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Abstract

Swimming in nature achieves remarkable performance through diverse morpholog-
ical adaptations and intricate solid-fluid interaction, yet exploring this capability
in artificial soft swimmers remains challenging due to the high-dimensional con-
trol complexity and the computational cost of resolving hydrodynamic details.
Traditional approaches often rely on morphology-dependent heuristics and simpli-
fied fluid models, which constrain exploration and preclude advanced strategies
like vortex exploitation. To address this, we propose an automated framework
that combines a unified, reduced-mode control space with a high-fidelity GPU-
accelerated simulator. Our control space naturally captures deformation patterns for
diverse morphologies, minimizing manual design, while our simulator efficiently
resolves the crucial fluid-structure interactions required for learning. We evaluate
our method on a wide range of morphologies, from bio-inspired to unconven-
tional. From this general framework, high-performance swimming patterns emerge
that qualitatively reproduce canonical gaits observed in nature without requiring
domain-specific priors, where state-of-the-art baselines often fail, particularly on
complex topologies like a torus. Our work lays a foundation for future opportuni-
ties in automated co-design of soft robots in complex hydrodynamic environments.
The code is available at https://github.com/changyu-hu/FreeFlow.

1 Introduction

Underwater swimming exemplifies nature’s ability to generate versatile movement strategies through
free-form morphological adaptations—from the traveling waves of eel-like swimmers to the jet
propulsion of cephalopods (Dickinson et al., 2000; Hinch et al., 2012). This diversity in soft-body
organisms demonstrates how complex yet efficient control emerges from the interplay between
body deformations and fluid dynamics, offering inspiration for bioinspired robotics and adaptive
underwater systems. However, exploring such capabilities in artificial free-form soft swimmers poses
two challenges. First, unlike articulated rigid-body robots with standardized joint-torque actuation,
soft bodies require high-dimensional control policies to coordinate continuum deformations across
arbitrary morphologies, lacking a unified control paradigm. Second, learning these policies demands
physically-grounded simulations that balance computational efficiency with hydrodynamic fidelity—a
tradeoff often skewed toward speed in existing frameworks. As a result, current approaches typically
resort to morphology-dependent heuristics, e.g., predefined muscle layouts (Min et al., 2019; Ma
et al., 2021) or voxel-aligned contractions (Bhatia et al., 2021), which require fine tuning and
restrict exploration of control space. Furthermore, although recent simulation environments (Wang
et al., 2023a; Xian et al., 2023) enable data-driven control through simplified fluid models, these
approximations omit critical hydrodynamic phenomena like vortex shedding—limiting the discovery
of efficient gaits observed in biological swimmers.

To address the limitations of domain-expert, morphology-dependent actuation design, we present a
unified control framework that automates both deformation space construction and policy learning
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for free-form soft swimmers. Our approach is grounded in a key biological insight (Zhang et al.,
2022): natural swimmers exploit spatially low-frequency deformation modes to interact efficiently
with fluids, rather than activating the infinitely many degrees of freedom in their soft body. Inspired
by this, we introduce morphology-agnostic reduced modes, which compactly encode dominant
deformation patterns across arbitrary morphologies with a few parameters. We first leverage geodesic
farthest-point sampling to distribute control points adaptively over the swimmer’s body. Coupled with
linear blend skinning (LBS), these points define a deformation basis that interpolates coarse motions
across the entire body . We propose a dynamics correction process to further adjust deformations to
physically plausible configurations while preserving kinematic intent. This approach also ensures
motions are entirely driven by internal forces, avoiding unphysical momentum injection.

To address the accuracy-efficiency tradeoff of existing simulation environments, we develop a GPU-
accelerated simulator tailored for learning swimming strategy, ensuring both hydrodynamic fidelity
and computational efficiency required for reinforcement learning (RL). Our simulator integrates the
Lattice Boltzmann Method (HOME-LBM by Li et al., 2023) for fluid dynamics, for its inherent
parallelism and physical plausibility. The soft swimmers are modeled as finite elements in order to
express different morphologies freely, integrated with the state-of-the-art GPU solver (Chen et al.,
2024). We incorporate a two-way coupling framework, ensuring that body deformations dynamically
interact with fluid—a mechanism essential for thrust generation. Our simulator supports training
policies on a 128× 128× 512 grid in only a few hours, successfully reproducing physically plausible
swimming phenomena.

