking ratio is applied to both text tokens and
image patches, in order to eliminate information redundancy and make a sufficiently difficult task
that cannot be easily solved by extrapolation from visible neighboring patches and tokens.

M3AE encoder. The M3AE architecture consists of two networks: an encoder and a decoder. The
encoder is a large transformer, following the architecuture of ViT (Dosovitskiy et al., 2020) and
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Figure 2: M3AE can learn representations from a flexible mixture of image-text pairs and unpaired images
using a unified model without relying on data augmentations.

BERT (Devlin et al., 2018). The encoder takes only unmasked (visible) language tokens and image
patches as input. For language tokens, we first convert it into learnable embedding vectors and then
apply 1D positional encodings, following the standard practice (Devlin et al., 2018). For image
patches, we use a learnable linear projection to convert them to image embeddings that have the
same dimension as the language embeddings, and then apply 2D positional encodings, following
the practice of MAE He et al. (2021). In order to distinguish the two different modalities, we
add two learnable vectors that represent language and images respectively to the corresponding
modalities’ embeddings. We call these "modality type encodings". Additionally, a learnable CLS
embedding (Devlin et al., 2018) is prepended to the beginning of the sequence. The combined
language and image embeddings are then processed by a series of transformer blocks to obtain the
final representation. Although the input consists of long sequences of image patches and text tokens,
we can still train very large transformer encoders efficiently because the same only operates on a
small subset (e.g., 25%) of the full set.

M3AE decoder. Following MAE (He et al., 2021), we use a lightweight transformer-based decoder
on the full set of tokens consisting of (i) encoded visible image patches, (ii) encoded visible text
tokens, and (iii) mask tokens. Each mask token is a shared, learned vector that indicates the presence
of a missing patch or token to be predicted. We add positional embeddings to all tokens in this full
set in order to encode location information in mask tokens. We also add a different set of modality
type embeddings to visible tokens, similar to the encoder. After the decoder transformer, we apply
two linear projection output heads to compute the reconstruction. The image output head projects the
decoder output corresponding to image patches to the same dimension as pixels in the original image
patches. The language output head projects the decoder output of language to token logits. These
output heads are then used for supervision during the self-supervised training of M3AE.

Self-supervised training of M3AE. Our M3AE reconstructs the input by predicting the pixel
values for masked image patches and the token probabilities for masked language tokens. For image
reconstruction, we compute the mean squared error (MSE) between the reconstructed and original
images in the pixel space. For language reconstruction, we apply the cross entropy loss between the
reconstructed and original text. Our loss is a weighted sum of the image loss and the text loss. Similar
to MAE (He et al., 2021) and BERT (Devlin et al., 2018), we compute the loss only on the masked
image patches and language tokens. Since M3AE processes image and language data uniformly by
combining them into a single sequence, a natural advantage for our model is that it can be trained
with the exact same loss on a mixture of paired and unpaired data as shown in Figure 2, significantly
extending the applicability of our model beyond what is possible with contrastive learning.

4 EXPERIMENTS
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Figure 3: Comparison of M3AE, MAE, and CLIP
on ImageNet. M3AE significantly outperforms
MAE. M3AE can flexibly leverage a combination
of paired image-text data and unpaired image only
data. All models are ViT-B. MAE and M3AE are
pretrained on CC12M for 50 epochs.

In this section, we study the representation quality
of M3AE. We aim to answer the following questions
in our experiments: (1) Can M3AE learn generaliz-
able visual representations that transfer well to down-
stream tasks? (2) Does the learned representation
incorporate meaningful information from both im-
ages and language? (3) Does M3AE scale well with
model size and training time?

To answer these questions, we first pre-train the
M3AE model on a diverse image-and-language
dataset and evalute its performance for downstream
classification and out-of-distribution detection. We
further evaluate the scalability of the model with re-
spect to training epochs and model size. Finally,
we provide a detailed ablation study and qualitative
analyses to inspect the quality of the learned repre-
sentations.

