
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALING KNOWLEDGE EDITING IN LLMS TO 100,000
FACTS WITH NEURAL KV DATABASE

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficiently editing knowledge stored in Large Language Models (LLMs) enables
model updates without large-scale training. One promising solution is Locate-and-
Edit (L&E), allowing simultaneous modifications of a massive number of factual
knowledge. However, such editing may compromise the general abilities of LLMs
and even result in forgetting edited facts when scaling up to thousands of edits. In
this paper, we model existing linear L&E methods as querying a Key-Value (KV)
database. From this perspective, we then propose NeuralDB, an editing frame-
work that explicitly represents the edited facts as a neural KV database equipped
with a non-linear gated retrieval module. With simple modification over L&E
methods, our framework not only significantly extends the capacity of knowledge
editing but also eliminates the associated side effects. Comprehensive experiments
involving the editing of 10,000 facts were conducted on the ZsRE and Counter-
Fact datasets, including GPT2-XL, GPT-J (6B) and Llama-3 (8B). The results
demonstrate that NeuralDB excels in all metrics of editing success while main-
taining original performance evaluated by six representative text understanding
and generation tasks. Further experiments indicate that NeuralDB maintains its
effectiveness even when scaled to 100,000 facts (50× more than in prior work).

1 INTRODUCTION

Updating the knowledge stored in the parameters of Large Language Models (LLMs) is crucial to
refreshing outdated information (Zhu et al., 2024) and integrating domain-specific knowledge to fa-
cilitate customization (Ge et al., 2023). However, retraining LLMs from scratch is often impractical
due to the substantial computational resources and time required. Fine-tuning, while a more feasible
approach, can lead to catastrophic forgetting (Luo et al., 2023; Gekhman et al., 2024). To address
these challenges, knowledge editing (KE) methods (Wang et al., 2024a; Mitchell et al., 2022a; Zheng
et al., 2023a) have emerged as promising solutions that enable precise and cost-effective modifica-
tions of specific factual associations within LLMs.

Editing massive knowledge is an important but challenging task in KE. Locate-and-Edit (L&E)
methods (Meng et al., 2022; Li et al., 2024b) are the main solutions to achieve this goal. The L&E
paradigm trains the specific activation residual for new facts and incorporates the learned activa-
tions into the target parameter W by introducing a linear perturbation ∆. Additionally, to ensure
that the activation of “general knowledge” remains unmodified, these methods sample extensive
data from Wikipedia representing the general knowledge. The modified parameters ∆ are then de-
termined by solving least squares problems to ensure that the residuals required are generated for
the new facts without affecting the activation of sampled knowledge (Meng et al., 2022). Notably,
AlphaEdit (Fang et al., 2025) introduces null space projection to enhance the preservation of the
sampled knowledge, effectively maintaining the general capabilities of LLMs.

We refer to the capacity of KE methods as the maximum number of edited facts that can be handled
without compromising general capabilities. Despite great progress, the capacity of existing methods
is limited to hundreds of facts. When editing thousands of facts, the post-edited models often expe-
rience a decline in the valuable general abilities developed through extensive training (see Fig. 1).
This decline can be attributed to the inadequacy of the sampled subset from Wikipedia in represent-
ing general capabilities. Additionally, previously updated information tends to fade as more facts
are edited, due to the suboptimal capacity of the linear systems employed by these editing methods.
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Figure 1: The proposed NeuralDB scales edited facts up to 10, 000 without losing general abili-
ties. Left: Average of efficacy, generalization, and specificity. Right: Average performance on tasks
(MMLU, SciQ, Commonsense QA, ARC Challenge, Lambada, WSC273).

In this paper, we find that most L&E methods, including MEMIT (Meng et al., 2023), D4S (Huang
et al., 2024), and AlphaEdit (Fang et al., 2025), can be understood from the perspective of the
Key-Value (KV) database. We conceptualize these methods as querying a KV database, wherein a
certain hidden state serves as the query to retrieve the corresponding learned residual. Formally, the
updated parameters of these methods can be interpreted as a weighted average of the residual matrix
associated with the edited facts. We empirically investigate these weights across multiple post-
edited models and show that they exhibit an extremely sparse form during inference. Specifically,
when inferring on the edited fact, the weights closely resemble a one-hot vector, with only the
weight corresponding to the edited fact being non-zero, thereby returning the associated residual.
Conversely, when inference is made on unrelated content, the weights are in the form of a zero
vector, thereby preventing interference.

In light of this novel perspective, we propose a Neural KV Database (NeuralDB) editing framework,
which integrates the target FFN layer with a gated non-linear retrieval module that replaces the orig-
inal linear perturbation ∆. This non-linear retrieval module overcomes the limitations of linearity
in the L&E methods and enjoys greater capacity. With the gated mechanism, our method can both
protect the general ability and reduce the computation costs from sampling Wikipedia. Additionally,
NeuralDB is easy to manage for supporting operations such as appending, modifying, and deleting.
We provide the quantitative and qualitative evidence of supporting delete operation in Appendix J.5.

To validate the capacity of NeuralDB, we conducted comprehensive experiments on two KE bench-
marks across three models: GPT-2 XL (Radford et al., 2019), GPT-J (6B)(Wang, 2021), and Llama-
3-Instruct (8B)(Grattafiori et al., 2024). Our results demonstrate several advantages of NeuralDB:

(i) NeuralDB achieves significantly improved performance in editing success across various metrics,
while preserving fluency and consistency in post-edited models, particularly for 10,000 edited facts.

(ii) After editing 10,000 facts, NeuralDB maintains the quality of the generated text in Llama-3-8B
across six widely adopted text understanding and generation tasks.

(iii) Extensive scaling experiments with 100,000 edited facts (50×more than AlphaEdit (Fang et al.,
2025)) further demonstrate the high capacity of NeuralDB.

This combination of large capacity without a loss in generation quality underscores the potential of
NeuralDB for trustworthy and customizable deployment of language models.

2 BACKGROUND

Current KE methods typically focus on updating transformer-based LLMs with factual knowledge
that can be represented as triple (s, r, o), where s denotes the subject, r represents the relational
predicate, and o is the object. For instance, the fact “The latest World Cup was held in Qatar.” can
be represented as (“The latest World Cup”, “was located in”, “Qatar”). Conversely, triples can be
transformed into natural language sentences, and we treat these two representations as interchange-
able in the sequel. We denote the edited facts as a set of revised tuples F∗ = {(si, ri, oi → ôi)},
where ôi represents the target new object that replaces the original oi. Notably, KE should not com-
promise the general ability of the model (Huang et al., 2024), as these abilities are usually developed
from extensive pre-training.
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As shown in Fig. 3, during inference, the hidden state hl of the prediction at the l-th FFN layer of
an LLM is computed according to the following recursive form:

hl = hl−1 + al +ml, ml = Wl
outσ

(
Wl

in(N (hl−1 + al))
)
, (1)

where al and ml are the outputs of the attention block and FFN layer, respectively, Wl
in and Wl

out
represent the weight matrices of the l-th FFN layer, respectively, N (·) represents the layer normal-
ization, and σ(·) denotes the activation function. We follow previous research (Meng et al., 2022;
2023) by modeling the FFN layer as operating linear key-value memories as follows:

kl = σ
(
Wl

in(N (hl−1 + al))
)
, vl = Wl

outk
l. (2)

Then, the textual knowledge (s, r, o) can be linked to the parametric knowledge of the LLM through
the activation derived from the inference process. In this context, the key vector k can be interpreted
as encoding the query (s, r), while the object o is subsequently decoded by the model based on the
value vector v associated with the key (Geva et al., 2021).

L&E methods aim at adjusting the activation value v on new facts by modifying the parameter Wout.
In this paradigm, a learnable perturbation is added to the activation vl in the specified layer l using
supervised learning, resulting in a new activation v̂l that allows the model to generate new answers
ô. Then the perturbation matrix ∆l should satisfy

(Wl
out +∆l)kl

i = v̂l
i and (Wl

out +∆l)kl
j = vl

j (3)

where v̂l
i corresponds to the new facts and (kl

j ,v
l
j) to the sampled knowledge that shall be preserved.

For simplified notation, we denote the parameter to be updated Wl
out ∈ Rd2×d1 by W, where d1

and d2 represent the dimensions of the intermediate and output layers of the FFN, respectively. To
update a large batch of facts, we obtain the key and value matrix by stacking the vectors:

K1 = [k1,k2, · · · ,km] ∈ Rd1×m, V̂1 = [v̂1, v̂2, · · · , v̂m] ∈ Rd2×m, (4)

where m is the number of edited facts, and we provide details on computing ki and v̂i in Appendix F.
Additionally, we define the residual matrix and residual vectors as

R1 = V̂1 −WK1 and ri = R1[:, i]. (5)

To preserve the general abilities of the post-edited model, current methods (Meng et al., 2023; Huang
et al., 2024; Fang et al., 2025), require the sampling of massive facts from Wikipedia1 to construct
the matrix K0, which typically consists of 100,000 stacked key vectors.

