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ABSTRACT

Recent diffusion distillation methods have achieved remarkable progress, enabling
high-quality ∼4-step sampling for large-scale text-conditional image and video
diffusion models (DMs). However, further reducing the number of sampling steps
becomes more and more challenging, suggesting that efficiency gains may be bet-
ter mined along other model axes. Motivated by this perspective, we introduce
SwD, a scale-wise diffusion distillation framework that equips few-step mod-
els with progressive generation, avoiding redundant computations at intermedi-
ate diffusion timesteps. Beyond efficiency, SwD enriches the family of distribu-
tion matching distillation approaches by introducing a simple distillation objective
based on kernel Maximum Mean Discrepancy (MMD). This loss significantly im-
proves the convergence of existing distillation methods and performs surprisingly
well in isolation, offering a competitive baseline for diffusion distillation. Applied
to state-of-the-art text-to-image/video diffusion models, SwD approaches the sam-
pling speed of two full-resolution steps and largely outperforms alternatives under
the same compute budget, as evidenced by automatic metrics and human prefer-
ence studies.

1 INTRODUCTION

Diffusion models (DMs) are the leading paradigm for visual generative modeling (Black Forest
Labs, 2024; Wan et al., 2025; Esser et al., 2024; Polyak et al., 2024a; Zhou et al., 2025a). Since gen-
erating high-resolution images or videos (e.g., 1024×1024) becomes computationally prohibitive
when operating directly in pixel space, state-of-the-art DMs leverage lower-resolution VAE (Kingma
et al., 2013) latent spaces. However, the VAEs used in latent DMs typically employ an 8× scaling
factor, meaning the latent space still remains high-dimensional. Given the slow sequential diffusion
process requiring 20−50 steps, generation speed is a significant bottleneck, especially for recent
large-scale models with >8 billion parameters (Sauer et al., 2024; Black Forest Labs, 2024; Cai
et al., 2025; Polyak et al., 2024a; Wan et al., 2025).

Previous works have made substantial efforts in DM acceleration from different perspectives (Lu
et al., 2022; Song et al., 2020a; Wimbauer et al., 2024; Li et al., 2023; Yin et al., 2024b). One of the
most successful directions is distilling DMs into few-step generators (Song et al., 2023; Kim et al.,
2024; Sauer et al., 2023; Yin et al., 2024b), aiming to achieve the inference speeds comparable to
single-step generative models, such as GANs (Goodfellow et al., 2014). Notably, these approaches
generally focus on reducing the number of sampling steps while freezing other promising degrees
of freedom, such as model architectures or data dimensionality.

Recently, Rissanen et al. (2023); Dieleman (2024) has noticed the coarse-to-fine nature of the im-
age diffusion generative process, drawing parallels to the implicit form of spectral autoregression.
Specifically, low frequency image information is modeled at high noise levels, while higher frequen-
cies are progressively produced over the reverse diffusion process. This observation establishes a
connection to the next-scale prediction models (Tian et al., 2024; Voronov et al., 2024; Han et al.,
2024), which predict higher frequency details at each step via upscaling. Despite this insight, state-
of-the-art few-step DMs still operate within a fixed dimensionality throughout the diffusion process,
highlighting an underexplored direction for improving their efficiency.

Contribution. Since most state-of-the-art DMs belong to the latent diffusion family (Rombach
et al., 2021), firstly, we need to address whether the spectral autoregression perspective also applies
to latent representations. In this work, we conduct a spectral analysis of existing VAE latent spaces
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and also extend it to the video domain. Our findings confirm that both spatial and temporal latent
resolutions implicitly increase over the diffusion process, similarly to the natural images. This
suggests that latent DMs can avoid redundant computations at intermediate noisy timesteps, where
high frequencies are largely suppressed.

Motivated by this observation, we introduce a Scale-wise Distillation (SwD) framework, which
transforms an arbitrary pretrained DM into a single few-step model that progressively increases spa-
tial and temporal sample resolutions at each generation step. SWD integrates seamlessly with exist-
ing distribution matching distillation approaches (Sauer et al., 2023; Yin et al., 2024b) and leverages
their few-step sampling algorithms, which appear naturally aligned with progressive generation.

In addition to the scale-wise distillation framework, we present a simple yet surprisingly effective
diffusion distillation objective that minimizes kernel Maximum Mean Discrepancy (MMD) (Gretton
et al., 2012) in the feature space of a pretrained DM. The proposed objective complements state-
of-the-art distillation methods and achieves strong performance even in isolation, establishing a
competitive baseline for DM distillation. Importantly, it requires no additional trainable models,
making it computationally efficient and easy to combine with existing distillation pipelines.

We apply SWD to state-of-the-art text-to-image and video DMs and show that our models compete
or even outperform their teachers being more than 10× faster. Compared to full-resolution few-
step models, SWD significantly surpasses them under a similar computational budget. For the same
number of sampling steps, SWD provides ∼2× speedup in text-to-image generation and ∼3× in
text-to-video generation, without compromising quality.

2 RELATED WORK

Diffusion distillation into few-step models. Diffusion distillation methods aim to reduce gener-
ation steps to 1−4 while maintaining teacher model performance. These methods can be largely
grouped into two categories: teacher-following methods (Meng et al., 2023; Song et al., 2023; Luo
et al., 2023a; Huang et al., 2023; Song & Dhariwal, 2024) and distribution matching (Yin et al.,
2024b;a; Sauer et al., 2023; 2024; Luo et al., 2023b; Zhou et al., 2024b;a).

Teacher-following methods approximate the teacher’s noise-to-data mapping by integrating the dif-
fusion ODE in fewer steps than numerical solvers (Song et al., 2020a; Lu et al., 2022). Distribution
matching methods relax the teacher-following constraint, focusing instead on aligning student and
teacher distributions without requiring exact noise-to-data mapping. State-of-the-art approaches,
such as DMD2 (Yin et al., 2024a) and ADD (Sauer et al., 2023; 2024), demonstrate strong genera-
tive performance in ∼4 steps. However, they still exhibit noticeable quality degradation at 1−2 step
generation, leaving room for further improvement. Recently, DMD has been successfully adopted
for video diffusion models (Yin et al., 2025; Huang et al., 2025).