4.1 DATASETS

Pre-training datasets. M3AE is trained on Concep-
tual 12M (CC12M) (Changpinyo et al., 2021). The
original dataset images are provided in the form of
internet URLs. Note that due to some expired URLs
and non-English captions, we did not obtain the com-
plete data in the dataset. For language data, we use
the BERT tokenizer from Huggingface1 to tokenize the text. We provide more details about data
preprocessing in Section A.1.

Downstream datasets. We assess model performance in a wider variety of distributions and tasks.
We evaluate the image encoder transferability on ImageNet (Russakovsky et al., 2014). We report
top-1 validation accuracy of a single 224×224 crop. We evaluate out-of-distribution detection on
CIFAR-100 and CIFAR-10 datasets (Krizhevsky et al., 2009).

4.2 EXPERIMENTS SETUP

Network architectures. Following MAE, we use ViT (Dosovitskiy et al., 2020) as the model
architecture and consider three different sizes of ViT for the M3AE image and text encoder. We
use the original ViT-B/16 and ViT-L/16 architectures (Dosovitskiy et al., 2020) for our encoder, as
well as ViT-S/16 (Touvron et al., 2021) which is comparable to ResNet-50 in FLOPs and parameters.
Following MAE (He et al., 2021), our decoder is lightweight and has 8 blocks and a width of 512.
Full details about network architectures can be found in Section A.3.

Pre-training setup. For a fair comparison with MAE, we train our model from scratch for the same
number of epochs as MAE. The learnable temperature parameter τ is initialized to 0.01. The loss
weights of image prediction and text prediction are set to 1 and 0.5. The mask ratio for image and
text are both set to 0.75. Refers to Section A.4 for more details.

Downstream evaluation setup. We evaluate our model transferability by performing linear classifi-
cation on frozen features, i.e., the pre-trained image encoder is fixed and serves as a feature extractor.
After feature extraction, we train the linear classifier with the AdamW (Loshchilov & Hutter, 2018)
optimizer as the same in He et al. (2021). More details can be found in Section A.5

4.3 RESULTS

ImageNet Linear Classification. We evaluate performance on ImageNet under the linear classifica-
tion setting. Linear classification, also called linear probing, is a standard evaluation method used to

1https://huggingface.co/docs/transformers/main_classes/tokenizer
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Figure 4: Left: Comparing the linear classification accuracy ViT model variants of different capacities (ViT-
S/B/L). All models are pre-trained for 50 epochs. M3AE scales well with model size, outperforming MAE in
every setting. Right: Comparing finetuning different number of blocks for ViT-L. All models are pre-trained for
50 epochs.

evaluate unsupervised or self-supervised representations. A randomly initialized final classification
layer is trained while all other model weights are frozen.

Figure 3 shows the results of linear classification. We report the results of ViT-B trained on ImageNet
and CLIP (Radford et al., 2021) pre-trained on CC12M from prior work (Touvron et al., 2021; Mu
et al., 2021).To study the flexibility of M3AE, we remove the text for a portion of image-text pairs,
i.e., 30% of paired image-text examples means 70% of CC12M image-text pairs become images only.
A lower percentage of paired image-text data contains less information and therefore makes the task
more difficult, since the model has to infer the relation between visual and language concepts based
on limited paired data.
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Figure 5: Comparing M3AE with different text
mask ratio. All models are ViT-L trained for 50
epochs on CC12M. We see that M3AE performs
the best with a surprisingly high text mask ratio of
75%.

The comparison between M3AE and the baselines are
shown in Figure 3. M3AE significantly outperforms
MAE by nearly 10 percent. CLIP is a strong baseline
based on cross-modal contrastive learning. While
it achieves higher accuracy than M3AE, it is less
flexible than our model since it can only use paired
image-text data. In contrast, M3AE can leverage both
paired image-text and unpaired image data without
modifying the training procedure, as shown in Fig-
ure 3, giving our model strong potential to leverage a
diverse combination of unpaired single modality and
multi-modal data. Notably, with M3AE pre-training,
even adding 10% text annotations leads to a signifi-
cant boost in accuracy over MAE (53.3% vs 45.2%).

