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ABSTRACT

Most recently, Reinforcement Learning (RL) has empowered frontier Large Lan-
guage Models (LLMs) to solve challenging math, science, and coding problems.
This paper consentrates on RL on data without explicit labels for reasoning tasks
in LLMs. The core challenge of the problem is reward estimation during infer-
ence in absense of ground-truth information. In this work, we propose COM-
PASS: Composite Path and Answer Self-Scoring - a novel method for training
LLMs using RL on unlabeled test data. COMPASS consists of Dual-Calibration
Answer Reward (DCAR) and Decisive Path Reward (DPR), which enables self-
evolution of LLMs by fully utilizing the priors in the pre-trained models as intrin-
sic rewards. We find that by simultaneously reinforcing the trustworthy consensus
answers and chains of thought that yield high model desiciveness on its generated
responses, the model improves its reasoning ability. Our experiments demonstrate
that COMPASS consistently improves performance across a variety of tasks and
models, marking a further step of learning from continuous streams of experience.

1 INTRODUCTION

Reinforcement Learning (RL) (Kaelbling et al., 1996; Dong et al., 2024) has proven to be an ef-
fective pathway for pushing the capability ceiling of pre-trained Large Language Models (LLMs)
in complex tasks such as mathematical reasoningSetlur et al. (2024); Gao et al. (2024); Albright &
Andemicael (2025) and code generation (Guo et al., 2025; Achiam et al., 2023; Team, 2025; Wang
et al., 2024; Islam et al., 2024). However, most existing methods rely heavily on external supervision
(Luong et al., 2024), rewarding models (Ouyang et al., 2022; Shao et al., 2024) based on correct-
ness with respect to ground-truth labels, which significantly limits their scalability. As real-world
tasks continue to increase in both complexity and volume, large-scale annotation for RL becomes
increasingly impractical, posing a substantial barrier to the continual improvement of state-of-the-art
models.

Further building upon the substantial progress of LLMs, it naturally motivates a promising direction
in which AI systems autonomously improve via RL on unlabeled data by directly engaging in self-
experience and learning, thereby pushing the boundaries of RL and further advancing the frontier of
AI capabilities(Zhang et al., 2025c; Xiong et al., 2025; Huang et al., 2024). Against this backdrop,
TTRL (Test-Time Reinforcement Learning) (Zuo et al., 2025) was the first to propose the task of
updating model parameters during test time based on unlabeled test data. This novel setting has
recently attracted increasing attention. This work also focuses on the adaptation to test-time data.

Therefore, we aim to fully advance AI evolution by updating models at test time using RL, thereby
enhancing their generalization to previously unseen data. However, this introduces a critical chal-
lenge: How to obtain rewards for RL through LLMs’ own experience? TTRL (Zuo et al., 2025)
achieves this by repeatedly sampling multiple responses for the same problem, then constructing
pseudo-labels (and rewards) based on the self-consistency consensus derived from majority voting.
The essence of this approach is to rely on the model’s intrinsic confidence as a proxy metric when
external rewards are unavailable. In other words, an answer consistently reproduced by the model
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across multiple trials is considered higher-confidence in correctness. This is analogous to human
problem-solving, where a conclusion verified through diverse methods strengthen our confidence in
its correctness. The success of TTRL validates the effectiveness of optimizing internal confidence
proxies to indirectly enhance reasoning capabilities.

However, while TTRL represents a significant step towards autonomous learning, we argue that its
current self-rewarding mechanism, based on majority voting, suffers from two fundamental limi-
tations. First is the fragility of pseudo-labels and the sparsity of reward signals. An erroneous
consensus can mislead the model, while the binary reward signal is too sparse to distinguish high-
quality consensus from fortuitous agreement, thereby limiting the efficiency and stability of the
learning process. Second is the neglect of reasoning process quality. TTRL is a purely outcome-
based method; it rewards the final answer for matching the pseudo-label but fails to evaluate the
quality of reasoning chains themselves. This creates the risk of the model reinforcing a flawed rea-
soning process that coincidentally yields the correct answer, fundamentally capping its potential to
improve its logical reasoning capabilities.

