

000 SCALING KNOWLEDGE EDITING IN LLMs TO 100,000 001 FACTS WITH NEURAL KV DATABASE 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Efficiently editing knowledge stored in Large Language Models (LLMs) enables
010 model updates without large-scale training. One promising solution is Locate-and-
011 Edit (L&E), allowing simultaneous modifications of a massive number of factual
012 knowledge. However, such editing may compromise the general abilities of LLMs
013 and even result in forgetting edited facts when scaling up to thousands of edits. In
014 this paper, we model existing linear L&E methods as querying a Key-Value (KV)
015 database. From this perspective, we then propose NeuralDB, an editing frame-
016 work that explicitly represents the edited facts as a neural KV database equipped
017 with a non-linear gated retrieval module. With simple modification over L&E
018 methods, our framework not only significantly extends the capacity of knowledge
019 editing but also eliminates the associated side effects. Comprehensive experiments
020 involving the editing of 10,000 facts were conducted on the ZsRE and Counter-
021 Fact datasets, including GPT2-XL, GPT-J (6B) and Llama-3 (8B). The results
022 demonstrate that NeuralDB excels in all metrics of editing success while main-
023 taining original performance evaluated by six representative text understanding
024 and generation tasks. Further experiments indicate that NeuralDB maintains its
025 effectiveness even when scaled to 100,000 facts (**50**× more than in prior work).
026

027 1 INTRODUCTION 028

029 Updating the knowledge stored in the parameters of Large Language Models (LLMs) is crucial to
030 refreshing outdated information (Zhu et al., 2024) and integrating domain-specific knowledge to fa-
031 cilitate customization (Ge et al., 2023). However, retraining LLMs from scratch is often impractical
032 due to the substantial computational resources and time required. Fine-tuning, while a more feasible
033 approach, can lead to catastrophic forgetting (Luo et al., 2023; Gekhman et al., 2024). To address
034 these challenges, *knowledge editing* (KE) methods (Wang et al., 2024a; Mitchell et al., 2022a; Zheng
035 et al., 2023a) have emerged as promising solutions that enable precise and cost-effective modifica-
036 tions of specific factual associations within LLMs.
037

038 Editing massive knowledge is an important but challenging task in KE. *Locate-and-Edit* (L&E)
039 methods (Meng et al., 2022; Li et al., 2024b) are the main solutions to achieve this goal. The L&E
040 paradigm trains the specific activation residual for new facts and incorporates the learned activa-
041 tions into the target parameter W by introducing a linear perturbation Δ . Additionally, to ensure
042 that the activation of “general knowledge” remains unmodified, these methods sample extensive
043 data from Wikipedia representing the general knowledge. The modified parameters Δ are then de-
044 termined by solving least squares problems to ensure that the residuals required are generated for
045 the new facts without affecting the activation of sampled knowledge (Meng et al., 2022). Notably,
046 AlphaEdit (Fang et al., 2025) introduces null space projection to enhance the preservation of the
047 sampled knowledge, effectively maintaining the general capabilities of LLMs.

048 We refer to the *capacity* of KE methods as the maximum number of edited facts that can be handled
049 without compromising general capabilities. Despite great progress, the capacity of existing methods
050 is limited to hundreds of facts. When editing thousands of facts, the post-edited models often expe-
051rience a decline in the valuable general abilities developed through extensive training (see Fig. 1).
052 This decline can be attributed to the inadequacy of the sampled subset from Wikipedia in represent-
053 ing general capabilities. Additionally, previously updated information tends to fade as more facts
are edited, due to the suboptimal capacity of the linear systems employed by these editing methods.

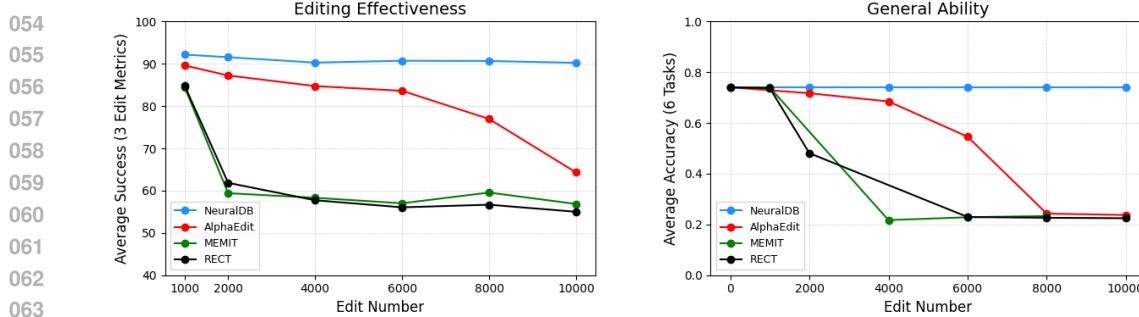


Figure 1: **The proposed NeuralDB scales edited facts up to 10,000 without losing general abilities.** *Left:* Average of efficacy, generalization, and specificity. *Right:* Average performance on tasks (MMLU, SciQ, Commonsense QA, ARC Challenge, Lambada, WSC273).

In this paper, we find that most L&E methods, including MEMIT (Meng et al., 2023), D4S (Huang et al., 2024), and AlphaEdit (Fang et al., 2025), can be understood from the perspective of the Key-Value (KV) database. We conceptualize these methods as querying a KV database, wherein a certain hidden state serves as the query to retrieve the corresponding learned residual. Formally, the updated parameters of these methods can be interpreted as a weighted average of the residual matrix associated with the edited facts. We empirically investigate these weights across multiple post-edited models and show that they exhibit an extremely sparse form during inference. Specifically, when inferring on the edited fact, the weights closely resemble a one-hot vector, with only the weight corresponding to the edited fact being non-zero, thereby returning the associated residual. Conversely, when inference is made on unrelated content, the weights are in the form of a zero vector, thereby preventing interference.

In light of this novel perspective, we propose a Neural KV Database (NeuralDB) editing framework, which integrates the target FFN layer with a gated non-linear retrieval module that replaces the original linear perturbation Δ . This non-linear retrieval module overcomes the limitations of linearity in the L&E methods and enjoys greater capacity. With the gated mechanism, our method can both protect the general ability and reduce the computation costs from sampling Wikipedia. Additionally, NeuralDB is easy to manage for supporting operations such as appending, modifying, and deleting. **We provide the quantitative and qualitative evidence of supporting delete operation in Appendix J.5.**

To validate the capacity of NeuralDB, we conducted comprehensive experiments on two KE benchmarks across three models: GPT-2 XL (Radford et al., 2019), GPT-J (6B)(Wang, 2021), and Llama-3-Instruct (8B)(Grattafiori et al., 2024). Our results demonstrate several advantages of NeuralDB:

- (i) NeuralDB achieves significantly improved performance in editing success across various metrics, while preserving fluency and consistency in post-edited models, particularly for 10,000 edited facts.
- (ii) After editing 10,000 facts, NeuralDB maintains the quality of the generated text in Llama-3-8B across six widely adopted text understanding and generation tasks.
- (iii) Extensive scaling experiments with 100,000 edited facts ($50\times$ more than AlphaEdit (Fang et al., 2025)) further demonstrate the high capacity of NeuralDB.

This combination of large capacity without a loss in generation quality underscores the potential of NeuralDB for trustworthy and customizable deployment of language models.

2 BACKGROUND

Current KE methods typically focus on updating transformer-based LLMs with factual knowledge that can be represented as triple (s, r, o) , where s denotes the subject, r represents the relational predicate, and o is the object. For instance, the fact “The latest World Cup was held in Qatar.” can be represented as (“The latest World Cup”, “was located in”, “Qatar”). Conversely, triples can be transformed into natural language sentences, and we treat these two representations as interchangeable in the sequel. We denote the edited facts as a set of revised tuples $\mathcal{F}^* = \{(s_i, r_i, o_i \rightarrow \hat{o}_i)\}$, where \hat{o}_i represents the target new object that replaces the original o_i . Notably, KE should not compromise the general ability of the model (Huang et al., 2024), as these abilities are usually developed from extensive pre-training.

108 As shown in Fig. 3, during inference, the hidden state \mathbf{h}^l of the prediction at the l -th FFN layer of
 109 an LLM is computed according to the following recursive form:
 110

$$111 \quad \mathbf{h}^l = \mathbf{h}^{l-1} + \mathbf{a}^l + \mathbf{m}^l, \quad \mathbf{m}^l = \mathbf{W}_{\text{out}}^l \sigma(\mathbf{W}_{\text{in}}^l(\mathcal{N}(\mathbf{h}^{l-1} + \mathbf{a}^l))), \quad (1)$$

112 where \mathbf{a}^l and \mathbf{m}^l are the outputs of the attention block and FFN layer, respectively, \mathbf{W}_{in}^l and $\mathbf{W}_{\text{out}}^l$
 113 represent the weight matrices of the l -th FFN layer, respectively, $\mathcal{N}(\cdot)$ represents the layer normal-
 114 ization, and $\sigma(\cdot)$ denotes the activation function. We follow previous research (Meng et al., 2022;
 115 2023) by modeling the FFN layer as operating linear key-value memories as follows:
 116

$$117 \quad \mathbf{k}^l = \sigma(\mathbf{W}_{\text{in}}^l(\mathcal{N}(\mathbf{h}^{l-1} + \mathbf{a}^l))), \quad \mathbf{v}^l = \mathbf{W}_{\text{out}}^l \mathbf{k}^l. \quad (2)$$

118 Then, the textual knowledge (s, r, o) can be linked to the parametric knowledge of the LLM through
 119 the activation derived from the inference process. In this context, the key vector \mathbf{k} can be interpreted
 120 as encoding the query (s, r) , while the object o is subsequently decoded by the model based on the
 121 value vector \mathbf{v} associated with the key (Geva et al., 2021).
 122

123 L&E methods aim at adjusting the activation value \mathbf{v} on new facts by modifying the parameter \mathbf{W}_{out} .
 124 In this paradigm, a learnable perturbation is added to the activation \mathbf{v}^l in the specified layer l using
 125 supervised learning, resulting in a new activation $\hat{\mathbf{v}}^l$ that allows the model to generate new answers
 126 \hat{o} . Then the perturbation matrix Δ^l should satisfy
 127

$$127 \quad (\mathbf{W}_{\text{out}}^l + \Delta^l) \mathbf{k}_i^l = \hat{\mathbf{v}}_i^l \quad \text{and} \quad (\mathbf{W}_{\text{out}}^l + \Delta^l) \mathbf{k}_j^l = \mathbf{v}_j^l \quad (3)$$

128 where $\hat{\mathbf{v}}_i^l$ corresponds to the new facts and $(\mathbf{k}_j^l, \mathbf{v}_j^l)$ to the sampled knowledge that shall be preserved.
 129

130 For simplified notation, we denote the parameter to be updated $\mathbf{W}_{\text{out}}^l \in \mathbb{R}^{d_2 \times d_1}$ by \mathbf{W} , where d_1
 131 and d_2 represent the dimensions of the intermediate and output layers of the FFN, respectively. To
 132 update a large batch of facts, we obtain the key and value matrix by stacking the vectors:
 133

$$134 \quad \mathbf{K}_1 = [\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_m] \in \mathbb{R}^{d_1 \times m}, \quad \hat{\mathbf{V}}_1 = [\hat{\mathbf{v}}_1, \hat{\mathbf{v}}_2, \dots, \hat{\mathbf{v}}_m] \in \mathbb{R}^{d_2 \times m}, \quad (4)$$

135 where m is the number of edited facts, and we provide details on computing \mathbf{k}_i and $\hat{\mathbf{v}}_i$ in Appendix F.
 136 Additionally, we define the residual matrix and residual vectors as
 137

$$138 \quad \mathbf{R}_1 = \hat{\mathbf{V}}_1 - \mathbf{W} \mathbf{K}_1 \quad \text{and} \quad \mathbf{r}_i = \mathbf{R}_1[:, i]. \quad (5)$$

139 To preserve the general abilities of the post-edited model, current methods (Meng et al., 2023; Huang
 140 et al., 2024; Fang et al., 2025), require the sampling of massive facts from Wikipedia¹ to construct
 141 the matrix \mathbf{K}_0 , which typically consists of 100,000 stacked key vectors.
 142

143 3 RETHINKING LOCATE-AND-EDIT METHODS WITH QUERYING KEY-VALUE 144 DATABASE

145 In this section, we demonstrate that most L&E methods can be treated as querying a Key-Value (KV)
 146 database. We support this argument through both theoretical derivation and experimental validation.
 147 Specifically, we update all target facts in a single step in executing MEMIT (Meng et al., 2023) and
 148 AlphaEdit (Fang et al., 2025), which have been shown to effectively mitigate the degradation of
 149 general capabilities by D4S (Huang et al., 2024). For simplicity, we only discuss the updating over
 150 one layer. **The detailed derivation of MEMIT and AlphaEdit is provided in Appendix G.**
 151

