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Unsupervised deep metric learning (UDML) focuses on learning a semantic representation
space using only unlabeled data. This challenging problem requires accurately estimating
the similarity between data points, which is used to supervise a deep network. For this
purpose, we propose to model the high-dimensional data manifold using a piecewise-linear
approximation, with each low-dimensional linear piece approximating the data manifold
in a small neighborhood of a point. These neighborhoods are used to estimate similarity
between data points. We empirically show that this similarity estimate correlates better with
the ground truth than the similarity estimates of current state-of-the-art techniques. We also
show that proxies, commonly used in supervised metric learning, can be used to model the
piecewise-linear manifold in an unsupervised setting, helping improve performance. Our
method outperforms existing unsupervised metric learning approaches on standard zero-
shot image retrieval benchmarks.

1. Introduction
Deep metric learning (DML) is a challenging yet important task in computer vision, with applications in open-
set classification [1, 2], image retrieval [3, 4], few-shot learning [5, 6], and face verification [7, 8]. Deep metric
learning aims to learn a representation space with semantically similar data points grouped close together and
dissimilar data points located further apart. This involves fine-tuning a pre-trained neural network to minimize
a metric learning loss [3, 9–11] on datasets [12–14] with fine-grained class labels available for supervision,
which are expensive to obtain. Unsupervised deep metric learning (UDML) intends to learn such a semantic
metric space using unlabeled data, enabling us to leverage vast amounts of available unlabeled data without
incurring correspondingly large labeling costs.

However, learning a fine-grained semantic space without any labels is very challenging. Current techniques
[15–17] focus on using clustering on representations generated from a pre-trained network to estimate sim-
ilarity between points. But these estimates are often noisy, as the identification of clusters is error-prone,
especially when there is a significant domain shift between the dataset used for pre-training (for example,
ImageNet [18]) and the one used for metric learning (for example, SOP [14]). For example, a clustering
algorithm is likely to group Points A, B and C (located in a high-density region) shown in Figure 1 into a
single cluster, marking them as similar.

We propose to mitigate this issue by modeling the data manifold using a piecewise linear approximation, with
each piece being formed from a low-dimensional linear approximation of a point’s neighborhood. Building
such a piecewise linear manifold helps better estimate the similarity between points, as points belonging to a
low-dimensional submanifold are likely to be similar due to shared features. For example, in Figure 1, points
within linear submanifolds A-E shown are likely to be similar to other points within the same submanifold.

The piecewise linear manifold model enables us to calculate an informative continuous-valued similarity
between a pair of points compared to their binary similarity defined by their membership of the cluster. In
our model, the similarity between a pair of points (x1, x2) is inversely proportional to (1) the orthogonal
distance (o1,2) of point x1 from the linear neighborhood D of x2 and vice versa and (2) the distance between
point x2 and the projection of point x1 on D which are shown in Figure 1. Similarity decays faster orthogonal
to a neighborhood than within the neighborhood.

The network is trained to ensure that Euclidean distance in its embedding space between pairs of points is
reflective of their dissimilarity estimated using the piecewise linear model using a simple squared error loss
function, pushing points together/apart as shown in Figure 1.
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Figure 1: We visualize a 2D data manifold along which data embeddings lie. It may consist of multiple
submanifolds, three of which are shown here in red, yellow and blue. Embeddings obtained using pre-
trained features (left) are not optimal, with semantically dissimilar points (different colored) being closer
than similar points. Our method helps improve the feature space in 3 steps carried out iteratively: (1) Identify
and approximate the submanifold at each point (eg. Ellipses A-E) by a linear model over aneighborhood small
enough to (i) not contain multiple submanifolds and (ii) the contained single submanifold is adequately linear.
Such low-dimensional (1D) subspaces are assumed to contain semantically similar points (empirically backed
by Sec 4.3). (2) Estimate similarity for each pair of points (x1, x2), in terms of the lengths of projections of
vector x1 − x2 on the linear neighborhood D, p1,2, and on the normal to D, o1,2. Similarity decays faster
orthogonal to a neighborhood than along it. (3) Train network embedding to bring similar points closer
together and push dissimilar points apart. This brings closer together points within the same low-dimensional
neighborhoods or those in different neighborhoods but the same low-dimensional (1D) space (eg. A, B, C)
closer together. Points not lying in the same low dimensional space (eg. B, D, E) are pushed away from each
other.