Progressive generation with DMs. The idea of progressively increasing resolution during diffusion
generation was initially exploited in hierarchical or cascaded DMs (Ho et al., 2021; Saharia et al.,
2022; Ramesh et al., 2022; Kastryulin et al., 2024; Gu et al., 2023b), which are strong competitors
to latent DMs (Rombach et al., 2021) for high-resolution generation. Cascaded DMs consist of
multiple DMs operating at different resolutions, where each model performs a diffusion sampling
from scratch, conditioned on the lower-resolution sample. To bridge progressive generation with
diffusion processes, several works (Gu et al., 2023a; Teng et al., 2023; Atzmon et al., 2024; Jin
et al., 2025) have presented multi-stage pipelines, where DMs are trained to smoothly transition to
higher-resolution noisy samples during diffusion sampling. SWD follows up this line of research
by proposing a framework that readily integrates into existing diffusion distillation procedures and
adapts arbitrary pretrained DMs into unified progressive few-step models.

Maximum Mean Discrepancy in generative modeling. Maximum Mean Discrepancy (MMD) is
a metric between two distributions P and Q, widely explored in early GAN works (Bińkowski et al.,
2018; Wang et al., 2018; Dziugaite et al., 2015; Bellemare et al., 2017; Sutherland et al., 2016).

Given a positive-definite kernel function k(x,y), MMD can be defined as

MMD2(P,Q) = Ex,x′∼P [k(x,x
′)] + Ey,y′∼Q[k(y,y

′)]− 2Ex∼P,y∼Q[k(x,y)] , (1)

where x and y denote samples from the generated and target distributions, respectively.
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Figure 1: Spectral analysis of SD3.5 VAE latents (128×128) (Left) and Wan2.1 (21×60×104) for
spatial and temporal dimensions (Right). Vertical lines mark the frequency boundaries for which
the frequency components to the right are not present in lower resolution latents. Noise masks high
frequencies, suggesting that latent DMs can operate at lower latent resolutions for high noise levels.
Green area indicates the allowed latent resolution at corresponding timestep, while Red area shows
that further resolution reduction would lead to noticeable information loss.

Generative Moment Matching Networks (GMMNs) (Li et al., 2015) employ MMD with a fixed
Gaussian kernel (RBF) directly in data space. GANs, in contrast, typically consider learnable ker-
nels, designed as the composition of a discriminator with a fixed kernel.

In diffusion modeling, MMD has been explored for DM training (Bortoli et al., 2025) or finetun-
ing (Aiello et al., 2023). DMMD (Galashov et al., 2025) employs noise-adapted discriminators for
MMD gradient flows (Arbel et al., 2019). Recently, IMM (Zhou et al., 2025b) leveraged MMD
for consistency distillation (Song et al., 2023), computing the MMD with a fixed kernel between
raw generator predictions at different timesteps. In our work, we adopt MMD between student
and teacher distributions in the feature space of a pretrained DM, yielding a powerful and effective
distribution matching objective.

3 LATENT SPACE SPECTRAL ANALYSIS

Rissanen et al. (2023) and Dieleman (2024) showed that, in pixel space, diffusion models approx-
imate spectral autoregression for natural images. Since state-of-the-art text-conditional diffusion
models operate on VAE latent representations (Rombach et al., 2021), we first investigate this spec-
tral perspective for various latent spaces, including temporal dimension.

Following Dieleman (2024), we evaluate radially averaged power spectral density (RAPSD), i.e.,
the averaged spectra power across different spatial frequency components, and its one-dimensional
analogue for temporal frequencies.

We examine the latent spaces of image and video diffusion models, specifically Stable Diffusion 3.5
(SD3.5) (Esser et al., 2024) and Wan2.1 (Wan et al., 2025). The SD3.5 VAE maps 3×1024×1024
images into 16×128×128 latents, while the Wan2.1 VAE encodes 81×3×480×832 video inputs
into 21×16×60×104 latents. Both models use a flow-matching process (Lipman et al., 2023).

Figure 1 shows the RAPSD of Gaussian noise (blue), clean latents (purple) and noisy latents (orange)
at different timesteps. Figure 1 (Left) provides the results for SD3.5 VAE latents. Figure 1 (Right)
shows RAPSD across both spatial and temporal frequencies of Wan2.1 latents. Vertical lines indicate
frequency boundaries: the components to the right correspond to high frequencies absent at lower
resolutions, while those to the left align with the full latent resolution (128×128).

Additional results, including more timesteps and SDXL (Podell et al., 2024) latents under a variance-
preserving diffusion process (Ho et al., 2020; Song et al., 2020b), are provided in Appendix F.

Observations. First, we note that the latent frequency spectrum approximately follows a power law,
similar to natural images (van der Arjen Schaaf & van Johannes Hateren, 1996). In contrast, how-
ever, highest frequency components in latent space exhibit slightly greater magnitude. We attribute
this to the VAE regularization terms, which may cause “clean” latents to appear slightly noisy.

We also observe that the noising process progressively filters out high frequencies, thereby deter-
mining the safe downsampling range without noticeable information loss. Figure 1 (Left) shows
that at t=800, noise masks high frequency components emerging at resolutions above 32×32. This
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allows for 4× downsampling of 128×128 latents (green area). On the other hand, 8× downsampling
would corrupt the data signal (red area), as the noise does not fully suppress those frequencies.

A similar effect is observed along the temporal dimension in Wan2.1 latents, see Figure 1 (Right).
At t=600, the effective signal can be represented with ∼11 latent frames instead of the original 21.