3 RETHINKING LOCATE-AND-EDIT METHODS WITH QUERYING KEY-VALUE
DATABASE

In this section, we demonstrate that most L&E methods can be treated as querying a Key-Value (KV)
database. We support this argument through both theoretical derivation and experimental validation.
Specifically, we update all target facts in a single step in executing MEMIT (Meng et al., 2023) and
AlphaEdit (Fang et al., 2025), which have been shown to effectively mitigate the degradation of
general capabilities by D4S (Huang et al., 2024). For simplicity, we only discuss the updating over
one layer. The detailed derivation of MEMIT and AlphaEdit is provided in Appendix G.

We conclude that the mechanism of the updating parameter ∆upd can be written as

(W +∆upd)k = v +R1ω, ω = KT
1 Sk ∈ Rm×1, (6)

where k and v are the key and value vectors from the original activation, K1 is key matrix computed
from edited facts, and S is the kernel matrix obtained from specific editing methods.

With self-similarity ω = KT
1 Sk as weighted scores, the result of weighted average R1ω is integrated

into the models to update new knowledge. This means that k serves as the query to retrieve the
residual matrix R1. Then we discuss the structures of the solutions for MEMIT and AlphaEdit.

1https://huggingface.co/datasets/wikimedia/wikipedia

3
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Figure 2: Visualization of weighted scores ω = KT
1 Sk using MEMIT and AlphaEdit for three

models. The box-plots are generated from the mean and variance of weight scores, with the center
line indicating the mean, boxes showing ±1 standard deviation, and whiskers ±1.5.

The closed-form solution for MEMIT can be derived as follows:

∆MEMIT
upd = R1K

T
1 (K1K

T
1 + β1K0K

T
0 )

−1. (7)

Let S1 = (K1K
T
1 + β1K0K

T
0 )

−1 , then the update can be expressed as ∆MEMIT
upd = R1K

T
1 S1.

Similarly, AlphaEdit utilize the null space projection matrix P as the hard constraints of general
knowledge. The closed-form solution for AlphaEdit has a similar structure as following:

∆AlphaEdit
upd = R1K

T
1 P

T (PK1K
T
1 P

T + β2I)
−1P. (8)

Let S2 = PT (PK1K
T
1 P

T + β2I)
−1P, this can be rewritten as ∆AlphaEdit

upd = R1K
T
1 S2, which is

also the weighted average over R1, with KT
1 S2k representing the weighted scores ω. In particular,

AlphaEdit returns 0 when k is from the null space of general knowledge K0. Consequently, Sk =
PT (PK1K

T
1 P

T + β2I)
−1(Pk) = 0, which effectively preserves the general abilities.

We empirically visualize the weighted scores ω = KT
1 Sk for three post-edited models using

MEMIT and AlphaEdit during their inference on new facts. Specifically, we perform KE on 1, 000
facts from the CounterFact dataset and evaluate the post-edited models on these edited facts. When
testing the i-th edited knowledge, we refer to the i-th component of ωi as the positive sample, while
the remaining components are considered negative samples.

As shown in Fig. 2, the weighted scores labeled as negative samples are close to 0, while the
weighted scores of positive samples are significantly higher, with those for AlphaEdit approach-
ing 1. Additional results provided in the Appendix J.9 demonstrate that methods typically yield
ω = 0 when conducting inference on unmodified facts. The empirical results of these optimized
KV databases reveal an important finding: they return the residual vector corresponding to the
edited fact, while returning the zero vector for unrelated questions.

4 METHOD

To overcome the limited capacity of linear system, we construct the neural KV database equipped
with non-linear retrieval function, as previous editing methods were primarily optimized for retriev-
ing the most relevant residual vector. As shown in Fig. 3, the proposed NeuralDB editing framework
serves as a plug-and-play module for efficient massive knowledge editing.

4.1 NEURAL KV DATABASE

Given the target facts F∗ = {(si, ri, oi → ôi)}, we first compute their key and residual matrix to
obtain K1 and R1. Below, we formally define them as a neural KV database.
Definition 1 (Neural Key-Value Database). Given F∗, the constructed neural KV database can be
represented as (K1,R1), where K1 ∈ Rd1×m and R1 ∈ Rd2×m denote the key matrix and residual
matrix of the edited facts as defined in Eq. equation 4 and Eq. equation 5. K1 and R1 serve as keys
and values within the database, with ki = K1[:, i] being associated with ri = R1[:, i].

4
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FFN

The latest World Cup 
was held in Qatar.

The i-th update fact

Algorithm: Construct neural KV database.
Require: Edited facts 𝐹∗, LLM 𝑔.
Ensure: The key-value matrix 𝑲𝟏,𝑹𝟏

Initialize empty lists:  K and R.
For each fact f𝑖 in 𝐹∗

𝑘𝑖 ← compute_key(f𝑖, 𝑔)
𝑟𝑖 ← compute_residual(f𝑖, 𝑔)
Append 𝑘𝑖 to K
Append 𝑟𝑖 to R.

  𝑲𝟏 = Stack(K)
  𝑹𝟏 = Stack(R)

1. Algorithm for KV database construction 2. LLM with the neural KV database 3. Inference via gating mechanism

0

Edited knowledge

Unrelated knowledge

Edited factsNeuralDB maintains the aligned key-value list. The gating function was selectively 
activated for the edited knowledge.

Figure 3: Overview of NeuralDB editing framework. (1) The key K1 and residual matrix R1,
defined in Eq. 4 and Eq. 5, are computed to construct the neural KV database. (2) Our proposed
module is designed for efficient, plug-and-play editing. (3) During inference, our non-linear gated
function g(·;K1,R1) only returns the most matched residual rj when post-edited models infer one
edited fact and involve key vectors kedited. The function g(·;K1,R1) reverts zero vector 0 when
involving the key vector kpre of general knowledge.

4.2 NONLINEAR GATED RETRIEVAL MODULE

The findings in Section 3 indicate two key requirements in KE: (i) determining whether to use resid-
uals for editing, and (ii) identifying which residual to edit based on the given query. To rigorously
implement these demands in the KV database (K1,R1), we propose the following nonlinear re-
trieval function, which returns the residual with maximal similarity if it meets the gating condition:

g(k;K1,R1) = rj ·
Gate︷ ︸︸ ︷

1cos(k,kj)>γ , j = argmax cos(k,ki), (9)

where cos(·, ·) denotes the cosine similarity, 1 represents the indicator function, and γ is the param-
eter controlling the gating mechanism. Although straightforward, cosine similarity proves to be very
effective in our key matching experiments in Appendix E. Additionally, its range from the interval
[0, 1] provides good interpretability, making it easy to set γ.

As illustrated in Fig. 3, the nonlinear function is integrated into the target FFN layer as follows:

vl = Wlkl + g(kl;K1,R1). (10)
When post-edited models involve general knowledge, the involved key vector kl generally exhibits
low similarity to all key vectors within the matrix K1. Then the workflow of original model remains
same since the gating mechanism is not activated. Therefore, the general ability of LLMs can
successfully be preserved. In contrast, when post-edited models encounter revised facts, our retrieval
function will recall the most closely related residual vector, because of the high similarity between
the keys will satisfy the gating condition.

The ease of deployment NeuralDB only requires maintaining the lists of key and value vectors,
offering advantages such as convenient addition, deletion, and modification of edited facts. Addi-
tionally, our method eliminates the expensive but ineffective process of estimating general knowl-
edge. Compared to current L&E methods, these advantages provide better flexibility and practicality.

Single layer versus multi-layer editing We just implement our module in one single FFN layer.
Although previous L&E methods typically employ multi-layer strategies, we find this strategy offers
limited performance gains. We provide a related discussion in Appendix I.

Additional memory usage and computation time We show that the additional parameters in-
troduced in the NeuralDB module are controllable. Specifically, the space complexity is O((d1 +
d2) ×m) for the storage of matrices K1 ∈ Rd1×m and R1 ∈ Rd2×m, where m denotes the num-
ber of facts. When editing 10,000 facts with Llama 3 8B (Instruct), the additional parameter size
amounts to 150M, which constitutes approximately 2.2% of the original model’s size. We report the
additional running time of in Table 1. The evaluation time for 10, 000 facts in CounterFact dataset
increases only by 1.5% compared to the original model. Detailed information regarding additional
computation is provided in Appendix H.
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Table 1: The ratio of additional time across the number of edits on Llama 3 8B (Instruct).

Total number of edited facts 2k 4k 6k 10k 12k 16k 20k
The ratio of additional time 0.65% 1.65% 1.67% 1.7% 2.29% 3.69% 5.55%

5 EXPERIMENTS

In this section, we present a comprehensive evaluation of our method for massive KE. For fair com-
parison, we mostly follow the experimental setups in AlphaEdit (Fang et al., 2025) to benchmark
our method. Specifically, we examine whether the edited models can effectively balance mastery
of the edited facts with retention of their general capabilities. Detailed implementation of the Neu-
ralDB editing framework is provided in Appendix D. We provide the detailed ablation studies in
Appendix I, including γ selection, layer selection and multi-layer. Additional results are given
in Appendix J, including support for more LLMs, further comparisons with WISE and T-Patcher,
results on KnowEdit (Zhang et al., 2024b) and MQuAKE (Zhong et al., 2023), and other supple-
mentary findings.