To address these challenges, we propose Composite Path and Answer Self-Scoring (COMPASS)
reward mechanism. COMPASS consists of Dual-Calibration Answer Reward (DCAR) and Deci-
sive Path Reward (DPR). DCAR calibrates majority voting with confidence measures and further
evaluates the credibility of pseudo-labels, which enable the model to prioritize learning from high-
credibility consensus, effectively enhancing learning stability and efficiency. Furthermore, we intro-
duce Decisive Path Reward (DPR), which moves beyond the final answer to scrutinize each step of
the generation process. Through an entropy-weighting mechanism, it encourages the model to make
more decisive choices (high decisiveness) at critical junctures of high uncertainty (high entropy),
providing a direct and dense supervisory signal for optimizing the reasoning path.

The main contributions can be summarized as follows: (1) We propose COMPASS, a novel self-
scoring reward mechanism for reinforcement learning on unlabeled data. COMPASS is designed
to enable the self-evolution of LLMs by generating intrinsic rewards that evaluate both the final
answer and the intermediate reasoning path, addressing the key limitations of outcome-only reward
signals in prior work. (2) We design a composite reward function consisting of two novel compo-
nents: Dual-Calibration Answer Reward (DCAR) and Decisive Path Reward (DPR). DCAR moves
beyond simple majority voting by dual-calibrating consensus, yielding more reliable reward for the
final answer. DPR introduces a process-centric evaluation that provides dense rewards for decisive
token generation during uncertain steps in the reasoning chain, directly optimizing the quality of
the thought process. (3) Extensive experiments on diverse reasoning benchmarks demonstrate the
effectiveness and superiority of the proposed COMPASS.

2 RELATED WORK

2.1 RL FOR REASONING

Table 1: Evolution of RL Paradigms from External Supervision to Internal Feedback

Paradigm Reward Source Requirements Task
RLHF Learnable Model Human Preference Data General Questions

RLVR Rule-based Function Gold-Standard Answers Math/Code Questions

RLIF Rule-based Function None (Self-supervised) Math/Code Questions

Reinforcement Learning (RL) plays a critical role in enhancing the instruction-following capabili-
ties of Large Language Models (LLMs) (Guo et al., 2025; Ouyang et al., 2022). Its evolution can be
broadly categorized into three successive paradigms: Reinforcement Learning from Human Feed-
back (RLHF) (Ouyang et al., 2022; Zheng et al., 2023; Dai et al., 2023), Reinforcement Learning
with Verifiable Rewards (RLVR) (Luong et al., 2024; Shao et al., 2024), and Reinforcement Learn-
ing from Internal Feedback (RLIF) (Zhang et al., 2025a; Zuo et al., 2025; Zhao et al., 2025), each
gradually reducing the dependency on external supervision.
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RLHF aligns base models with human preferences using algorithms such as Proximal Policy Op-
timization (PPO) (Schulman et al., 2017), where the human-annotated preference data is essential.
Recently, Large Reasoning Models (LRMs), such as DeepSeek-R1 (Guo et al., 2025), have demon-
strated the significance of RL in improving reasoning abilities using verifiable rewards. These
RLVR methods reduce reliance on nuanced human feedback but still operate on labeled training
datasets (i.e., they require ground-truth answers to generate rewards). Against this backdrop, the
RLIF paradigm (or self-rewarding) has emerged, aiming to learn from unlabeled data. For instance,
EMPO (Zhang et al., 2025a) incentivizes reasoning capabilities by minimizing the entropy of LLM
generations in a latent semantic space in a fully unsupervised manner. Similarly, TTRL (Zuo et al.,
2025) employs repeated sampling strategies to generate pseudo-labels via consensus, which are then
used to compute rule-based rewards, thereby facilitating efficient RL without ground-truth labels.

2.2 CONFIDENCE-BASED REWARD

In fully unsupervised settings (Zhang et al., 2025b; Wei et al., 2025; Basavatia et al., 2024) where
ground-truth labels are unavailable, directly optimizing for the correctness of Large Language
Model’s (LLM) outputs is infeasible. Consequently, a promising direction is to identify an intrinsic
proxy metric highly correlated with correctness. Model confidence (Xiong et al., 2023; Tripathi
et al., 2025; Tian et al., 2025) has emerged as a natural and effective candidate for this role. This
approach mirrors human cognition, where confidence often serves as the primary internal signals for
guiding reasoning when not having access to external feedback information.