Practical implication. Based on this analysis, we suppose that latent diffusion models may operate
at lower resolution at high noise levels without losing the data signal. In other words, modeling
high frequencies at timestep t is unnecessary if those frequencies are already masked at that noise
level. Note that this holds true for both spatial and temporal axes for video DMs. We summarize
this conclusion as follows:

Diffusion process allows lower-resolution modeling at high noise levels in both spatial and
temporal dimensions.

4 METHOD

This section introduces a scale-wise distillation, SwD, framework for diffusion models. We begin
by describing the SWD pipeline, highlighting its key features and challenges. Then, we present our
distillation objective based on Maximum Mean Discrepancy (MMD).

4.1 SCALE-WISE DISTILLATION OF DMS

The core design principle of SWD is to unify multi-scale generation within a single distilled model
and single diffusion process, in contrast to cascaded approaches. To this end, we define a few-step
timestep schedule, [t1, . . . , tN ], and pair each diffusion timestep ti with a latent resolution si from a
non-decreasing scale schedule, [s1, . . . , sN ]. Therefore, starting the generation with Gaussian noise
at the lowest scale, s1, the resolution of intermediate noisy latents xti is progressively increased
over sampling steps.

Upsampling strategy. Before discussing the method details, an important question needs to be
addressed: how to upsample xti to obtain faithful noisy latents? A naive approach would be to
directly upscale xti . However, we find it essential to first upscale a x̂0 prediction and then noise
it according to the forward diffusion process. We believe noise injection mitigates the upscaling
artifacts and thus ensures closer alignment with the distribution of true noisy latents.

Configuration t = 400 t = 600 t = 800

A x0
noise−−−→ xt 9.2 9.8 12.9

B xdown
0

upscale−−−−→ x0
noise−−−→ xt 32.4 17.3 13.0

C xdown
0

noise−−−→ xdown
t

upscale−−−−→ xt 129.7 235.0 340.2

Table 1: Comparison of noisy latent upscaling
strategies (B, C) for 64 → 128 in terms of gen-
eration quality (FID-5K) against the real noisy la-
tents (A). Upscaling xdown

0 before noise injection
(B) aligns better with full-resolution noisy latents.

To validate this intuition, we generate images
with Stable Diffusion 3.5 (Esser et al., 2024)
from intermediate noisy latents, xt, obtained
with different upscaling strategies. Specifically,
given a full-resolution (128×128) real image
latent, x0, and its downscaled version (64×64),
xdown
0 , we consider the reference setting (A),

where noise is added to full-resolution x0, and
two upscaling strategies: (B) first upscale xdown

0
and then inject noise; (C) first inject noise to
xdown
0 and then upscale.

As shown in Table 1, strategy (B) substantially outperforms (C), and the upscaling artifacts diminish
at higher noise levels, e.g., at t=800, the performance gap is negligible.

To summarize, at each timestep t, SWD transitions to a higher resolution by upscaling the x̂0 predic-
tion using bicubic interpolation for spatial dimensions and adjacent frame blending for the temporal
ones, followed by noise injection to produce x̂t.

Sampling. This upsampling strategy favors the stochastic multistep sampling, widely used in state-
of-the-art diffusion distillation approaches (Sauer et al., 2023; Yin et al., 2024a; Luo et al., 2023a;
Sauer et al., 2024). SWD adapts it for multi-scale generation, i.e., given the intermediate noisy latent
x̂ti−1 at resolution si−1, the model produces a prediction x̂i−1

0 . To proceed to the next timestep ti,
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Figure 2: SWD sampling. The distilled
model starts sampling from noise at the low
resolution s1 and gradually increases it over
generation steps. At each step, the previous
denoised prediction at the scale si−1 is up-
scaled and noised according to the timestep
schedule, ti. Then, the generator predicts a
clean image at the current resolution si.

Figure 3: SWD training step. i) Sample a pair of
adjacent resolutions [si, si+1] from scale schedule.
ii) Downscale the training images to si and si+1. iii)
The lower scale versions are upsampled and noised
to a timestep ti with the forward process. iv) Given
the noised images, the model G predicts clean data
at target scale si+1. v) Distribution matching loss is
calculated between predicted and target images.

x̂i−1
0 is upscaled to si and noised according to the forward diffusion process, resulting in the less

noisy latent x̂ti . Then, the model predicts next x̂i
0. Figure 2 illustrates this sampling process.

Though this procedure can be directly applied to already pretrained distilled models, in practice,
we notice that noise injection alone is not sufficient to completely mitigate upscaling artifacts or
requires using very high noise levels, reducing the effectiveness of such models. Therefore, we aim
to train a few-step generator that also serves as a robust upscaler.

Training. We train a single model across multiple resolutions, iterating over pairs of adjacent scales
[si, si+1] from the scale schedule. At each training step, we sample a batch of full-resolution images
or videos, downscale them to the source and target resolutions in pixel space, according to the si
and si+1 scales, and then encode them into the VAE latent space. Notably, we find that downscaling
in pixel space before the VAE encoding largely outperforms latent downscaling in our experiments.

Next, we upsample the lower resolution latents from si to si+1 and add noise according to the
timestep schedule, ti. The noised latents are then fed into the scale-wise generator, which predicts
x̂0 at the target scale si+1.

Finally, we calculate a distillation loss between the predicted and target latents at si+1. In our work,
we use distribution matching, motivated by ADD (Sauer et al., 2023; 2024) and DMD (Yin et al.,
2024b;a), achieving state-of-the-art performance in diffusion distillation.

The schematic illustration of this training procedure is provided in Figure 3. Further implementation
details and discussions are in Appendix A.

Discussion on the timestep and scale schedules. Following Section 3, the emergence of higher-
frequency components at lower noise levels can provide useful initial assumptions for designing
the schedules. However, since the analysis provides only averaged results and does not account for
upscaling artifacts, the schedules ultimately remain hyperparameters.

In practice, we find it beneficial to use higher timesteps than in the default schedules, aligning with
the intuition that noise injection mitigates upscaling artifacts.