152 We conclude that the mechanism of the updating parameter Δ_{upd} can be written as
 153

$$154 \quad (\mathbf{W} + \Delta_{\text{upd}}) \mathbf{k} = \mathbf{v} + \mathbf{R}_1 \omega, \quad \omega = \mathbf{K}_1^T \mathbf{S} \mathbf{k} \in \mathbb{R}^{m \times 1}, \quad (6)$$

155 where \mathbf{k} and \mathbf{v} are the key and value vectors from the original activation, \mathbf{K}_1 is key matrix computed
 156 from edited facts, and \mathbf{S} is the kernel matrix obtained from specific editing methods.
 157

158 With self-similarity $\omega = \mathbf{K}_1^T \mathbf{S} \mathbf{k}$ as weighted scores, the result of weighted average $\mathbf{R}_1 \omega$ is integrated
 159 into the models to update new knowledge. This means that \mathbf{k} serves as the query to retrieve the
 160 residual matrix \mathbf{R}_1 . Then we discuss the structures of the solutions for MEMIT and AlphaEdit.
 161

¹<https://huggingface.co/datasets/wikimedia/wikipedia>

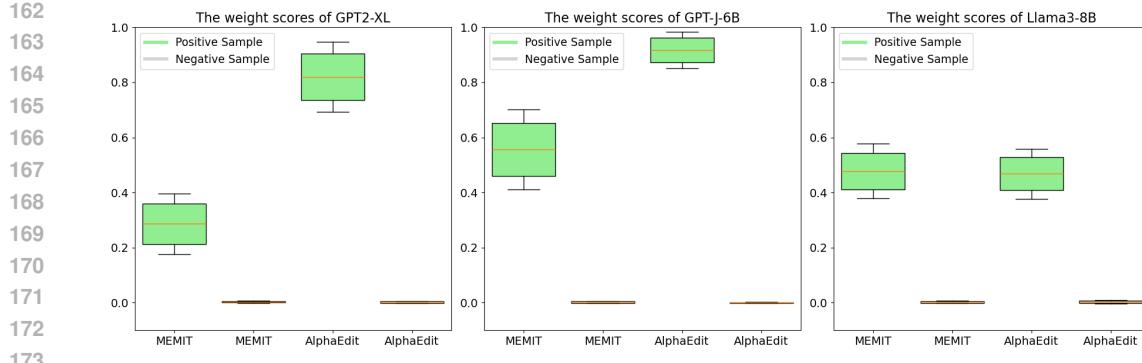


Figure 2: Visualization of weighted scores $\omega = \mathbf{K}_1^T \mathbf{S}\mathbf{k}$ using MEMIT and AlphaEdit for three models. The box-plots are generated from the mean and variance of weight scores, with the center line indicating the mean, boxes showing ± 1 standard deviation, and whiskers ± 1.5 .

The closed-form solution for MEMIT can be derived as follows:

$$\Delta_{\text{upd}}^{\text{MEMIT}} = \mathbf{R}_1 \mathbf{K}_1^T (\mathbf{K}_1 \mathbf{K}_1^T + \beta_1 \mathbf{K}_0 \mathbf{K}_0^T)^{-1}. \quad (7)$$

Let $\mathbf{S}_1 = (\mathbf{K}_1 \mathbf{K}_1^T + \beta_1 \mathbf{K}_0 \mathbf{K}_0^T)^{-1}$, then the update can be expressed as $\Delta_{\text{upd}}^{\text{MEMIT}} = \mathbf{R}_1 \mathbf{K}_1^T \mathbf{S}_1$.

Similarly, AlphaEdit utilize the null space projection matrix \mathbf{P} as the hard constraints of general knowledge. The closed-form solution for AlphaEdit has a similar structure as following:

$$\Delta_{\text{upd}}^{\text{AlphaEdit}} = \mathbf{R}_1 \mathbf{K}_1^T \mathbf{P}^T (\mathbf{P} \mathbf{K}_1 \mathbf{K}_1^T \mathbf{P}^T + \beta_2 \mathbf{I})^{-1} \mathbf{P}. \quad (8)$$

Let $\mathbf{S}_2 = \mathbf{P}^T (\mathbf{P} \mathbf{K}_1 \mathbf{K}_1^T \mathbf{P}^T + \beta_2 \mathbf{I})^{-1} \mathbf{P}$, this can be rewritten as $\Delta_{\text{upd}}^{\text{AlphaEdit}} = \mathbf{R}_1 \mathbf{K}_1^T \mathbf{S}_2$, which is also the weighted average over \mathbf{R}_1 , with $\mathbf{K}_1^T \mathbf{S}_2 \mathbf{k}$ representing the weighted scores ω . In particular, AlphaEdit returns $\mathbf{0}$ when \mathbf{k} is from the null space of general knowledge \mathbf{K}_0 . Consequently, $\mathbf{S}\mathbf{k} = \mathbf{P}^T (\mathbf{P} \mathbf{K}_1 \mathbf{K}_1^T \mathbf{P}^T + \beta_2 \mathbf{I})^{-1} (\mathbf{P} \mathbf{k}) = \mathbf{0}$, which effectively preserves the general abilities.

We empirically visualize the weighted scores $\omega = \mathbf{K}_1^T \mathbf{S}\mathbf{k}$ for three post-edited models using MEMIT and AlphaEdit during their inference on new facts. Specifically, we perform KE on 1,000 facts from the CounterFact dataset and evaluate the post-edited models on these edited facts. When testing the i -th edited knowledge, we refer to the i -th component of ω_i as the positive sample, while the remaining components are considered negative samples.

As shown in Fig. 2, the weighted scores labeled as negative samples are close to 0, while the weighted scores of positive samples are significantly higher, with those for AlphaEdit approaching 1. Additional results provided in the Appendix J.9 demonstrate that methods typically yield $\omega = 0$ when conducting inference on unmodified facts. The empirical results of these optimized KV databases reveal an important finding: **they return the residual vector corresponding to the edited fact, while returning the zero vector for unrelated questions.**

4 METHOD

To overcome the limited capacity of linear system, we construct the neural KV database equipped with non-linear retrieval function, as previous editing methods were primarily optimized for retrieving the most relevant residual vector. As shown in Fig. 3, the proposed NeuralDB editing framework serves as a plug-and-play module for efficient massive knowledge editing.

4.1 NEURAL KV DATABASE

Given the target facts $\mathcal{F}^* = \{(s_i, r_i, o_i \rightarrow \hat{o}_i)\}$, we first compute their key and residual matrix to obtain \mathbf{K}_1 and \mathbf{R}_1 . Below, we formally define them as a neural KV database.

Definition 1 (Neural Key-Value Database). *Given \mathcal{F}^* , the constructed neural KV database can be represented as $(\mathbf{K}_1, \mathbf{R}_1)$, where $\mathbf{K}_1 \in \mathbb{R}^{d_1 \times m}$ and $\mathbf{R}_1 \in \mathbb{R}^{d_2 \times m}$ denote the key matrix and residual matrix of the edited facts as defined in Eq. equation 4 and Eq. equation 5. \mathbf{K}_1 and \mathbf{R}_1 serve as keys and values within the database, with $\mathbf{k}_i = \mathbf{K}_1[:, i]$ being associated with $\mathbf{r}_i = \mathbf{R}_1[:, i]$.*

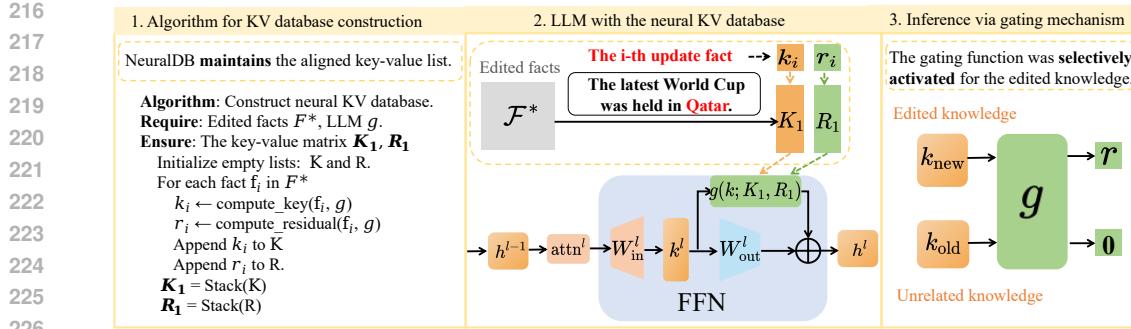


Figure 3: **Overview of NeuralDB editing framework.** (1) The key \mathbf{K}_1 and residual matrix \mathbf{R}_1 , defined in Eq. 4 and Eq. 5, are computed to construct the neural KV database. (2) Our proposed module is designed for efficient, plug-and-play editing. (3) During inference, our non-linear gated function $g(\cdot; \mathbf{K}_1, \mathbf{R}_1)$ only returns the most matched residual \mathbf{r}_j when post-edited models infer one edited fact and involve key vectors $\mathbf{k}_{\text{edited}}$. The function $g(\cdot; \mathbf{K}_1, \mathbf{R}_1)$ reverts zero vector $\mathbf{0}$ when involving the key vector \mathbf{k}_{pre} of general knowledge.

4.2 NONLINEAR GATED RETRIEVAL MODULE

The findings in Section 3 indicate two key requirements in KE: (i) determining whether to use residuals for editing, and (ii) identifying which residual to edit based on the given query. To rigorously implement these demands in the KV database ($\mathbf{K}_1, \mathbf{R}_1$), we propose the following nonlinear retrieval function, which returns the residual with maximal similarity if it meets the gating condition:

$$g(\mathbf{k}; \mathbf{K}_1, \mathbf{R}_1) = \mathbf{r}_j \cdot \overbrace{\mathbf{1}_{\cos(\mathbf{k}, \mathbf{k}_j) > \gamma}}^{\text{Gate}}, j = \arg \max \cos(\mathbf{k}, \mathbf{k}_i), \quad (9)$$

where $\cos(\cdot, \cdot)$ denotes the cosine similarity, $\mathbf{1}$ represents the indicator function, and γ is the parameter controlling the gating mechanism. Although straightforward, cosine similarity proves to be very effective in our key matching experiments in Appendix E. Additionally, its range from the interval $[0, 1]$ provides good interpretability, making it easy to set γ .

As illustrated in Fig. 3, the nonlinear function is integrated into the target FFN layer as follows:

$$\mathbf{v}^l = \mathbf{W}^l \mathbf{k}^l + g(\mathbf{k}^l; \mathbf{K}_1, \mathbf{R}_1). \quad (10)$$

When post-edited models involve general knowledge, the involved key vector \mathbf{k}^l generally exhibits low similarity to all key vectors within the matrix \mathbf{K}_1 . Then the workflow of original model remains same since the gating mechanism is not activated. Therefore, the general ability of LLMs can successfully be preserved. In contrast, when post-edited models encounter revised facts, our retrieval function will recall the most closely related residual vector, because of the high similarity between the keys will satisfy the gating condition.

The ease of deployment NeuralDB only requires maintaining the lists of key and value vectors, offering advantages such as convenient addition, deletion, and modification of edited facts. Additionally, our method eliminates the expensive but ineffective process of estimating general knowledge. Compared to current L&E methods, these advantages provide better flexibility and practicality.

Single layer versus multi-layer editing We just implement our module in one single FFN layer. Although previous L&E methods typically employ multi-layer strategies, we find this strategy offers limited performance gains. We provide a related discussion in Appendix I.

Additional memory usage and computation time We show that the additional parameters introduced in the NeuralDB module are controllable. Specifically, the space complexity is $O((d_1 + d_2) \times m)$ for the storage of matrices $\mathbf{K}_1 \in \mathbb{R}^{d_1 \times m}$ and $\mathbf{R}_1 \in \mathbb{R}^{d_2 \times m}$, where m denotes the number of facts. When editing 10,000 facts with Llama 3 8B (Instruct), the additional parameter size amounts to 150M, which constitutes approximately 2.2% of the original model’s size. **We report the additional running time of in Table 1.** The evaluation time for 10,000 facts in CounterFact dataset increases only by 1.5% compared to the original model. Detailed information regarding additional computation is provided in Appendix H.