5.1 SET UP

We evaluates the post-edited models after editing all the T facts, where T is the total edited numbers.

Models and methods We select three representative LLMs, including GPT-2 XL (Radford
et al., 2019), GPT-J (6B) (Wang, 2021), and Llama3 (8B) (Grattafiori et al., 2024). We com-
pare our method with the following KE methods, including Fine-Tune (FT) (Meng et al., 2023),
MEND (Mitchell et al., 2022a), ROME (Meng et al., 2022), MEMIT (Meng et al., 2023),
SERAC (Mitchell et al., 2022b), GRACE (Hartvigsen et al., 2023a), RECT (Gu et al., 2025), and
AlphaEdit (Fang et al., 2025). We provide a detailed introduction on these baselines and models
in Appendix B. We provide the results including more LLMs in Section J.10. Additionally, we
compare with the WISE (Wang et al., 2025b) in Appendix J.1.

Datasets for knowledge editing To evaluate KE methods, we utilize two widely recognized
benchmarks: the CounterFact dataset (Meng et al., 2022) and the ZsRE dataset (Levy et al., 2017).
Consistent with previous research (Meng et al., 2022; Fang et al., 2025), we employ the following
evaluation metrics: efficacy (success of edited facts), generalization (success of paraphrased facts),
specificity (success of neighboring facts), fluency (generation entropy), and consistency (reference
score). Detailed explanations of the datasets and metrics are provided in Appendix C.

Datasets for general ability We assess the general capabilities of the edited LLMs using the fol-
lowing typical datasets, SciQ (Welbl et al., 2017) (science question answering), MMLU (Hendrycks
et al., 2021) (massive multitask language understanding), Commonsense QA (Talmor et al., 2019)
(commonsense knowledge understanding), ARC Challenge (Clark et al., 2018) (challenge task re-
quiring reasoning), WSC273 (Kocijan et al., 2019) (coreference resolution), Lambada (Paperno
et al., 2016)(predict the endings of text passages). Datasets such as SciQ, MMLU, and Common-
sense QA primarily evaluate knowledge-based question answering, focusing on the models’ ability
to understand and retain factual information. In contrast, the ARC Challenge, WSC273, and Lam-
bada are designed to assess capabilities beyond mere knowledge memory, such as reasoning and text
generation. Detailed information regarding these datasets is provided in Appendix C.

5.2 THE EDITING EFFECTIVENESS OF POST-EDITED MODELS

We evaluated the performance after editing 2,000 facts and also included the results of 10,000 facts in
parentheses for MEMIT, RECT, AlphaEdit, and NeuralDB. The results are presented in Table 2 and
our method demonstrates exceptional efficacy across various scenarios. We present the following
three important perspectives to demonstrate our advantages.

NeuralDB has great generalization. The rephrased structure presents a significant challenge for the
generalization metric, especially for memory-based methods. Although NeuralDB is also classified

6
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Table 2: Comparison of NeuralDB on KE benchmarks. Pre-edited refers to the original models
prior to any edits. We evaluated the performance of editing 2,000 facts, with results for FT, MEND,
InstructEdit, MELO, and ROME (sourced from Fang et al. (2025)). For 10,000 facts, the results
for MEMIT, RECT, AlphaEdit, and NeuralDB are denoted using the arrow (→) notation. The best
results for both 2,000 and 10,000 facts are highlighted in bold, respectively.

Method Model
CounterFact ZsRE

Efficacy↑ Generalization↑ Specificity↑ Fluency↑ Consistency↑ Efficacy↑ Generalization↑ Specificity↑

Pre-edited

L
L

aM
A

3

7.9 10.6 89.5 635.2 24.1 37.0 36.3 31.9

FT 83.3 67.8 46.6 233.7 8.8 30.5 30.2 15.5
MEND 63.2 61.2 45.4 372.2 4.2 0.9 1.1 0.5
SERAC 71.2 61.1 66.9 615.7 20.8 67.8 34.0 22.2
GRACE 96.7 50.1 72.2 620.4 23.8 93.6 1.0 31.9
ROME 64.4 61.4 49.4 449.1 3.3 2.0 1.8 0.7
MEMIT 63.5→ 63.4 62.8→ 56.6 52.0→ 50.55 466.6→ 460.4 6.5→ 6.5 36.7→ 0.1 32.9→ 0.1 19.1→ 1.5
RECT 64.2→ 60.0 62.5→ 53.9 58.9→ 51.2 502.8→ 399.1 12.9→ 1.6 86.8→ 0.0 82.3→ 0.0 31.9→ 0.0

AlphaEdit 99.1→ 75.8 94.0→ 63.1 68.6→ 54.0 622.7→ 417.8 32.8→ 7.0 94.4→ 90.5 91.3→ 85.9 32.6→ 30.3
NeuralDB 99.9→ 99.2 86.6→ 85.9 88.2→ 85.6 632.7→ 631.02 32.9→ 32.6 96.3→ 95.9 92.0→ 91.0 31.9→ 31.8

Pre-edited

G
PT

-J

16.2 18.6 83.1 621.8 29.7 26.3 25.8 27.4

FT 92.2 72.4 43.4 297.9 6.7 72.4 68.9 19.7
MEND 46.2 46.2 53.9 242.4 3.9 0.7 0.7 0.5
SERAC 82.3 58.3 69.0 615.9 28.7 92.4 38.2 25.2
GRACE 96.5 50.1 74.4 620.6 31.6 96.5 0.4 24.8
ROME 57.5 54.2 52.1 589.4 3.2 56.4 54.7 9.9
MEMIT 98.6→ 48.8 95.4→ 49.3 66.1→ 51.9 557.8→ 281.5 36.5→ 5.1 90.5→ 0.2 84.7→ 0.1 30.9→ 0.2
RECT 98.8→ 76.3 86.3→ 70.6 74.4→ 54.9 618.1→ 517.3 41.2→ 25.4 96.6→ 53.5 91.5→ 49.6 29.0→ 21.9

AlphaEdit 99.8→ 91.6 96.3→ 79.6 76.2→ 60.3 618.5→ 517.8 41.9→ 6.9 99.7→ 94.2 95.9→ 86.1 28.8→ 22.5
NeuralDB 99.7→ 99.1 94.6→ 93.2 80.0→ 75.7 619.8→ 620.0 41.4→ 41.3 99.2→ 98.2 95.9→ 95.0 27.5→ 27.0

Pre-edited

G
PT

2-
X

L

22.2 24.3 78.5 626.6 31.9 22.2 31.3 24.2

FT 63.6 42.2 57.1 519.4 10.6 37.1 33.3 10.4
MEND 50.8 50.8 49.2 407.2 1.0 0.0 0.0 0.0
SERAC 72.3 58.2 64.1 595.4 27.4 92.2 36.6 20.7
GRACE 98.9 50.1 72.1 620.2 28.5 94.3 1.6 27.6
ROME 54.6 51.2 52.7 366.1 0.7 47.5 43.6 14.3
MEMIT 93.0→ 58.5 83.3→ 55.8 58.9→ 56.1 481.8→ 496.2 23.2→ 8.1 74.4→ 3.5 66.9→ 2.8 25.87→ 2.07
RECT 91.8→ 86.9 79.5→ 69.5 64.0→ 55.0 482.1→ 517.8 20.3→ 10.9 82.6→ 27.5 74.7→ 25.1 24.6→ 13.1

AlphaEdit 99.4→ 92.2 93.8→ 76.5 65.6→ 56.5 584.0→ 580.9 37.9→ 29.6 93.2→ 57.1 83.5→ 47.5 25.3→ 13.5
NeuralDB 99.8→ 99.1 97.2→ 95.7 74.1→ 70.9 621.5→ 619.9 42.2→ 41.7 96.3→ 94.6 92.8→ 91.0 25.0→ 24.2

as a memory-based method, our approach achieves nearly 90% accuracy, whereas SEARC and
GRACE only achieve a success rate of almost 50%.

NeuralDB has few side effects. Editing methods must be precise and avoid potential side effects.
As observed in Table 2, existing methods often exhibit low specificity metrics and their responses
lack fluency. Our method effectively mitigates these side effects and achieves near results compared
with pre-edited models in terms of both specificity and fluency. Additionally, our method ensures
that the generated text maintains coherence with a high degree of consistency.

NeuralDB has superior scalability. In particular, when increasing the number of edited facts from
2,000 to 10,000, our method maintains nearly 99% of the results across all metrics and exhibits
stable performance. In contrast, existing methods often experience significant degradation, with
AlphaEdit preserving only 70% of the results. When editing 10,000 facts, our method demonstrates
a comprehensive advantage across all metrics in two datasets.