We evaluate our framework on a diverse set of 3D soft swimmer morphologies, from bio-inspired
fish to unconventional morphologies (Fig. 2), demonstrating universal applicability. Our method
achieves observable movement patterns in the majority of tested models in forward swimming task,
achieving a 50% higher success rate in learning effective swimming gaits compared to state-of-the-art
baselines (Wang et al., 2023a), which struggle to produce meaningful motion for the majority of
tested morphologies. Furthermore, it learns sophisticated behaviors like vortex exploitation, which
simplified fluid models cannot capture. From this general framework, gaits corresponding to canonical
biological swimming strategies (e.g., undulation, oscillation, pulsation) emerge automatically without
prior kinematic assumptions, establishing a robust pipeline for automated soft swimmer control.

In summary, our work presents the following contributions:

1. We introduce a unified, reduced mode control framework for free-form soft swimmers that
automates policy learning for various morphologies. Our approach significantly reduces
reliance on human-designed priors while preserving deformation expressiveness.

2. We present a GPU-accelerated simulator optimized for learning soft-body swimming strate-
gies, enabling efficient RL training while capturing hydrodynamic phenomena critical to
swimming.

3. Our experiments demonstrate state-of-the-art swimming performance over prior works
across a diverse set of morphologies.

2 Related Work

Unified control for diverse morphologies Many studies on the robot design aim at optimizing
general control model for different input structures. Some works are based on articulated rigid bodies
due to their simplicity, including Zhao et al. (2020); Gupta et al. (2022); Lu et al. (2025). However,
the restriction of degrees of freedom (DoFs) of rigid bodies inhibits them from encoding high-DoF
motions. On the other hand, many works turn to soft body design instead, including Bhatia et al.
(2021) using mass-spring method and Hu et al. (2019); Wang et al. (2023a,b); Spielberg et al. (2019)
using material point method (MPM). Besides, there are other soft-body works based on reduced
modes (Zhang et al., 2017; Liang et al., 2023; Barbic and James, 2005) and finite element method
(FEM) (Ma et al., 2021; Du et al., 2021; Geilinger et al., 2019; Tan et al., 2012). Leveraging the
advantage of efficiency in rigid bodies and flexibility in soft bodies, some studies (Liu et al., 2022; Xu
et al., 2021; Xu, 2019; Wang et al., 2019; Li et al., 2024) combine these two representations to form
a bone-flesh structure. However, these works focus on actuating soft bodies by rigid link, limiting
their control to the underlying rigid joints. The task of optimizing a unified control for soft robot
with free structure is still worth exploring. Moreover, most work in this field focuses on terrestrial
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robot locomotion, and their extension to swimmers is unobvious and non-trivial due to the high
computational costs in fluids simulation and the coupling between fluids and solids.

Robot-learning environments There has recently been an increasing interest in and demand for
physics-based learning environments in artificial intelligence and robotics research. Most works
(Makoviychuk et al., 2021; Xiang et al., 2020; Todorov et al., 2012; Coumans, 2015; Graule et al.,
2022; Huang et al., 2021) focus on high-performance learning environments for simulating and
controlling rigid or soft robots alone. Among these works, efforts in building learning environments
for fluids are less common due to the computational cost of solving physics-based fluids and solid-
fluid interactions. Most existing works (Min et al., 2019; Ma et al., 2018; Ren et al., 2022) build
elastic swimmers with biomimetic actuators in simplified fluids and learns their swimming skills
with deep RL (Min et al., 2019) or differentiable simulation (Ma et al., 2021). As these simplified
fluid models overlook fluid properties (e.g., vorticity and incompressibility) and two-way elastic-fluid
coupling, learning advanced swimming skills like jellyfish pulsation and handling multiple swimmers
are intrinsically difficult (Min et al., 2019) in these works. There are some works involving the
simulation of flow field, including Liu et al. (2022); Wang et al. (2023a); Ma et al. (2021); Holl and
Thuerey (2024); Xian et al. (2023), but they either do not support fluid-elastic coupling or suffer from
sticking artifacts, which limits their capability of modeling diverse and flexible swimming robots.