270 Table 1: The ratio of additional time across the number of edits on Llama 3 8B (Instruct).
271

Total number of edited facts	2k	4k	6k	10k	12k	16k	20k
The ratio of additional time	0.65%	1.65%	1.67%	1.7%	2.29%	3.69%	5.55%

276 5 EXPERIMENTS
277278 In this section, we present a comprehensive evaluation of our method for massive KE. For fair
279 comparison, we mostly follow the experimental setups in AlphaEdit (Fang et al., 2025) to benchmark
280 our method. Specifically, we examine whether the edited models can effectively balance mastery
281 of the edited facts with retention of their general capabilities. Detailed implementation of the Neu-
282 ralDB editing framework is provided in Appendix D. We provide the detailed ablation studies in
283 Appendix I, including γ selection, layer selection and multi-layer. Additional results are given
284 in Appendix J, including support for more LLMs, further comparisons with WISE and T-Patcher,
285 results on KnowEdit (Zhang et al., 2024b) and MQuAKE (Zhong et al., 2023), and other supple-
286 mentary findings.287 5.1 SET UP
288289 We evaluates the post-edited models after editing all the T facts, where T is the total edited numbers.
290291 **Models and methods** We select three representative LLMs, including GPT-2 XL (Radford
292 et al., 2019), GPT-J (6B) (Wang, 2021), and Llama3 (8B) (Grattafiori et al., 2024). We com-
293 pare our method with the following KE methods, including Fine-Tune (FT) (Meng et al., 2023),
294 MEND (Mitchell et al., 2022a), ROME (Meng et al., 2022), MEMIT (Meng et al., 2023),
295 SERAC (Mitchell et al., 2022b), GRACE (Hartvigsen et al., 2023a), RECT (Gu et al., 2025), and
296 AlphaEdit (Fang et al., 2025). We provide a detailed introduction on these baselines and models
297 in Appendix B. We provide the results including more LLMs in Section J.10. Additionally, we
298 compare with the WISE (Wang et al., 2025b) in Appendix J.1.
299300 **Datasets for knowledge editing** To evaluate KE methods, we utilize two widely recognized
301 benchmarks: the CounterFact dataset (Meng et al., 2022) and the ZsRE dataset (Levy et al., 2017).
302 Consistent with previous research (Meng et al., 2022; Fang et al., 2025), we employ the following
303 evaluation metrics: *efficacy* (success of edited facts), *generalization* (success of paraphrased facts),
304 *specificity* (success of neighboring facts), *fluency* (generation entropy), and *consistency* (reference
305 score). Detailed explanations of the datasets and metrics are provided in Appendix C.306 **Datasets for general ability** We assess the general capabilities of the edited LLMs using the fol-
307 lowing typical datasets, SciQ (Welbl et al., 2017) (science question answering), MMLU (Hendrycks
308 et al., 2021) (massive multitask language understanding), Commonsense QA (Talmor et al., 2019)
309 (commonsense knowledge understanding), ARC Challenge (Clark et al., 2018) (challenge task re-
310 quiring reasoning), WSC273 (Kocijan et al., 2019) (coreference resolution), Lambada (Paperno
311 et al., 2016)(predict the endings of text passages). Datasets such as SciQ, MMLU, and Common-
312 sense QA primarily evaluate knowledge-based question answering, focusing on the models’ ability
313 to understand and retain factual information. In contrast, the ARC Challenge, WSC273, and Lam-
314 bada are designed to assess capabilities beyond mere knowledge memory, such as reasoning and text
315 generation. Detailed information regarding these datasets is provided in Appendix C.
316317 5.2 THE EDITING EFFECTIVENESS OF POST-EDITED MODELS
318319 We evaluated the performance after editing 2,000 facts and also included the results of 10,000 facts in
320 parentheses for MEMIT, RECT, AlphaEdit, and NeuralDB. The results are presented in Table 2 and
321 our method demonstrates exceptional efficacy across various scenarios. We present the following
322 three important perspectives to demonstrate our advantages.323 **NeuralDB has great generalization.** The rephrased structure presents a significant challenge for the
generalization metric, especially for memory-based methods. Although NeuralDB is also classified

324
 325 Table 2: Comparison of NeuralDB on KE benchmarks. Pre-edited refers to the original models
 326 prior to any edits. We evaluated the performance of editing 2,000 facts, with results for FT, MEND,
 327 InstructEdit, MELO, and ROME (sourced from Fang et al. (2025)). For 10,000 facts, the results
 328 for MEMIT, RECT, AlphaEdit, and NeuralDB are denoted using the arrow (\rightarrow) notation. The best
 329 results for both 2,000 and 10,000 facts are highlighted in bold, respectively.

330 Method	331 Model	332 CounterFact					333 ZsRE		
		Efficacy \uparrow	Generalization \uparrow	Specificity \uparrow	Fluency \uparrow	Consistency \uparrow	Efficacy \uparrow	Generalization \uparrow	Specificity \uparrow
332 Pre-edited	333 LLaMA3	7.9	10.6	89.5	635.2	24.1	37.0	36.3	31.9
333 FT		83.3	67.8	46.6	233.7	8.8	30.5	30.2	15.5
334 MEND		63.2	61.2	45.4	372.2	4.2	0.9	1.1	0.5
335 SERAC		71.2	61.1	66.9	615.7	20.8	67.8	34.0	22.2
336 GRACE		96.7	50.1	72.2	620.4	23.8	93.6	1.0	31.9
337 ROME		64.4	61.4	49.4	449.1	3.3	2.0	1.8	0.7
338 MEMIT		63.5 \rightarrow 63.4	62.8 \rightarrow 56.6	52.0 \rightarrow 50.55	466.6 \rightarrow 460.4	6.5 \rightarrow 6.5	36.7 \rightarrow 0.1	32.9 \rightarrow 0.1	19.1 \rightarrow 1.5
339 RECT		64.2 \rightarrow 60.0	62.5 \rightarrow 53.9	58.9 \rightarrow 51.2	502.8 \rightarrow 399.1	12.9 \rightarrow 1.6	86.8 \rightarrow 0.0	82.3 \rightarrow 0.0	31.9 \rightarrow 0.0
AlphaEdit		99.1 \rightarrow 75.8	94.0 \rightarrow 63.1	68.6 \rightarrow 54.0	622.7 \rightarrow 417.8	32.8 \rightarrow 7.0	94.4 \rightarrow 90.5	91.3 \rightarrow 85.9	32.6 \rightarrow 30.3
NeuralDB		99.9 \rightarrow 99.2	86.6 \rightarrow 85.9	88.2 \rightarrow 85.6	632.7 \rightarrow 631.02	32.9 \rightarrow 32.6	96.3 \rightarrow 95.9	92.0 \rightarrow 91.0	31.9 \rightarrow 31.8
340 Pre-edited	341 GPT-J	16.2	18.6	83.1	621.8	29.7	26.3	25.8	27.4
341 FT		92.2	72.4	43.4	297.9	6.7	72.4	68.9	19.7
342 MEND		46.2	46.2	53.9	242.4	3.9	0.7	0.7	0.5
343 SERAC		82.3	58.3	69.0	615.9	28.7	92.4	38.2	25.2
344 GRACE		96.5	50.1	74.4	620.6	31.6	96.5	0.4	24.8
345 ROME		57.5	54.2	52.1	589.4	3.2	56.4	54.7	9.9
346 MEMIT		98.6 \rightarrow 48.8	95.4 \rightarrow 49.3	66.1 \rightarrow 51.9	557.8 \rightarrow 281.5	36.5 \rightarrow 5.1	90.5 \rightarrow 0.2	84.7 \rightarrow 0.1	30.9 \rightarrow 0.2
347 RECT		98.8 \rightarrow 76.3	86.3 \rightarrow 70.6	74.4 \rightarrow 54.9	618.1 \rightarrow 517.3	41.2 \rightarrow 25.4	96.6 \rightarrow 53.5	91.5 \rightarrow 49.6	29.0 \rightarrow 21.9
AlphaEdit		99.8 \rightarrow 91.6	96.3 \rightarrow 79.6	76.2 \rightarrow 60.3	618.5 \rightarrow 517.8	41.9 \rightarrow 6.9	99.7 \rightarrow 94.2	95.9 \rightarrow 86.1	28.8 \rightarrow 22.5
NeuralDB		99.7 \rightarrow 99.1	94.6 \rightarrow 93.2	80.0 \rightarrow 75.7	619.8 \rightarrow 620.0	41.4 \rightarrow 41.3	99.2 \rightarrow 98.2	95.9 \rightarrow 95.0	27.5 \rightarrow 27.0
348 Pre-edited	349 GPT2-XL	22.2	24.3	78.5	626.6	31.9	22.2	31.3	24.2
349 FT		63.6	42.2	57.1	519.4	10.6	37.1	33.3	10.4
350 MEND		50.8	50.8	49.2	407.2	1.0	0.0	0.0	0.0
351 SERAC		72.3	58.2	64.1	595.4	27.4	92.2	36.6	20.7
352 GRACE		98.9	50.1	72.1	620.2	28.5	94.3	1.6	27.6
353 ROME		54.6	51.2	52.7	366.1	0.7	47.5	43.6	14.3
354 MEMIT		93.0 \rightarrow 58.5	83.3 \rightarrow 55.8	58.9 \rightarrow 56.1	481.8 \rightarrow 496.2	23.2 \rightarrow 8.1	74.4 \rightarrow 3.5	66.9 \rightarrow 2.8	25.87 \rightarrow 2.07
355 RECT		91.8 \rightarrow 86.9	79.5 \rightarrow 69.5	64.0 \rightarrow 55.0	482.1 \rightarrow 517.8	20.3 \rightarrow 10.9	82.6 \rightarrow 27.5	74.7 \rightarrow 25.1	24.6 \rightarrow 13.1
AlphaEdit		99.4 \rightarrow 92.2	93.8 \rightarrow 76.5	65.6 \rightarrow 56.5	584.0 \rightarrow 580.9	37.9 \rightarrow 29.6	93.2 \rightarrow 57.1	83.5 \rightarrow 47.5	25.3 \rightarrow 13.5
NeuralDB		99.8 \rightarrow 99.1	97.2 \rightarrow 95.7	74.1 \rightarrow 70.9	621.5 \rightarrow 619.9	42.2 \rightarrow 41.7	96.3 \rightarrow 94.6	92.8 \rightarrow 91.0	25.0 \rightarrow 24.2

356 as a memory-based method, our approach achieves nearly 90% accuracy, whereas SEARC and
 357 GRACE only achieve a success rate of almost 50%.

358 **NeuralDB has few side effects.** Editing methods must be precise and avoid potential side effects.
 359 As observed in Table 2, existing methods often exhibit low specificity metrics and their responses
 360 lack fluency. Our method effectively mitigates these side effects and achieves near results compared
 361 with pre-edited models in terms of both specificity and fluency. Additionally, our method ensures
 362 that the generated text maintains coherence with a high degree of consistency.

363 **NeuralDB has superior scalability.** In particular, when increasing the number of edited facts from
 364 2,000 to 10,000, our method maintains nearly 99% of the results across all metrics and exhibits
 365 stable performance. In contrast, existing methods often experience significant degradation, with
 366 AlphaEdit preserving only 70% of the results. When editing 10,000 facts, our method demonstrates
 367 a comprehensive advantage across all metrics in two datasets.

370 5.3 THE GENERAL ABILITIES OF POST-EDITED MODELS

371 We assessed post-edited models with various configurations, evaluating their performance across
 372 2,000, 4,000, 6,000, 8,000, and 10,000 facts, as depicted in Fig. 4. The evaluation was conducted
 373 on lm-evaluation-harness (Gao et al., 2024). The results show that our method effectively edits a
 374 large number of facts without compromising the general abilities of the models across various tasks.
 375 In contrast, existing L&E methods struggle with 4,000 facts editing and exhibit a rapid decline in
 376 general abilities as the number of edited facts increases. Notably, these baseline methods achieve
 377 favorable results on the SciQ dataset, likely due to the dataset’s content being well-represented

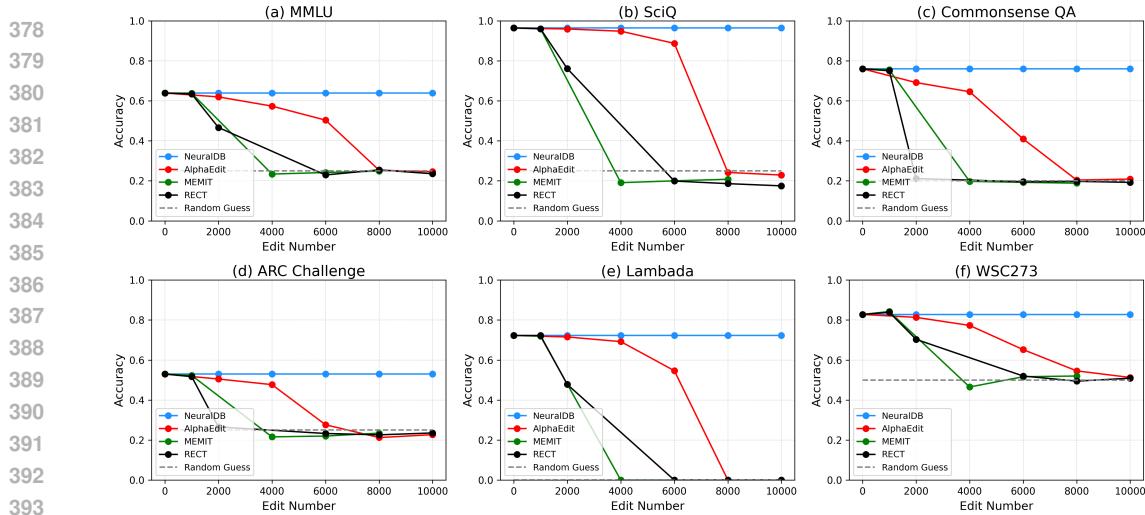


Figure 4: Results over general abilities after massive editing. NeuralDB is evaluated against strong baselines (MEMIT, RECT, and AlphaEdit), with black dashed lines indicating random guessing baselines for multi-choice datasets. The results highlight NeuralDB’s advantage: it preserves general capabilities with strong consistency as edit numbers increase significantly.

in Wikipedia and thus captured by the sampled K_0 . However, their performance deteriorates on other tasks, highlighting the limitations of relying on Wikipedia-sampled K_0 . Our method, which directly incorporates the gated mechanism, offers a more precise and effective approach compared to approximations derived from Wikipedia. For results on more models, please see Appendix J.

