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Abstract. Roadways have always been one of the most used modes of trans-
portation, and their contribution to the nation’s economy is also huge. To meet the
demands of the growing global population and an increase in urbanization, there
has been an exponential rise in the number of vehicles plying on the roads as well
as the length of the roads. With this increase in traffic, coupled with other issues
like heavy rainfall, the material used for the construction of the road, etc., the
condition of the roads deteriorates with cracks and potholes developing on them,
which may lead to serious accidents. For effective maintenance of roads and to
reduce the associated risks, these defects must be detected. With the advent of
Deep Learning (DL) in the recent past and its applications in various sectors, we
have comprehensively explored various approaches, particularly using DL in this
study, along with the associated challenges in adopting such techniques and future
opportunities in this domain. Based on our analysis, using object detection-based
models turned out to outperform other approaches.
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1 Introduction

India, with 11% of the world’s share of fatalities due to road accidents, sadly tops this
list [1]. According to Ministry of Road Transport and Highways data, the majority of
these deaths occur between the ages of 18 and 60 [1], which is the most economically
productive age. Thus, it leads to a great loss to the country in the form of its most
precious asset, i.e., human resources. The World Health Organization has stated that
among the major causes of deaths in the world, road accidents stand at the eighth position.
These deaths incur a huge burden in the form of treatment costs as well as hamper the
productivity of the dead, impaired, and even their family members. Although there are
a variety of causes that lead to such accidents, which include overspeeding, driver’s
negligence, bad condition of roads, the existence of cracks and potholes, lack of strong
vehicle standards in the country, etc. [36]. Out of these, one of the major reasons for this
massive number of fatalities is the poor condition of roads with multiple defects, which
are caused by heavy rainfall, which results in inundation of water over the pavements,
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the rising number of vehicles plying on them, the lack of quality construction material
used and unstable soil. The significance of our study is as follows:

For the efficient maintenance of the roads and to ensure the safety of people on
these roads, the magnitude of such road damage must be known. There are multiple
ways to assess the extent of road damage, which may be broadly classified into manual,
semi-automated, and fully automated.

In the case of manual assessment, the assessors ply the road using a vehicle moving
slowly. They note down the extent of such defects by visual assessment. But this approach
takes a lot of time and requires extensive human interference.

In the case of semi-automated assessment [2—4], the evaluation of road damage
is done through the collection of images using automated systems. These images are
collected using a swift-moving vehicle. These are then sent for manual defect detection,
which again requires human intervention.

In fully automated road damage assessment, complex and modern sets of sensors
[3-5] are installed on the moving vehicle. These sensors gather the images of the roads,
which are then sent for automated defect detection. But this kind of fully automated
system is very costly and many countries lack the funds to implement such systems.
However, in today’s world, mobile phone devices have very good cameras and impressive
computation power, which presents an economical and efficient solution to the above
problem. For example, Mertz et al. [6] have used mobile phone devices to collect images
of roads that were positioned on various frequently plying vehicles. Mobile phone devices
with sensors were used by Casas-Avellaneda and Lopez-Parra [7] to detect potholes on
the roads. A mobile application was developed by Maeda et al. [8] for automatic road
evaluation in Japan.

Motivation for this Study: Roads and infrastructure are crucial to national growth.
Metaled or unmetalled roads drive economic growth. Natural disasters, environmental
causes, human interference, inexpensive building materials, and normal wear and tear
degrade roads, causing cracks, potholes, and other deformations that cause accidents,
human and animal deaths, economic slowness, etc. It’s important to repair these problems
and identify them first. There have been manual and automated approaches to achieve
it. After DL’s excellent performance in image issues, various research has analyzed its
ability to automatically recognise road damage. Our paper includes all significant and
state-of-the-art methodologies implemented in this domain, together with their advan-
tages, limitations, and performance over key evaluation measures. This study aims to
help future scholars obtain a complete source of important studies in this field.

This study includes all recent and state-of-the-art road damage identification solu-
tions presented by different authors. We’ve also included the benefits, cons, and
challenges of these studies.