4.2 DIFFUSION DISTILLATION WITH MAXIMUM MEAN DISCREPANCY

In addition to the proposed scale-wise distillation framework, we extend the family of distribution
matching distillation methods with a MMD loss, calculated on the intermediate features of the pre-
trained DMs. Below, we discuss the loss computation for the transformer-based DMs (Peebles &
Xie, 2022) as the most widely used architecture in state-of-the-art DMs, while keeping in mind that
the loss is applicable to arbitrary architectures.

First, we leverage the ability of DMs to operate at different noise levels, enabling the extraction of
structured signal at high noise levels and finer-grained feedback at low ones. Accordingly, before
feature extraction, we noise both generated and target samples within a predefined timestep interval.
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Then, we extract feature maps F∈RN×L×C from the middle transformer block of the teacher DM
for generated and target images/videos and denote them as Ffake and Freal, respectively. N is a batch
size, L is a number of spatial tokens, and C is a hidden dimension of the transformer.

For MMD computation, we consider two kernels: linear (k(x,y) = xTy) and the radial basis
function (RBF) (Chang et al., 2010). The former aligns feature distribution means, while the latter
also matches all higher-order moments. In our experiments, both kernels perform similarly, so we
simplify LMMD using the linear kernel, i.e., calculate MSE between spatial token means per image:

LMMD =

N∑
n=1

∥∥∥∥∥ 1

L

L∑
l=1

Freal
n,l,· −

1

L

L∑
l=1

Ffake
n,l,·

∥∥∥∥∥
2

. (2)

Note that the feature means computed across the entire batch rather than per image tend to mitigate
condition-specific information, resulting in lower text relevance in our experiments.

Discussion. LMMD with a linear kernel can be considered as a diffusion distillation adaptation of
the feature matching loss, proposed for improved GAN training (Salimans et al., 2016). To our
knowledge, such losses have not been explored in the context of diffusion distillation. The notable
differences are: i) LMMD leverages a pretrained DM instead of a learnable discriminator; ii) it uses
the feedback from different noise levels; iii) the feature means are computed per image rather than
across the entire batch.

Overall objective. We incorporate LMMD as an additional loss to LDMD and LGAN in our scale-wise
framework: LSwD = LMMD+α ·LDMD+β ·LGAN. Interestingly, despite its simplicity, LMMD proves
to be a highly competitive standalone distillation objective.

5 EXPERIMENTS

Models. We validate our approach in text-to-image generation by distilling SD3.5 Medium, SD3.5
Large (Esser et al., 2024) and FLUX.1-dev (Black Forest Labs, 2024). We also apply SWD to the
recent text-to-video model, Wan2.1-1.3B (Wan et al., 2025).

Data. To remain in the isolated distillation setting and avoid biases from external data, we train all
models exclusively on synthetic data generated by their teacher, rather than on real data.We note that
this step does not pose a bottleneck for training, as the distillation process itself converges relatively
fast (∼3K iterations) and requires significantly less data than the DM training. The synthetic data
generation settings for each model are provided in Appendix A.

Metrics. For text-to-image models, we use 30K text prompts from the COCO2014 and MJHQ
sets (Lin et al., 2015; Li et al., 2024) and evaluate the automatic metrics: FID (Heusel et al., 2017),
HPSv3 (Ma et al., 2025), ImageReward (IR) (Xu et al., 2023), and PickScore (PS) (Kirstain et al.,
2023) and GenEval (Ghosh et al., 2023). Note that FID was shown to correlate poorly with human
perception (Kirstain et al., 2023) for text-to-image assessment but we report it here for completeness.

Also, we conduct a user preference study via side-by-side comparisons evaluated by professional
assessors. We select 128 text prompts from the PartiPrompts dataset (Yu et al., 2022), following (Yin
et al., 2024a; Sauer et al., 2024), and generate 2 images per prompt. More details are in Appendix H.

For T2V models, we evaluate VBench-2.0 (Zheng et al., 2025), and VisionReward (Xu et al., 2024)
and VideoReward (Liu et al., 2025) on 1003 prompts from MovieGenBench (Polyak et al., 2024b).

Setup. In our main experiments, we distill the models to 4 or 6 steps. For text-to-image models, the
scale schedules begin at image resolutions of 256×256 or 512×512 and progress to 1024×1024.
For text-to-video, we start with 21×160×272 and achieve the 81×480×832 resolution. We chose
such starting points as lower resolutions provide only marginal speed improvements. The exact
timestep and scale schedules for each model are in Appendix D.

Baselines. For text-to-image, we mainly compare with the teacher models and their publicly avail-
able distilled versions, e.g., SD3.5-Turbo (Sauer et al., 2024), FLUX-Schnell (Black Forest Labs,
2024). Also, we evaluate other fast state-of-the-art models, such as distilled SDXL models (DMD2-
SDXL (Yin et al., 2024a), SDXL-Turbo (Sauer et al., 2023)) and next-scale prediction models
(Switti (Voronov et al., 2024) and Infinity (Han et al., 2024)). For the text-to-video task, we compare
with the teacher model (Wan2.1-1.3B (Wan et al., 2025)).
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Figure 4: Qualitative results of FLUX-SwD and SD3.5 Large SwD. More examples are in Figure 15.

Wan2.1 Wan2.1

SwD SwD

Cinematic closeup and detailed portrait of a reindeer in a snowy... A Samoyed and a Golden Retriever dog are playfully romping...

Figure 5: Qualitative results of Wan2.1-SwD. More examples are in Figure 14.

5.1 MAIN RESULTS

Text-to-image. Table 3 and Figure 6 present the comparisons of SWD with the baselines in terms of
generation quality and speed. The results are split into subsections denoting different model sizes.

We find that SWD models achieve the best performance in terms of PS, HPSv3, IR and GenEval
within their model families and outperform other models in most cases.