Aquatic animal locomotion Animal swimming has long been an intriguing research topic in
biology (Dickinson et al., 2000; Hinch et al., 2012) and mechanics (Zhang et al., 2022; Lauder, 2015;
Costello et al., 2021). Previous works have identified several distinctive swimming skills commonly
shared by aquatic animals which can be divided into three mainstream underwater swimming skills
– undulation, oscillation, pulsation – which our pipeline can all automatically discover from their
representative swimmers’ morphologies.

3 Swimmer Modeling

Following the body-brain paradigm (Lipson and Pollack, 2000), we model swimmers through two
synergistic components: shape (morphology representation) and controller (deformation policy).

3.1 Shape Modeling

We represent the geometry of free-form soft swimmers using a volumetric mesh M := {X,E}
defined by its rest-shape vertices X ∈ Rd×n and its volumetric element structure E, where d ∈ {2, 3}
is the dimension of space and n the number of vertices. We also define the deformed vertices as
x(t) ∈ Rd×n and the nodal displacements as u(t) = x(t) − X, where t denotes the time. This
formulation generalizes across 2D and 3D. While our main results focus on 3D tetrahedral meshes,
more 2D results are included in the supplementary materials.

3.2 Controller Modeling

Soft body control can generally be categorized into external and internal approaches. External ap-
proaches apply forces directly to the body. While simple to implement, they often violate momentum
conservation and tend to drag the body toward the target rather than generating propulsion through
fluid interaction. Internal approaches generate forces by specifying muscle fibers within the soft body,
preserving momentum and offering more physically realistic behavior. However, existing methods
typically define these muscle fibers either manually by domain experts or through morphology-
dependent heuristics. As a result, they suffer from limited control expressiveness, low automation,
and insufficient generalization across diverse body designs. We propose a novel internal controller
that automatically modulates the entire rest shape X of the soft swimmer, ensuring momentum
conservation and morphology-agnostic control.

Kinematic displacement field In order to obtain efficient control across varying mesh resolutions
and diverse morphologies, we adopt reduced modes defined by linear blend skinning (LBS, Jacobson
et al., 2014) as a compact, low-dimensional control space. We modify the rest shape by kinematically
proposed displacements ukin constructed through reduced modes derived from geodesic control
points.
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Figure 1: We use a deformable square bar to illustrate our reduced mode control space. Two LBS
control points, p1 and p2, are leveraged to generate motions in this example. (a) Upper left shows the
normalized weights distributed on the bar, and w1 and w2 are the weights of p1 and p2 respectively.
(b) The deformed green mesh (left) is generated by applying vertex-wise weighted combinations
of rotations R and translations t from control points p1 and p2, with weights w1 and w2. The red
region indicates the self-inverted elements. Right figure shows the mesh with dynamic correction. (c)
Deformation patterns generated by different distributions of control parameters.

We sample m control points pi via farthest-point sampling on rest-shape vertices X with geodesic
distance, which takes into account the mesh’s topology and reflects the shortest path in the volume of
the mesh. The displacement for each vertex Xj is calculated as a weighted sum of transformations
from all m control points:

(ukin)j =

m∑
i=1

wij(Xj ,pi)(RiXj + ti −Xj) (1)

where Ri and ti are learnable rotation and translation modes defined on pi and weight wij determines
the influence of control point i on vertex j. This function is defined as a radial basis function
(RBF) based on the geodesic distance between the vertex Xj and the control point pi (Fig. 1, a).
This formulation assigns higher weights to vertices closer to pi, producing a smooth and spatially
localized blend of transformations (see ablation studies in supplementary for details). The weights
are normalized on each vertex. This formulation enables resolution-independent control of free-form
deformations with only 6m degrees of freedom defined on pi (3m for rotation and 3m for translation).