The remainder of the paper is organized as follows: First, we have discussed a few
basic concepts and terminologies in Sect. 2. In Sect. 3, we have reviewed research
articles comprehensively related to the problem domain. In Sect. 4, we have included
the challenges in this domain and the contributions made by our study. Finally, we have
concluded the paper in Sect. 5 along with future scope.
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2 Basic Concepts and Terminologies

In this section, we will discuss some relevant concepts and terminologies using which
the problem of pavement distress detection has been solved by most of the studies in the
literature survey. The concept of deep learning is the baseline for proposing solutions
to the problem. Various architectures, including CNN, region-based CNN, YOLO, etc.,
have been used by various studies to propose their solutions. These architectures have
been explained in brief in this section.

2.1 Deep Learning

This type of learning tries to mimic the workings of the human brain. There are billions
of neurons present inside a human brain that operate using electrical impulses [42]. In
DL, we try to create a similar network of neurons, which is known as a neural network
that consists of multiple layers. The first layer accepts the inputs, the last layer outputs
the results, and in between the network may contain hidden layers. As the data is growing
at a very fast rate and with the advancements in the computation power of the systems,
the capacity of handling such large data has drastically improved. Deep Learning tech-
niques coupled with this improved processing power have achieved significant results
in problems involving big data. Deep learning is used in different areas, such as natural
language processing, optical character recognition, recommendation systems, etc. It has
proven to be extremely effective, particularly in the identification of objects in images,
and it is also used to identify road damage using images of defects.

2.2 Convolutional Neural Networks

Itis used in a variety of image processing applications. It extracts important information
from an image through a four-layered process that includes a convolution layer, a pooling
layer, a ReLU layer, and a fully connected layer [43]. This type of neural network works
on data that is in grid format. An example of this kind of data is images. Hence, for
image processing tasks, convolutional neural networks are preferred.

2.3 Object Detection Algorithms

With the emergence of the concept of the self-driving car, there has been a significant
increase in the field of object detection. The main aim of this task is to locate the
entity of interest in the given input image. As a conventional CNN cannot be used for
the efficient implementation of such tasks, advanced algorithms have been developed.
These architectures are briefly described below:

R-CNN: [37] Using the selective search algorithm, a set of 2000 regions is drawn out
from the image and the task of finding the objects is performed.

Fast R-CNN: [38] It is quicker than the R-CNN algorithm, as the convolution phase is
performed just once for each input and a corresponding feature map is produced from
it.
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Faster R-CNN: [39] It outperforms the above algorithms by using a different network
to forecast the region’s proposals instead of using the selective search algorithm.

You Only Look Once (YOLO): [40] This object detection algorithm creates bounding
boxes along with the class probabilities using only a single CNN. Then, to find the thing
of interest, the box with a likelihood estimate above a certain threshold is chosen.

Single Shot Detection: [41] Similar to the YOLO algorithm, the Single Shot Detection
algorithm is also capable of detecting the object of interest in a single scan of the image.
It is faster and more accurate than R-CNN’s as it gets rid of the region proposals used
in the latter.

3 Literature Review

There has been a significant amount of research in the domain of pavement distress detec-
tion. In this section, we have summarized different methodologies used by researchers.
We have also listed the datasets used by the authors for the implementation process in
Table 1. We have explored various machine learning techniques which use advanced
detection algorithms for the above problem domain. Table 2 is a summary of the articles
we looked at, which brings this section to a close.

Du et al. [9] have used a huge dataset of 45,788 images that were collected using
a camera mounted on a dedicated vehicle covering almost 200 km at a rate compared
with fewer than 80 km per hour for assessing road damage. They have used the YOLO
algorithm to project the position of the fault as well as its category in a given input image.
However, they have not used the cost-effective approach of using mobile phone devices
for image collection. Instead, they have used advanced high-resolution cameras for this
purpose. The YOLO-based model used has a very high level of accuracy and doesn’t
require any manual work during detection.