We propose to make use of proxies to model the piecewise linear manifold beyond what has been sampled in
a mini-batch, ensuring better performance. Each proxy is associated with a linear manifold that approximates
its neighborhood, and both the proxy location and the orientation of the linear manifold are learned. To the
best of our knowledge, we are the first to demonstrate the utility of proxies in such an unsupervised learning
framework.

To validate the quality of the semantic space learned by our method, we evaluate it on standard [14, 15, 19]
zero-shot image retrieval benchmarks, where it outperforms current state-of-the-art UDML methods by 2.9,
1.5 and 1.3 % in terms of R@1 on the CUB200 [13], Cars-192 [12] and SOP datasets [14], respectively.

To summarize our contributions,

• We present a novel UDML method that constructs a piecewise linear approximation of the data
manifold to estimate a continuous-valued similarity between pairs of points.

• We empirically show that our piece-wise linear manifolds enable better identification of points be-
longing to the same class as compared to a straightforward clustering in the high dimensional space,

• We make use of proxies in modeling the piecewise linear manifold, demonstrating for the first time
their utility in UDML.

• We evaluate our method on three standard image-retrieval benchmarks where it outperforms current
state-of-the-art techniques.

2. Related Work
Metric Learning: The goal of deep metric learning is to train a network to learn a semantic feature space
from data. Classical approaches include contrastive and triplet losses [9, 10], and their variants [20, 21], which
optimize sample distances to bring together examples of the same class while pushing apart those in different
classes within a sampled tuplet. Proxy-based approaches [3, 22] attempt to mitigate such tuplet-sampling
complexity by instead using a learnable vector to represent points belonging to a class. Sample-sample
interactions are substituted by sample-proxy, enabling better, more uniform supervision for each batch of
samples and quicker convergence. These methods require fine-grained class labels for learning a semantic
feature space, which are expensive to obtain at scale.
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Unsupervised Metric Learning: Unsupervised metric learning involves using only unlabeled data to learn
a semantically meaningful space. Common approaches include pseudo-labeling the data using off-the-shelf
clustering algorithms in a pre-trained representation space [17, 23], followed by the application of standard
metric learning methods. [15] proposes to use hierarchical clustering to generate pseudo-labels, while [24]
uses a random walk for the same. These methods are limited in their ability to accurately model similarity
between points due to very high noise in the pseudo-labels generated.

Other approaches [25–27] instead rely on an instance discrimination loss which enforces similarity between
different augmentations of an instance. [16] propose a combination of pseudo-labeling and instance discrim-
inative approaches using a Siamese network. [19] introduces a self-training framework with a momentum
encoder to continuously improve the quality of pseudo-labels generated using a random walk.

Self-Supervised Learning: Self-supervised learning also focuses on learning a representation space in the
absence of labels, but the goal is to learn a space that can be fine-tuned effectively (using a small amount
of labeled data) for different downstream tasks. Most recent techniques [28–32] for self-supervised learning
rely on instance discriminative techniques. The representations learned lack class similarity information, and
are less suitable to be directly used for tasks like image retrieval as shown in [19].

Manifold Learning: Manifold learning focuses on uncovering low-dimensional structures in high-
dimensional data. Manifold learning techniques like LLE [33] and Isomap[34] utilize information derived
from the linearized neighborhoods of points to construct low dimensional projections of non-linear manifolds
in high dimensional data. Our method also uses linearized neighborhoods of points to construct the piecewise
linear manifold. In contrast to other manifold learning techniques, which force a single linear manifold in the
neighborhood, our method allows as many manifolds as needed.

3. Method
3.1. Setup

Given data D = {xi}, i ∈ {1 . . . |D|}, deep metric learning is formulated as training a network fθ parame-
terized by θ such that the semantic dissimilarity between a pair of samples x1, x2 ∈ D is proportional to the
Euclidean distance between their projections ∥fθ(x1)− fθ(x2)∥2.

After sampling a batch of data B, our method (1) Constructs a piecewise linear manifold from them (2)
Estimates the point-point and proxy-point similarities s(x1, x2) (calculated for two points x1, x2) using the
piecewise linear manifold and (3) Trains the network fθ and proxies using backpropagation such that Eu-
clidean distances between any two point (∥x1 − x2∥2) reflects their dissimilarity 1 − s(x1, x2). We go over
the details of these steps in the following subsections. Figure 2 provides an overview of our method.