Dynamic correction While uk provides expressive shape changes, it may introduce inverted
elements as the LBS formulation ignores the mesh’s volumetric integrity (Fig. 1, b left). Inspired by
complementary dynamics (Zhang et al., 2020), we compute a correction u∗

d by solving a perturbation
ud from the following energy minimization problem:

u∗
d = argmin

ud

Ψ(X+ ukin + ud,X) +
1

2
k||ud||22 (2)

where Ψ(x,X) is the hyperelastic potential energy of a body in its deformed configuration x relative
to its rest configuration X (see Sec. 4.1), and k a stiffness coefficient that determines the extent
of preserving the original deformation modes. This correction projects the kinematically proposed
displacement uk onto the manifold of dynamically feasible configurations (Fig. 1, b right), while
retaining most of the kinematic deformation modes. The total rest shape deformation u = ukin + u∗

d
consists of both the kinematically proposed displacements and dynamic correction.

Control space properties Compared with previous methods that offer only limited or non-
physically plausible actuation, the combined displacement field u satisfies three critical requirements:
(1) Intrinsic actuation via rest-shape modulation avoids external momentum injection; (2) Generality
across arbitrary mesh topologies through geodesic sampling; (3) Compact dimensionality with 6m
parameters (m ≪ n) achieved through LBS control points enabling efficient RL training. As shown
in Fig. 1 c, varying coefficients generates diverse rest-shape changes while maintaining dynamical
plausibility.
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4 Swimming Simulation

Efficient underwater locomotion involves rich, dynamic interaction with the surrounding fluid,
manifesting complex flow phenomena such as vortex shedding, wake capture and reverse Kármán
vortex streets. Accurately capturing these effects requires a simulation framework that balances
physical fidelity and computational efficiency. Prior work often relies on simplified fluid or coupling
models, limiting the expressiveness of swimmer dynamics (Min et al., 2019; Ma et al., 2021). We
address this limitation by integrating state-of-the-art fluid and solid solvers with a GPU-accelerated,
two-way coupling scheme.

4.1 Elastic Simulation

Given discrete volumetric mesh representation of the soft body, deformed nodal positions x is
governed by the Cauchy momentum equation. The internal elastic forces are derived from the strain
energy potential, which depends on the current shape x and the modulated rest shape X+ u:

Mẍ+∇Ψ(x,X+ u) = fext, (3)

where M ∈ Rdn×dn is the mass matrix, Ψ the strain energy, and fext the total external force. We
discretize time with standard implicit Euler integration to calculate the updated x′ from the current
position x and velocity v over a time step ∆t, by iteratively minimizing the incremental potential at
each step (Gast et al., 2015):

min
x′

1

2∆t2
(x′ − y)⊤M(x′ − y) + Ψ(x′,X+ u), (4)

where y is the inertia term y = x+∆tv +∆t2M−1fext, a constant computed at the beginning of
the time step. We utilizes the state-of-the-art GPU-accelerated solvers dedicated to elastics (Chen
et al., 2024) to improve computational efficiency.

4.2 Fluid Simulation

We consider the lattice Boltzmann method (LBM) as our fluid simulator because it allows for explicit
computation of updates. Fluid dynamics can be evolved by a mesoscopic distribution function
f(vf ,xf , t), which describes the probability of finding a particle at position xf with velocity vf at
time t. The macroscopic quantities of fluid such as density ρ and velocity v can be derived from
f . LBM evolves fluid behavior by tracking distribution functions f at discrete lattice nodes on a
Cartesian grid. The time integration proceeds through a collision–streaming scheme:

fi(x+ ci∆t, t+∆t) = fi(x, t) + Ωi(f), (5)

where fi is the distribution function for lattice direction ci and Ωi the collision operator which relaxes
the distribution function towards a local thermodynamic equilibrium state. We refer interested readers
to Lallemand and Luo (2000) for more details.

The explicit nature of LBM’s update rule enables massively parallel computation on Cartesian
grids. Each lattice node’s state is updated independently, minimizing synchronization overhead and
maximizing GPU utilization. Our simulator adopts high-order moment-encoded LBM (Li et al.,
2023) which achieve higher computational efficiency using less memory while ensuring the accuracy
of fluid details.