5.3 THE GENERAL ABILITIES OF POST-EDITED MODELS

We assessed post-edited models with various configurations, evaluating their performance across
2,000, 4,000, 6,000, 8,000, and 10,000 facts, as depicted in Fig. 4. The evaluation was conducted
on lm-evaluation-harness (Gao et al., 2024). The results show that our method effectively edits a
large number of facts without compromising the general abilities of the models across various tasks.
In contrast, existing L&E methods struggle with 4,000 facts editing and exhibit a rapid decline in
general abilities as the number of edited facts increases. Notably, these baseline methods achieve
favorable results on the SciQ dataset, likely due to the dataset’s content being well-represented
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Figure 4: Results over general abilities after massive editing. NeuralDB is evaluated against strong
baselines (MEMIT, RECT, and AlphaEdit), with black dashed lines indicating random guessing
baselines for multi-choice datasets. The results highlight NeuralDB’s advantage: it preserves general
capabilities with strong consistency as edit numbers increase significantly.

in Wikipedia and thus captured by the sampled K0 . However, their performance deteriorates on
other tasks, highlighting the limitations of relying on Wikipedia-sampled K0. Our method, which
directly incorporates the gated mechanism, offers a more precise and effective approach compared
to approximations derived from Wikipedia. For results on more models, please see Appendix J.

5.4 SCALING UP THE NUMBER OF EDITED FACTS INTO 100K

We further examine the scalability of the NeuralDB when applied to an extensive volume of knowl-
edge. To obtain a sufficiently large set of facts for this investigation, we utilized the training set of
the ZsRE dataset for model editing. The results for the Llama3 8B (Instruct) model are presented
in Table 3. These results demonstrate that the performance of NeuralDB remains highly stable as
the number of edited facts increases from 10,000 to 100,000 with only marginal degradation ob-
served. In evaluations of the model’s general ability, we find that scaling up the number of edited
facts to 100,000 did not harm the general ability performance and led to a 0.7% improvement in the
benchmark datasets. This underscores the superior scalability of our framework.

Table 3: Editing accuracy and the post-edited model’s general performance of NeuralDB on Llama
3 (8B) when editing extremely large sets of facts.

Number of edits 0k 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Efficacy (↑) 37.0 96.9 96.6 96.6 96.4 96.1 96.0 95.9 95.8 95.6 95.5
Generalization (↑) 36.3 91.4 91.4 91.2 91.0 90.7 90.6 90.6 90.5 90.4 90.2

Specificity (↑) 31.9 35.1 35.3 35.2 35.2 35.2 35.2 35.2 35.1 35.1 35.1
MMLU2 (↑) 56.2 56.2 56.2 56.2 56.2 56.2 56.2 56.9 56.9 56.9 56.9

6 RELATED WORK

6.1 KNOWLEDGE EDITING THROUGH PARAMETER MODIFICATION

Locate-and-Edit The L&E paradigm is derived from casual trace experiments (Meng et al., 2022),
suggesting that the factual memory of the Transformer models is primarily associated with the FFN
layers (Geva et al., 2021). ROME (Meng et al., 2022) is proposed to edit the factual memory of the
models by modifying the parameter of the target FFN layer. MEMIT (Meng et al., 2023) extends

2The MMLU results are evaluated by the AlphaEdit project rather than the lm-evaluation-harness. Although
they use different metrics, both sets of results reflect the general capabilities of the LLMs.
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ROME to support multi-layer and batch editing versions, allowing the editing of thousands of factual
knowledge. To address the challenge of post-edited models losing their general capabilities (Li et al.,
2024a; Hsueh et al., 2024), several solutions were proposed, including the dumping of sequential
editing caches (Huang et al., 2024), null space projection (Fang et al., 2025), and regularization of
the weights (Gu et al., 2024b) and singular values (Ma et al., 2025).

Hypernetwork KE (De Cao et al., 2021) trains a lightweight biLSTM-MLP editor to convert a
single-sample gradient into a low-rank weight delta. MEND (Mitchell et al., 2021) factorizes two-
layer gradients into rank-1 vectors and feeds them through a shared MLP, allowing memory-frugal
batch edits. InstructEdit (Zhang et al., 2024a) utilizes a complex prompt template so that gradients
self-cluster, enabling diverse OOD tasks. All these approaches (Li et al., 2025b) require additional
fine-tuning of the hypernetwork with large datasets, incurring considerable computational overhead.

6.2 KNOWLEDGE EDITING WITHOUT PARAMETER MODIFICATION

External memory module This line of work starts with SERAC (Mitchell et al., 2022c), which
augments a frozen model with explicit retrieval memory. T-Patcher (Huang et al., 2023) injects a
sparse “key–value–bias” triplet into the final FFN layer. GRACE (Hartvigsen et al., 2023b) stores
erroneous hidden states as discrete keys in a dynamic codebook whose values overwrite selected
layers whenever the current activation falls inside an ϵ -ball, enabling millisecond-scale. MELO
(Yu et al., 2024) uses a hidden-state–indexed database to activate low-rank, per-edit adapter blocks
on demand. Although NeuralDB sharesa similar framework with memory-based, the main differ-
ence is using the FFN activation of the subject as the key, which provides stronger generalization
and scalability. In Appendix E, we provide a detailed discussion and key matching experiments
compared to GRACE (Hartvigsen et al., 2023a) to explain our advantages. MEMOIR (Wang et al.,
2025a) achieves strong lifelong editing by training sparse masks over side parameters and routing
new queries via sparse activation-pattern matching; in contrast, our approach targets large-batch
editing at scale with an explicit, in-layer KV module. RASE (Han et al., 2023) enhances T-Patcher
and ROME by integrating fact retrieval; unlike our in-model retrieval from hidden states, RASE uses
sentence-embedding models for external retrieval before applying editing.

Prompt-based approaches Recent studies utilize prompt engineering to facilitate efficient KE.
For example, MemPrompt (Madaan et al., 2022) and IKE (Zheng et al., 2023b) embed updated
knowledge into prompts to leverage in-context learning. For multi-hop QA tasks, MQUAKE (Zhong
et al., 2023) and RippleEdits (Cohen et al., 2024) introduces a benchmark to evaluate multi-hop KE
performance. MeLLo (Zhong et al., 2023) stores edited facts externally and iteratively prompts
the model to yield answers consistent with the updates. PokeMQA (Gu et al., 2024a) improves
retrieval and answer accuracy by decomposing multi-hop questions via prompts. RAE (Shi et al.,
2024) retrieves refined facts and enhances the language model through in-context learning using
a knowledge graph. To address multilingual KE, ReMaKE (Wang et al., 2024b) integrates newly
retrieved multilingual knowledge into prompts.

7 CONCLUSION

In this paper, we introduce NeuralDB, a scalable knowledge editing framework designed to con-
struct a neural KV database from edited facts and integrate it into the target FFN layer within LLMs
using a non-linear gated function. This integration ensures that the general capabilities of LLMs
are preserved. The neural database is designed to be easily maintained, facilitating efficient addi-
tion and modification of edited facts within the models. We conducted comprehensive experiments
across various LLMs to validate the effectiveness of our framework. Our results on the ZsRE and
CounterFact datasets, utilizing GPT2-XL, GPT-J (6B), and Llama-3 (8B), demonstrate that Neu-
ralDB editing can effectively modify hundreds of thousands of facts without degrading the quality
of generated text. Additionally, our findings from six generic text understanding and generation
tasks confirm that our method preserves the general abilities of LLMs unrelated to the target edited
facts. These results highlight the robustness and scalability of NeuralDB editing, positioning it as a
valuable tool for enhancing the adaptability and accuracy of LLMs in diverse applications.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

The wider impacts include positive contributions to society. By improving the efficiency of knowl-
edge updates, models can adapt more quickly to changing environments and information. This not
only benefits research and education, but also provides up-to-date information support in critical
fields such as healthcare and justice, promoting scientific and timely decision making. Furthermore,
the proliferation of knowledge editing will encourage interdisciplinary collaboration, allowing ex-
perts from different fields to share and integrate knowledge more effectively to address complex
societal issues.

9 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the code in the supplementary materials and detailed imple-
mentation information in Appendix D. In the README.md file included with the code, we present
a step-by-step guide for reproducing our results, which covers loading datasets, preparing the envi-
ronment, executing the methods, and evaluating the outcomes.
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A THE USE OF LARGE LANGUAGE MODELS

The LLMs were used solely to refine the writing and check for potential typos. No other aspects
were involved.

B BASELINES

In this section, we present the six baseline methods evaluated in our work. For each method, we
adopt the default hyperparameter settings provided in the official code of the corresponding papers.

• Fine-Tune (FT) (Meng et al., 2023) is a fine-tuning method that updates the FFN of a
transformer layer to incorporate new factual knowledge. The target layer is selected on
the basis of its relevance to the knowledge being edited. FT operates by maximizing the
likelihood of the target output using the standard next-token prediction loss.

• MEND (Mitchell et al., 2022a) introduces a hypernetwork that maps fine-tuning gradients
into efficient weight updates for a pre-trained model. By applying low-rank decomposition
to the gradients, it reduces parameter complexity and enables lightweight, localized edits
without full model retraining.

• ROME (Meng et al., 2022) performs KE by interpreting the FFN in a transformer layer
as a linear associative memory. It derives key-value pairs from internal activations and
computes a weight update that ensures the edited layer produces the desired hidden repre-
sentation. A rank-one modification is then applied to the FFN weights, aligning the model’s
internal representations with the new factual knowledge.