3.1.1. Nearest Neighbor Sampling
To enable the construction of a piecewise linear manifold using only the data in a mini-batch, we use nearest
neighbor sampling to assemble the mini-batch B. This is due to a randomly sampled batch being less suitable
for constructing a piecewise linear manifold because the low-dimensional linear approximation only holds in
a small neighborhood of a data point. For large datasets where |B| << |D| (common in practice), a randomly
sampled batch contains an insufficient number of points lying in low-dimensional linear neighborhoods of
each other. So, for constructing a batch, we randomly sample N points followed by their k − 1 nearest
neighbors, to help better estimate valid linear submanifolds (here k = |B|

N ).

3.1.2. Momentum Encoder
We maintain an exponential moving average ϕt of the network’s weights -

ϕt = γϕt + (1− γ)θt (1)

Here γ is the momentum parameter, while ϕt, θt are the parameter values at the t-th iteration. The network
with the same architecture as fθ, but weights ϕ is referred to as momentum encoder fϕ here on.

We use representations of the sampled batch fϕ(xi)i ∈ {1 . . . |B|} given by the momentum encoder fϕ as
opposed to using the network fθ, as this helps stabilize the data-manifold. Using a rapidly changing network
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Figure 2: An overview of our method. Points are selected from the dataset using the neighborhood sam-
pling strategy (Sec. 3.1.1), followed by the calculation of their embeddings using the network fθ and the
momentum encoder fϕ (Sec. 3.1.2). Embeddings generated by the momentum encoder are used to construct
a piecewise linear approximation (Sec. 3.2) of the data manifold. These embeddings are used to calculate
point-point (Sec. 3.3) and proxy-point (Sec. 3.5) similarities. The similarities are used to modulate the
distance between point-point (Sec.3.6.1) and proxy-point (Sec. 3.6.2) pairs by updating the network fθ. Lo-
cations and neighborhoods of proxies (as described in Sec. 3.4) are also updated using the proxy-point (Sec.
3.6.2) and proxy-neighborhood loss (Sec. 3.6.3) components through backpropagation. Losses colored yel-
low/green are calculated only using quantities with the same color

fθ for constructing and updating the piecewise linear manifold results in unstable training, necessitating the
use of a momentum encoder.

3.2. Construction of Piecewise-Linear Manifold
To construct a piecewise linear approximation of the data manifold, we calculate an m-dimensional linear
submanifold Pi at each point fϕ(xi) ∈ B to approximate the data manifold in its neighborhood. The linear
submanifold Pi should be small enough such that the linear approximation holds, but large enough to fit
any points which lie on it. We use PCA to calculate a low-dimensional linear approximation of the point’s
neighborhood. The PCA is applied to a subset of its k nearest neighbors. Henceforth, we refer to the j-th
nearest neighbor of fϕ(xi) as N (fϕ(xi))j , j ∈ {1 . . . k}. A subset of the k-nearest neighbors is used because
not all points in its neighborhood might fit well on the linear submanifold (also, the model is constantly
updating). An iterative algorithm described below is used to pick the subset of points Xi which are used to
find the best fit linear submanifold

1. Pick the point fϕ(xi) and its m− 1 nearest neighbors, N (fϕ(xi))j , j ∈ {1 . . .P − 1} to form a set
of points Xi. An m dimensional linear submanifold constructed by applying PCA to Xi would fit
all points with zero error.

2. Construct a set X ′

i = Xi ∪ N (fϕ(xi))m by adding the m-th nearest neighbor of fϕ(xi) to Xi.
Construct the best fit m dimensional submanifold by applying PCA on X ′

i .

3. If the m dimensional submanifold can reconstruct all points ∈ Xi with an error less than threshold
T%, we update Xi = X ′

i . If the error for any point is greater than T%, it implies that the newly
added point N (fϕ(xi))m is not a good fit to the linear manifold, and is not added to Xi.
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4. Steps 2 and 3 are repeated for all other points N(fϕ(xi))j , j ∈ {m + 1 . . . k} in the neighborhood
of fϕ(xi), in ascending order of their distance from fϕ(xi).