4.3 Elastic-Fluid Coupling

We adopt a weak two-way coupling strategy that alternately updates the fluid and solid at each time
step. Compared with other coupling schemes (e.g. strong coupling), it well balances stability and
efficiency in the context of learning soft-body swimming controller. The solid influences the fluid
through boundary conditions, while the fluid applies pressure forces back onto the solid, which are
numerically estimated over the interface. To address the computational challenges posed by extensive
fluid-solid interactions, we further develop a fully parallelized intersection detection method that
exploits parallelism across both boundary elements and all lattice directions, resulting in significant
performance gains. More details are presented in the supplementary materials.
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5 Swimming-Skill Learning

Building upon the reduced-mode control space and high-fidelity elastic-fluid coupling, we model the
task of acquiring locomotion skills as a reinforcement learning (RL) problem. Our physical simulator
serves as the dynamic environment, where the agent must learn deformation policies that exploit
hydrodynamic interactions to generate thrust.

Task modeling and policy training. We model the task as a Markov decision process (MDP) with
a state space S and an action space A. We adopt the standard multi-layer perceptron (MLP) network
controller to map the state of a swimmer to actions applied to its actuators. Our simulator serves as
the transition function in this MDP that evolves the current state-action pair (s,a) to the new state s′

after one simulation frame. Each task contains a reward function R(s,a, s′) and aims to maximize
its discount accumulation in time (Sutton, 2018)

∑
i=0 γ

iRi, where Ri = R(si,ai, si+1) stands for
the reward collected in the i-th simulation frame. We train all tasks with the soft actor-critic (SAC)
method (Haarnoja et al., 2018), a widely adopted deep reinforcement learning (DRL) method known
for its stability, sample efficiency, and ability to handle continuous action spaces effectively.

Unified state representation. Designing an effective state representation for soft swimmers poses
unique challenges: (1) their high-dimensional deformations preclude exhaustive state encoding; (2)
morphological diversity demands topology-agnostic observations to avoid case-by-case engineering.
To address these, we design a morphology-robust state space s defined as

s = {xlocal,vlocal,vmean,d, l,alast}, (6)
which includes the local positions xlocal and velocities vlocal of a set of sample points on the model,
the average velocity of all vertices vmean, the direction d, distance to the target position l and the
action of the last step alast for a typical smooth term (see Eq. 7). In our implementation, we take
the LBS control points as sample points directly. At each step, we treat the current sample points
as a point cloud and solve the Procrustes problem (Solomon, 2015) to obtain closest rotation and
translation from its original pose. The positions, velocities, and target direction are then transformed
into this local coordinate frame to more effectively capture the local deformation patterns of the soft
swimmer and ensure the learned policy is rotation- and translation-invariant by construction.

Action. Leveraging our novel soft-body control representation, we query an action vector a ∈ R6m

at each control step, where m is the number of LBS control points (Sec. 3.2). Each control point has 6
degrees of freedom—3 for translation and 3 for rotation—within bounded ranges to ensure plausible
motion. The number of control points can be fixed or manually specified, enabling resolution-
independent control.

Reward. Since we use LBS control points and the weights are normalized on each vertex, the
mapping from the action space to the deformation space is not injective but exhibits some redundancy.
For instance, when all the control points take the same action of rotation and translation, there is no
actual actuation applied to the model because of the unchanged rest shape. Therefore, we employ a
penalty term in the reward to restrict the redundant degrees of freedom in action space. A typical
smooth term is also added. The reward is defined as

R = Rtask + λsmoothpsmooth + λregpreg,

Rtask = vmean · d,
psmooth = −||a− alast||22/(6m),

preg = −||a||22/(6m).

(7)

It consists of three components: a task-specific term Rtask, a smoothness term psmooth with coefficient
λsmooth that encourages natural actions, and a regularization term preg with coefficient λreg that
penalizes redundant actions. The task-specific terms of reward Rtask is the dot product of velocity
and the direction to target. See supplementary materials for details.

Task Setup. Our primary evaluation focuses on the forward swimming task in 3D. To further probe
the versatility of our framework, we also introduce three advanced tasks evaluated on a 2D swimmer:
target navigation, energy-efficient locomotion, and flow resistance. The detailed setup and results for
these tasks are presented in the supplementary materials, demonstrating the framework’s adaptability
to diverse objectives.
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Figure 2: A collection of swimmer morphologies used in our experiments. The top six are bionic
morphologies, while the bottom six are abstract morphologies with unconventional topologies.