5.4 SCALING UP THE NUMBER OF EDITED FACTS INTO 100K

We further examine the scalability of the NeuralDB when applied to an extensive volume of knowledge. To obtain a sufficiently large set of facts for this investigation, we utilized the training set of the ZsRE dataset for model editing. The results for the Llama3 8B (Instruct) model are presented in Table 3. These results demonstrate that the performance of NeuralDB remains highly stable as the number of edited facts increases from 10,000 to 100,000 with only marginal degradation observed. In evaluations of the model’s general ability, we find that scaling up the number of edited facts to 100,000 did not harm the general ability performance and led to a 0.7% improvement in the benchmark datasets. This underscores the superior scalability of our framework.

Table 3: Editing accuracy and the post-edited model’s general performance of NeuralDB on Llama 3 (8B) when editing extremely large sets of facts.

Number of edits	0k	10k	20k	30k	40k	50k	60k	70k	80k	90k	100k
Efficacy (\uparrow)	37.0	96.9	96.6	96.6	96.4	96.1	96.0	95.9	95.8	95.6	95.5
Generalization (\uparrow)	36.3	91.4	91.4	91.2	91.0	90.7	90.6	90.6	90.5	90.4	90.2
Specificity (\uparrow)	31.9	35.1	35.3	35.2	35.2	35.2	35.2	35.2	35.1	35.1	35.1
MMLU ² (\uparrow)	56.2	56.2	56.2	56.2	56.2	56.2	56.2	56.9	56.9	56.9	56.9

6 RELATED WORK

6.1 KNOWLEDGE EDITING THROUGH PARAMETER MODIFICATION

Locate-and-Edit The L&E paradigm is derived from causal trace experiments (Meng et al., 2022), suggesting that the factual memory of the Transformer models is primarily associated with the FFN layers (Geva et al., 2021). ROME (Meng et al., 2022) is proposed to edit the factual memory of the models by modifying the parameter of the target FFN layer. MEMIT (Meng et al., 2023) extends

²The MMLU results are evaluated by the AlphaEdit project rather than the lm-evaluation-harness. Although they use different metrics, both sets of results reflect the general capabilities of the LLMs.

432 ROME to support multi-layer and batch editing versions, allowing the editing of thousands of factual
 433 knowledge. To address the challenge of post-edited models losing their general capabilities (Li et al.,
 434 2024a; Hsueh et al., 2024), several solutions were proposed, including the dumping of sequential
 435 editing caches (Huang et al., 2024), null space projection (Fang et al., 2025), and regularization of
 436 the weights (Gu et al., 2024b) and singular values (Ma et al., 2025).

437

438 **Hypernetwork** KE (De Cao et al., 2021) trains a lightweight biLSTM-MLP editor to convert a
 439 single-sample gradient into a low-rank weight delta. MEND (Mitchell et al., 2021) factorizes two-
 440 layer gradients into rank-1 vectors and feeds them through a shared MLP, allowing memory-frugal
 441 batch edits. InstructEdit (Zhang et al., 2024a) utilizes a complex prompt template so that gradients
 442 self-cluster, enabling diverse OOD tasks. All these approaches (Li et al., 2025b) require additional
 443 fine-tuning of the hypernetwork with large datasets, incurring considerable computational overhead.

444

445 6.2 KNOWLEDGE EDITING WITHOUT PARAMETER MODIFICATION

446

447 **External memory module** This line of work starts with SERAC (Mitchell et al., 2022c), which
 448 augments a frozen model with explicit retrieval memory. T-Patcher (Huang et al., 2023) injects a
 449 sparse “key–value–bias” triplet into the final FFN layer. GRACE (Hartvigsen et al., 2023b) stores
 450 erroneous hidden states as discrete keys in a dynamic codebook whose values overwrite selected
 451 layers whenever the current activation falls inside an ϵ -ball, enabling millisecond-scale. MELO
 452 (Yu et al., 2024) uses a hidden-state–indexed database to activate low-rank, per-edit adapter blocks
 453 on demand. Although NeuralDB shares a similar framework with memory-based, the main differ-
 454 ence is using the FFN activation of the subject as the key, which provides stronger generalization
 455 and scalability. In Appendix E, we provide a detailed discussion and key matching experiments
 456 compared to GRACE (Hartvigsen et al., 2023a) to explain our advantages. **MEMOIR** (Wang et al.,
 457 2025a) achieves strong lifelong editing by training sparse masks over side parameters and routing
 458 new queries via sparse activation-pattern matching; in contrast, our approach targets *large-batch*
 459 editing at scale with an explicit, in-layer KV module. RASE (Han et al., 2023) enhances T-Patcher
 460 and ROME by integrating fact retrieval; unlike our in-model retrieval from hidden states, RASE uses
 461 sentence-embedding models for *external* retrieval before applying editing.

462

463 **Prompt-based approaches** Recent studies utilize prompt engineering to facilitate efficient KE.
 464 For example, MemPrompt (Madaan et al., 2022) and IKE (Zheng et al., 2023b) embed updated
 465 knowledge into prompts to leverage in-context learning. **For multi-hop QA tasks, MQUAKE** (Zhong
 466 et al., 2023) and **RippleEdits** (Cohen et al., 2024) introduces a benchmark to evaluate multi-hop KE
 467 performance. MeLLO (Zhong et al., 2023) stores edited facts externally and iteratively prompts
 468 the model to yield answers consistent with the updates. PokeMQA (Gu et al., 2024a) improves
 469 retrieval and answer accuracy by decomposing multi-hop questions via prompts. RAE (Shi et al.,
 470 2024) retrieves refined facts and enhances the language model through in-context learning using
 471 a knowledge graph. To address multilingual KE, ReMaKE (Wang et al., 2024b) integrates newly
 472 retrieved multilingual knowledge into prompts.

473

7 CONCLUSION

474

475 In this paper, we introduce NeuralDB, a scalable knowledge editing framework designed to con-
 476 struct a neural KV database from edited facts and integrate it into the target FFN layer within LLMs
 477 using a non-linear gated function. This integration ensures that the general capabilities of LLMs
 478 are preserved. The neural database is designed to be easily maintained, facilitating efficient addi-
 479 tion and modification of edited facts within the models. We conducted comprehensive experiments
 480 across various LLMs to validate the effectiveness of our framework. Our results on the ZsRE and
 481 CounterFact datasets, utilizing GPT2-XL, GPT-J (6B), and Llama-3 (8B), demonstrate that Neu-
 482 ralDB editing can effectively modify hundreds of thousands of facts without degrading the quality
 483 of generated text. Additionally, our findings from six generic text understanding and generation
 484 tasks confirm that our method preserves the general abilities of LLMs unrelated to the target edited
 485 facts. These results highlight the robustness and scalability of NeuralDB editing, positioning it as a
 486 valuable tool for enhancing the adaptability and accuracy of LLMs in diverse applications.

486 8 ETHICS STATEMENT
487488 The wider impacts include positive contributions to society. By improving the efficiency of knowl-
489 edge updates, models can adapt more quickly to changing environments and information. This not
490 only benefits research and education, but also provides up-to-date information support in critical
491 fields such as healthcare and justice, promoting scientific and timely decision making. Furthermore,
492 the proliferation of knowledge editing will encourage interdisciplinary collaboration, allowing ex-
493 perts from different fields to share and integrate knowledge more effectively to address complex
494 societal issues.495 496 9 REPRODUCIBILITY STATEMENT
497498 To ensure reproducibility, we provide the code in the supplementary materials and detailed imple-
499 mentation information in Appendix D. In the README.md file included with the code, we present
500 a step-by-step guide for reproducing our results, which covers loading datasets, preparing the envi-
501 ronment, executing the methods, and evaluating the outcomes.502 503 REFERENCES
504505 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
506 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
507 *arXiv preprint arXiv:1803.05457*, 2018.508 Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects
509 of knowledge editing in language models. *Transactions of the Association for Computational
510 Linguistics*, 11:283–298, 2024.511 Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. *arXiv
512 preprint arXiv:2104.08164*, 2021.513 Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He,
514 and Tat-Seng Chua. Alphaedit: Null-space constrained model editing for language models. In
515 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=HvSytv3Jh>.516 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
517 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
518 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
519 tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
520 for few-shot language model evaluation, 07 2024. URL <https://zenodo.org/records/12608602>.521 Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan, Shuyuan Xu, Zelong Li, Yongfeng Zhang, et al.
522 Openagi: When llm meets domain experts. *Advances in Neural Information Processing Systems*,
523 36:5539–5568, 2023.524 Zorik Gekhman, Gal Yona, Roei Aharoni, Matan Eyal, Amir Feder, Roi Reichart, and Jonathan
525 Herzig. Does fine-tuning llms on new knowledge encourage hallucinations? In *Proceedings of
526 the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 7765–7784,
527 2024.528 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
529 are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
530 Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
531 guage Processing*, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November
532 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
533 <https://aclanthology.org/2021.emnlp-main.446/>.534 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
535 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
536 of models. *arXiv preprint arXiv:2407.21783*, 2024.

540 Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ninghao Liu, Ruobing Wang, and Xin Wang.
 541 PokeMQA: Programmable knowledge editing for multi-hop question answering. In Lun-Wei
 542 Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the*
 543 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8069–8083, Bangkok,
 544 Thailand, August 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 545 acl-long.438. URL <https://aclanthology.org/2024.acl-long.438/>.

546 Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun
 547 Peng. Model editing harms general abilities of large language models: Regularization to the res-
 548 cue. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024*
 549 *Conference on Empirical Methods in Natural Language Processing*, pp. 16801–16819, Miami,
 550 Florida, USA, November 2024b. Association for Computational Linguistics. doi: 10.18653/
 551 v1/2024.emnlp-main.934. URL [https://aclanthology.org/2024.emnlp-main.](https://aclanthology.org/2024.emnlp-main.934/)
 552 934/.

553 Xiaojie Gu, Guangxu Chen, Shuliang Liu, Jungang Li, Aiwei Liu, Sicheng Tao, Junyan Zhang,
 554 and Xuming Hu. Editing large language models via adaptive gradient guidance. In *AAAI 2025*
 555 *Workshop on Preventing and Detecting LLM Misinformation (PDLM)*, 2025.

556 Xiaoqi Han, Ru Li, Hongye Tan, Wang Yuanlong, Qinghua Chai, and Jeff Pan. Improving sequential
 557 model editing with fact retrieval. In *Findings of the Association for Computational Linguistics:*
 558 *EMNLP 2023*, pp. 11209–11224, 2023.

559 Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
 560 Aging with GRACE: lifelong model editing with discrete key-value adaptors. In *NeurIPS*, 2023a.

561 Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
 562 Aging with grace: Lifelong model editing with discrete key-value adaptors. *Advances in Neural*
 563 *Information Processing Systems*, 36:47934–47959, 2023b.

564 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
 565 cob Steinhardt. Measuring massive multitask language understanding. In *International Confer-
 566 ence on Learning Representations*, 2021. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

567 Cheng-Hsun Hsueh, Paul Kuo-Ming Huang, Tzu-Han Lin, Che Wei Liao, Hung-Chieh Fang, Chao-
 568 Wei Huang, and Yun-Nung Chen. Editing the mind of giants: An in-depth exploration of pitfalls
 569 of knowledge editing in large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
 570 Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp.
 571 9417–9429, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
 572 doi: 10.18653/v1/2024.findings-emnlp.550. URL <https://aclanthology.org/2024.findings-emnlp.550/>.

573 Xiusheng Huang, Jiaxiang Liu, Yequan Wang, and Kang Liu. Reasons and solutions for the de-
 574 cline in model performance after editing. In *The Thirty-eighth Annual Conference on Neural*
 575 *Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=xjXYgdFM5M>.

576 Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
 577 Transformer-patcher: One mistake worth one neuron. *arXiv preprint arXiv:2301.09785*, 2023.

578 Vid Kocijan, Ana-Maria Cretu, Oana-Maria Camburu, Yordan Yordanov, and Thomas Lukasiewicz.
 579 A surprisingly robust trick for the Winograd schema challenge. In Anna Korhonen, David
 580 Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the Association*
 581 *for Computational Linguistics*, pp. 4837–4842, Florence, Italy, July 2019. Association for Com-
 582 putational Linguistics. doi: 10.18653/v1/P19-1478. URL <https://aclanthology.org/P19-1478/>.

583 Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
 584 reading comprehension. In *CoNLL*, pp. 333–342. Association for Computational Linguistics,
 585 2017.

594 Jiaang Li, Quan Wang, Zhongnan Wang, Yongdong Zhang, and Zhendong Mao. Elder: Enhancing
 595 lifelong model editing with mixture-of-lora. In *Proceedings of the AAAI Conference on Artificial*
 596 *Intelligence*, volume 39, pp. 24440–24448, 2025a.