The set Xi so obtained contains all points in the neighborhood of fϕ(xi) that fit in an m-dimensional linear
submanifold. A basis for the subspace containing Pi is formed by using PCA on Xi followed by selecting
the top m eigenvectors (best fit). In the subset selection algorithm, the threshold T and the dimension m are
hyperparameters fixed empirically.

3.3. Estimating Point-Point Similarity
Using the piecewise linear approximation of the data manifold at each point fϕ(xi) ∈ B, we calculate the
similarity s

′
(xi, xj) between any two points xi, xj . We model the as a product of two components

s
′
(xi, xj) = α(xi, xj)β(xi, xj) (2)

α(xi, xj) is based on distance between fϕ(xi) and fϕ(xj) projected on the normal to Pj (the linear subman-
ifold neighborhood of fϕ(xj)) and, β(xi, xj) which takes into consideration their distance projected on Pj .
Factorizing the similarity into these components helps quantify the differing roles of the orthogonal distance
and projected distance (Section 4.4.3). Figure 1 illustrates these distances for a 2D toy example.

Functional forms for α(xi, xj) and β(xi, xj) are chosen such that similarity decays with an increase in both
these distance components. We choose α(xi, xj) as:

α(xi, xj) =
1

(1 +
o(xi,xj)

2 )Nα

(3)

where o(xi, xj) is the distance between fϕ(xi) and fϕ(xj) projected on the normal to Pj . The choice of
constants ensures that α(xi, xj) ∈ [0, 1] for oi,j ∈ [0, 2] (which is true as all embeddings fϕ(x) have unit
norm). Nα controls the sharpness of similarity decay. Similarly, we choose β(xi, xj) as:

β(xi, xj) =
1

(1 + p(xi, xj))Nβ
(4)

where p(xi, xj) is the distance between fϕ(xi) and fϕ(xj) projected on Pj . The constants ensure β(xi, xj) ∈
[0, 1] for p(xi, xj) ∈ [0, 1]. Nβ controls the sharpness of the decay in similarity with p(xi, xj). After cal-
culating the similarity s

′
(xi, xj), we similarly calculate s

′
(xj , xi) using Pj , the linear submanifold in the

neighborhood of fϕ(xj). We calculate the average similarity s(xi, xj) as

s(xi, xj) =
s
′
(xi, xj) + s

′
(xj , xi)

2
(5)

The average similarity s(xi, xj) is symmetric that is s(xi, xj) = s(xj , xi), unlike s
′
(xi, xj). In our experi-

ments, we use Nα > Nβ to impose a more severe penalty on points that do not fit in the low-dimensional
linear submanifold Pi than points on the submanifold Pi which are located away from fϕ(xi).

3.4. Proxies to Model Manifold
When training on most real datasets, |B| << |D|, which means that the linear approximations of point
neighborhoods Pi∀i ∈ {1, . . . , |B|} might not be able to effectively represent the whole data manifold. To
mitigate this issue, we use proxies to model the data manifold. Proxies have been used to model the data
distribution in supervised deep metric learning [3, 35], where they are typically used as learnable cluster
centers belonging to a class. In the unsupervised setting, a similar, direct use is not possible in the absence of
any label information.

We propose to instead use proxies to model low-dimensional linear approximations of point neighborhoods on
the data manifold. Specifically, each proxy ρj∀j ∈ {1 . . . Nρ} is associated with Ψj , a set of m-orthonormal
vectors (ψ1,j . . .ψm,j) representing the m-dimensional linear approximation of the proxy’s neighborhood.
Here, Nρ represents the number of proxies chosen to be used. Each proxy ρj along with its linear neighbor-
hood Ψj represents a piecewise-linear approximation to a part of the data manifold. This helps model the
similarity of a point fϕ(xi) with a larger part of the data manifold than that represented by only the batch.
The proxies ρj and their linear neighborhoods Ψj are learnable parameters, updated in the backward pass
along with model parameters.
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3.5. Estimating Proxy-Point Similarity
The similarity s(fϕ(xi),ρj) between a point fϕ(xi) and a proxy ρj is estimated using Equation 5 in the same
manner as described in Section 3.3. In the similarity calculation described in Section 3.3, fϕ(xj) is replaced
with ρj , with the vectors Ψj playing the role of the point neighborhood Pj required in the process.