Language models output distributions over tokens, and the confidence is typically quantified based
on these distributions. Specifically, confidence can be measured by the log-likelihood of generated
sequences, where higher values signal greater model conviction, or conversely, by the entropy of
these distributions, where lower entropy signifies higher certainty. Another alternative paradigm
assesses confidence through self-consistency, where multiple responses are sampled for the same
prompt. Specifically, RLSC (Li et al., 2025) reinforces responses by maximizing log-likelihood.
RENT (Prabhudesai et al.) minimizes entropy to promote high-certainty outputs. And TTRL (Zuo
et al., 2025) estimates pseudo-labels via self-consistency with majority voting, further reinforcing
consensuses. Experimental results show that these methods have all led to better reasoning perfor-
mance.

2.3 TEST-TIME ADAPTATION

Test-Time Adaptation (TTA) (Sun et al., 2017; Maria Carlucci et al., 2017; Schneider et al., 2020)
is where a model is updated using unlabled test data during test time. The goal is to improve per-
formance in scenarios where there is a distribution shift between training and testing environments.
Tent (Wang et al., 2020) performs entropy minimization on model predictions during test time,
which assumes that predictions on test data should be low in entropy if the model is well-adapted to
the new distribution. And TTRL (Zuo et al., 2025) proposed test-time reinforcement learning using
majority voting as a reward.

3 COMPOSITE PATH AND ANSWER SELF-SCORING (COMPASS)

This section introduces our proposed Composite Path and Answer Self-Scoring (COMPASS) reward
mechanism. Building on TTRL (Zuo et al., 2025), we identify and address several limitations in its
reward mechanism. Our work enhances the robustness and efficiency of test-time adaptation by
introducing a refined reward system that incorporates both outcome and process rewards.

3.1 MOTIVATION: LIMITATIONS OF TTRL

TTRL (Zuo et al., 2025) operates on the principle of self-consistency with majority voting. In this
process, a pseudo-label is generated by majority voting among multiple candidate outputs, which is
then used to form a binary reward signal for optimizing LLMs. However, we identify two funda-
mental limitations:

1. Fragility of Pseudo-Labels: The effectiveness of TTRL is highly dependent on the quality
of pseudo-labels derived from majority voting. In cases of incorrect consensus, the model
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is driven towards suboptimal policies. Additionally, the binary reward signal is sparse and
fails to reflect the reliability of pseudo-labels, limiting the efficiency of the learning process.

2. Neglect of Reasoning Quality: TTRL is an outcome-based method, focusing solely on the
final prediction rather than the reasoning steps leading to the output. Although a correct
answer can result from a flawed reasoning process—and an incorrect one from a minor
error in a sound chain of thought—TTRL lacks direct supervision of the reasoning steps,
which limits its capacity to improve LLMs’ reasoning abilities.

To overcome these challenges, we propose a novel Composite Path and Answer Self-Scoring (COM-
PASS) reward mechanism, which combines the outcome-based Dual-Calibration Answer Reward
(DCAR) and process-based Decisive Path Reward (DPR) to provide more informative learning sig-
nals for RL, accounting for both the final output and the underlying decision-making process.

Figure 1: The Composite Path and Answer Self-Scoring (COMPASS) reward mechanism.

3.2 OVERALL FRAMEWORK

Figure 1 illustrates how our approach, COMPASS, achieves test-time reinforcement learning. Given
a state represented by the prompt q, the model acts by producing an output y sampled from a policy
πθ (y | q) parameterized by θ. To construct reward signals without ground-truth labels, we gener-
ate multiple candidate responses and extract the corresponding answers {ŷ1, ŷ2, . . . , ŷN} from the
model through repeated sampling. A consensus output y∗ is derived through confidence-calibrated
self-consistency, serving as a proxy for the optimal action. The environment then provides a re-
ward R (ŷi, y

∗) based on the alignment between the sampled action ŷi and the consensus action y∗.
To further stabilize RL training, we propose a credibility metric to assess the quality of generated
pseudo-labels. In addition to the aforementioned outcome-based Dual-Calibration Answer Reward
(DCAR), we also introduce the process-based Decisive Path Reward (DPR) to evaluate the reasoning
quality of each candidate response. The total reward is a combination of the two components:

R(yi) = Routcome(yi) +Rprocess(yi) (1)

where Routcome(yi) represents the DCAR outcome reward, and Rprocess(yi) is the DPR process re-
ward. The composite reward R(yi) is then used to update the model parameters θ via policy gradient
methods.