We make an important note that the linear classifica-
tion performance of MAE pre-trained on CC12M is
much lower than MAE pre-trained on ImageNet, and
we hypothesize that such a difference is caused by
the large domain gap between the two datasets. To
confirm this hypothesis, we pre-trained a ViT-L MAE on ImageNet for 800 epochs using the same
hyperparameters on top of our implementation, and obtained 73.5% accuracy on linear classification,
which exactly matches the original reported performance (He et al., 2021). Thus, while our results
cannot be directly compared to the original MAE results (He et al., 2021) pre-trained on ImageNet
due to distribution mismatch, they demonstrate the strengths of multimodal training of M3AE for
learning transferable representations across datasets.

ImageNet Fine-tuning. Following the fine-tuning experiment settings of MAE (He et al., 2021) ,
we perform partial fine-tuning on pretrained models: fine-tune the last several layers while freezing
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Figure 6: Out-of-distribution detection results on CIFAR-100 (in-distribution) and CIFAR-10 (out-of-
distribution). Upper shows results based on Mahalanobis outlier score, M3AE achieves 71.4% which is
higher than MAE’s 69.0%. Lower shows results based on max over softmax score, M3AE achieves 78.5%
which is also higher than MAE’s 77.2%.

the others. Figure 4 (right) shows that M3AEoutperforms MAE under different number of finetuned
layers. This results suggest that M3AE representations are more separable than MAE, which are
also visualized in Section 4.4. We notice that with more layers being finetuned, the gap between
M3AE and MAE becomes smaller. We believe the reason is that there is a large domain gap between
internet image-text datasets and ImageNet images, therefore finetuning more layers may essentially
destroy pretrained representations. Nonetheless, M3AE learns highly transferable representations
that performs well even with the large domain gap between CC12M and ImageNet.

4.4 ANALYSIS

Model scaling. We also investigate the scaling behavior of M3AE with larger vision Transformer
models. We pre-train M3AE and MAE with ViT-Small, ViT-Base and ViT-Large and perform
ImageNet linear classification and finetuning using the learned representations. Figure 4 shows the
effect of different model sizes. Our results indicate that M3AE scales well larger models, significantly
outperforming MAE across different model sizes.

Out-of-distribution detection. Some prior work demonstrated self-supervised learning approaches
significantly improve OOD detection performance (Hendrycks et al., 2019; 2020; Fort et al., 2021),
where their self-supervised pre-training heavily relies on domain-specific data augmentations. We
expect MAE to perform well on OOD benchmarks and want to study how M3AE performs compared
with MAE.

the author taking an elephant riding lesson. photo by < person >. view of tiger head from the side

Figure 7: Visualization of attention between a given text token and image patches on CC12M dataset. The text
token for which we visualize the attention is bolded. We see that the M3AE encoder is able to attend to the
correct objects.

7



Under review as a conference paper at ICLR 2023

We consider the difficult near-OOD as this is a more challenging and realistic problem; many methods
can achieve high AUROC on the easier far-OOD benchmarks, but do not perform as well in near-OOD
tasks. The results are shown in Figure 6, M3AE outperforms MAE in terms of both Mahalanobis
outlier score (Lee et al., 2018) and max over softmax score (Hendrycks et al., 2018).

Ablation on text mask ratio. We also investigate the performance of M3AE under various text
mask ratios. Figure 5 shows holding the image patch mask ratio fixed (75%) and training for various
text mask ratios. Surprisingly, the results indicate that M3AE benefits from a high text mask ratio
(50%-90%), contrary to BERT (Devlin et al., 2018) whose typical masking ratio is 15%. We believe
that this is the result of joint training of two modalities of data, where the masked language prediction
can make use of information from both the visible language tokens and image patches.