6 Results

6.1 Experimental Setup

Dataset We construct a novel collection of 12 soft swimmer morphologies (Fig. 2), including
6 bio-inspired and 6 abstract morphologies. The bio-inspired morphologies cover representative
swimming mechanisms implemented by aquatic animals after millions of years of evolution in nature:
eel-like undulation, octopus-like oscillation, and jellyfish-like pulsation. The abstract morphologies
are deliberately designed to test the framework’s ability in unconventional swimming scenarios
beyond biological templates—scenarios where effective deformation patterns may not exist. These
morphologies intentionally lack obvious deformation pathways for propulsion, forcing the controller
to discover novel fluid-structure interaction strategies through exploration. All meshes are normalized
to the same scale and tetrahedralized by fTetWild (Hu et al., 2020), comprising about 400 to 1,500
vertices and 1,000 to 6,000 finite elements.

Baselines We evaluate our method against three baselines:

Domain-expert controller. Following expert-designed templates (Lin et al., 2019), we implement
manually tuned actuators for well-understood morphologies—axial muscles for clownfish and circular
muscles for jellyfish. We directly transfer the clownfish’s muscle design to the eel since they are
geometrically analogous. For the torus, we apply four segments of tangential-direction muscles
following the actuation approach outlined in DiffPD (Du et al., 2021) for terrestrial environments.

Clustering-based controller. DiffuseBot/SoftZoo (Wang et al., 2023b,a) are two state-of-the-art
approaches in soft swimmer control, so we adopt their clustering-based method as one of the SOTA
baselines. Following the approach, we segment swimmers into user-defined body regions via K-
means clustering on centers of finite elements and then use principal component analysis (PCA) to
extract dominant deformation directions for each region to define muscle orientations.

Differentiable controller. We test SoftZoo’s controller design in their open-sourced pipeline (Wang
et al., 2023a). For comprehensive comparison, we adapt the framework by freezing morphology
and material properties to isolate actuator optimization effects. However, this baseline faces critical
technical limitations in our experimental setting: (1) its differentiable MPM simulation becomes
numerically unstable beyond 3 seconds of simulated time (compared with 15 seconds in our task),
causing gradient explosions that prevent policy convergence; (2) It fails to achieve 128× 128× 512
spatial resolution due to memory constraints. These two factors prevent the baseline from completing
all 12 experiments under our temporal and spatial settings. We therefore exclude it from quantitative
comparisons. Qualitative results in the supplementary materials show that its learned policies tend to
repeat similar stretching patterns with limited diversity.

More details for all baselines are provided in our supplementary materials.

6.2 Quantitative Results

As shown in Tbl. 1, our method outperforms baseline controllers across most morphologies in the
forward-swimming task. Performances are evaluated by rewards reflecting swimming distance.
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Table 1: Normalized reward (mean ± std over 5 trials) for the forward swimming task. Bold indicates
the best performance per morphology; gray entries denote controllers failing to make a visible
movement (reward less than 0.3).

Method Model
Clownfish Eel Octopus Leaf Turtle Jellyfish

Domain-expert 11.96 ± 0.10 0.17± 0.06 - - - 18.85± 0.42
Clustering-based −1.12± 0.22 13.2 ± 1.0 0.15± 0.05 1.78 ± 0.07 −1.18± 0.16 0.87± 0.13

Ours 10.34± 0.42 6.26± 1.18 −0.03± 0.03 0.88± 0.29 8.67 ± 0.94 23.43 ± 1.14

Torus Eight Spiral Trumpet Tube Enneper

Domain-expert −0.31± 0.31 - - - - -
Clustering-based −0.07± 0.01 −0.04± 0.01 −0.13± 0.02 0.16± 0.05 1.02± 0.56 0.20± 0.03

Ours 15.05 ± 1.27 3.99 ± 0.43 3.20 ± 0.37 −0.16± 0.22 3.99 ± 1.24 12.33 ± 1.02

Domain-expert designed muscle templates (Fig. 3 bottom two rows) perform well on bio-inspired
shapes like the clownfish, achieving up to 115% of our method’s performance due to their well-
understood swimming patterns. However, this advantage quickly deteriorates on eel (3%), which is
geometrically similar but different in proportion of its parts, revealing high sensitivity to geometric
changes. Moreover, muscle templates originally optimized for terrestrial locomotion (e.g., torus)
exhibit poor transferability underwater (fails), highlighting the limits of human intuition.