• MEMIT (Meng et al., 2023) extends the ROME framework to support simultaneous editing
of a large number of factual knowledge items. It models the updates as a joint optimization
over key-value pairs and applies rank-one modifications to the FFNs. To prevent interfer-
ence between edits, MEMIT distributes the updates in a top-down manner across critical
FFN layers, achieving efficient, scalable, and stable insertion of new factual knowledge.

• RECT (Gu et al., 2025) reduces the degradation of general capabilities caused by KE. It
regularizes weight updates by constraining their magnitude and selectively updates only
the top-k% of parameters with the largest changes during fine-tuning. This reduces overfit-
ting and helps preserve the model’s reasoning and question-answering abilities, while still
achieving effective factual edits.

• AlphaEdit (Fang et al., 2025) introduces a null-space projection mechanism to preserve
existing knowledge during editing. It projects the update direction onto the null space
of prior knowledge and then applies the projected perturbation to model parameters. This
approach reduces interference with previously edited facts and enables effective integration
of new information.

C DATASETS AND METRICS

In this section, we describe the datasets and evaluation metrics employed in our experiments.

C.1 DATASETS

We evaluate our methods on two types of datasets: CounterFact and ZsRE for assessing KE, and
six benchmarks including SciQ, MMLU, CommonsenseQA, ARC Challenge, WSC273, and LAM-
BADA for evaluating the general capabilities of post-edited models.
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• Counterfact (Meng et al., 2022) is a challenging benchmark that focuses on editing in-
correct factual statements in language models. Each instance includes a subject and an
incorrect attribute to be updated. To assess edit locality, it provides contrastive prompts
involving related but distinct entities, ensuring changes do not affect nearby facts. Addi-
tionally, the dataset includes paraphrased and semantically equivalent prompts to evaluate
the generalization, fluency, and consistency of the edited model responses.

• ZsRE (Levy et al., 2017) is a question-answering dataset commonly used in knowledge
editing evaluation. Each example includes a subject, a target answer to be edited, para-
phrased questions for testing generalization, and unrelated questions for evaluating locality.
The dataset also features human-written question variants, enabling assessment of model
robustness to semantically equivalent inputs.

• SciQ (Welbl et al., 2017) is a multiple-choice science QA dataset covering topics such as
physics, chemistry, and biology. It is used to evaluate a model’s ability to recall factual
scientific knowledge.

• MMLU (Hendrycks et al., 2021) is a multitask benchmark containing questions from 57
academic and professional disciplines. It assesses factual knowledge and generalization
across diverse domains in zero- and few-shot settings.

• CommonsenseQA (Talmor et al., 2019) is a multiple-choice QA dataset that evaluates a
model’s ability to reason over everyday commonsense. It focuses on applying implicit
world knowledge to select the correct answer among distractors.

• ARC Challenge (Clark et al., 2018) is a science QA dataset designed to require reasoning
beyond simple retrieval. It contains complex grade-school level questions that challenge a
model’s problem-solving abilities.

• WSC273 (Kocijan et al., 2019) is a coreference resolution benchmark derived from the
Winograd Schema Challenge. It is designed to test whether a model can correctly identify
what ambiguous pronouns refer to, based on context and commonsense reasoning.

• Lambada (Paperno et al., 2016) is a word prediction benchmark composed of narrative
passages where the final word can only be inferred from the entire context. It is designed to
evaluate a model’s ability to capture long-range dependencies and maintain discourse-level
coherence.

C.2 METRICS

Here, we introduce the evaluation metrics for the CounterFact and ZsRE datasets, which are selected
based on previous works (Meng et al., 2022; Fang et al., 2025).

C.2.1 COUNTERFACT METRICS

Given a language model f , a query (si, ri), an edited object ôi, and the original object oi, the
evaluation metrics for CounterFact are defined as follows.

• Efficacy (success of edited facts): The proportion of instances in which the model prefers
the edited object ôi over the original object oi when prompted with (si, ri):

Ei [Pf [ôi | (si, ri)] > Pf [oi | (si, ri)]] . (11)

• Generalization (success of paraphrased facts): The proportion of paraphrased prompts
Fi(si, ri), representing rephrasings of the original query (si, ri), for which the model as-
signs higher likelihood to ôi than to oi:

Ei [Pf [ôi | Fi(si, ri)] > Pf [oi | Fi(si, ri)]] . (12)

• Specificity (success of neighborhood facts): The proportion of neighborhood prompts
Ni(si, ri), which involve subjects semantically related to but distinct from the original
subject si, for which the model assigns higher likelihood to the correct object oi than to the
edited object ôi:

Ei [Pf [ôi | Ni(si, ri)] < Pf [oi | Ni(si, ri)]] . (13)
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• Fluency (generation entropy): Measures output repetition based on the entropy of n-gram
distributions in model outputs. Specifically, it computes a weighted combination of bigram
and trigram entropies, where gn(·) denotes the n-gram frequency distribution:

−2

3

∑
k

g2(k) log2 g2(k) +
4

3

∑
k

g3(k) log2 g3(k). (14)

• Consistency (reference score): Consistency is measured by prompting the model f with a
subject s and computing the cosine similarity between the TF-IDF vectors of its generated
output and a reference Wikipedia passage about the object o.

C.2.2 ZSRE METRICS

Given a language model f , a query (si, ri), an edited object ôi, and the original object oi, the
evaluation metrics for ZsRE are defined as follows:

• Efficacy (success of edited facts): Top-1 accuracy on the edited samples, measuring the
proportion of cases in which the model ranks the edited object ôi as the most likely predic-
tion given the prompt (si, ri):

Ei

[
ôi = argmax

o
Pf (o | (si, ri))

]
(15)

• Generalization (success of paraphrased facts): Top-1 accuracy on paraphrased prompts
Fi(si, ri), which are rephrasings of the original query (si, ri), measuring the proportion of
cases in which the model ranks the edited object ôi as the most likely prediction for the
given rephrased prompt:

Ei

[
ôi = argmax

o
Pf (o | Fi(si, ri))

]
(16)

• Specificity (success of neighborhood facts): Top-1 accuracy on neighborhood prompts
Ni(si, ri), which involve subjects related to but distinct from si. Specificity reflects
whether the model preserves correct predictions on unaffected inputs by still preferring
oi over ôi:

Ei

[
oi = argmax

o
Pf (o | Ni(si, ri))

]
(17)

D IMPLEMENTATION DETAILS

We provide the details of the implementation of the experiments. To reproduce our methods, a
GPU with 40G memory is required. Our framework is built on L&E methods like MEMIT (Meng
et al., 2023) and AlphaEdit (Fang et al., 2025). We first sequentially compute the key vector k and
the residual vector r for the target edited facts. The details of the computation can be found in
Appendix F. Then we stack them as the key matrix K1 and the residual matrix R1 and construct
a neural KV database (K1,R1). Then we integrate the non-linear retrieval module with the target
FFN layer l∗. Our module only involves one hyperparameter γ to control the gated mechanisms.
We provide the details of the setting in the following Table 4. For the setting γ, we recommend
γ ∈ [0.6, 0.8] and provide the detailed ablation study in Appendix I. For the distance function, We
use cosine similarity as the distance function because it has a closed range of [0, 1]. across all edited
facts, thereby eliminating the need for complex key merging. Other distance functions can make it
difficult to determine a suitable value for γ.

Table 4: Hyper-parameters of NeuralDB for various models in the main experiments

GPT2-xl GPT-J (6B) Llama 3 Instruct (8B)

Layer found by casual trace 17 17 17
Layer l∗ used by NeuralDB 17 8 7

gating threshold γ 0.65 0.65 0.65
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Table 5: Architectural differences between GRACE and NeuralDB (ours). Illustrated editing the
fact “The latest World Cup was held in Qatar.”

Component NeuralDB GRACE
Anchor Token Position Last token of subject (e.g., Cup) Last token of question (e.g., is)
Key Selection Mechanism Activation in FFN layer Hidden state of given layer

Table 6: Key matching performance comparison under 100 facts

Method Rewrite Rewrite Rephrased Rephrased Neighborhood
Matched Unmatched Matched Unmatched Unmatched

NeuralDB (Cosine ↑) 1.00 0.18 0.84 0.19 0.18
GRACE (Cosine ↑) 1.00 0.25 0.44 0.44 0.45
GRACE (L2 ↓) 1.00 3968 781 768 948

E COMPARATIVE ANALYSIS WITH GRACE

Both GRACE and NeuralDB implement a key-value (KV) database structure for knowledge editing,
a design prevalent in memory-based methods due to its elegant modeling. Despite this architectural
similarity, our empirical results demonstrate that NeuralDB achieves significantly superior editing
performance in large-scale knowledge editing scenarios, particularly in generalization metrics. To
systematically investigate the source of this advantage, we first identify the core architectural differ-
ences (Table 5) and perform key matching experiments (Table 6).

Both methods can be formally represented as KV databases:

hl = Editing(hl−1) if (distance(k,Ki∗) < γi∗) where i∗ = argmin
i

distance(hl−1,Ki)

where distance is one distance function (e.g. L2, cosine similarity) and γi∗ is the threshold for
distance function.