597

598 Qi Li, Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Xinglin Pan, and Xiaowen Chu. Should
 599 we really edit language models? on the evaluation of edited language models. In *The Thirty-*
 600 *eighth Annual Conference on Neural Information Processing Systems*, 2024a. URL <https://openreview.net/forum?id=m0DS40OmSY>.

601

602 Shuaike Li, Kai Zhang, Qi Liu, and Enhong Chen. Mindbridge: Scalable and cross-model knowl-
 603 edge editing via memory-augmented modality. *arXiv preprint arXiv:2503.02701*, 2025b.

604

605 Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. PMET: precise model
 606 editing in a transformer. In *AAAI*, pp. 18564–18572. AAAI Press, 2024b.

607

608 Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
 609 of catastrophic forgetting in large language models during continual fine-tuning. *arXiv preprint*
 610 *arXiv:2308.08747*, 2023.

611

612 Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-Hua Ling, and Jia-Chen Gu. Perturbation-restrained
 613 sequential model editing. In *The Thirteenth International Conference on Learning Representa-*
 614 *tions*, 2025. URL <https://openreview.net/forum?id=bfI8cp8qmK>.

615

616 Aman Madaan, Niket Tandon, Peter Clark, and Yiming Yang. Memory-assisted prompt editing to
 617 improve GPT-3 after deployment. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.),
 618 *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp.
 619 2833–2861, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
 620 Linguistics. doi: 10.18653/v1/2022.emnlp-main.183. URL [https://aclanthology.org/2022.emnlp-main.183/](https://aclanthology.org/2022.emnlp-main.183).

621

622 Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual asso-
 623 ciations in GPT. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
 624 *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=-h6WAS6eE4>.

625

626 Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, and David Bau. Mass-editing
 627 memory in a transformer. In *ICLR*. OpenReview.net, 2023.

628

629 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
 630 editing at scale. *arXiv preprint arXiv:2110.11309*, 2021.

631

632 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
 633 model editing at scale. In *ICLR*. OpenReview.net, 2022a.

634

635 Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and Chelsea Finn. Memory-
 636 based model editing at scale. In *ICML*, volume 162 of *Proceedings of Machine Learning Re-*
 637 *search*, pp. 15817–15831. PMLR, 2022b.

638

639 Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
 640 based model editing at scale. In *International Conference on Machine Learning*, pp. 15817–
 641 15831. PMLR, 2022c.

642

643 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
 644 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
 645 Word prediction requiring a broad discourse context. In Katrin Erk and Noah A. Smith (eds.),
 646 *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Vol-*
 647 *ume 1: Long Papers)*, pp. 1525–1534, Berlin, Germany, August 2016. Association for Com-
 648 putational Linguistics. doi: 10.18653/v1/P16-1144. URL <https://aclanthology.org/P16-1144/>.

649

650 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 651 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

648 Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen Zhong, Kaixiong Zhou, and Ninghao Liu.
 649 Retrieval-enhanced knowledge editing in language models for multi-hop question answering.
 650 In *Proceedings of the 33rd ACM International Conference on Information and Knowledge
 651 Management, CIKM '24*, pp. 2056–2066, New York, NY, USA, 2024. Association for Com-
 652 puting Machinery. ISBN 9798400704369. doi: 10.1145/3627673.3679722. URL <https://doi.org/10.1145/3627673.3679722>.

653

654 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
 655 tion answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
 656 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of
 657 the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
 658 and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Com-
 659 putational Linguistics. doi: 10.18653/v1/N19-1421. URL <https://aclanthology.org/N19-1421/>.

660

661 Ben Wang. Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language
 662 Model with JAX. <https://github.com/kingoflolz/mesh-transformer-jax>,
 663 May 2021.

664

665 Ke Wang, Yiming Qin, Nikolaos Dimitriadis, Alessandro Favero, and Pascal Frossard. Memoir:
 666 Lifelong model editing with minimal overwrite and informed retention for llms. *arXiv preprint
 667 arXiv:2506.07899*, 2025a.

668

669 Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
 670 and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
 671 language models. *Advances in Neural Information Processing Systems*, 37:53764–53797, 2025b.

672

673 Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
 674 editing for large language models: A survey. *ACM Computing Surveys*, 57(3):1–37, 2024a.

675

676 Weixuan Wang, Barry Haddow, and Alexandra Birch. Retrieval-augmented multilingual knowledge
 677 editing. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd
 678 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 679 335–354, Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi:
 10.18653/v1/2024.acl-long.21. URL [https://aclanthology.org/2024.acl-long.21/](https://aclanthology.org/2024.acl-long.21).

680

681 Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science ques-
 682 tions. In Leon Derczynski, Wei Xu, Alan Ritter, and Tim Baldwin (eds.), *Proceedings of
 683 the 3rd Workshop on Noisy User-generated Text*, pp. 94–106, Copenhagen, Denmark, Septem-
 684 ber 2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-4413. URL
 685 <https://aclanthology.org/W17-4413/>.

686

687 Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed
 688 dynamic lora. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 689 19449–19457, 2024.

690

691 Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie Gou,
 692 Xi Chen, and Huajun Chen. Instructedit: Instruction-based knowledge editing for large language
 693 models. *arXiv preprint arXiv:2402.16123*, 2024a.

694

695 Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
 696 Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu,
 697 Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and
 698 Huajun Chen. A comprehensive study of knowledge editing for large language models. *CoRR*,
 699 abs/2401.01286, 2024b.

700

701 Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
 702 we edit factual knowledge by in-context learning? *CoRR*, abs/2305.12740, 2023a.

703

704 Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
 705 we edit factual knowledge by in-context learning? In *The 2023 Conference on Empirical Methods
 706 in Natural Language Processing*, 2023b. URL <https://openreview.net/forum?id=hsjQHAM8MV>.

702 Zexuan Zhong, Zhengxuan Wu, Christopher D Manning, Christopher Potts, and Danqi Chen.
 703 MQuAKE: Assessing knowledge editing in language models via multi-hop questions. In *The*
 704 *2023 Conference on Empirical Methods in Natural Language Processing*, 2023. URL <https://openreview.net/forum?id=0hTPJBnncc>.
 705

706 Chenghao Zhu, Nuo Chen, Yufei Gao, Yunyi Zhang, Prayag Tiwari, and Benyou Wang. Is your llm
 707 outdated? evaluating llms at temporal generalization. *arXiv preprint arXiv:2405.08460*, 2024.
 708

710 A THE USE OF LARGE LANGUAGE MODELS

712 The LLMs were used solely to refine the writing and check for potential typos. No other aspects
 713 were involved.

715 B BASELINES

717 In this section, we present the six baseline methods evaluated in our work. For each method, we
 718 adopt the default hyperparameter settings provided in the official code of the corresponding papers.
 719

- 720 • **Fine-Tune (FT)** (Meng et al., 2023) is a fine-tuning method that updates the FFN of a
 721 transformer layer to incorporate new factual knowledge. The target layer is selected on
 722 the basis of its relevance to the knowledge being edited. FT operates by maximizing the
 723 likelihood of the target output using the standard next-token prediction loss.
- 724 • **MEND** (Mitchell et al., 2022a) introduces a hypernetwork that maps fine-tuning gradients
 725 into efficient weight updates for a pre-trained model. By applying low-rank decomposition
 726 to the gradients, it reduces parameter complexity and enables lightweight, localized edits
 727 without full model retraining.
- 728 • **ROME** (Meng et al., 2022) performs KE by interpreting the FFN in a transformer layer
 729 as a linear associative memory. It derives key-value pairs from internal activations and
 730 computes a weight update that ensures the edited layer produces the desired hidden repre-
 731 sentation. A rank-one modification is then applied to the FFN weights, aligning the model’s
 732 internal representations with the new factual knowledge.
- 733 • **MEMIT** (Meng et al., 2023) extends the ROME framework to support simultaneous editing
 734 of a large number of factual knowledge items. It models the updates as a joint optimization
 735 over key-value pairs and applies rank-one modifications to the FFNs. To prevent inter-
 736 ference between edits, MEMIT distributes the updates in a top-down manner across critical
 737 FFN layers, achieving efficient, scalable, and stable insertion of new factual knowledge.
- 738 • **RECT** (Gu et al., 2025) reduces the degradation of general capabilities caused by KE. It
 739 regularizes weight updates by constraining their magnitude and selectively updates only
 740 the top- $k\%$ of parameters with the largest changes during fine-tuning. This reduces overfit-
 741 ting and helps preserve the model’s reasoning and question-answering abilities, while still
 742 achieving effective factual edits.
- 743 • **AlphaEdit** (Fang et al., 2025) introduces a null-space projection mechanism to preserve
 744 existing knowledge during editing. It projects the update direction onto the null space
 745 of prior knowledge and then applies the projected perturbation to model parameters. This
 746 approach reduces interference with previously edited facts and enables effective integration
 747 of new information.

748 C DATASETS AND METRICS

750 In this section, we describe the datasets and evaluation metrics employed in our experiments.
 751

752 C.1 DATASETS

754 We evaluate our methods on two types of datasets: CounterFact and ZsRE for assessing KE, and
 755 six benchmarks including SciQ, MMLU, CommonsenseQA, ARC Challenge, WSC273, and LAM-
 BADA for evaluating the general capabilities of post-edited models.

- **Counterfact** (Meng et al., 2022) is a challenging benchmark that focuses on editing incorrect factual statements in language models. Each instance includes a subject and an incorrect attribute to be updated. To assess edit locality, it provides contrastive prompts involving related but distinct entities, ensuring changes do not affect nearby facts. Additionally, the dataset includes paraphrased and semantically equivalent prompts to evaluate the generalization, fluency, and consistency of the edited model responses.
- **ZsRE** (Levy et al., 2017) is a question-answering dataset commonly used in knowledge editing evaluation. Each example includes a subject, a target answer to be edited, paraphrased questions for testing generalization, and unrelated questions for evaluating locality. The dataset also features human-written question variants, enabling assessment of model robustness to semantically equivalent inputs.
- **SciQ** (Welbl et al., 2017) is a multiple-choice science QA dataset covering topics such as physics, chemistry, and biology. It is used to evaluate a model’s ability to recall factual scientific knowledge.
- **MMLU** (Hendrycks et al., 2021) is a multitask benchmark containing questions from 57 academic and professional disciplines. It assesses factual knowledge and generalization across diverse domains in zero- and few-shot settings.
- **CommonsenseQA** (Talmor et al., 2019) is a multiple-choice QA dataset that evaluates a model’s ability to reason over everyday commonsense. It focuses on applying implicit world knowledge to select the correct answer among distractors.
- **ARC Challenge** (Clark et al., 2018) is a science QA dataset designed to require reasoning beyond simple retrieval. It contains complex grade-school level questions that challenge a model’s problem-solving abilities.
- **WSC273** (Kocijan et al., 2019) is a coreference resolution benchmark derived from the Winograd Schema Challenge. It is designed to test whether a model can correctly identify what ambiguous pronouns refer to, based on context and commonsense reasoning.
- **Lambada** (Paperno et al., 2016) is a word prediction benchmark composed of narrative passages where the final word can only be inferred from the entire context. It is designed to evaluate a model’s ability to capture long-range dependencies and maintain discourse-level coherence.

787 C.2 METRICS

789 Here, we introduce the evaluation metrics for the CounterFact and ZsRE datasets, which are selected
 790 based on previous works (Meng et al., 2022; Fang et al., 2025).

792 C.2.1 COUNTERFACT METRICS

794 Given a language model f , a query (s_i, r_i) , an edited object \hat{o}_i , and the original object o_i , the
 795 evaluation metrics for CounterFact are defined as follows.

- **Efficacy (success of edited facts):** The proportion of instances in which the model prefers the edited object \hat{o}_i over the original object o_i when prompted with (s_i, r_i) :

$$799 \mathbb{E}_i [\mathbb{P}_f [\hat{o}_i | (s_i, r_i)] > \mathbb{P}_f [o_i | (s_i, r_i)]] . \quad (11)$$

- **Generalization (success of paraphrased facts):** The proportion of paraphrased prompts $F_i(s_i, r_i)$, representing rephrasings of the original query (s_i, r_i) , for which the model assigns higher likelihood to \hat{o}_i than to o_i :

$$804 \mathbb{E}_i [\mathbb{P}_f [\hat{o}_i | F_i(s_i, r_i)] > \mathbb{P}_f [o_i | F_i(s_i, r_i)]] . \quad (12)$$

- **Specificity (success of neighborhood facts):** The proportion of neighborhood prompts $N_i(s_i, r_i)$, which involve subjects semantically related to but distinct from the original subject s_i , for which the model assigns higher likelihood to the correct object o_i than to the edited object \hat{o}_i :

$$805 \mathbb{E}_i [\mathbb{P}_f [\hat{o}_i | N_i(s_i, r_i)] < \mathbb{P}_f [o_i | N_i(s_i, r_i)]] . \quad (13)$$

810
 811
 812
 813
 814
 815
 816
 817
 818
 819

- **Fluency (generation entropy):** Measures output repetition based on the entropy of n-gram distributions in model outputs. Specifically, it computes a weighted combination of bigram and trigram entropies, where $g_n(\cdot)$ denotes the n-gram frequency distribution:

$$-\frac{2}{3} \sum_k g_2(k) \log_2 g_2(k) + \frac{4}{3} \sum_k g_3(k) \log_2 g_3(k). \quad (14)$$

- **Consistency (reference score):** Consistency is measured by prompting the model f with a subject s and computing the cosine similarity between the TF-IDF vectors of its generated output and a reference Wikipedia passage about the object o .