3.6. Loss & Training
We design our loss function to ensure that 1) The Euclidean distance between any pair of points or a proxy-
point pair is proportional to the measured dissimilarity between them and 2) The proxies and their neighbor-
hoods Ψj are updated continuously. This is ensured using 3 components 1)Point-Point loss 2)Proxy-Point
loss 3)Proxy-Neighborhood loss

3.6.1. Point-Point Loss
The point-point interaction component of the loss Lpoint modulates the Euclidean distance between a given
pair of points using the estimate of their similarity. Specifically, for points xi, xj , the loss is the square of the
difference between their Euclidean distance ∥fθ(xi)− fθ(xj)∥2 and the estimated dissimilarity 1− s(xi, xj)
multiplied by a scaling factor δ. This is summed over all pairs in the batch to calculate Lpoint given by

Lpoint =

|B|∑
i=1

|B|∑
j=1,j ̸=i

( δ × (1 − s(xi, xj) )− ∥fθ(xi)− fθ(xj)∥2)2 (6)

The loss ensures that points that are very similar with s(xi, xj) ) → 1 are attracted to each other to have ℓ2
distance → 0. Points dissimilar to each other with s(xi, xj) ) → 0 are repelled from each other until their ℓ2
distance → δ.

3.6.2. Proxy-Point Loss
The proxy-point interaction component of the loss Lproxy is also based on squared error and is similar to the
point-point component with the only difference being the replacement of point-point similarity with proxy-
point similarity. It is given by

Lproxy =

|B|∑
i=1

Nρ∑
j=1

(
δ × (1− s(xi,ρj) )− ∥fθ(xi)− ρj∥2

)2
(7)

The δ is the same as the one used in the point-point component.

3.6.3. Proxy-Neighborhood Loss
The proxy-neighborhood Lneighborhood component ensures that the proxy neighborhoods Ψj are updated as
the proxies move. It is also formulated as a squared error, helping align proxy neighborhoods (ψk,j , the basis
vectors used to define them) with those of points most similar to them. Specifically, Lneighborhood is defined
as

Lneighborhood =

|B|∑
i=1

Nρ∑
j=1

m∑
k=1

(
s(xi,ρj)− cosθk,j,i

)2
where θk,j,i = ∠ between ψk,j and Pi (8)

cosθk,j,i quantifies the similarity between ψk,j and linear submanifold Pi.

3.6.4. Training
The combined loss L is defined as the sum of its three components -

L = Lpoint + Lproxy + Lneighborhood (9)

We calculate the loss L for a batch B and update the network parameters θ via mini-batch gradient descent.
ϕ is instead updated using Eq. 1. Note that network parameters θ are only affected by Lpoint, Lproxy , while
the proxies ρ and their neighborhoods Ψ are only affected by Lproxy, Lneighborhood.
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Benchmarks → CUB-200-2011 Cars-196 SOP
Methods ↓ R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@100