According to the human study, SWD outperforms most other models, including the more expensive
teachers and their distilled variants, in terms of image complexity and image aesthetics, while main-
taining comparable levels of text relevance and defects. Qualitative comparisons are presented in
Figure 4, with additional results in Figure 18 and Figure 15.

Model Latency,
s/video

Vision
Reward ↑ Video

Reward ↑ VBench2
Overall ↑

Wan 2.1 137 0.038 5.43 51.59
Spatial SwD 2.1 0.063 5.92 53.39
SwD 1.8 0.063 6.00 53.50

Table 2: Comparison of 4-step SWD variants
with the 50-step teacher model, Wan 2.1.

Text-to-video. The results in Table 2 show that
SWD achieves slightly better performance than the
teacher model, while being 72× faster. Visual ex-
amples are provided in Figures 5 and 14.

Also, we find that SwD, when applied across both
temporal and spatial dimensions, yields results sim-
ilar to the spatial-only variant.
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Model Latency,
s/image

Model
size, B PS ↑ HPSv3 ↑ IR ↑ FID ↓ PS ↑ HPSv3 ↑ IR ↑ FID ↓ GenEval ↑

COCO 30K MJHQ 30K

Switti 0.44 2.5 22.6 11.1 0.98 20.0 21.6 9.8 0.84 8.9 0.62
Infinity 0.80 2.0 22.7 11.8 0.94 28.1 21.5 10.5 0.98 12.9 0.69
SDXL 1.72 2.6 22.4 8.9 0.77 14.2 21.5 9.0 0.78 8.4 0.55
SDXL-Turbo 0.20 2.6 22.6 10.0 0.83 17.5 21.3 9.6 0.84 15.4 0.55
SDXL-DMD2 0.20 2.6 22.8 12.0 0.87 14.1 21.6 10.1 0.86 8.3 0.58
SD3.5-M 4.8 2.0 22.4 10.2 1.00 16.3 21.6 9.9 0.97 9.5 0.69
SD3.5-M-Turbo 0.96 2.0 22.2 9.6 0.83 17.6 21.3 9.3 0.74 13.6 0.59
SD3.5-M-SwD 0.19 2.0 22.8 11.7 1.12 23.1 21.8 10.7 1.10 13.4 0.70

SD3.5-L 8.3 8.0 22.8 11.3 1.06 16.5 21.8 10.4 1.04 10.7 0.70
SD3.5-L-Turbo 0.63 8.0 22.8 10 0.93 22.6 21.7 9.9 0.9 13.5 0.70
SD3.5-L-SwD 0.39 8.0 22.8 12.8 1.20 20.6 21.8 11.1 1.22 13.9 0.71

FLUX 10.0 12.0 22.9 12.4 1.03 23.6 21.7 10.7 0.93 13.0 0.66
FLUX-Turbo-Alpha 2.75 12.0 23.1 13.4 1.08 21.2 21.5 11.2 0.97 11.3 0.66
FLUX-Schnell 1.41 12.0 22.6 11.2 1.01 16.5 21.5 10.3 0.96 9.8 0.69
FLUX-SwD 0.72 12.0 23.1 14.6 1.14 26.4 21.9 11.6 1.06 14.4 0.71

Table 3: Quantitative comparison of SWD against other leading open-source models. Bold denotes
the best performing configuration, while underline the 2nd one.
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Figure 6: Human preference study for SWD against the baseline models.

5.2 SCALE-WISE VERSUS FULL-RESOLUTION

Next, we compare SWD against their full-resolution counterparts. The full-scale baselines use the
same timestep schedules but operate at a fixed target latent resolution.

We provide the quality comparisons for the SD3.5 Medium and provide the FLUX results in Ap-
pendix E. Comparing the settings for the same number of steps (4 vs 4, 6 vs 6), human evaluation
(Figure 7, Right) does not reveal any noticeable quality degradation. Qualitative examples (Figure 7,
Left) further confirm this. Interestingly, automatic metrics (Tables 7 and 8) indicate that the scale-
wise variants can even outperform their full-resolution counterparts, while being more efficient.

Then, we align generation times of scale-wise and full-resolution setups (4 vs. 2, 6 vs. 2 steps) to
assess quality differences. Human evaluation reveals a clear advantage for the scale-wise setup, par-
ticularly in reducing defects and improving image complexity. Examples in Figure 7 (Left) highlight
the high defect rates of the 2-step full-resolution baseline. Consistently, automatic metrics also show
notable gains in HPSv3 and PS.

Runtime. Table 4 reports per-image generation latency (including VAE decoding and text encod-
ing), and Table 5 shows average training iteration time. Compared to the full-resolution setting with
the same number of steps (4 steps), the scale-wise setup achieves ∼2× speedup in both training and
sampling across text-to-image models, and ∼3× for text-to-video.

5.3 ABLATION STUDY OF MMD LOSS

Here, we study the role of the LMMD loss and its design choices. Most experiments are conducted
with the 6-step SD3.5-M setup from Section 5.1, with the MJHQ results reported in Table 6.

We first assess the LMMD contribution to LSwD. We observe that training with LMMD alone underper-
forms the full LSwD but remains effective as an independent distillation method, whereas removing
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Figure 7: Visual examples (Left) and human preference study (Right) of the scale-wise and full-
resolution settings within SD3.5 Medium. The numbers indicate the sampling steps.

Setup Steps SD3.5-M SD3.5-L FLUX Wan2.1
Full-scale 4 0.29 0.63 1.41 5.51
Full-scale 2 0.16 0.33 0.72 2.97
Scale-wise 6 0.19 0.41 0.97 2.61
Scale-wise 4 0.17 0.32 0.72 1.84

Table 4: Sampling times (sec / image) of scale-
wise and full-resolution setups. The measure-
ment setting is described in Appendix G.