820 C.2.2 ZsRE METRICS

821
 822 Given a language model f , a query (s_i, r_i) , an edited object \hat{o}_i , and the original object o_i , the
 823 evaluation metrics for ZsRE are defined as follows:

824
 825
 826
 827

- **Efficacy (success of edited facts):** Top-1 accuracy on the edited samples, measuring the proportion of cases in which the model ranks the edited object \hat{o}_i as the most likely prediction given the prompt (s_i, r_i) :

$$\mathbb{E}_i \left[\hat{o}_i = \arg \max_o \mathbb{P}_f(o | (s_i, r_i)) \right] \quad (15)$$

830
 831
 832
 833

- **Generalization (success of paraphrased facts):** Top-1 accuracy on paraphrased prompts $F_i(s_i, r_i)$, which are rephrasings of the original query (s_i, r_i) , measuring the proportion of cases in which the model ranks the edited object \hat{o}_i as the most likely prediction for the given rephrased prompt:

$$\mathbb{E}_i \left[\hat{o}_i = \arg \max_o \mathbb{P}_f(o | F_i(s_i, r_i)) \right] \quad (16)$$

834
 835
 836
 837
 838
 839

- **Specificity (success of neighborhood facts):** Top-1 accuracy on neighborhood prompts $N_i(s_i, r_i)$, which involve subjects related to but distinct from s_i . Specificity reflects whether the model preserves correct predictions on unaffected inputs by still preferring o_i over \hat{o}_i :

$$\mathbb{E}_i \left[o_i = \arg \max_o \mathbb{P}_f(o | N_i(s_i, r_i)) \right] \quad (17)$$

843 D IMPLEMENTATION DETAILS

844
 845 We provide the details of the implementation of the experiments. To reproduce our methods, a
 846 GPU with 40G memory is required. Our framework is built on L&E methods like MEMIT (Meng
 847 et al., 2023) and AlphaEdit (Fang et al., 2025). We first sequentially compute the key vector \mathbf{k} and
 848 the residual vector \mathbf{r} for the target edited facts. The details of the computation can be found in
 849 Appendix F. Then we stack them as the key matrix \mathbf{K}_1 and the residual matrix \mathbf{R}_1 and construct
 850 a neural KV database $(\mathbf{K}_1, \mathbf{R}_1)$. Then we integrate the non-linear retrieval module with the target
 851 FFN layer l^* . Our module only involves one hyperparameter γ to control the gated mechanisms.
 852 We provide the details of the setting in the following Table 4. For the setting γ , we recommend
 853 $\gamma \in [0.6, 0.8]$ and provide the detailed ablation study in Appendix I. For the distance function, We
 854 use cosine similarity as the distance function because it has a closed range of $[0, 1]$. across all edited
 855 facts, thereby eliminating the need for complex key merging. Other distance functions can make it
 856 difficult to determine a suitable value for γ .

857 Table 4: Hyper-parameters of NeuralDB for various models in the main experiments

858
 859
 860
 861
 862
 863

	GPT2-XL	GPT-J (6B)	Llama 3 Instruct (8B)
Layer found by casual trace	17	17	17
Layer l^* used by NeuralDB	17	8	7
gating threshold γ	0.65	0.65	0.65

864 Table 5: Architectural differences between GRACE and NeuralDB (ours). Illustrated editing the
 865 fact “The latest World Cup was held in Qatar.”

867 Component	868 NeuralDB	869 GRACE
869 Anchor Token Position	869 Last token of subject (e.g., Cup)	869 Last token of question (e.g., is)
870 Key Selection Mechanism	870 Activation in FFN layer	870 Hidden state of given layer

872 Table 6: Key matching performance comparison under 100 facts

874 Method	875 Rewrite Matched	875 Rewrite Unmatched	876 Rephrased Matched	876 Rephrased Unmatched	877 Neighborhood Unmatched
876 NeuralDB (Cosine \uparrow)	876 1.00	876 0.18	876 0.84	876 0.19	876 0.18
877 GRACE (Cosine \uparrow)	877 1.00	877 0.25	877 0.44	877 0.44	877 0.45
878 GRACE (L2 \downarrow)	878 1.00	878 3968	878 781	878 768	878 948

881 E COMPARATIVE ANALYSIS WITH GRACE

885 Both GRACE and NeuralDB implement a key-value (KV) database structure for knowledge editing,
 886 a design prevalent in memory-based methods due to its elegant modeling. Despite this architectural
 887 similarity, our empirical results demonstrate that NeuralDB achieves significantly superior editing
 888 performance in large-scale knowledge editing scenarios, particularly in generalization metrics. To
 889 systematically investigate the source of this advantage, we first identify the core architectural differ-
 890 ences (Table 5) and perform key matching experiments (Table 6).

891 Both methods can be formally represented as KV databases:

$$893 h^l = \text{Editing}(h^{l-1}) \quad \text{if} \quad (\text{distance}(k, K_{i^*}) < \gamma_{i^*}) \quad \text{where} \quad i^* = \arg \min_i \text{distance}(h^{l-1}, K_i)$$

896 where distance is one distance function (e.g. L2, cosine similarity) and γ_{i^*} is the threshold for
 897 distance function.

898 The critical distinctions lie in two aspects: (1) NeuralDB utilizes the last token of the subject as
 899 the anchor token, which provides unique feature representation and ensures scalability, whereas
 900 GRACE uses the last token of the question; (2) NeuralDB selects keys based on activations in the
 901 FFN layer, which have been empirically verified as crucial for factual knowledge memorization and
 902 provide better generalization capabilities compared to GRACE’s hidden state approach.

903 To empirically validate why our KV structure outperforms GRACE’s, we conducted key matching
 904 experiments. The results (Table 6) demonstrate that NeuralDB achieves superior key discrimination:

- 907 • For **NeuralDB**: Rewrite Matched (1.00) \gg Rewrite Unmatched (0.18) and Rephrased
 908 Matched (0.84) \gg Rephrased Unmatched (0.19), indicating effective key discrimination
 909 even for rephrased queries.
- 910 • For **GRACE**: Rephrased Matched (0.44) \approx Rephrased Unmatched (0.44) in cosine simi-
 911 larity, and even Rephrased Matched (781) $>$ Rephrased Unmatched (768) in L2 distance,
 912 revealing its inability to distinguish matched facts for rephrased queries.

914 The results show that NeuralDB can easily distinguish editing keys from unrelated keys, while
 915 GRACE struggles in this regard. This empirical evidence directly explains the generalization per-
 916 formance gap observed in Table 2 (NeuralDB: 86.60 vs. GRACE: 58.58). This confirms that Neu-
 917 ralDB’s key discrimination mechanism offers significantly better generalization capabilities com-
 918 pared to GRACE and other memory-based methods.

918 F COMPUTATION OF KEY VECTOR \mathbf{k}_i AND VALUE VECTOR \mathbf{r}_i
919920 We follow previous locating-and-editing methods (Meng et al., 2022; 2023; Fang et al., 2025) to
921 derive the key vector and residual vector from the given edited fact ($s_i, r_i, o_i \rightarrow \hat{o}_i$). Let l^* denote
922 the FFN layer to be updated.923 For the key vector \mathbf{k}_i , we retrieve the specified activation from LLM inferring the prompt. We denote
924 $\mathbf{k}^{l^*}(\mathbf{x})$ as the key activation of the prompt \mathbf{x} in layer l^* . Then the target key vector are computed by
925 the following average over random prefix \mathbf{x}_j :
926

927
$$\mathbf{k}_i = \frac{1}{N} \sum_{j=1}^N \mathbf{k}^{l^*}(\mathbf{x}_j + \mathbf{s}_i), \quad (18)$$

928
929

930 where \mathbf{s}_i is the subject of edited fact. The \mathbf{x}_j is the prefix randomly generated by the language model
931 f to improve the robustness of the expressive ability of \mathbf{k}_i .932 For the target vector \mathbf{r}_i , we wish to find some vector to decode the new answer \hat{o}_i . We utilize the
933 supervised learning to derive $\mathbf{r}_i = \arg \min_{\mathbf{r}} L(\mathbf{r})$, where the loss object $L(\mathbf{r})$ is defined as following:
934

935
$$\frac{1}{N} \sum_{j=1}^N \left(-\log \mathbb{P}_{f(\mathbf{h}^{l^*} + \mathbf{r})}[o^* | x_j + p] + D_{\text{KL}}(\mathbb{P}_{f(\mathbf{h}^{l^*} + \mathbf{r})}[x | p'] || \mathbb{P}_f[x | p']) \right). \quad (19)$$

936
937

938 p is the factual prompt while p' is its variant (the form of “subject is a”). $f(\mathbf{h}^{l^*} + \mathbf{r})$ indicates
939 substituting the output of the i -th MLP with an additional learnable parameter \mathbf{r} . This optimization
940 also uses the random prefix text x_j to enhance the robustness.941 G DERIVATION OF SOLUTION TO MEMIT AND ALPHAEEDIT
942
943944 The objective of MEMIT is the following constrained least squares optimization:
945

946
$$\arg \min_{\Delta} \|(\mathbf{W} + \Delta)\mathbf{K}_1 - \hat{\mathbf{V}}_1\|_2^2 + \beta_1 \|\Delta\mathbf{K}_0\|_2^2, \quad (20)$$

947

948 where the term $\|\Delta\mathbf{K}_0\|_2^2$ ensures that the updated parameters maintain general knowledge. With
949 residual matrices $\mathbf{R}_1 = \hat{\mathbf{V}}_1 - \mathbf{W}\mathbf{K}_1$, the closed-form solution for MEMIT can be derived as follows:
950

951
$$\Delta_{\text{upd}}^{\text{MEMIT}} = \mathbf{R}_1 \mathbf{K}_1^T (\mathbf{K}_1 \mathbf{K}_1^T + \beta_1 \mathbf{K}_0 \mathbf{K}_0^T)^{-1}. \quad (21)$$

952

953 Let $\mathbf{S}_1 = (\mathbf{K}_1 \mathbf{K}_1^T + \beta_1 \mathbf{K}_0 \mathbf{K}_0^T)^{-1}$, then the update can be expressed as $\Delta_{\text{upd}}^{\text{MEMIT}} = \mathbf{R}_1 \mathbf{K}_1^T \mathbf{S}_1$.
954955 Using SVD decomposition $\mathbf{U}, \mathbf{S}, \mathbf{U}^T = \text{SVD}(\mathbf{K}_0^T \mathbf{K}_0)$, the null space can be obtained by the sub
956 matrix $\mathbf{N} = \mathbf{U}[:, \mathbf{S} < \epsilon]$ by removing the eigenvectors corresponding to non-zero eigenvalues,
957 where ϵ typically set as 10^{-2} . Let $\mathbf{P} = \mathbf{N} \mathbf{N}^T$, where $\mathbf{P} \mathbf{K}_0 = \mathbf{N} (\mathbf{N}^T \mathbf{K}_0) \approx \mathbf{0}$.
958959 Similarly, we discuss AlphaEdit, which leverages the null space projection to convert soft constraints
960 for general knowledge into hard constraints. The null space projection matrix \mathbf{P} such that $\mathbf{P} \mathbf{K}_0 = \mathbf{0}$
961 is computed using SVD decomposition over $\mathbf{K}_0^T \mathbf{K}_0$. Then, AlphaEdit constructs $\Delta = \delta \mathbf{P}$ such that
962 $\|\Delta\mathbf{K}_0\|$ approaches zeros and solves the following least squares problem with L2 Norm:
963

964
$$\arg \min_{\delta} \|(\mathbf{W} + \delta \mathbf{P})\mathbf{K}_1 - \hat{\mathbf{V}}_1\|_2^2 + \beta_2 \|\delta \mathbf{P}\|_2^2. \quad (22)$$

965

966 H ADDITIONAL MEMORY USAGE AND COMPUTATION TIME
967968 In this section, we provide a detailed discussion of additional resources of our new module.
969970 **Memory usage** We cache the key matrix \mathbf{K}_1 and the residual matrix \mathbf{R}_1 and construct the new
971 module, which totally take $(d_1 + d_2) \times m$ parameters with m denoting the number of edited facts.
972 For Llama 3 8B model with $d_1 = 14,336$, $d_2 = 4,096$, the memory of 10,000 facts is about 150
973 million parameters. Compared to the total 8B parameters, the additional memory for 1M facts is
974 only 2.2%. Additionally, our memory grows linearly with the facts and is easily scaled to more
975 facts.