The critical distinctions lie in two aspects: (1) NeuralDB utilizes the last token of the subject as
the anchor token, which provides unique feature representation and ensures scalability, whereas
GRACE uses the last token of the question; (2) NeuralDB selects keys based on activations in the
FFN layer, which have been empirically verified as crucial for factual knowledge memorization and
provide better generalization capabilities compared to GRACE’s hidden state approach.

To empirically validate why our KV structure outperforms GRACE’s, we conducted key matching
experiments. The results (Table 6) demonstrate that NeuralDB achieves superior key discrimination:

• For NeuralDB: Rewrite Matched (1.00) ≫ Rewrite Unmatched (0.18) and Rephrased
Matched (0.84) ≫ Rephrased Unmatched (0.19), indicating effective key discrimination
even for rephrased queries.

• For GRACE: Rephrased Matched (0.44) ≈ Rephrased Unmatched (0.44) in cosine simi-
larity, and even Rephrased Matched (781) > Rephrased Unmatched (768) in L2 distance,
revealing its inability to distinguish matched facts for rephrased queries.

The results show that NeuralDB can easily distinguish editing keys from unrelated keys, while
GRACE struggles in this regard. This empirical evidence directly explains the generalization per-
formance gap observed in Table 2 (NeuralDB: 86.60 vs. GRACE: 58.58). This confirms that Neu-
ralDB’s key discrimination mechanism offers significantly better generalization capabilities com-
pared to GRACE and other memory-based methods.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F COMPUTATION OF KEY VECTOR ki AND VALUE VECTOR ri

We follow previous locating-and-editing methods (Meng et al., 2022; 2023; Fang et al., 2025) to
derive the key vector and residual vector from the given edited fact (si, ri, oi → ôi). Let l∗ denote
the FFN layer to be updated.

For the key vector ki, we retrieve the specified activation from LLM inferring the prompt. We denote
kl∗(x) as the key activation of the prompt x in layer l∗. Then the target key vector are computed by
the following average over random prefix xj :

ki =
1

N

N∑
j=1

kl∗(xj + si), (18)

where si is the subject of edited fact. The xj is the prefix randomly generated by the language model
f to improve the robustness of the expressive ability of ki.

For the target vector ri, we wish to find some vector to decode the new answer ôi. We utilize the
supervised learning to derive ri = argminr L(r), where the loss object L(r) is defined as following:

1

N

N∑
j=1

(
−log Pf(hl∗+=r)[o

∗|xj + p] +DKL(Pf(hl∗+=r)[x|p′]∥Pf [x|p′])
)
. (19)

p is the factual prompt while p′ is its variant ( the form of “subject is a”). f(hl∗+ = r) indicates
substituting the output of the i-th MLP with an additional learnable parameter r. This optimization
also uses the random prefix text xj to enhance the robustness.

G DERIVATION OF SOLUTION TO MEMIT AND ALPHAEDIT

The objective of MEMIT is the following constrained least squares optimization:

argmin
∆
∥(W +∆)K1 − V̂1∥22 + β1∥∆K0∥22, (20)

where the term ∥∆K0∥22 ensures that the updated parameters maintain general knowledge. With
residual matrices R1 = V̂1−WK1, the closed-form solution for MEMIT can be derived as follows:

∆MEMIT
upd = R1K

T
1 (K1K

T
1 + β1K0K

T
0 )

−1. (21)

Let S1 = (K1K
T
1 + β1K0K

T
0 )

−1 , then the update can be expressed as ∆MEMIT
upd = R1K

T
1 S1.

Using SVD decomposition U,S,UT = SVD(KT
0 K0), the null space can be obtained by the sub

matrix N = U[:,S < ϵ] by removing the eigenvectors corresponding to non-zero eigenvalues,
where ϵ typically set as 10−2. Let P = NNT , where PK0 = N(NTK0) ≈ 0.

Similarly, we discuss AlphaEdit, which leverages the null space projection to convert soft constraints
for general knowledge into hard constraints. The null space projection matrix P such that PK0 = 0
is computed using SVD decomposition over KT

0 K0. Then, AlphaEdit constructs ∆ = δP such that
∥∆K0∥ approaches zeros and solves the following least squares problem with L2 Norm:

argmin
δ
∥(W + δP)K1 − V̂1∥22 + β2∥δP∥22. (22)

H ADDITIONAL MEMORY USAGE AND COMPUTATION TIME

In this section, we provide a detailed discussion of additional resources of our new module.

Memory usage We cache the key matrix K1 and the residual matrix R1 and construct the new
module, which totally take (d1 + d2) ×m parameters with m denoting the number of edited facts.
For Llama 3 8B model with d1 = 14, 336, d2 = 4, 096, the memory of 10,000 facts is about 150
million parameters. Compared to the total 8B parameters, the additional memory for 1M facts is
only 2.2%. Additionally, our memory grows linearly with the facts and is easily scaled to more
facts.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 Old multi-layer method

Require: Input Transformer model f , target layers list L = [l1, · · · , ln], request facts F , Function
COMPUTE KEY to compute the keys of facts at layer l, COMPUTE RESIDUAL compute the
residual of facts at layer l .

1: R← COMPUTE RESIDUAL(f,F , ln)
2: for l in L do
3: Ki ← COMPUTE KEY(f,F , l)
4: Ri ← R/(ln − l + 1)
5: Perform KE at layer l with (Ki, Ri)
6: end for

Algorithm 2 New multi-layer method

Require: Input Transformer model f , target layers list L = [l1, · · · , ln], request facts F , Function
COMPUTE KEY to compute the keys of facts at layer l, COMPUTE RESIDUAL compute the
residual of facts at layer l .

1: for l in L do
2: Ki ← COMPUTE KEY(f,F , l)
3: Ri ← COMPUTE RESIDUAL(f,F , l)
4: Perform KE at layer l with (Ki, Ri)
5: end for

Computation time We report the average evaluation time for three models and two datasets in
Table 7. The results show that the averaged time has only a slight improvement compared with the
methods without an additional module.

Table 7: The averaged time of evaluation post-edited models on CounterFact and ZsRE

Model Llama3 GPTJ-6B

Method MEMIT AlphaEdit NeuralDB MEMIT AlphaEdit NeuralDB

CounterFact 4.12 4.11 4.18 3.81 3.76 3.90
ZsRE 0.22 0.22 0.22 0.16 0.16 0.17

I ABLATION STUDY

I.1 LAYER SETTING: SINGLE-LAYER OR MULTI-LAYER?

We provide the pseudo code of the new multi-layer and the old multi-layer strategies in Algorithm 2
and Algorithm 1, respectively. New multi-layer strategy assigns parts of facts to each layer and
update the key-value pair for these layers separately. The edited layers by new multi-layer strategy
will disturb each other, resulting in poor performance. The compassion of these two algorithms on
two different pre-trained models in Table 8. The experimental results indicate that the new multilayer
method can greatly scale the number of editable facts, albeit with some loss in performance, while
the old multilayer method, though achieving better editing accuracy, requires substantially more
storage.

Furthermore, to ensure fairness, we provide comparisons with the single-layer versions of AlphaEdit
and MEMIT in Table 9. The results clearly demonstrate our improvements and further highlight our
advantages.
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Table 8: Editing performance under different layer setup

Model Layer Setup Efficacy ↑ Generalization ↑ Specificity ↑ Fluency ↑

GPT-J
[8] baseline 99.08 93.48 75.52 620.53
[6,7,8] new multi layers 94.44 91.72 75.93 617.44
[6,7,8] old multi layers 99.31 93.23 76.78 616.00

GPT2-XL
[17] baseline 99.04 95.96 70.72 621.90
[15,16,17] new multi layers 94.81 92.68 70.26 618.51
[15,16,17] old multi layers 99.08 94.01 71.33 624.48

Table 9: The comparison with single-layer versions of MEMIT and AlphaEdit. In each value a/b,
the first is the result of 2k while the second corresponds to 10k.

Method Efficacy Generalize Specificity Fluency Consistency Efficacy Generalize Specificity
Counteract Counteract Counteract Counteract Counteract ZsRE ZsRE ZsRE

MEMIT 69 / 72 59 / 61 52 / 46 519 / 522 6 / 6 68 / 0 63 / 0 27 / 1

AlphaEdit 97 / 88 83 / 73 69 / 53 623 / 563 32 / 29 93 / 88 88 / 83 32.5 / 31

NeuralDB 100 / 99 87 / 86 88 / 86 633 / 631 33 / 33 96 / 96 92 / 91 32 / 32

I.2 LAYER SELECTION

For the L = 7 in Llama3, we provide the results of additional 8 and 9 in Table 10. Although layer 8
is determined by the causal trace, our results show that its results are not suboptimal.

I.3 GATING HYPERPARAMETER γ SELECTION

We conducted an ablation study to investigate the choice of γ and the target layer, with results
provided in Table 11. Although all the evaluation metrics are usually monotonically changed as γ
increases, we observe a consistent trend across three models. γ = 0.65 provides a good balance
across metrics for three models. Importantly, the generalization metric is monotonic increasing,
while the specificity metric is monotonic decreasing. Extremely low or high γ substantially degrades
some metrics. Therefore, we recommend selecting γ in [0.55, 0.65], which empirically performs a
good performance for all the metrics and three models.