Majidifard et al. [10] have proposed a solution using a labelled dataset that consists
of images collected from different camera views, which consists of both top-down and
wide-view for the classification purpose. They have gathered street-view images using
the Google API and have manually labelled them into nine different categories of road
damage. They have also collated the outcomes of the Faster R-CNN model with the
YOLO-based model, which shows that the latter performs much better. However, they
used a small dataset consisting of 7,237 images only. The advantage of their approach
is the easy availability of Google street-view images.

The solution presented by Patra et al. [11] uses a CNN based model which achieves
the task of pothole detection using a dataset consisting of images collected using the
Google API. They have also compared their model with six other conventional models.
Their suggested framework delivers a significant accuracy of around 97.6%. The area
under the curve value (AUC) is also greater than that of those other models.

According to Goodfellow et al. [12], to achieve sufficiently good results, a dataset
consisting of at least 5,000 images of each category must be used for the task of image
classification. Although the techniques used for image collection using the Google API
by the above authors have the advantage of the images being easily accessible, and free
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of cost, this advantage comes with the tedious task of manually labeling each collected
image which is very time-consuming.

Smartphones were used for collecting the images in a methodology developed by
Maeda et al. [8] for the task of pavement distress detection. This study was a major
breakthrough and served as a starting point for future studies. It categorized the road
defects in Japan’s road network into eight different classes. They developed a dataset
which was called the Road Damage Dataset-2018, which was also made open-source
for easy accessibility. They also developed a mobile application for instantaneous road
damage evaluation. This application was adopted by multiple townships in Japan. The
IEEE Big Data Conference, which was held in the USA in 2018, conducted a challenge
named Big Data Cup [1], in which several teams submitted solutions to the problem of
road damage type detection. Although the solutions provided were novel and better in
terms of accuracy than the model proposed by Maeda et al. [8], the dataset used by these
teams was the same as developed by [8].

The solution proposed by Alfarrarjeh et al. [13] uses Deep Learning methodologies
for performing the task of finding the entity of interest in a given input image. They have
used the YOLO object detection algorithm. The model was trained on a dataset that had
different categories of damage as defined by the Japan Road Association.

[14] gave a solution that was again a part of the IEEE Big Data Cup challenge
organized in 2018 in which they improved the accuracy of the model proposed by [8]
by performing certain hyperparameter tuning. They also presented the approaches to
enhancing the available dataset. Some modifications were also proposed to the dataset
provided by [8], which contained 9,053 images.

The model proposed by Wang et al. [15] was again submitted as a solution to the
IEEE Big Data Cup challenge-2018. They used Faster R-CNN and SSD algorithms for
the task of object recognition. They used VGG-16 and ImageNet pre-trained ResNet-101
as the underlying basis of these object detection models. For better accuracy, they have
used ensemble techniques. Wang et al. [16] have used Faster R-CNN for classifying the
types of road damage, training their model on the dataset provided by [8]. The parameters
were tuned based on the examination of the area of the location of the damage as well as
the aspect ratio. A few data augmentation techniques were also applied before training.

Angulo et al. [17] augmented the dataset provided by [8] by the addition of more
images gathered from Mexico and Italy. Their dataset contained 1,803,454 images col-
lected using mobile phone devices. Various publicly available datasets supplemented
with crowdsourced images are the sources of this huge dataset. The labelling of the
dataset was done manually and the location, damage type, as well as the extent of
damage were marked for each image. Both the conventional and deep learning-based
models were trained on this dataset, and their performance was compared. The con-
ventional model used was LBP-Cascaded Classifier, and the deep learning models used
were RetinaNet and MobileNet.

More images were gathered from Italy by Roberts et al. [18] using the mobile appli-
cation developed by [8]. They have classified the type of road damage as well as the
intensity of the damage. Bicici and Zeybek [19] used UAV photogrammetry to gener-
ate point clouds for detecting road distress, which is considered to be a high-accuracy,
efficient, automated method for detection. The SFM pipeline was used to generate a
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high-density 3D model from UAV images. After that, a vertically based algorithm was
used to get rid of unrelated parts of the environment in a 3D point cloud.