972
973**Algorithm 1** Old multi-layer method

974 **Require:** Input Transformer model f , target layers list $L = [l_1, \dots, l_n]$, request facts \mathcal{F} , Function
975 COMPUTE_KEY to compute the keys of facts at layer l , COMPUTE_RESIDUAL compute the
976 residual of facts at layer l .
977 1: $R \leftarrow \text{COMPUTE_RESIDUAL}(f, \mathcal{F}, l_n)$
978 2: **for** l in L **do**
979 3: $K_i \leftarrow \text{COMPUTE_KEY}(f, \mathcal{F}, l)$
980 4: $R_i \leftarrow R/(l_n - l + 1)$
981 5: Perform KE at layer l with (K_i, R_i)
982 6: **end for**
983

983
984**Algorithm 2** New multi-layer method
985 **Require:** Input Transformer model f , target layers list $L = [l_1, \dots, l_n]$, request facts \mathcal{F} , Function
986 COMPUTE_KEY to compute the keys of facts at layer l , COMPUTE_RESIDUAL compute the
987 residual of facts at layer l .
988 1: **for** l in L **do**
989 2: $K_i \leftarrow \text{COMPUTE_KEY}(f, \mathcal{F}, l)$
990 3: $R_i \leftarrow \text{COMPUTE_RESIDUAL}(f, \mathcal{F}, l)$
991 4: Perform KE at layer l with (K_i, R_i)
992 5: **end for**
993

994

995 **Computation time** We report the average evaluation time for three models and two datasets in
996 Table 7. The results show that the averaged time has only a slight improvement compared with the
997 methods without an additional module.

998

999

Table 7: The averaged time of evaluation post-edited models on CounterFact and ZsRE

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

I ABLATION STUDY

1015

I.1 LAYER SETTING: SINGLE-LAYER OR MULTI-LAYER?

1016

1017 We provide the pseudo code of the new multi-layer and the old multi-layer strategies in Algorithm 2
1018 and Algorithm 1, respectively. New multi-layer strategy assigns parts of facts to each layer and
1019 update the key-value pair for these layers separately. The edited layers by new multi-layer strategy
1020 will disturb each other, resulting in poor performance. The comparison of these two algorithms on
1021 two different pre-trained models in Table 8. The experimental results indicate that the new multilayer
1022 method can greatly scale the number of editable facts, albeit with some loss in performance, while
1023 the old multilayer method, though achieving better editing accuracy, requires substantially more
 storage.

1024

1025

 Furthermore, to ensure fairness, we provide comparisons with the single-layer versions of AlphaEdit
 and MEMIT in Table 9. The results clearly demonstrate our improvements and further highlight our
 advantages.

Table 8: Editing performance under different layer setup

Model	Layer Setup	Efficacy \uparrow	Generalization \uparrow	Specificity \uparrow	Fluency \uparrow
GPT-J	[8] baseline	99.08	93.48	75.52	620.53
	[6,7,8] new multi layers	94.44	91.72	75.93	617.44
	[6,7,8] old multi layers	99.31	93.23	76.78	616.00
GPT2-XL	[17] baseline	99.04	95.96	70.72	621.90
	[15,16,17] new multi layers	94.81	92.68	70.26	618.51
	[15,16,17] old multi layers	99.08	94.01	71.33	624.48

Table 9: The comparison with single-layer versions of MEMIT and AlphaEdit. In each value **a/b**, the first is the result of 2k while the second corresponds to 10k.

Method	Efficacy Counteract	Generalize Counteract	Specificity Counteract	Fluency Counteract	Consistency Counteract	Efficacy ZsRE	Generalize ZsRE	Specificity ZsRE
MEMIT	69 / 72	59 / 61	52 / 46	519 / 522	6 / 6	68 / 0	63 / 0	27 / 1
AlphaEdit	97 / 88	83 / 73	69 / 53	623 / 563	32 / 29	93 / 88	88 / 83	32.5 / 31
NeuralDB	100 / 99	87 / 86	88 / 86	633 / 631	33 / 33	96 / 96	92 / 91	32 / 32

I.2 LAYER SELECTION

For the $L = 7$ in Llama3, we provide the results of additional 8 and 9 in Table 10. Although layer 8 is determined by the causal trace, our results show that its results are not suboptimal.

I.3 GATING HYPERPARAMETER γ SELECTION

We conducted an ablation study to investigate the choice of γ and the target layer, with results provided in Table 11. Although all the evaluation metrics are usually monotonically changed as γ increases, we observe a consistent trend across three models. $\gamma = 0.65$ provides a good balance across metrics for three models. Importantly, the generalization metric is monotonic increasing, while the specificity metric is monotonic decreasing. Extremely low or high γ substantially degrades some metrics. Therefore, we recommend selecting γ in $[0.55, 0.65]$, which empirically performs a good performance for all the metrics and three models.

J ADDITIONAL EXPERIMENTS

J.1 THE COMPARISON WITH WISE

We provide the comparison with WISE in the Table 12. We implement both WISE and NeuralDB using EasyEditor, a popular and useful code repository for knowledge editing. For fairness, we use the default parameters of WISE provided in EasyEditor (WISE is released through EasyEditor).

WISE achieves consistent results across all efficacy, generalization, and locality metrics. However, our method demonstrates superior performance on large-scale edits, as evidenced by its results with 2,000 and 5,000 facts.

J.2 THE COMPARISON WITH T-PATCHER

We have included the comparison with T-Patch in Table 13, where NeuralDB demonstrates its advantages across two models and two metrics.

1080
1081
1082 Table 10: Ablation study on Llama 3 (8B)
1083
1084
1085
1086

Gamma	Layer	E	G	S	F	C
0.65	7	99.2	85.9	85.6	631.9	32.6
0.65	8	99.2	79.3	85.1	631.5	33.3
0.65	9	99.2	77.4	84.9	631.6	32.4

1087
1088 Table 11: Unified γ ablation across three models. Metrics: E (Efficacy \uparrow), G (Generalization \uparrow), S
1089 (Specificity \uparrow), F (Fluency \uparrow).

Model	Gamma	E	G	S	F
GPTJ-6B	0.15	84.10	78.95	56.20	611.00
	0.40	97.55	97.02	63.92	600.47
	0.55	99.75	98.22	72.55	620.01
	0.65	99.80	97.20	74.10	621.50
	0.75	99.75	93.35	75.00	621.75
	0.90	98.55	57.38	76.68	621.35
GPT2-XL	0.15	94.85	90.30	58.58	587.88
	0.40	99.70	98.38	65.66	611.20
	0.55	99.65	98.10	76.62	619.14
	0.65	99.80	94.60	80.00	619.80
	0.75	99.45	81.42	81.34	620.38
	0.90	96.70	30.00	82.57	620.30
Llama-3 (8B)	0.15	93.3	86.0	70.3	632.5
	0.40	98.8	95.0	75.7	640.3
	0.55	99.1	91.9	83.4	631.6
	0.65	99.2	87.0	85.6	632.0
	0.75	99.2	74.1	86.2	632.3
	0.90	98.8	28.7	86.9	633.2

1109
1110 J.3 THE RESULTS ON MQUAKE
1111
1112

1113 The results on MQuAKE are shown in Table 14. Our method outperforms competing baselines and
1114 achieves the best overall performance. Compared with AlphaEdit, it delivers a 36% improvement.
1115 These results indicate that complex editing tasks requiring intermediate steps also benefit from our
1116 approach.

1117
1118 J.4 THE RESULTS ON KNOWEDIT
1119
1120

1121 We provide the results on KnowEdit (Wiki Recent) and KnowEdit (Wiki Counterfact), both of which
1122 include the Portability metric (See Table 15). Our method achieves the best Portability on Wiki
1123 Counterfact and comparable Portability to the strongest baselines on Wiki Recent, indicating that
1124 the edited knowledge is effectively utilized in downstream reasoning.

1125
1126 J.5 QUANTITATIVE AND QUALITATIVE RESULTS FOR DELETE OPERATION
1127
1128

1129 The knowledge updating is linked with the KV database. Thus, we can modify and delete the
1130 knowledge based on the modification and deletion of the content of the KV database.

1131
1132 **Setting.** We first edit 100 facts on GPT2-XL, then delete the keys and values for the even-indexed
1133 facts. This yields three models: (i) pre-edited, (ii) post-edited, and (iii) deleted-even (after removing
edits for even facts only).

1134 Table 12: The comparison with WISE on ZsRE. We provide the results of Llama3 8B and Llama2
 1135 7B chat hf.

1137	Models	Methods	Efficacy	Generalization	Locality	Efficacy	Generalization	Locality
1138	Llama3 8B	WISE	33.2	32.8	100	25	24.7	100
		NeuralDB	71	67.4	100	70.7	67.3	100
		WISE	62.8	59.8	100	51.7	49.8	100
1141	Llama2 7B	NeuralDB	70.7	66.4	100	69.5	65.6	100

1143 Table 13: Results on ZsRE with 1k edits (T-Patch results taken from Li et al. (2025a)).

1145	Models	Method	Reliability	Generalization
1147	GPT2-XL	T-Patch	77.29	67.74
1148	GPT2-XL	NeuralDB	96.03	91.62
1149	Llama2	T-Patch	62.94	48.37
1150	Llama2	NeuralDB	99.89	91.35

1153 **Quantitative.** As shown in Table 16, performance on even facts for the deleted-even model
 1154 matches the pre-edited model, while performance on odd facts is similar to the post-edited model.
 1155 This demonstrates selective reversibility (deletions roll back only the targeted facts) and retention
 1156 (non-deleted facts remain effective).

1157 **Qualitative.** We also provide concrete edit–delete–even case study, where the 4th question is
 1158 “**Autonomous University of Madrid, which is located in**” and the corresponding target answer
 1159 is “**Sweden**”. We report the answers of three models in Table 17. The answers to deleted-even
 1160 model successfully revert to the original answer to the pre-edited model.

1163 J.6 THE COMPARISON BETWEEN ONE-SHOT EDITING AND BATCHED SEQUENTIAL UPDATE 1164 FOR MEMIT AND ALPHAEEDIT

1166 We follow the standard procedures for each editing method (Fang et al., 2025). For a fair comparison,
 1167 we also report one-shot results in which MEMIT and AlphaEdit apply all factual edits in one
 1168 go. As shown in Table 18, their one-shot performance is not better than the results obtained with
 1169 batched sequential updates. Therefore, reporting results under batched sequential updates is a fair
 1170 evaluation setting.

1172 J.7 THE RESULTS OF HIGHLIGHTING THE PREVIOUS EDITED FACTS

1174 Adopting the notation of RASE (Han et al., 2023), the reported result is the stricter Edit Re-
 1175 tain Rate (ER) instead of the Success Rate (SR): where $SR = \frac{\sum_{t=0}^T I(f_t(x_t) = y_{x_t})}{T}$ and $ER =$
 1176 $\frac{\sum_{t=0}^T I(f_T(x_t) = y_{x_t})}{T}$. Here, f_t is the model after the t -th edit, and f_T is the final model after all
 1177 edits.

1179 ER emphasizes whether earlier edits remain effective under the final model, making it stricter than
 1180 SR. Our strong ER results (Tables 2 and 3) indicate that earlier edits are retained after subsequent
 1181 edits. To further support this, Table 19 reports performance on the first 10k edited facts after editing
 1182 10k, 20k, 30k, 40k, and 50k facts; the stability across these settings highlights the effectiveness of
 1183 previously edited entries.

1184 J.8 LM-EVALUATION-HARDNESS

1186 We conducted more experiments on lm-evaluation-hardness using GPT2-XL and GPT-J, see Table
 1187 21 for details.

1188 Table 14: The results of MquaKE on GPTJ-6B models under CoT prompting. We follow the stan-
 1189 dard evaluation protocol with CoT prompting. After applying all 3,000 edits, we evaluate all 3,000
 1190 multi-hop questions.

Methods	MEMIT	AlphaEdit	NeuralDB
Accuracy	6.13	9.14	12.40

1195 Table 15: Additional results on KnowEdit (Wiki_Recent) and KnowEdit (Wiki_Counterfact).

Dataset	Method	Rewrite.acc	Paraphrase.acc	Portability.acc	Entropy
KnowEdit (Wiki Recent)	MEMIT	87.96	62.94	57.19	615.10
KnowEdit (Wiki Recent)	AlphaEdit	90.41	71.53	59.89	606.84
KnowEdit (Wiki Recent)	NeuralDB	97.90	84.23	57.11	607.87
KnowEdit (Wiki Counterfact)	MEMIT	69.22	48.67	45.89	615.23
KnowEdit (Wiki Counterfact)	AlphaEdit	73.05	50.81	44.11	616.13
KnowEdit (WikiCo unterfact)	NeuralDB	96.58	73.15	53.98	610.82

1205 J.9 WEIGHTED SCORE VISUALIZATION OF PARAPHRASED AND NEIGHBORHOOD FACTS

1207 We further conduct experiments on paraphrased and neighborhood facts to examine the distribution
 1208 of weighted scores under both MEMIT and AlphaEdit. As shown in Fig. 5, the scores for positive
 1209 samples in paraphrased facts are consistently higher, while those for negative samples remain close
 1210 to 0. For neighborhood facts, where all components are considered negative, the scores are likewise
 1211 consistently close to 0. These results confirm that, during inference, residuals unrelated to the edited
 1212 facts remain inactive, resulting in near-zero weighted scores.