3.3 OUTCOME REWARD: DUAL-CALIBRATION ANSWER REWARD (DCAR)

To address the fragility of pseudo-labels from majority voting, we propose a dual calibration method.
First, we calibrate the self-consistency mechanism using a confidence metric to generate a more reli-
able pseudo-label and its corresponding base binary reward. Subsequently, we introduce a credibility
score to modulate this base reward, thereby implementing a form of soft curriculum learning. The
complete calculation process of DCAR refers to algorithm 1.
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3.3.1 CONFIDENCE-CALIBRATED SELF-CONSISTENCY

In the standard self-consistency mechanism, each candidate’s vote is treated equally. We hypothesize
that more confident responses should contribute more significantly to the final decision. Through
empirical analysis, we found that the standard deviation of topk diff (the probability difference
between the top-1 and top-2 tokens on each token) across a generation trajectory correlates strongly
with the correctness of the final answer, which captures the model’s stability and decisiveness in
prediction. Thus, we define the confidence of a trajectory ŷi as:

topk diff(xt) = p(x1
t |x<t)− p(x2

t |x<t) (2)

confidence(ŷi) = exp (−stdt topk diff(xt)) (3)

where x1
t and x2

t represent the top-1 and top-2 tokens at timestep t. And we define confidence as
the negative exponential of the standard deviation (std), which ensures lower std yields higher con-
fidence and guarantees positive weights required for self-consistency. Then we propose confidence-
calibrated self-consistency. The score for a given answer y is the confidence-weighted sum:

confidence-calibrated-self-consistency(y) =

∑
i:ŷi=y confidence(ŷi)∑N
i=1 confidence(ŷi)

(4)

The final pseudo-label y∗ is determined as the answer with the highest calibrated score:

y∗ = argmax
y

confidence-calibrated-self-consistency(y) (5)

3.3.2 CREDIBILITY-CALIBRATED PSEUDO-LABELS

Algorithm 1: Outcome Reward: DCAR
Input: Prompt q, policy πθ , number of samples N .
Output: outcome rewards {Routcome(yi)}Ni=1.

Initialize:
trajectories Y ← [ ],
answers Ŷ ← [ ],
confidences C ← [ ];

// S1:Sample & Calc Confidence
for i← 1 to N do

Sample trajectory yi ∼ πθ(·|q);
Extract final answer ŷi from yi;
ci = exp(−stdt topk diff(xt)) ; // Eq.(3)

Append to Y, Ŷ , C;

// S2:Get Pseudo-Label

Find the set of unique answers A = unique(Ŷ );
Initialize answer scores: S[a]← 0 for all a ∈ A;
for i← 1 to N do

S[ŷi]← S[ŷi] + ci;

y∗ = argmaxa∈A S[a] ; // Eq.(5)
// S3:Calc Credibility
CGeneral ← max({ci | ŷi = y∗}) ; // Eq.(6)
CElite ← max({ci}) ; // Eq.(7)
cred← CGeneral/CElite ; // Eq.(8)
// S4:Compute Reward
for i← 1 to N do

if ŷi = y∗ then
Rbase ← 1;

else
Rbase ← 0;

Ri ← cred ·Rbase ; // Eq.(9)
Append Ri to Routcome;

return {Ri}Ni=1;

Once the confidence-calibrated pseudo-label y∗
is obtained, it is essential to assess its cred-
ibility. Our underlying hypothesis is that a
consensus derived from high-confidence re-
sponses is more reliable than one based on di-
verse low-confidence outputs. Therefore, we
propose a credibility metric based on two key
concepts:

(1) General Group: The General Group con-
tains all responses that agree with the pseudo-
label y∗. The group’s confidence CGeneral is de-
fined as the maximum confidence within this
subset, representing the strongest supporting
evidence for the consensus:

CGeneral = max
i:ŷi=y∗

C(ŷi) (6)

(2) Elite Response: This is the response among
all N candidates with the highest confidence,
denoted as CElite:

CElite = max
i=1,...,N

C(ŷi) (7)