Zhang et al. [20] presented a CNN-centered methodology for correctly detecting
pavement cracks, which is called CrackNet. It works on over one million parameters
during the learning process and has over five layers. It was trained over multiple three-
dimensional road images under various conditions and was tested successfully. Using
a gradient-based optimization function for training to minimize the cost is the main
objective. They have used Mini-batch Gradient Descent in their study. Cracks were
detected at a pixel level by their proposed model. However, in this version of CrackNet,
it requires considerable processing time and has a lot of difficulties in detecting hairline
cracks.

Another study [21] uses a dataset of 500 images to categorize each image using
supervised deep CNN for training purposes. The images were collected by a mobile
phone. Their proposed model outperforms other models used in this problem domain.
The Drop out methodology is used for reducing the overfitting of their proposed model
by using a threshold value of 0.5. Silva and Lucena [22] are aimed at detecting cracks
on concrete surfaces using a model centered upon machine learning that is intended to
increase automation by combining with UAV (unmanned aerial vehicles). As a result,
the transfer learning technique was employed. For the development of this model, the
opensource model VGG16 was used.

Anand et al. [23] have proposed an approach to detect potholes and cracks using
texture and spatial features centered upon Deep Neural Networks. Their proposed model
uses the image texture to categorize damaged roads. They have combined two separate
datasets, of which the first one consists of grayscale images collected using a mobile
phone device and the second one consists of images collected using sensors. They have
achieved very good accuracy over other models.

In [24], Fan et al. developed a technique for learning crack structure without alter-
ing unprocessed photos to analyze different pavement conditions. The model used two
datasets, which consisted of images collected using a mobile phone device. The perfor-
mance of their model was collated with different other models. Their approach in terms
of dealing with different pavement textures shows a better performance. Without any
preprocessing, the network is able to learn from the images that are unprocessed.

Zhu et al. [44] came up with a way to find potholes on roads by using three cutting-
edge methods: Faster R-CNN, YOLOV3, and YOLOv4. These were trained on a set of
data that was made by unmanned aerial vehicles. With an average accuracy of 56.62%,
YOLOV3 was better at making predictions than the other methods.

With a cost-efficient video data collection technique, Zhang et al. [45] proposed
a pavement distress detection technique using convolutional neural networks. In this
work, the detectors are put into different groups. The F1-score for all kinds of flaws was
compared, but the score went up when two kinds of cracks were combined into one.

Guerrieri et al. [46] used multiple public datasets to find pavement damage and
created a new dataset for stone pavement damage. They then used deep learning and
YOLOV3 to train a model to find pavement damage. Different parameters, such as loss,
precision, recall, and RSME, are used to measure performance. For different kinds of
flaws, the rate of finding them was between 91.0% and 97.3%.
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Wen et al. [47] came up with a good deep learning model that was trained on both
2D and 3D images. The model’s performance was judged based on a parameter called
“interaction over union,” which gives a detection accuracy of 83.7%.

Table 1 describes the databases utilized in various investigations. The sizes of these
datasets are classified into three categories: less than (<) 1000 images; greater than (>)
1000; less than 5000 images; and greater than 5000 images. In Table 1, NK refers to Not
Known, which means that the location from where the dataset was collected is unknown.

Table 1. Datasets available for road damage detection.