GoogleNet (128 dim)
Examplar [38] 38.2 50.3 62.8 75.0 36.5 48.1 59.2 71.0 45.0 60.3 75.2
NCE [25] 39.2 51.4 63.7 75.8 37.5 48.7 59.8 71.5 46.6 62.3 76.8
DeepCluster [17] 42.9 54.1 65.6 76.2 32.6 43.8 57.0 69.5 34.6 52.6 66.8
MOM [24] 45.3 57.8 68.6 78.4 35.5 48.2 60.6 72.4 43.3 57.2 73.2
AND [39] 47.3 59.4 71.0 80.0 38.4 49.6 60.2 72.9 47.4 62.6 77.1
ISIF [26] 46.2 59.0 70.1 80.2 41.3 52.3 63.6 74.9 48.9 64.0 78.0
sSUML [40] 43.5 56.2 68.3 79.1 42.0 54.3 66.0 77.2 47.8 63.6 78.3
Ortho [41] 47.1 59.7 72.1 82.8 45.0 56.2 66.7 76.6 45.5 61.6 77.1
PSLR [42] 48.1 60.1 71.8 81.6 43.7 54.8 66.1 76.2 51.1 66.5 79.8
ROUL [36] 56.7 68.4 78.3 86.3 45.0 56.9 68.4 78.6 53.4 68.8 81.7
SAN [43] 55.9 68.0 78.6 86.8 44.2 55.5 66.8 76.9 58.7 73.1 84.6
STML* [19] 57.7 69.8 80.1 87.1 48.0 58.7 69.5 79.5 63.8 77.8 88.9
Ours 60.6 ± 0.3 71.1 ± 0.2 81.1 ± 0.1 87.8 ± 0.1 49.5 ± 0.3 60.6 ± 0.3 72.1 ± 0.2 80.9 ± 0.2 65.1 ± 0.3 80.4 ± 0.2 90.2 ± 0.1
GoogleNet (512 dim)
UDML-SS [23] 54.7 66.9 77.4 86.1 45.1 56.1 66.5 75.7 63.5 78.0 88.6
TAC-CCL [16] 57.5 68.8 78.8 87.2 46.1 56.9 67.5 76.7 63.9 77.6 87.8
UHML [15] 58.9 70.6 80.4 87.7 47.7 58.9 70.3 80.3 65.1 78.2 88.3
STML* [19] 58.6 70.2 80.9 87.9 48.6 60.4 71.3 80.8 65.1 79.7 89.1
Ours 61.7 ± 0.3 72.5 ± 0.2 82.2 ± 0.2 88.3 ± 0.1 51.2 ± 0.2 62.2 ± 0.2 72.1 ± 0.2 81.0 ± 0.1 66.4 ± 0.2 81.1 ± 0.1 90.6 ± 0.1

Table 1: Comparison of the Recall@K (%) achieved by our method on the CUB-200-2011, Cars-196 and
SOP datasets with state-of-the-art baselines under standard settings described in Section 4.1. The table reports
performance and standard deviations of our method calculated over 5 runs. * denotes results reproduced by
us under the same settings.

4. Experiments and Results
4.1. Setup
Datasets: We empirically validate our method and compare it with current state-of-the-art baselines on three
public benchmark datasets for image retrieval - (1) The Cars-196 dataset [12] with 16,185 images belonging
to 196 different categories based on the model of the cars (2) CUB-200-2011 dataset [13] having 11,788
images 200 classes of birds and (3) Stanford Online Products (SOP) dataset [14] having 120,053 images of
22,634 different kinds of products sold online. We use examples belonging to the first half of classes for
training while using the other half classes for testing following the commonly used setting previously used
by [14, 19, 36] to test zero-shot image retrieval.

Backbone: The choice of backbone plays an important role in the image retrieval performance, with stronger
backbones yielding significantly better results. For a fair comparison with previous work, we performed
experiments using the GoogLeNet backbone [37] commonly used by them. We used embedding sizes of 128
and 512 to enable comparison with all previous work reporting results for either setting. We initialize these
networks with ImageNet pre-trained weights unless specified otherwise. We ℓ2 normalize the final output of
these networks, as is commonly done.

Training parameters: We train our network for 200 epochs on all three datasets. We use Adam with the
learning rate chosen as 5e−4. We scale up the learning rate of our proxies by 100 times for faster convergence
as is done commonly [22]. For training, we use 227×227 sized center crops from images after they are resized
to 256 × 256 as is done commonly [15, 19]. We choose Nα = 4 and Nβ = 0.5 in all our experiments, and
Nρ = 100. δ is set as 2 (the maximum distance between two points on a unit sphere) while fixing m = 3.
The reconstruction quality threshold T is set as 90%, while the momentum parameter γ is fixed as 0.999.
We use a mini-batch size of 100 samples, with each batch having two random augmentations of an image as
proposed in [19].

Evaluation Settings:. We measure image retrieval performance using the Recall@K metric, which computes
the percentage of samples that have a valid similar neighbor (belonging to the same class) among its K nearest
neighbors. All experiments are performed on a single NVIDIA V100 GPU.