The credibility of the pseudo-label y∗ is the ra-
tio of these two confidence scores:

credibility(y∗) =
CGeneral

CElite
(8)

This ratio quantifies the strength of the con-
sensus relative to the most confident individual
opinion. A value of 1 indicates that the most
confident response aligns with the consensus,
suggesting high reliability, while a value less
than 1 indicates the presence of a highly confi-
dent dissenter, thereby lowering trust in the consensus.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3.3 DUAL-CALIBRATION ANSWER REWARD

The final outcome reward is obtained by combining the above components. The base reward
Rbase(ŷi) provides a binary signal indicating whether ŷi matches the pseudo-label y∗, which is then
modulated by the credibility score:

Routcome(ŷi) = credibility(y∗) ·Rbase(ŷi)

= credibility(y∗) ·
{
1, if ŷi = y∗

0, otherwise
(9)

This weighting operation transforms the sparse binary reward into a continuous signal in the range
[0, 1], effectively implementing a soft curriculum learning mechanism. The model is encouraged to
focus on pseudo-labels with high credibility, promoting more stable and accurate learning.

3.4 PROCESS REWARD: DECISIVE PATH REWARD (DPR)

DCAR provides a robust signal for the quality of the final pseudo-label. To move beyond outcome-
based supervision, we also introduce the Decisive Path Reward (DPR). DPR is specifically designed
to scrutinize the model’s reasoning pathway, encouraging decisive actions at critical junctures to
ensure the integrity of the entire reasoning chain. Specifically, we evaluate two metrics at each
token generation step t:

• Decisiveness: Quantified by topk diff. A larger value signifies higher decisiveness, indi-
cating a more confident and unambiguous decision point.

decisiveness(xt) = topk diff(xt) (10)

• Uncertainty: Quantified by entropy (Ht) of the model’s predictive distribution. A higher
value signifies greater uncertainty, indicating a more challenging decision point.

Our central hypothesis is that decisiveness is more valuable during moments of high uncertainty.
A confident action is more informative when the model faces multiple viable alternatives. Based on
this premise, we define the process reward, Rprocess(yi), by dynamically weighting the decisiveness
of each step in the trajectory by its corresponding uncertainty (entropy):

wt =
eHt∑T
j=1 e

Hj

(11)

Rprocess(ŷi) =

T∑
t=1

wt · decisiveness(xt) (12)

By providing a dense, per-token feedback signal, the process reward incentivizes the model to ex-
ecute decisive actions at critical, high-uncertainty junctures, thereby fostering the development of
more robust reasoning paths.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models To evaluate the generalizability of COMPASS across different backbone models, we con-
duct experiments using both base and instruct models of various scales. The models we experi-
ment with include the instruct model LLaMA-3.2-1B-Instruct (Meta, 2024), the math base model
Qwen2.5-Math-1.5B (Yang et al., 2025), and the vanilla base model Qwen2.5-7B (Yang et al., 2025).
Benchmarks We evaluate COMPASS on GPQA-Diamond (Rein et al., 2024), a challenging and
high-quality subset of the Graduate-Level Google-Proof Question Answering benchmark, and 3
mathematical reasoning benchmarks: AIME 2024 (Yuan et al., 2024), AMC (Yuan et al., 2024), and
MATH-500 (Hendrycks et al., 2021).

Evaluation Setup We apply COMPASS to each benchmark individually and then evaluate. For
the main experiments, following DeepSeek-R1 (Guo et al., 2025), we adopt the pass@k evaluation

6
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protocol and report pass@1 using non-zero temperature sampling. Specifically,we generate 16 re-
sponses (4 for 32k context) per question using a temperature of 0.6 and a top-p value of 0.95. The
pass@1 score is computed as:

pass@1 =
1

k

k∑
i=1

pi (13)

where pi indicates whether the i -th response is correct.

Baselines Since TTRL (Zuo et al., 2025) firstly proposed the test-time reinforcement learning task,
we primarily compare our COMPASS with the backbone model and TTRL baselines to validate
whether COMPASS can achieve effective improvements through self-evolution.