The clustering-based controllers implemented by one of the SOTA methods in soft swimmer learning
fails to produce effective gaits for 8 out of 12 morphologies and breaks down entirely on abstract
shapes, often resulting in unstable oscillations or nearly motionless poses. This is because the cluster-
ing method restricts deformations to the principal axes of precomputed muscle fibers, insufficient to
produce extensive fluid interaction necessary for effective swimming.

In contrast, our framework demonstrates robust performance, enabling over 80% of the tested
morphologies to achieve forward locomotion. This high success rate, particularly on unconventional
shapes like the torus and Enneper surface, suggests a broader implication: swimming potential may
be a latent property in a wider range of geometries than previously assumed. This generality stems
from our automated pipeline, which adapts naturally to diverse topologies, and our novel rest-shape
deformation strategy, which enables expressive yet effective motions. Consequently, our framework
acts not just as a controller, but as a computational tool to reveal and realize the swimming aptitude
of arbitrary designs, challenging prior assumptions about what constitutes a viable swimmer.

Training Stability To address the stochastic nature of reinforcement learning, we evaluated the
training stability of our framework. We trained policies for a fish-like swimmer in 2D across six
independent runs with different random seeds while keeping all hyperparameters constant. The
learning process proved to be highly consistent, with all runs converging to a similar high level of
performance. The final mean normalized reward was 6.71 with a low standard deviation of 0.77.
The learning curves, which we detail in the supplementary materials, show a stable and monotonic
increase in reward, confirming that our method is robust and its performance is reproducible.

6.3 Qualitative Analysis

Our method learns effective swimming strategies across diverse morphologies (Fig. 3), producing
biologically plausible motions for novel topologies. Several key observations are summarized below.
Please refer to our videos in the supplementary materials for their full motions.

Torus The torus-shaped swimmer achieves propulsion through a periodic deformation cycle,
dynamically balancing body-fluid momentum exchange (Fig. 3, a. left). First, the torus undergoes
controlled self-twisting into an 8-shaped configuration. Then it obtains angular momentum from fluid
and starts to rotate, generating vortex-induced forces for forward motion. In contrast, the clustering
baseline struggles to make a movement (Fig. 3, a. right).

Enneper Surface Resembling a saddle-shaped skirt, the swimmer performs rhythmic stretch-
ing/relaxation cycles, creating a "dancing" motion that leverages pressure gradients across its curved
surface (Fig. 3, b. left). This emergent behavior achieves stable locomotion despite the morphology’s
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Figure 3: Key frames of some swimmers’ motions: (a) torus (b) Enneper surface (c) clownfish (d)
jellyfish. Swimmers in (a) and (b) are compared with clustering baseline, while swimmers in (c)
and (d) are compared with domain-expert baseline. The structures of fluid field are visualized by
extracting the isosurface of q criterion (Hunt et al., 1988) of velocity field.

negative Gaussian curvature. In contrast, the clustering baseline make slight deformation and can
hardly move (Fig. 3, b. right).

Eel/Clownfish The controllers produce traveling-wave body undulations (Fig. 3, c. left), qualita-
tively reproducing the canonical undulatory propulsion common to natural anguilliform (eel-like) and
carangiform (fish-like) locomotion (Fig. 3, c. right). Leveraging our realistic LBM fluid simulator,
the swimmers effectively harness vortex shedding from the tail for propulsion, closely aligning with
biological observations—an effect unattainable in simplified simulation environments (Ma et al.,
2021; Wang et al., 2023a).

Jellyfish For the jellyfish, the learned policy is based on pulsation-based propulsion, a canonical
swimming mode. However, instead of the synchronized bell contraction common in nature (Fig. 3, d.
right), our policy discovers a novel variant that propels fluid through alternating contractions along
two mutually orthogonal directions (Fig. 3, d. left). It is worth noting that this strategy achieves
higher speed than the domain-expert actuation design described above (Sec. 6.1).