J ADDITIONAL EXPERIMENTS

J.1 THE COMPARISON WITH WISE

We provide the comparison with WISE in the Table 12. We implement both WISE and NeuralDB
using EasyEditor, a popular and useful code repository for knowledge editing. For fairness, we use
the default parameters of WISE provided in EasyEditor (WISE is released through EasyEditor).

WISE achieves consistent results across all efficacy, generalization, and locality metrics. However,
our method demonstrates superior performance on large-scale edits, as evidenced by its results with
2,000 and 5,000 facts.

J.2 THE COMPARISON WITH T-PATCHER

We have included the comparison with T-Patch in Table 13, where NeuralDB demonstrates its ad-
vantages across two models and two metrics.
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Table 10: Ablation study on Llama 3 (8B)

Gamma Layer E G S F C

0.65 7 99.2 85.9 85.6 631.9 32.6
0.65 8 99.2 79.3 85.1 631.5 33.3
0.65 9 99.2 77.4 84.9 631.6 32.4

Table 11: Unified γ ablation across three models. Metrics: E (Efficacy↑), G (Generalization↑), S
(Specificity↑), F (Fluency↑).

Model Gamma E G S F

GPTJ-6B

0.15 84.10 78.95 56.20 611.00
0.40 97.55 97.02 63.92 600.47
0.55 99.75 98.22 72.55 620.01
0.65 99.80 97.20 74.10 621.50
0.75 99.75 93.35 75.00 621.75
0.90 98.55 57.38 76.68 621.35

GPT2-XL

0.15 94.85 90.30 58.58 587.88
0.40 99.70 98.38 65.66 611.20
0.55 99.65 98.10 76.62 619.14
0.65 99.80 94.60 80.00 619.80
0.75 99.45 81.42 81.34 620.38
0.90 96.70 30.00 82.57 620.30

Llama-3 (8B)

0.15 93.3 86.0 70.3 632.5
0.40 98.8 95.0 75.7 640.3
0.55 99.1 91.9 83.4 631.6
0.65 99.2 87.0 85.6 632.0
0.75 99.2 74.1 86.2 632.3
0.90 98.8 28.7 86.9 633.2

J.3 THE RESULTS ON MQUAKE

The results on MQuAKE are shown in Table 14. Our method outperforms competing baselines and
achieves the best overall performance. Compared with AlphaEdit, it delivers a 36% improvement.
These results indicate that complex editing tasks requiring intermediate steps also benefit from our
approach.

J.4 THE RESULTS ON KNOWEDIT

We provide the results on KnowEdit (Wiki Recent) and KnowEdit (Wiki Counterfact), both of which
include the Portability metric (See Table 15). Our method achieves the best Portability on Wiki
Counterfact and comparable Portability to the strongest baselines on Wiki Recent, indicating that
the edited knowledge is effectively utilized in downstream reasoning.

J.5 QUANTITATIVE AND QUALITATIVE RESULTS FOR DELETE OPERATION

The knowledge updating is linked with the KV database. Thus, we can modify and delete the
knowledge based on the modification and deletion of the content of the KV database.

Setting. We first edit 100 facts on GPT2-XL, then delete the keys and values for the even-indexed
facts. This yields three models: (i) pre-edited, (ii) post-edited, and (iii) deleted-even (after removing
edits for even facts only).
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Table 12: The comparison with WISE on ZsRE. We provide the results of Llama3 8B and Llama2
7B chat hf.

Models Methods Efficacy Generalization Locality Efficacy Generalization Locality

Llama3 8B WISE 33.2 32.8 100 25 24.7 100
NeuralDB 71 67.4 100 70.7 67.3 100

WISE 62.8 59.8 100 51.7 49.8 100
Llama2 7B NeuralDB 70.7 66.4 100 69.5 65.6 100

Table 13: Results on ZsRE with 1k edits (T-Patch results taken from Li et al. (2025a)).

Models Method Reliability Generalization
GPT2-XL T-Patch 77.29 67.74
GPT2-XL NeuralDB 96.03 91.62
Llama2 T-Patch 62.94 48.37
Llama2 NeuralDB 99.89 91.35

Quantitative. As shown in Table 16, performance on even facts for the deleted-even model
matches the pre-edited model, while performance on odd facts is similar to the post-edited model.
This demonstrates selective reversibility (deletions roll back only the targeted facts) and retention
(non-deleted facts remain effective).

Qualitative. We also provide concrete edit–delete-even case study, where the 4th question is
“Autonomous University of Madrid, which is located in” and the corresponding target answer
is “Sweden”. We report the answers of three models in Table 17. The answers to deleted-even
model successfully revert to the original answer to the pre-edited model.

J.6 THE COMPARISON BETWEEN ONE-SHOT EDITING AND BATCHED SEQUENTIAL UPDATE
FOR MEMIT AND ALPHAEDIT

We follow the standard procedures for each editing method (Fang et al., 2025). For a fair compar-
ison, we also report one-shot results in which MEMIT and AlphaEdit apply all factual edits in one
go. As shown in Table 18, their one-shot performance is not better than the results obtained with
batched sequential updates. Therefore, reporting results under batched sequential updates is a fair
evaluation setting.

J.7 THE RESULTS OF HIGHLIGHTING THE PREVIOUS EDITED FACTS

Adopting the notation of RASE (Han et al., 2023), the reported result is the stricter Edit Re-
tain Rate (ER) instead of the Success Rate (SR): where SR =

∑T
t=0 I(ft(xt)=yxt )

T and ER =∑T
t=0 I(fT (xt)=yxt )

T . Here, ft is the model after the t-th edit, and fT is the final model after all
edits.

ER emphasizes whether earlier edits remain effective under the final model, making it stricter than
SR. Our strong ER results (Tables 2 and 3) indicate that earlier edits are retained after subsequent
edits. To further support this, Table 19 reports performance on the first 10k edited facts after editing
10k, 20k, 30k, 40k, and 50k facts; the stability across these settings highlights the effectiveness of
previously edited entries.

J.8 LM-EVALUATION-HARDNESS

We conducted more experiments on lm-evaluation-hardness using GPT2-XL and GPT-J, see Table
21 for details.
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Table 14: The results of MquaKE on GPTJ-6B models under CoT prompting. We follow the stan-
dard evaluation protocol with CoT prompting. After applying all 3,000 edits, we evaluate all 3,000
multi-hop questions.

Methods MEMIT AlphaEdit NeuralDB
Accuracy 6.13 9.14 12.40

Table 15: Additional results on KnowEdit (Wiki Recent) and KnowEdit (Wiki Counterfact).

Dataset Method Rewrite acc Paraphrase acc Portability acc Entropy
KnowEdit (Wiki Recent) MEMIT 87.96 62.94 57.19 615.10
KnowEdit (Wiki Recent) AlphaEdit 90.41 71.53 59.89 606.84
KnowEdit (Wiki Recent) NeuralDB 97.90 84.23 57.11 607.87
KnowEdit (Wiki Counterfact) MEMIT 69.22 48.67 45.89 615.23
KnowEdit (Wiki Counterfact) AlphaEdit 73.05 50.81 44.11 616.13
KnowEdit (WikiCo unterfact) NeuralDB 96.58 73.15 53.98 610.82

J.9 WEIGHTED SCORE VISUALIZATION OF PARAPHRASED AND NEIGHBORHOOD FACTS

We further conduct experiments on paraphrased and neighborhood facts to examine the distribution
of weighted scores under both MEMIT and AlphaEdit. As shown in Fig. 5, the scores for positive
samples in paraphrased facts are consistently higher, while those for negative samples remain close
to 0. For neighborhood facts, where all components are considered negative, the scores are likewise
consistently close to 0. These results confirm that, during inference, residuals unrelated to the edited
facts remain inactive, resulting in near-zero weighted scores.

J.10 THE RESULTS OF MORE MODELS

We present the results of our method using Qwen2.5 and Llama 3.1 8B Instruct in Table 22. Our
methods on these new models also achieve good results.
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Table 16: Quantitative results before editing, after editing, and after deleting even edits.

Group Metric Pre-edited Post-edited Delete even edits
Odd-indexed facts Efficacy 0.0 100.0 100.0
Odd-indexed facts Generalization 22.0 98.0 98.0
Even-indexed facts Efficacy 0.0 100.0 0.0
Even-indexed facts Generalization 24.0 99.0 22.0

Table 17: Qualitative examples before editing, after editing, and after deleting even-indexed edits.

State Output
pre-edited “the city of Madrid, Spain”
Post-edited “Sweden, has been working on a project called ”The Future of the Human

Body” for the past two years.”
deleted-even “the city of Madrid, Spain”

Table 18: The comparison of one-shot editing and batched sequential updates. The number of edited
facts is 10k, and the used model is Llama3 8B Instruct. The batch size of the batched update is 100.