Implementation Details We independently apply GRPO (Shao et al., 2024) on each benchmark to
implement COMPASS. For hyperparameters, we use a cosine learning rate schedule with a peak
value of 5× 10−7 and adopt the AdamW optimizer for the policy model. For rollout, we sample 64
responses using a temperature of 0.6 (1.0 for Qwen2.5-Math (Yang et al., 2025)) for voting-based
label estimation and downsample 32 responses per prompt for training. Evidence shows that our
Composite Path and Answer Self-Scoring reward strategies retain relatively low computational costs
while still achieving strong performance. For models with fewer than 7B parameters, we follow the
settings of the original TTRL paper. We set the number of episodes to 10, 30, and 80 for MATH-500,
AMC, and AIME 2024, respectively, based on the dataset size. For the larger Qwen2.5-7B model,
we reduced the number of training epochs to investigate the methods’ performance under a more
computationally efficient regime, which ensures a fair comparison between the methods under the
same resource constraints. The corresponding number of epochs for these datasets were 2, 8, and
20, respectively (approximately 20% of those in the original TTRL paper).

4.2 MAIN RESULTS

Table 2: Performance comparison on test-time rein-
forcement learning.

Name AIME AMC MATH GPQA
Instruct Models

LLaMA3.2-1B-Instruct 1.5 9.8 24.7 23.8
TTRL 6.7 19.2 27.8 24.0
COMPASS 3.5 20.1 28.7 25.8
∆ -3.1 +0.9 +0.9 +1.8

Math Base Models
Qwen2.5-Math-1.5B 7.7 28.6 32.7 24.9
TTRL 15.8 47.4* 72.4* 26.1
COMPASS 18.3 48.6 73.1 29.3
∆ +2.5 +1.2 +0.7 +3.2

Vanilla Base Models

Qwen2.5-7B† 7.5 34.6 60.9 30.5
TTRL 20.0 50.2 76.6 31.1
COMPASS 23.5 53.2 76.9 31.7
∆ +3.5 +3.0 +0.3 +0.6 Figure 2: Performance comparison on

AIME/AMC using Qwen2.5-7B.

COMPASS performs well on most tasks and models. Table 2 presents the main results. We apply
COMPASS to 3 models spanning 3 model families, 2 model types, and 3 model sizes, consistently
demonstrating obvious improvements across 4 highly challenging benchmarks. On the AIME 2024
and GPQA benchmarks, COMPASS achieves significant improvements of 15.8% and 12.3%, re-
spectively, over TTRL when using Qwen2.5-Math-1.5B. For experiments with the larger Qwen2.5-
7B base model, both TTRL and COMPASS were trained for approximately 20% of the epochs
specified in the original TTRL paper due to computational constraints. Despite this reduced training
schedule, our method demonstrates a clear and consistent performance advantage over TTRL, as ev-
idenced by both the final evaluation metrics in Table 2 and the performance trend curves illustrated

7
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in Figure 2. However, we note an exception with the LLaMA3.2-1B-Instruct model on the AIME
2024 dataset. We attribute this performance drop to the model’s insufficient foundational knowl-
edge. For such a model, the high-entropy states targeted by our process reward (DPR) likely signify
fundamental confusion rather than meaningful reasoning junctures. Reinforcing these spurious sig-
nals inadvertently degrades performance, highlighting that the efficacy of our method relies on the
base model possessing a solid knowledge foundation.

COMPASS naturally scales. As shown in Table 2, another noteworthy observation is that as the
model size increases (1B →1.5B → 7B), performance consistently improves, highlighting the nat-
ural scaling behavior of COMPASS: larger models can produce more accurate rewards during self-
improvement, which leads to more effective learning on new data. COMPASS achieves sustainable

(a) Label Accuracy Curve (b) Majority Ratio Curve

Figure 3: Training dynamics comparision on AIME using Qwen2.5-Math-1.5B.