6.4 Extensions to Energetic Efficiency

Beyond maximizing travel distance, a key performance metric for both biological and robotic
swimmers is energetic efficiency. To demonstrate that our framework can optimize for such objectives,
we conducted an experiment to learn energy-efficient gaits. Following established biomechanics
literature Verma et al. (2018), we define energy cost as the total work done by the internal forces
to deform the swimmer’s body. This physically-grounded metric is efficiently computed at each
simulation step.

We augmented the reward function with an energy penalty term: Reff = Rtask − we · E, where E
is the energy cost and we is a tunable penalty coefficient. We trained policies for the clownfish
morphology with varying we and evaluated the trade-off between distance and efficiency using the
Cost of Transport (CoT), defined as total energy consumed per meter traveled.

The results in Tbl. 2 show a clear and predictable trade-off. As the energy penalty increases,
the learned gaits become more conservative, consuming significantly less energy and achieving a
better CoT. An excessively high penalty (we = 0.05) correctly suppresses movement almost entirely,

9



Table 2: CoT (lower is better) and travel distance for different energy penalty weights (we).

we Forward Distance Energy Cost CoT

0 (Baseline) 1.68 m 433.2 J 258.3 J/m
0.005 1.57 m 211.0 J 134.3 J/m
0.02 1.06 m 78.8 J 74.7 J/m (Optimal)
0.05 -0.01 m 0.3 J N/A

confirming that the policy robustly optimizes the combined objective. This demonstrates the flexibility
of our framework to incorporate and optimize for complex, physically-grounded objectives beyond
simple locomotion. The precise formulation for the energy cost is detailed in the supplementary
material.

6.5 Ablation Studies

In this section, we conduct a series of ablation studies to analyze key components of our method,
including the effect of control point count on motion, the selection of geodesic distance in LBS
process, the choice of LBM for fluid simulation, and momentum conservation enabled by internal
actuators. Results show that: (1) geodesic distance proves critical for capturing geometry-aware
deformation modes compared to Euler distance; (2) the number of control points may affect the
magnitude and the complexity of the motion, depending on the morphology; (3) our LBM fluid solver
captures hydrodynamic details for swimming where simplified fluid model fails; (4) we ablate fluid
interactions to show that our internal actuator does not introduce non-physical momentum.

Details including figures and videos can be found in our supplementary materials.

7 Conclusions

This work presents a unified framework for learning to control free-form soft swimmers. By
constructing morphology-agnostic reduced control spaces through LBS and dynamics correction, our
framework automates actuator design across diverse morphologies, bypassing the need for domain-
expert manual design while preserving physical consistency. Coupled with a GPU-accelerated
simulator resolving vortex-mediated thrust mechanisms, our approach enables the emergence of
bio-inspired gaits without domain-expert priors and generalizes to unconventional morphologies
where prior methods fail, and demonstrates robust performance on a range of advanced locomotion
tasks.

While our framework advances automated control, several open challenges remain. Our focus on
fixed morphologies paves the way for future work in full morphology-control co-design, for which our
unified controller and high-fidelity simulator provide a critical foundation. Another significant hurdle
is sim-to-real transfer; the policies learned in our idealized environment can serve as a vital baseline
for future research aimed at bridging the reality gap. Finally, while our method learns specialized
policies, developing a universal controller that generalizes across unseen soft-body geometries in
fluid remains a challenging open problem, likely requiring breakthroughs in meta-learning.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

13



• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discuss the limitations of the work performed by the authors.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and conclusions
of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We open-source our full codebase—including the GPU-accelerated simulator
and training pipelines—at https://github.com/changyu-hu/FreeFlow.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: The paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provide sufficient information on the computer resources (type of
compute workers, memory, time of execution) needed to reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited and the license and terms of use are explicitly mentioned and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented and the documen-
tation is provided in our open source repository: https://github.com/changyu-hu/
FreeFlow

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Swimmer Modeling
	Shape Modeling
	Controller Modeling

	Swimming Simulation
	Elastic Simulation
	Fluid Simulation
	Elastic-Fluid Coupling

	Swimming-Skill Learning
	Results
	Experimental Setup
	Quantitative Results
	Qualitative Analysis
	Extensions to Energetic Efficiency
	Ablation Studies

	Conclusions