Setup Loss SD3.5-M SD3.5-L FLUX Wan2.1
Full-scale LSwD 7.5 13.4 22.8 70.6
Full-scale LSwD-MMD 1.0 1.7 2.9 12.7
Scale-wise LSwD 3.2 7.8 11.3 23.9
Scale-wise LSwD-MMD 0.4 0.9 1.4 4.4

Table 5: Training times (sec / iteration) for scale-
wise and full-resolution 4-step setups using the full
objective (LSwD) and MMD only (LSwD-MMD).

LSwD setup PS ↑ HPSv3 ↑ IR ↑ FID ↓
LSwD (Main) 21.8 10.7 1.11 13.6

LMMD only 21.5 10.5 1.15 13.8
LSwD w/o LMMD 21.2 9.7 0.91 19.5

LMMD Ablation

A: RBF kernel 21.8 10.8 1.09 13.7
B: Batch averaging 21.5 10.5 0.97 16.4
C: w/o noising 21.3 10.2 1.01 16.6

Table 6: Ablation study of the LMMD objective
for SD3.5-Medium SwD on MJHQ30K.
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Figure 8: Comparison of the main SwD models
against the ones distilled with LMMD alone.

it from LSwD leads to a significant drop in performance. Human evaluation (Figure 8) show that
LMMD-only models exhibit noticeable degradation in defects, though not severe. Visual compar-
isons (Figure 16) confirm that they provide comparable performance to the full LSwD. Moreover, as
shown in Table 5, LMMD-only training enables more than 7× faster iterations since it avoids training
extra models.

Finally, we examine several LMMD variants. The LMMD with the RBF kernel (A) shows similar
results. Referring to the feature matching (Salimans et al., 2016), we consider two changes, B:
the feature tokens in Equation (2) are averaged across the entire batch instead of per image, and C:
extracting DM features only from clean samples, rather than noising them with the diffusion process.
We observe that both B and C make LMMD less effective.

6 CONCLUSION

We introduced SwD, a scale-wise diffusion distillation framework equipped with a novel MMD-
based distillation technique. We show that both components can be readily combined with existing
state-of-the-art distillation methods and lead to further efficiency and quality improvements for few-
step models. We believe the proposed loss for DM distillation offers substantial potential for further
development to pave the way toward a highly effective, self-contained distillation pipeline that elim-
inates the need for additional trainable models.
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Stephan Hoyer, and Rémi Munos. The cramer distance as a solution to biased wasserstein gradi-
ents. arXiv preprint arXiv:1705.10743, 2017.
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APPENDIX

A IMPLEMENTATION DETAILS

We combine SWD with DMD2 (Yin et al., 2024a), achieving state-of-the-art performance in diffu-
sion distillation. We adapt DMD2 for transformer-based text-to-image DMs, whereas the original
implementation is designed for the UNet-based models, such as SDXL (Podell et al., 2024).

Specifically, the generator consists of the pretrained DM with trainable LoRA adapters (Hu et al.,
2022). The model is trained to minimize the reverse KL-divergence using the scores of the real and
fake probability distributions. The real score is modeled using the pretrained DM, while the fake
one is modeled by training a separate “fake” DM on the generated samples during distillation. The
fake model is parameterized with other LoRA adapters added to the teacher DM.

GAN. Following DMD2, we also include a GAN loss. The discriminator is a small MLP (Haykin,
1994), which operates on the intermediate features extracted from the middle transformer block of
the fake DM. The LoRA adapters of the fake DM are also updated using the discriminator loss.

The LoRA adapters are added to the attention and MLP layers, with a rank of 64 (SD3.5-M, SD3.5-
L) and 128 (FLUX, Wan 2.1). The models are trained with a learning rate of 4e−6 and batch sizes
of 64 (SD3.5-M) and 24 (FLUX, SD3.5-L, Wan 2.1) for 3−4K iterations on a single node with 8
A100 GPUs. In the reverse KL-divergence, we set the guidance for the real score to 4.5 and 0.0 for
the fake one. To train the discriminator, we use 4-layer MLP head including LayerNorm (Ba et al.,
2016) and GELU (Hendrycks & Gimpel, 2023). The MLP head processes features extracted from
the 11-th (SD3.5-M), 20-th (SD3.5-L), 15-th (FLUX, Wan2.1) transformer blocks of the fake DM.

LMMD. We use the timestep interval [0, 600] to noise input samples prior to the feature extraction.
The transformer blocks for feature extraction are the same as those used in the GAN setting.

Data. Similarly to LADD (Sauer et al., 2024), we train the models on the teacher synthetic data,
prepared prior to distillation. The samples are generated using the standard teacher configuration.
For SD3.5 Medium, we use 40 sampling steps with a guidance scale of 4.5. For SD3.5 Large, we
use 28 sampling steps with a guidance scale of 4.5. For FLUX, we use 30 sampling steps with a
guidance scale of 4.5. For Wan2.1, we use 50 steps with a guidance scale of 5.0.

B IMPORTANCE OF A SCALE-ADAPTED TEACHER MODEL

Figure 9: SD3.5 generates cropped images at low-
resolutions (256×256), while SDXL does not pro-
duce meaningful images at all. SWD is able to
perform successful distillation for such cases and
corrects these limitations.

We believe it is also important to address the
following question: Does the teacher model
need to be capable of generating images at
low scales prior to scale-wise distillation? The
teacher model may not inherently handle low
scales effectively, making the scale-wise distil-
lation a more challenging task compared to the
full-scale distillation. If this is the case, addi-
tional pretraining of the teacher on small scales
might be required, which could compromise the
efficiency of the proposed approach.