Figure 4: Ablation Results of COMPASS on AIME using Qwen2.5-Math-1.5B.

self-evolution through online and RL. To understand the mechanisms of our proposed COMPASS
framework, we analyzed its training dynamics against the TTRL baseline as shown in Figure 3, fo-
cusing on pseudo-label accuracy and majority ratio. The results highlight COMPASS’s superior
learning process. Our method achieves significantly higher and steadily improving pseudo-label
accuracy, confirming that its advanced reward system—which combines the outcome-based Dual-
Calibration Answer Reward (DCAR) and process-based Decisive Path Reward (DPR), and generates
more effective training signals. In contrast, the baseline’s accuracy stagnates at a much lower level.
Simultaneously, COMPASS maintains a consistently lower majority ratio. This demonstrates that it
successfully avoids the baseline’s tendency to prematurely converge on the most frequent answer, a
common pitfall of naive majority voting. Instead of simply reinforcing the consensus, COMPASS

8
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values diverse and high-quality reasoning paths. This dual dynamics of increasing label accuracy
while reducing reliance on a single popular answer provides strong evidence for COMPASS’s
effectiveness. It cultivates a more robust self-evolution by considering both the intrinsic quality of
reasoning paths and the popularity of final answers, leading to a more reliable self-improving model.

4.3 ABLATION RESULTS

COMPASS is built upon TTRL and incorporates both outcome reward and process reward. The out-
come reward, named Dual-Calibration Answer Reward (DCAR), involves dual calibration through
confidence and credibility assessments, while the process reward corresponds to the Decisive Path
Reward (DPR). We conducted sequential ablative experiments by progressively removing compo-
nents: eliminating credibility calibration, then process reward, and finally confidence calibration,
ultimately reverting to the baseline TTRL. The performance curves of these models across train-
ing steps (as shown in Figure 4) demonstrate that all three components can enhance model perfor-
mance. Notably, confidence calibration contributes the most significant performance improvement,
evidenced by the largest vertical distance between the red and green curves.

4.4 CASE STUDY

To illustrate the superiority of COMPASS, we present a case study where the model’s responses lead
to a competing consensus (Figure 5) —— the incorrect answer ’32’ and the correct answer ’116’
both received two votes each, creating a tie. The TTRL baseline using majority voting is unable
to resolve this tie and arbitrarily selects the incorrect label ’32’. In contrast, COMPASS weighs
each vote by its confidence score. As shown in Figure 5b, the cumulative confidence for the correct
answer ’116’ (1.6235) is slightly higher than for ’32’ (1.6175). This crucial, fine-grained signal
allows COMPASS to break the tie correctly and select ’116’ as the pseudo-label. This case clearly
demonstrates our method’s robustness in scenarios where simple voting mechanisms fail.

(a) A curated summary of key model responses.

Resp. ID Answer Correct? Confidence Reasoning Path Snippet

#2 32 × 0.8327 To solve the problem...
#7 32 × 0.7848 To solve the problem...

#12 116 ✓ 0.8262 To solve the problem...
#15 116 ✓ 0.7973 Let’s break down...

(b) Comparison of the final decision by each voting mechanism.

Mechanism Decision Basis Pseudo-Label Result

TTRL Majority voting (2 vs. 2 tie) "32" × Failed
COMPASS Confidence-calibrated score (1.6235 vs. 1.6175) "116" ✓ Succeeded

Figure 5: A Case Study on AIME 2024 (Ground Truth: 116).

5 CONCLUSION

In this paper, we propose a novel Composite Path and Answer Self-Scoring (COMPASS) reward
mechanism for training Large Language Models with Reinforcement Learning on test data with-
out access to ground-truth labels. It combines the outcome-based Dual-Calibration Answer Reward
(DCAR) and process-based Decisive Path Reward (DPR) to collaboratively address two core limita-
tions in the prevailing self-rewarding mechanism: the fragility of pseudo-labels and the disregard for
the reasoning process. Our experiments demonstrate the strong potential of COMPASS, achieving
consistent improvements across a variety of tasks. We view COMPASS as a further step toward RL
with self-labeled rewards, marking an important direction of learning from continuous streams of
experience.
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A APPENDIX

A.1 LARGE LANGUAGE MODELS USAGE STATEMENT

In the preparation of this research, large language models (LLMs) were employed strictly as a
limited-purpose auxiliary tool. The models were used exclusively for language polishing tasks,
including grammar checking, sentence structure optimization, and wording refinement to improve
the readability and linguistic fluency of portions of the text. The LLMs played no role in any core
research activities, including but not limited to: research ideation, theoretical development, exper-
imental design, data analysis, result interpretation, or scientific decision-making. All intellectual
contributions to this work originate solely from the human authors. The authors take full responsi-
bility for the entire content of this paper, including text polished by LLMs, and affirm its originality,
accuracy, and academic integrity.
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