4.2. Image Retrieval Performance
We compare the performance of our method with recent state-of-the-art unsupervised deep metric learning
techniques on the three standard benchmarks described before. As seen in Table 3, our method achieves
state-of-the-art performance irrespective of the backbone and embedding dimension used. In particular, it
outperforms STML[19], the current state-of-the-art by 2.9%, 1.5% and 1.3% in terms of R@1 on the CUB-
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Metric → Label Purity Correlation with Ground truth
Methods ↓ CUB200 Cars196 SOP CUB200 Cars196 SOP
K-Means [17] 0.38 0.29 0.32 0.37 0.21 0.32
Hierarchical Clustering [15] 0.49 0.33 0.39 0.52 0.36 0.49
Random Walk [24] - - - 0.45 0.26 0.42
Ours 0.67 0.45 0.62 0.61 0.45 0.67

Table 2: A comparison of the quality of supervision provided by our method as compared to recent pseudo-
labeling techniques. Our method is not only better at grouping points of the same class together as evidenced
by higher label purity, but also helps estimate a better similarity more correlated to ground truth similarity
between two points.
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Figure 3: Variation in Recall@1 with Nρ, m,Nα, Nβ and δ on the CUB-200-2011 dataset when using a 128
dim embedding GoogLeNet backbone. Error bars represent standard deviations over 5 runs.

200, Cars-196 and SOP datasets respectively when using a GoogLeNet backbone (128-dim embedding). It
similarly outperforms UHML[15], another state-of-the-art baseline (512-dim case) by 2.8%, 3.5% and 1.3%
in terms of R@1 on the CUB-200, Cars-196 and SOP datasets respectively when using a GoogleNet backbone
(512-dim embedding). Note that these improvements are significant compared to previous improvements on
these benchmarks. These results point to the wide applicability of using a piecewise linear manifold to model
data manifolds and quantify pairwise similarity.

4.3. Quality of Supervision using Low-Dimensional Linear Neighborhoods
Our use of low dimensional linear manifolds to model point neighborhoods was motivated by two reasons (1)
We hypothesize that they have better purity (in terms of class labels) as compared to clusters obtained using
off-the-shelf techniques and (2) They enable calculation of a similarity between any two points which better
reflects ground truth.

We empirically test these by comparing the label purity of linear manifolds Pi constructed using our algo-
rithm (Section 3.2) with the label purity of clusters obtained using commonly used clustering algorithms. We
perform the comparison on embeddings of the CUB-200 test set obtained using a 128-dim ImageNet pre-
trained GoogLeNet model (described in Section 4.1). As seen in Table 2, linear manifolds have significantly
better purity, helping better discover underlying class structures.

To calculate the quality of supervision provided by our similarity estimate, we calculate its correlation with
the ground truth similarity between any two points. The ground truth similarity is binary, being 1 for two
points belonging to the same class and 0 otherwise. Such a binary ground truth similarity is commonly
used in DML when labels are available. Unsupervised DML strategies that rely on generating pseudo-labels
[15, 17, 24] also calculate estimates of the ground truth similarity for each pair of points using pseudo labels
obtained through clustering / random walk. To enable a comparison with our method, we calculate a similar
correlation for their similarity estimates obtained using pseudo-labels. As seen in Table 2, our continuous-
valued similarity calculated using a linear approximation to neighborhoods of points has a higher correlation
with ground truth. This validates the design of our method, showing its wide utility.

4.4. Ablation Study & Analysis
In this section, we analyze the role of different components of our method via ablations. We train GoogLeNet
models with a 128-dimensional embedding on the CUB-200-2011 dataset using the parameters in Section
4.1, unless specified otherwise. We train a new model from scratch for each separate set of parameters. We
measure the performance achieved by the model using Recall@1 (R@1).
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4.4.1. Effect of Nρ

The number of proxies Nρ is an important parameter, as the proxies help model relations of sampled data
with data outside the batch. We vary it between [0, 500] to understand its effect on performance. The results,
plotted in Figure 3(a) show that the performance remains stable for a wide range of Nρ, decreasing when the
number of proxies is very small. The cause of this decline is the number of proxies not being large enough to
model the underlying data manifold effectively.

4.4.2. Effect of linear manifold dimension m

The parameter m is the dimension of the linear submanifold Pi which approximates the data manifold in
the neighborhood of a point fϕ(xi). We vary m between [2, 7] to understand its role in our method. As
seen in Figure 3(b), performance remains stable for small m followed by a decrease as m becomes larger.
This is because Pi is used to approximate the immediate neighborhood of a point which is likely to be low
dimensional. Using a large m might lead to overfitting, as there are only a limited number of close neighbors
of a point available in a batch to estimate Pi leading to performance deterioration.