To address this question, we evaluate the ability
of SD3.5 Medium and SDXL to generate im-
ages at lower scales (256×256). The results are
presented in Figure 9. We find out that SD3.5
produces cropped and simplified images, but

the overall quality remains acceptable due to its pretraining on 256×256 resolution. SWD effec-
tively distills this model, correcting the cropped images and enhancing their complexity. However,
more crucially, SDXL is unable to generate plausible images at 256×256 resolution. Interestingly,
SWD can still produce a plausible generator even with such a poor starting point for distillation.
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Setup # steps PS ↑ HPSv3 ↑ IR ↑ FID ↓
SD3.5 Medium

Scale-wise 6 22.8 11.7 1.10 23.1
Scale-wise 4 22.7 11.7 1.12 23.7
Scale-wise 2 22.6 10.6 1.09 22.3
Full-scale 6 22.5 11.2 1.08 20.4
Full-scale 4 22.5 11.3 1.09 21.2
Full-scale 2 22.3 10.8 1.03 20.3

FLUX

Scale-wise 4 23.1 14.6 1.14 26.4
Scale-wise 2 23.0 14.1 1.12 26.5
Full-scale 4 23.1 14.0 1.13 28.5
Full-scale 2 23.0 13.8 1.13 26.9

Table 7: Quantitative comparison between scale-
wise and full-scale setups in terms of automatic
metrics on COCO30K.

Setup # steps PS ↑ HPSv3 ↑ IR ↑ FID ↓
SD3.5 Medium

Scale-wise 6 21.8 10.7 1.10 13.4
Scale-wise 4 21.8 10.7 1.13 13.7
Scale-wise 2 21.7 10.3 1.10 12.8
Full-scale 6 21.6 10.3 1.09 13.4
Full-scale 4 21.7 10.4 1.10 13.5
Full-scale 2 21.5 10.0 1.04 13.1

FLUX

Scale-wise 4 21.9 11.6 1.06 14.4
Scale-wise 2 21.9 11.5 1.10 14.0
Full-scale 4 21.8 11.3 1.09 14.4
Full-scale 2 21.8 11.2 1.08 13.4

Table 8: Quantitative comparison between scale-
wise and full-scale setups in terms of automatic
metrics on MJHQ30K.

C ARCHITECTURE CHOICE

Although SWD can be adapted to arbitrary DM architectures, we primarily focus on its application
to latent- and transformer-based diffusion models, i.e., the variants of the DiT architecture (Pee-
bles & Xie, 2022), which are most widely used in state-of-the-art text-conditional image and video
models (Esser et al., 2020; Black Forest Labs, 2024; Polyak et al., 2024a; Wan et al., 2025).

A key characteristic of DiT-based models is their reliance on attention layers (Vaswani, 2017), which
scale quadratically with spatial resolution. Additionally, these models maintain a constant number of
tokens across layers without downscaling, unlike the UNet-based DMs (Podell et al., 2024; Rombach
et al., 2021). These factors underscore the particular significance of SWD for such architectures.

D SWD SETUPS IN MAIN EXPERIMENTS

Below, we provide the time and scale schedules used in our main experiments. The scale schedule
shows the resolutions in the corresponding VAE latent spaces. Note that the schedules do not require
extensive tuning.

SD3.5 Medium. Timesteps t = [1000, 945, 896, 790, 737, 602]. Scales s = [32, 48, 64, 80, 96, 128].

SD3.5 Large. Timesteps t = [1000, 896, 737, 602]. Scales s = [64, 80, 96, 128].

FLUX. Timesteps t = [1000, 945, 790, 602]. Scales s = [32, 64, 96, 128].

Wan2.1. Timesteps t = [1000, 896, 737, 602].
Scales s = [6×20×34, 11×30×52, 16×40×70, 21×60×104].

E SCALE-WISE VERSUS FULL-RESOLUTION

Here, we provide additional results to compare the various scale-wise and full-resolution settings.
Table 7 and Table 8 present the automatic metrics for SD3.5 Medium and FLUX on the COCO
and MJHQ datasets. The visual examples for FLUX, SD3.5 Large, SD3.5 Medium are presented in
Figures 10, 11, and 17, respectively.

Also, in Table 9, we evaluate the use of “constant” 6-step scale schedules s=[64, 64, 64, 64, 64, 128]
and s=[32, 32, 32, 32, 32, 128] for SD3.5 Medium in contrast to the progressively growing schedule
s=[32, 48, 64, 80, 96, 128], used in our main setup. Note that the last step is required to be made at
the target resolution.

The results show that it is important to gradually increase the resolution over sampling steps.
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Figure 10: Visual examples of 4-step scale-wise
and 2-step full-resolution SD3.5-Large settings.

Figure 11: Visual examples of 4-step scale-wise
and 2-step full-resolution FLUX settings.
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Figure 12: Human preference study comparing
scale-wise and full-resolution FLUX setups.

Setup PS ↑ HPSv3 ↑ IR ↑ FID ↓
COCO2014

Main s=[32, 48, 64, 80, 96, 128] 22.8 11.7 1.10 23.1
s=[64, 64, 64, 64, 64, 128] 22.4 10.3 1.02 23.7
s=[32, 32, 32, 32, 32, 128] 22.3 9.8 0.97 23.8

MJHQ

Main s=[32, 48, 64, 80, 96, 128] 21.8 10.7 1.11 13.6
s=[64, 64, 64, 64, 64, 128] 21.3 9.8 1.06 14.6
s=[32, 32, 32, 32, 32, 128] 21.2 9.4 0.99 15.7

Table 9: Comparisons to the “constant” scale
schedules for SD3.5-Medium SwD.

F EXTENDED LATENT SPACE SPECTRAL ANALYSIS

Figure 13 provides more results for the SD3.5 and Wan2.1 models and also includes the analysis for
FLUX (Black Forest Labs, 2024) and SDXL (Podell et al., 2024). In contrast to other models, the
SDXL model (Podell et al., 2024) uses a variance-preserving (VP) diffusion process (Ho et al., 2020;
Song et al., 2020b). The SDXL latent space has C=4 channels and 128×128 spatial resolution.

G RUNTIME MEASUREMENT SETUP

In our experiments, we measure runtimes in half-precision (FP16), using torch.compile for all mod-
els: VAE decoders, text encoders, and generators. Note that, under our very fast sampling settings,
the computational costs of the text encoder and VAE start to account for a noticeable portion of the
overall runtime. Thus, we replace original VAEs with TinyVAEs (Boer Bohan, 2025) for all models.