1214 J.10 THE RESULTS OF MORE MODELS

1217 We present the results of our method using Qwen2.5 and Llama 3.1 8B Instruct in Table 22. Our
 1218 methods on these new models also achieve good results.

1242

1243

1244

1245

Table 16: Quantitative results before editing, after editing, and after deleting even edits.

1246

Group	Metric	Pre-edited	Post-edited	Delete even edits
Odd-indexed facts	Efficacy	0.0	100.0	100.0
Odd-indexed facts	Generalization	22.0	98.0	98.0
Even-indexed facts	Efficacy	0.0	100.0	0.0
Even-indexed facts	Generalization	24.0	99.0	22.0

1252

1253

1254

1255

1256

1257

1258

1259

Table 17: Qualitative examples before editing, after editing, and after deleting even-indexed edits.

1260

State	Output
pre-edited	<i>“the city of Madrid, Spain”</i>
Post-edited	<i>“Sweden, has been working on a project called “The Future of the Human Body” for the past two years.”</i>
deleted-even	<i>“the city of Madrid, Spain”</i>

1266

1267

1268

1269

1270

1271

1272

1273

Table 18: The comparison of one-shot editing and batched sequential updates. The number of edited facts is 10k, and the used model is Llama3 8B Instruct. The batch size of the batched update is 100.

1274

1275

1276

1277

1278

1279

1280

Model	Method	Efficacy \uparrow	Generalization \uparrow	Specificity \uparrow
AlphaEdit	one-shot editing	88.09	82.78	31.10
AlphaEdit	batched sequential updates	90.50	85.90	30.30
MEMIT	one-shot editing	0.19	0.15	0.92
MEMIT	batched sequential updates	0.10	0.10	1.50

1281

1282

1283

1284

1285

1286

1287

Table 19: Performance on the first 10k edited facts after scaling to different totals.

1288

1289

1290

1291

1292

1293

1294

1295

Edited facts	10k	20k	30k	40k	50k
Efficacy \uparrow	96.9	96.6	96.6	96.5	96.2
Generalization \uparrow	91.4	91.4	91.2	91.3	90.8
Specificity \uparrow	35.1	35.1	35.2	35.3	35.3

1296
1297
1298
1299
1300
1301
1302

1303 Table 20: Performance of each task across different editing budgets (1,000, 2,000, 4,000, 6,000,
1304 8,000, 10,000) under various model–algorithm configurations.

1305
1306
1307
1308
1309
1310
1311
1312
1313
1314

(a) GPT-J (AlphaEdit)

Task	1,000	2,000	4,000	6,000	8,000	10,000
sciq	0.9110	0.9080	0.9060	0.8900	0.8850	0.7410
logiq_a	0.2151	0.2243	0.2089	0.2181	0.2304	0.2181
commonsense_qa	0.2080	0.2146	0.2048	0.1884	0.1925	0.1785
arc_easy	0.6658	0.6477	0.6326	0.6010	0.5804	0.4870
MMLU	0.2660	0.2688	0.2622	0.2592	0.2587	0.2535
arc_challenge	0.3276	0.3148	0.2901	0.2782	0.2611	0.2261
lambada	0.6722	0.6604	0.6057	0.5158	0.4036	0.2203
winogrande	0.6346	0.6227	0.6093	0.5991	0.5730	0.5635
wsc273	0.8425	0.8352	0.7985	0.7399	0.7179	0.6264

(b) GPT-J (NeuralDB)

Task	1,000	2,000	4,000	6,000	8,000	10,000
sciq	0.9160	0.9160	0.9160	0.9160	0.9160	0.9160
logiq_a	0.2120	0.2120	0.2120	0.2120	0.2120	0.2120
commonsense_qa	0.2080	0.2080	0.2080	0.2080	0.2080	0.2080
arc_easy	0.6692	0.6692	0.6692	0.6692	0.6692	0.6692
MMLU	0.2695	0.2697	0.2697	0.2695	0.2695	0.2698
arc_challenge	0.3396	0.3396	0.3404	0.3404	0.3404	0.3404
lambada	0.6829	0.6827	0.6827	0.6821	0.6821	0.6819
winogrande	0.6409	0.6417	0.6417	0.6417	0.6417	0.6409
wsc273	0.8242	0.8242	0.8242	0.8242	0.8242	0.8242

(c) GPT-2 XL (AlphaEdit)

Task	1,000	2,000	4,000	6,000	8,000	10,000
sciq	0.8250	0.8230	0.7920	0.7440	0.6390	0.4920
logiq_a	0.2289	0.2273	0.2012	0.2104	0.1951	0.1889
commonsense_qa	0.1908	0.1957	0.1916	0.1974	0.2080	0.1933
arc_easy	0.5682	0.5484	0.4987	0.4693	0.4066	0.3493
MMLU	0.2618	0.2562	0.2464	0.2312	0.2369	0.2315
arc_challenge	0.2423	0.2346	0.2398	0.2108	0.1887	0.2065
lambada	0.4881	0.4170	0.2610	0.1467	0.0767	0.0231
winogrande	0.5904	0.5549	0.5564	0.5272	0.5201	0.5067
wsc273	0.6520	0.6227	0.5714	0.5861	0.5678	0.5421

(d) GPT-2 XL (NeuralDB)

Task	1,000	2,000	4,000	6,000	8,000	10,000
sciq	0.8240	0.8290	0.8280	0.8280	0.8280	0.8280
logiq_a	0.2212	0.2181	0.2181	0.2181	0.2181	0.2197
commonsense_qa	0.1900	0.1933	0.1941	0.1941	0.1941	0.1941
arc_easy	0.5770	0.5785	0.5848	0.5848	0.5848	0.5848
MMLU	0.2532	0.2545	0.2547	0.2546	0.2543	0.2544
arc_challenge	0.2509	0.2509	0.2491	0.2500	0.2500	0.2517
lambada	0.5055	0.5053	0.5077	0.5069	0.5065	0.5053
winogrande	0.5770	0.5785	0.5848	0.5848	0.5848	0.5848
wsc273	0.6777	0.6667	0.6850	0.6850	0.6850	0.6850

1344
1345
1346
1347
1348
1349

1350
 1351
 1352 Table 21: Performance of each task across different editing budgets (1,000, 2,000, 4,000, 6,000,
 1353 8,000, 10,000) under various model–algorithm configurations.
 1354
 1355

(a) GPT-J (AlphaEdit)

Task	1,000	2,000	4,000	6,000	8,000	10,000
sciq	0.9110	0.9080	0.9060	0.8900	0.8850	0.7410
logiq_a	0.2151	0.2243	0.2089	0.2181	0.2304	0.2181
commonsense_qa	0.2080	0.2146	0.2048	0.1884	0.1925	0.1785
arc_easy	0.6658	0.6477	0.6326	0.6010	0.5804	0.4870
MMLU	0.2660	0.2688	0.2622	0.2592	0.2587	0.2535
arc_challenge	0.3276	0.3148	0.2901	0.2782	0.2611	0.2261
lambada	0.6722	0.6604	0.6057	0.5158	0.4036	0.2203
winogrande	0.6346	0.6227	0.6093	0.5991	0.5730	0.5635
wsc273	0.8425	0.8352	0.7985	0.7399	0.7179	0.6264

(b) GPT-J (NeuralDB)

Task	1,000	2,000	4,000	6,000	8,000	10,000
sciq	0.9160	0.9160	0.9160	0.9160	0.9160	0.9160
logiq_a	0.2120	0.2120	0.2120	0.2120	0.2120	0.2120
commonsense_qa	0.2080	0.2080	0.2080	0.2080	0.2080	0.2080
arc_easy	0.6692	0.6692	0.6692	0.6692	0.6692	0.6692
MMLU	0.2695	0.2697	0.2697	0.2695	0.2695	0.2698
arc_challenge	0.3396	0.3396	0.3404	0.3404	0.3404	0.3404
lambada	0.6829	0.6827	0.6827	0.6821	0.6821	0.6819
winogrande	0.6409	0.6417	0.6417	0.6417	0.6417	0.6409
wsc273	0.8242	0.8242	0.8242	0.8242	0.8242	0.8242

(c) GPT-2 XL (AlphaEdit)

Task	1,000	2,000	4,000	6,000	8,000	10,000
sciq	0.8250	0.8230	0.7920	0.7440	0.6390	0.4920
logiq_a	0.2289	0.2273	0.2012	0.2104	0.1951	0.1889
commonsense_qa	0.1908	0.1957	0.1916	0.1974	0.2080	0.1933
arc_easy	0.5682	0.5484	0.4987	0.4693	0.4066	0.3493
MMLU	0.2618	0.2562	0.2464	0.2312	0.2369	0.2315
arc_challenge	0.2423	0.2346	0.2398	0.2108	0.1887	0.2065
lambada	0.4881	0.4170	0.2610	0.1467	0.0767	0.0231
winogrande	0.5904	0.5549	0.5564	0.5272	0.5201	0.5067
wsc273	0.6520	0.6227	0.5714	0.5861	0.5678	0.5421

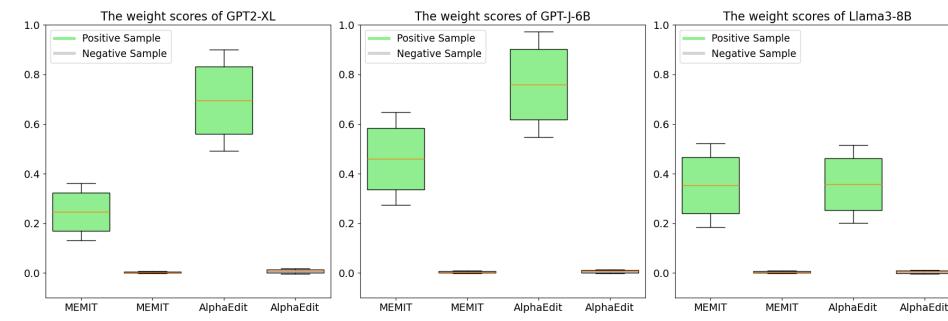
(d) GPT-2 XL (NeuralDB)

Task	1,000	2,000	4,000	6,000	8,000	10,000
sciq	0.8240	0.8290	0.8280	0.8280	0.8280	0.8280
logiq_a	0.2212	0.2181	0.2181	0.2181	0.2181	0.2197
commonsense_qa	0.1900	0.1933	0.1941	0.1941	0.1941	0.1941
arc_easy	0.5770	0.5785	0.5848	0.5848	0.5848	0.5848
MMLU	0.2532	0.2545	0.2547	0.2546	0.2543	0.2544
arc_challenge	0.2509	0.2509	0.2491	0.2500	0.2500	0.2517
lambada	0.5055	0.5053	0.5077	0.5069	0.5065	0.5053
winogrande	0.5770	0.5785	0.5848	0.5848	0.5848	0.5848
wsc273	0.6777	0.6667	0.6850	0.6850	0.6850	0.6850

1392
 1393
 1394
 1395
 1396 Table 22: The results of NeuralDB on Qwen2.5 and Llama 3.1 8B Instruct. We provide the 2000
 1397 and 5000 facts on ZsRE and CounterFact.
 1398

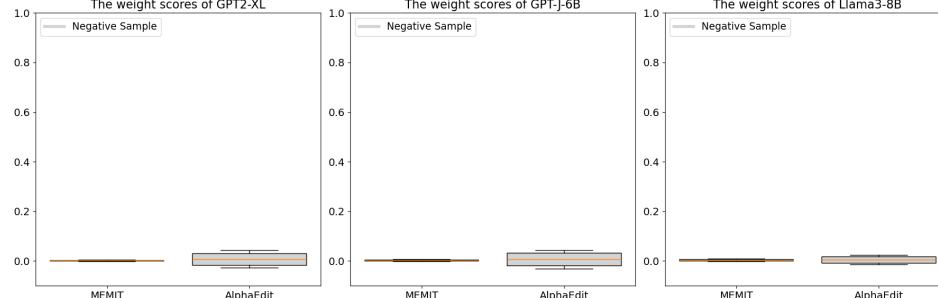
Model Metrics	Edit Number	Counterfact			ZsRE				
		Efficacy	Generalization	Specificity	Fluency	Consistency	Efficacy	Generalization	Specificity
Qwen2.5	2000	99.45	90.72	84.69	625.70	33.21	99.69	91.82	38.4
Qwen2.5	10000	98.99	89.85	81.97	625.33	33.08	99.15	91.79	38.27
Llama 3.1	2000	99.80	94.60	87.92	634.13	34.01	95.96	87.11	30.91
Llama 3.1	10000	99.18	93.95	85.67	634.13	33.69	95.28	88.06	30.39

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417



(a) Paraphrased facts

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441



(b) Neighborhood facts

1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 5: Visualization of weighted scores for paraphrased facts and neighborhood facts, using MEMIT and AlphaEdit across three models. The boxplots are generated from the mean and variance of weight scores, with the center line indicating the mean, boxes showing ± 1 standard deviation, and whiskers ± 1.5 .