4.4.3. Role of Nα, Nβ

Nα and Nβ control the decay in similarity based on the orthogonal and projected distance of a point from
the linear submanifold in the neighborhood of the other point. We vary Nβ between {0, 0.5, 1, 1.5} and Nα

between [1, 6]. We train a separate network for each possible Nα > Nβ pair in this range.

The results of these experiments are visualized in Figure 3(c). We observe three trends (1) Performance
(R@1) remains stable for a wide range of Nα, Nβ when Nα >> Nβ (2) As Nα → Nβ , we observe a
significant deterioration in performance. This is because when Nα = Nβ , a point A lying at a distance ϵ
in the linear neighborhood of another point B (and hence likely sharing many common features with B and
its neighbors) would be judged to be as dissimilar to B as a third point C located at an orthogonal distance
of ϵ from the linear neighborhood of B. Note that we do not plot performance for cases where Nα ≤ Nβ

for clarity, as we observed a significant degradation in performance for these cases (≈ 10% for Nα = Nβ

case). (3) We observe a degradation in performance when Nβ = 0, reflecting its importance. To summarize,
performance is the best when data similarity decays faster with orthogonal distance (features alien to the
neighborhood) and slower along projected distance (features known to capture similarity).

4.4.4. Effect of δ
We conduct an empirical study to determine the effect of varying the distance scale parameter δ between
[0.2, 2]. Figure 3(d) plots variation in performance with δ where we observe that performance remains rela-
tively stable for a wide range of values, demonstrating the robustness of our method.

Further ablation studies demonstrate the importance of (1) our algorithm to construct a piece-wise linear
manifold (Sec 3.2) and (2) our proposed similarity functions (Sec. 3.3 & 3.5), details of which can be found
in Appendix A.

5. Conclusion
We present a novel method to learn a semantically meaningful representation space in the absence of labeled
data. Our method constructs a piecewise linear approximation of the data manifold by modeling point neigh-
borhoods as linear manifolds. It uses these linearized neighborhoods to quantify similarity between pairs of
points which we show empirically to be more informative than similarity estimated by common clustering-
based approaches. We augment the manifold estimated using sample points in a batch with learnable proxies,
demonstrating their utility for unsupervised metric learning.

We evaluate the semantic representation of our method on three standard image retrieval tasks where it out-
performs current state-of-the-art methods. We hope insights gained from our works motivate further investi-
gation into the structure of data manifolds learned by neural networks and their exploitation for unsupervised
representation learning.
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A. Appendix: Ablation on Similarity Calculation
We perform three ablation studies demonstrating the importance of components our method used in similarity
calculation: 1) Forming Piece-wise linear manifold (Sec 3.2) 2) Proposed Similarity functions: Sec. 3.3 &
3.5

Benchmarks → CUB-200-2011
Methods ↓ R@1 R@2

GoogleNet (512 dim)
(1) Ours - PL manifold (Sec 3.2) 58.4 70.8
(2) Ours - similarity (Sec 3.3, 3.5) 54.2 66.5
(3) Ours - PL manifold (Sec 3.2) - similarity (Sec 3.3, 3.5) 53.1 65.4
(4) Ours 61.7 72.5

Table 3: Comparison of the Recall@K (%) achieved by ablations of our method on the CUB-200-2011
under standard settings described in Section 4.1. The table reports performance and standard deviations of
our method calculated over 5 runs.

For all three studies, we use parameters specified in Section 4.1 unless specified otherwise.

In ablation (1), instead of using our algorithm described in Section 3.2 to form neighborhoods by selecting
those within a linear submanifold, we form point neighborhoods using all k nearest neighbors of a point. The
3.3% drop in R@1 for this ablation demonstrates the importance of the appropriate selection of piecewise
linear neighborhoods using our algorithm.

In ablation (2), instead of calculating similarity using Equation 5, we assign binary similarity values (1 for
points in the neighborhood, 0 for those outside) to demonstrate the utility of similarity si,j (Section 3.3, 3.5).
A drop of 7.2 % R@1 provides additional evidence of the design of our distance similarity.

In ablation (3), we remove both the above-mentioned components, using only binary similarity using neigh-
borhoods formed by k nearest neighbors. The 8.6 % drop in R@1 points to the importance of both compo-
nents of our method.
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