The measurements are conducted in an isolated environment on a single A100 GPU. We use a batch
size of 8 for all runs, and each measurement is averaged over 100 independent runs. The latency is
then obtained by dividing the average runtime by the batch size.
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H HUMAN EVALUATION

The evaluation is conducted using Side-by-Side (SbS) comparisons, where assessors are presented
with two images alongside a textual prompt and asked to choose the preferred one. For each pair,
three independent responses are collected, and the final decision is determined through majority
voting.

The human evaluation is carried out by professional assessors who are formally hired, compensated
with competitive salaries, and fully informed about potential risks. Each assessor undergoes de-
tailed training and testing, including fine-grained instructions for every evaluation aspect, before
participating in the main tasks.

In our human preference study, we compare the models across four key criteria: relevance to the
textual prompt, presence of defects, image aesthetics, and image complexity. Figures 19, 22, 20,
21 illustrate the interface used for each criterion. Note that the images displayed in the figures are
randomly selected for demonstration purposes.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

10 2 10 1

Spatial Frequency

100

101

102

Po
we

r 80×80
1.6×↓

t=250
Noise
Noisy latents
Latents

10 2 10 1

Spatial Frequency

100

101

102

48×48
2.6×↓

96×96
1.3×↓

t=500

10 2 10 1

Spatial Frequency

100

101

102

24×24
5.3×↓

64×64
2×↓

t=600

10 2 10 1

Spatial Frequency

100

101

102

16×16
8×↓

32×32
4×↓

t=800
SDXL

10 2 10 1

Spatial Frequency

10 1

100

101

102

Po
we

r

80×80
1.6×↓

t=250
Noise
Noisy latents
Latents

10 2 10 1

Spatial Frequency

10 1

100

101

102

48×48
2.6×↓

96×96
1.3×↓

t=500

10 2 10 1

Spatial Frequency

10 1

100

101

102

32×32
4×↓

80×80
1.6×↓

t=600

10 2 10 1

Spatial Frequency

10 1

100

101

102

16×16
8×↓

32×32
4×↓

t=800
SD3.5

10 2 10 1

Spatial Frequency

10 1

100

101

102

Po
we

r 80×80
1.6×↓

t=250
Noise
Noisy latents
Latents

10 2 10 1

Spatial Frequency

100

101

102

48×48
2.6×↓

96×96
1.3×↓

t=500

10 2 10 1

Spatial Frequency

100

101

102

32×32
4×↓

80×80
1.6×↓

t=600

10 2 10 1

Spatial Frequency

100

101

102

16×16
8×↓

32×32
4×↓

t=800
FLUX

10 2 10 1

Spatial Frequency

10 1

100

101

102

Po
we

r

15×24

4×↓
40×70

1.5×↓

Noise
Noisy latents
Latents

100 101

Temporal Frequency

100

101

102
9fr.
2.3×↓

15fr.
1.4×↓

10 2 10 1

Spatial Frequency

10 1

100

101

102

10×16

6×↓
20×34

3×↓

Noise
Noisy latents
Latents

100 101

Temporal Frequency

100

101

102
1fr.
21×↓

5fr.
4.2×↓

t=800t=500
Wan2.1

Figure 13: Extended spectral analysis from Section 3 to more timesteps and models (FLUX, SDXL).

Method Total Creativity Commonsense Controllability Human Fidelity Physics Human Human Human Composition Diversity Mechanics Material Thermotics Multi-View Dynamic Spatial Dynamic Motion Order Human Complex Complex Camera Motion Instance
Score Score Score Score Score Score Anatomy Clothes Identity Consistency Relationship Attribute Understanding Interaction Landscape Plot Motion Rationality Preservation

Wan 2.1 51.59 53.75 57.06 22.65 83.03 41.45 87.00 91.24 70.85 42.56 64.94 59.16 36.58 57.89 12.15 26.08 15.01 21.21 46.33 19.77 11.02 19.13 28.16 85.96
Spatial SwD 53.39 47.62 57.96 22.76 92.94 45.68 91.89 100.00 86.93 54.31 40.93 59.66 49.05 55.22 18.81 24.15 15.75 21.35 67.33 16.00 7.09 7.71 25.28 90.64
SwD 53.50 44.78 61.40 22.80 91.93 46.61 92.69 99.10 84.02 48.05 41.52 54.33 52.04 60.14 19.96 33.81 14.28 15.15 56.33 17.55 8.94 13.58 32.75 90.05

Table 10: Full comparison on VBench2.0 using all 18 metrics.
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Wan2.1

SwD

A breathtaking image of a meteor colliding with the surface of a planet, with bright...

Wan2.1

SwD

Animated scene features a close-up of a short fluffy monster kneeling beside a...

Wan2.1

SwD

3D animation of a small, round, fluffy creature with big, expressive eyes explores a...

Wan2.1

SwD

A white and orange tabby cat is seen happily darting through a dense garden, as if...

Wan2.1
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An astronaut runs on the surface of the moon, the low angle shot shows the vast...

Figure 14: Qualitative results of Wan2.1-SwD.
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Figure 15: Qualitative results of FLUX-SwD and SD3.5 Large SwD.
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Figure 16: Qualitative comparisons of SwD trained with the full LSwD loss against the ones trained
with LMMD alone. LMMD in isolation produces competitive few-step models.
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Figure 17: Qualitative examples of image generations using scale-wise and full-resolution SD3.5
Medium SwD variants for different generation steps.
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Figure 18: Qualitative comparison of SD3.5 Medium SwD against the models of the similar size.
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Figure 19: Human evaluation interface for aesthetics.
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Figure 20: Human evaluation interface for defects.
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Figure 21: Human evaluation interface for relevance.
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Figure 22: Human evaluation interface for complexity.
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