Visualization of cross-modal attention weights. We are interested in what M3AE captures in
multimodal attention weights. To do so, we visualize the M3AEencoder attention between a given
text token and all image patches, as well as the attention between a given image patch and all text
tokens (Yang & Zhang, 2018) in Figure 7 and Figure 8. M3AE learns to attend relevant concepts in
both image and text, showing that our model is able to infer relations between visual and language
concepts.

Figure 8: Visualization of attention between a given image patch and all text tokens on CC12M dataset
The highlighted rectangle is the image patch for which we visualize the attention. Denser color of the text
denotes higher attention. The visualization suggests that M3AE encoder is able to attend to the correct words
corresponding to the image patch.

Reconstruction visualization. We are interested in the reconstruction quality of pretrained M3AE.
We randomly sample examples from CC12M and the validation set of ImageNet and show the results
in Figure 9 and Figure 10. In each reconstructed image, we include original unmasked tokens for
better visual quality. We observe that our model infers holistic reconstructions across CC12M and
ImageNet datasets, indicating it has learned numerous concepts.

Clustering analysis of representation. We perform t-SNE (Van der Maaten & Hinton, 2008)
visualizations of the learned representation of M3AE and MAE for 10 classes on ImageNet validation

Figure 9: Masked image reconstruction on ImageNet validation images. For each triplet, we show the ground-
truth (left), the masked image (mid) and our M3AE reconstruction (right).

8



Under review as a conference paper at ICLR 2023

Figure 10: Masked image reconstruction on CC12M images. For each triplet, we show the ground-truth (left),
the masked image (mid) and our M3AE reconstruction (right).
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Figure 11: t-SNE visualization for learned representations of 10 classes on ImageNet validation set. Left is
MAE and right is M3AE. The representation of M3AE clusters much stronger together with the semantic labels
compared to MAE representations.

set in Figure 11. Compared to MAE, M3AE successfully clusters together images that correspond to
the same semantic label.

5 CONCLUSION

In this paper, we propose M3AE, a simple but effective model that learns a multimodal representation
from image and language data without the need for contrastive objectives. We show that by pre-
training with diverse image and language data, our model can learn shared representations that
generalize well to downstream tasks. Due to its flexibility and scalability, M3AE is especially suitable
for learning from extremely large-scale datasets, and we envision that such pre-trained models can be
broadly applicable in many downstream tasks, such as visual reasoning (Ding et al., 2021), dialog
systems (Alayrac et al., 2022) and language guided image generation (Ramesh et al., 2021; 2022).

One major limitation of this work is that the large-scale pre-training of M3AE consumes significant
amount of energy. We hope that with the rapid progress of efficient hardware and renewable
energy sources, this limitation can be overcome in the near future. Like any other general purpose
representation learning models, our model could have both positive (e.g., enabling access to more
information by improving machine translation) and negative (e.g., loss of jobs with more automation)
impact on the society. These impacts are broadly applicable to pre-trained models in general and not
specific to this work.
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A IMPLEMENTATION DETAILS

A.1 PRE-TRAINING DATASETS

Conceptual 12M (CC12M)2 (Changpinyo et al., 2021) contains approximately 12M of image-text
pairs, the original dataset images are provided in the form of internet URLs. Note that due to some
expired URLs and non-English captions, we did not obtain the complete data in the dataset.

A.2 DOWNSTREAM DATASETS

We evaluate the image encoder transferability on ImageNet (Russakovsky et al., 2014). We report top-
1 validation accuracy of a single 256×256 crop. We evaluate evaluate out-of-distribution detection
on CIFAR-100 and CIFAR-10 datasets (Krizhevsky et al., 2009). Table 1 provides the detailed
information of these datasets.