Model Method Efficacy ↑ Generalization ↑ Specificity ↑
AlphaEdit one-shot editing 88.09 82.78 31.10
AlphaEdit batched sequential updates 90.50 85.90 30.30
MEMIT one-shot editing 0.19 0.15 0.92
MEMIT batched sequential updates 0.10 0.10 1.50

Table 19: Performance on the first 10k edited facts after scaling to different totals.

Edited facts 10k 20k 30k 40k 50k
Efficacy ↑ 96.9 96.6 96.6 96.5 96.2
Generalization ↑ 91.4 91.4 91.2 91.3 90.8
Specificity ↑ 35.1 35.1 35.2 35.3 35.3
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Table 20: Performance of each task across different editing budgets (1,000, 2,000, 4,000, 6,000,
8,000, 10,000) under various model–algorithm configurations.

(a) GPT-J (AlphaEdit)

Task 1,000 2,000 4,000 6,000 8,000 10,000

sciq 0.9110 0.9080 0.9060 0.8900 0.8850 0.7410
logiq a 0.2151 0.2243 0.2089 0.2181 0.2304 0.2181

commonsense qa 0.2080 0.2146 0.2048 0.1884 0.1925 0.1785
arc easy 0.6658 0.6477 0.6326 0.6010 0.5804 0.4870
MMLU 0.2660 0.2688 0.2622 0.2592 0.2587 0.2535

arc challenge 0.3276 0.3148 0.2901 0.2782 0.2611 0.2261
lambada 0.6722 0.6604 0.6057 0.5158 0.4036 0.2203

winogrande 0.6346 0.6227 0.6093 0.5991 0.5730 0.5635
wsc273 0.8425 0.8352 0.7985 0.7399 0.7179 0.6264

(b) GPT-J (NeuralDB)

Task 1,000 2,000 4,000 6,000 8,000 10,000

sciq 0.9160 0.9160 0.9160 0.9160 0.9160 0.9160
logiq a 0.2120 0.2120 0.2120 0.2120 0.2120 0.2120

commonsense qa 0.2080 0.2080 0.2080 0.2080 0.2080 0.2080
arc easy 0.6692 0.6692 0.6692 0.6692 0.6692 0.6692
MMLU 0.2695 0.2697 0.2697 0.2695 0.2695 0.2698

arc challenge 0.3396 0.3396 0.3404 0.3404 0.3404 0.3404
lambada 0.6829 0.6827 0.6827 0.6821 0.6821 0.6819

winogrande 0.6409 0.6417 0.6417 0.6417 0.6417 0.6409
wsc273 0.8242 0.8242 0.8242 0.8242 0.8242 0.8242

(c) GPT-2 XL (AlphaEdit)

Task 1,000 2,000 4,000 6,000 8,000 10,000

sciq 0.8250 0.8230 0.7920 0.7440 0.6390 0.4920
logiq a 0.2289 0.2273 0.2012 0.2104 0.1951 0.1889

commonsense qa 0.1908 0.1957 0.1916 0.1974 0.2080 0.1933
arc easy 0.5682 0.5484 0.4987 0.4693 0.4066 0.3493
MMLU 0.2618 0.2562 0.2464 0.2312 0.2369 0.2315

arc challenge 0.2423 0.2346 0.2398 0.2108 0.1887 0.2065
lambada 0.4881 0.4170 0.2610 0.1467 0.0767 0.0231

winogrande 0.5904 0.5549 0.5564 0.5272 0.5201 0.5067
wsc273 0.6520 0.6227 0.5714 0.5861 0.5678 0.5421

(d) GPT-2 XL (NeuralDB)

Task 1,000 2,000 4,000 6,000 8,000 10,000

sciq 0.8240 0.8290 0.8280 0.8280 0.8280 0.8280
logiq a 0.2212 0.2181 0.2181 0.2181 0.2181 0.2197

commonsense qa 0.1900 0.1933 0.1941 0.1941 0.1941 0.1941
arc easy 0.5770 0.5785 0.5848 0.5848 0.5848 0.5848
MMLU 0.2532 0.2545 0.2547 0.2546 0.2543 0.2544

arc challenge 0.2509 0.2509 0.2491 0.2500 0.2500 0.2517
lambada 0.5055 0.5053 0.5077 0.5069 0.5065 0.5053

winogrande 0.5770 0.5785 0.5848 0.5848 0.5848 0.5848
wsc273 0.6777 0.6667 0.6850 0.6850 0.6850 0.6850
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Table 21: Performance of each task across different editing budgets (1,000, 2,000, 4,000, 6,000,
8,000, 10,000) under various model–algorithm configurations.

(a) GPT-J (AlphaEdit)

Task 1,000 2,000 4,000 6,000 8,000 10,000

sciq 0.9110 0.9080 0.9060 0.8900 0.8850 0.7410
logiq a 0.2151 0.2243 0.2089 0.2181 0.2304 0.2181

commonsense qa 0.2080 0.2146 0.2048 0.1884 0.1925 0.1785
arc easy 0.6658 0.6477 0.6326 0.6010 0.5804 0.4870
MMLU 0.2660 0.2688 0.2622 0.2592 0.2587 0.2535

arc challenge 0.3276 0.3148 0.2901 0.2782 0.2611 0.2261
lambada 0.6722 0.6604 0.6057 0.5158 0.4036 0.2203

winogrande 0.6346 0.6227 0.6093 0.5991 0.5730 0.5635
wsc273 0.8425 0.8352 0.7985 0.7399 0.7179 0.6264

(b) GPT-J (NeuralDB)

Task 1,000 2,000 4,000 6,000 8,000 10,000

sciq 0.9160 0.9160 0.9160 0.9160 0.9160 0.9160
logiq a 0.2120 0.2120 0.2120 0.2120 0.2120 0.2120

commonsense qa 0.2080 0.2080 0.2080 0.2080 0.2080 0.2080
arc easy 0.6692 0.6692 0.6692 0.6692 0.6692 0.6692
MMLU 0.2695 0.2697 0.2697 0.2695 0.2695 0.2698

arc challenge 0.3396 0.3396 0.3404 0.3404 0.3404 0.3404
lambada 0.6829 0.6827 0.6827 0.6821 0.6821 0.6819

winogrande 0.6409 0.6417 0.6417 0.6417 0.6417 0.6409
wsc273 0.8242 0.8242 0.8242 0.8242 0.8242 0.8242

(c) GPT-2 XL (AlphaEdit)

Task 1,000 2,000 4,000 6,000 8,000 10,000

sciq 0.8250 0.8230 0.7920 0.7440 0.6390 0.4920
logiq a 0.2289 0.2273 0.2012 0.2104 0.1951 0.1889

commonsense qa 0.1908 0.1957 0.1916 0.1974 0.2080 0.1933
arc easy 0.5682 0.5484 0.4987 0.4693 0.4066 0.3493
MMLU 0.2618 0.2562 0.2464 0.2312 0.2369 0.2315

arc challenge 0.2423 0.2346 0.2398 0.2108 0.1887 0.2065
lambada 0.4881 0.4170 0.2610 0.1467 0.0767 0.0231

winogrande 0.5904 0.5549 0.5564 0.5272 0.5201 0.5067
wsc273 0.6520 0.6227 0.5714 0.5861 0.5678 0.5421

(d) GPT-2 XL (NeuralDB)

Task 1,000 2,000 4,000 6,000 8,000 10,000

sciq 0.8240 0.8290 0.8280 0.8280 0.8280 0.8280
logiq a 0.2212 0.2181 0.2181 0.2181 0.2181 0.2197

commonsense qa 0.1900 0.1933 0.1941 0.1941 0.1941 0.1941
arc easy 0.5770 0.5785 0.5848 0.5848 0.5848 0.5848
MMLU 0.2532 0.2545 0.2547 0.2546 0.2543 0.2544

arc challenge 0.2509 0.2509 0.2491 0.2500 0.2500 0.2517
lambada 0.5055 0.5053 0.5077 0.5069 0.5065 0.5053

winogrande 0.5770 0.5785 0.5848 0.5848 0.5848 0.5848
wsc273 0.6777 0.6667 0.6850 0.6850 0.6850 0.6850

Table 22: The results of NeuralDB on Qwen2.5 and Llama 3.1 8B Instruct. We provide the 2000
and 5000 facts on ZsRE and CounterFact.

Model Edit Number Counterfact ZsRE
Metrics Efficacy Generalization Specificity Fluency Consistency Efficacy Generalization Specificity

Qwen2.5 2000 99.45 90.72 84.69 625.70 33.21 99.69 91.82 38.4
Qwen2.5 10000 98.99 89.85 81.97 625.33 33.08 99.15 91.79 38.27

Llama 3.1 2000 99.80 94.60 87.92 634.13 34.01 95.96 87.11 30.91
Llama 3.1 10000 99.18 93.95 85.67 634.13 33.69 95.28 88.06 30.39
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(a) Paraphrased facts

(b) Neighborhood facts

Figure 5: Visualization of weighted scores for paraphrased facts and neighborhood facts, using
MEMIT and AlphaEdit across three models. The boxplots are generated from the mean and variance
of weight scores, with the center line indicating the mean, boxes showing ±1 standard deviation, and
whiskers ±1.5.
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