DATASET Classes Train size Test size Evaluation metric
CIFAR10 10 50,000 10,000 Accuracy
CIFAR100 100 50,000 10,000 Accuracy
ImageNet 1000 1, 281, 167 50,000 Accuracy

Table 1: Details of downstream datasets

A.3 NETWORK ARCHITECTURES

Following MAE, we use ViT (Dosovitskiy et al., 2020) as the model architecture and consider three
different sizes of ViT for the M3AE image and text encoder. The model consists of a stack of standard
Transformer blocks (Vaswani et al., 2017), and each Transformer block consists of a multi-head
self-attention and an MLP. We use the original ViT-B/16 and ViT-L/16 architectures (Dosovitskiy
et al., 2020) for our encoder, as well as ViT-S/16 (Touvron et al., 2021) which is comparable to
ResNet-50 in FLOPs and parameters. Following MAE (He et al., 2021), our decoder is lightweight
and has 8 blocks and a width of 512. As in MAE, since our encoder and decoder have different width,
we adopt a linear projection layer after the encoder to match the dimension. For linear probing, we
use the auxiliary CLS token for training the classifier as done in MAE.

A.4 PRE-TRAINING HYPERPARAMETERS

For the pre-training of M3AE and MAE, we follow the hyperparameters of the original MAE. We
keep the optimizer, learning rate, weight decay the same as the original MAE on ImageNet. The only
additional hyperparameters unique to M3AE are text token mask ratio and text token classification
loss weight. We provide all the hyperparameters in Table 2, where the same hyperparameters are
used to train network of all sizes and epochs. The base learning rate corresponds to the learning rate
of 256 batch size, and it is linearly proportionally scaled according to the actual batch size.

A.5 DOWNSTREAM EVALUATION HYPERPARAMETERS

For downstream tasks of linear classification on ImageNet and OOD detection on CIFAR, we use the
same hyperparameters for M3AE and MAE. We list the hyperparameters for ImageNet 1K linear
classification in Table 3, and OOD detection for CIFAR in Table 5

A.6 COMPUTATION RESOURCES

All the experiments are performed on the Google Cloud TPU platform. We implement our model
using JAX and parallelize the large batch training across many TPUs with data parallelism. For all
the pre-training, we use batch size 4096. We report the total amount of compute and the type of
resources used in Table 6.

2https://github.com/google-research-datasets/conceptual-12m
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Hyperparameter M3AE MAE

Optimizer AdamW
Base learning rate 1.5e-4
Weight decay 0.05
Optimizer momentum β1 = 0.9, β2 = 0.95
Batch size 4096
Learning rate schedule cosine decay
Warmup epochs 5
Image data augmentation RandomResizedCrop
Image patch mask ratio 0.75
Text token mask ratio 0.75 N/A
Text token cross entropy loss weight 0.5 N/A

Table 2: Hyperparameters for pre-training M3AE and MAE on CC12M

Hyperparameter M3AE and MAE

Optimizer LARS
Base learning rate 0.1
Weight decay 0
Optimizer momentum 0.9
Batch size 2048
Learning rate schedule cosine decay
Epochs 90
Warmup epochs 10
Image data augmentation RandomResizedCrop

Table 3: Hyperparameters for linear classification on ImageNet 1K

Hyperparameter M3AE and MAE

Optimizer AdamW
Base learning rate 0.001
Weight decay 0.05
Optimizer momentum β1 = 0.9, β2 = 0.999
Batch size 1024
Learning rate schedule cosine decay
Epochs 50
Warmup epochs 5
Image data augmentation RandAugment
Label smoothing 0.1
Drop path 0.1
Table 4: Hyperparameters for fine tuning on ImageNet.

Hyperparameter M3AE and MAE

Optimizer AdamW
Base learning rate 0.001
Weight decay 0.05
Optimizer momentum β1 = 0.9, β2 = 0.999
Batch size 1024
Learning rate schedule cosine decay
Epochs 100
Warmup epochs 10
Image data augmentation RandAugment
Table 5: Hyperparameters for fine tuning on CIFAR10.
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Model ViT-S ViT-B ViT-L
MAE 16.5h (v3-64) 8.5h (v3-128) 11.5h (v3-128)
M3AE 9.5h (v3-128) 5h (v3-256) 10h (v3-256)

Table 6: TPU pod size and compute hours used for training 50 epochs of M3AE and MAE on CC12M.
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