Dataset name

Collected from (Location)

Size of the dataset

CracklIT [25] NK <1000
CrackTree200 [31] NK <1000
SDNET?2018 [30] USA <1000
Crack500 [33] USA <1000
GAPs vl [3] Germany Between 1000-5000
GAPs v2 [32] Germany Between 1000-5000
Majidifard et al. [10] USA >5000
Maeda et al. [8] Japan >5000
Angulo et al. [17] Italy, Japan, Mexico >5000
RDD-2020 [35] India, Japan, Czech Republic >5000
Du et al. [9] China >5000

Table 2. Summary of the works related to the

algorithms for road damage detection.

role of Deep Learning and Object detection

Author Name | Techniques Dataset Collection | Captured Performance
used collected procedure vision
using

Oliveira and | KNN algorithm | Ocular - Vertical F score: 0.97,

Correia [25], equipment Precision: 0.98,

2017 Recall: 0.95

Shi et al. Random Forest | Mobile Static Vertical F score: 0.939,

[26], 2016 algorithm Phone Precision:
0.945, Recall:
0.936

(continued)
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Table 2. (continued)

Author Name | Techniques Dataset Collection | Captured Performance
used collected procedure vision
using
Majidifard Faster R-CNN | Google API |- Vertical and | F score: 0.84,
etal. [10], and YOLOvV2 Wide Precision: 0.93,
2020 Recall: 0.77
Maeda et al. | Single Shot Mobile Mobile Wide Precision and
[8], 2018 detection Phone Application recall greater
algorithm, than 71% and
MobileNet 77% in
MobileNet and
InceptionV2
respectively
Angulo et al. | RetinaNet Mobile - Wide mAP: 0.91522
[17], 2019 Phone
Cui et al. Random Forest | Mobile Static Vertical F score: 0.79,
[27], 2015 Algorithm Phone Precision: 0.78,
Recall: 0.81
Mei et al. GAN GoPro - Wide F score: 0.92,
[28], 2020 camera Precision: 0.97,
device Recall: 0.88
Lietal. [29], | Deep Learning | Mechanized |— Vertical Alligator,
2014 pavement transverse, and
assessor longitudinal
crack accuracy
rates are 97.5
percent, 100
percent, and 88
percent,
respectively
Eisenbach ASINVOSNet | High-tech Mobile Vertical BER: 0.071,
et al. [3], Industrial Vehicle Accuracy: 94%,
2017 Camera F score: 0.88
Dorafshan AlexNet Deep | Camera - Vertical Accuracy:
et al. [30], CNN 95.52% using
2020 transfer
learning with 10
training epochs
Zou et al. Minimum Camera - Vertical F score: 0.85,
[31], 2012 spanning Trees Precision: 0.79,
Recall: 0.92

(continued)
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Table 2. (continued)

Author Name

Techniques
used

Dataset
collected
using

Collection
procedure

Captured
vision

Performance

Stricker et al.
[32], 2019

ASINVOSNeEet,
ResNet

High-tech
Industrial
Camera

Mobile
Vehicle

Vertical

F score: 0.90,
BER: 0.08,
GME: 0.91

Yang et al.
[33], 2020

Hierarchical
Boosting
Architecture

Mobile
Phone

Vertical

AIU: 0.17,
ODS: 0.68,
OIS: 0.70

Weng et al.
[34], 2019

Edge
Identification
and
Morphological
Functioning

Vertical

Reconstruction
accuracy:
93.7% and the
coefficient of
correlation
between
breadth
assessment
findings and
actual results is
0.97

Zhu et al.
[44], 2021

Faster RCNN,
YOLOV3 and
YOLOv4

Unmanned
Aerial
Vehicle

Vertical

The prediction
performance of
YOLOV3
outperformed
the other
techniques with
an average
precision of
56.62%

Zhang et al.
[45], 2021

CNN

GOPRO
hero 7

The F1 score
for the crack
class increased
when two
classes of
cracks were
merged together
and tested

Guerrieri
et al. [46],
2022

YOLOv3

Digital
Camera

The detection
rate for several
types of defects
was in the range
91.0% to 97.3%

(continued)
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Table 2. (continued)

Author Name | Techniques Dataset Collection | Captured Performance
used collected procedure vision
using

Wen et al. PDSNet Camera and | — - The model

[47], 2022 lasers gives a
detection
accuracy of
83.7%

4 Challenges in This Domain and Contributions of Our Study

In this arena, problems include road distress detection and comparing existing solu-
tions. Effective damage estimation, including more cracks and defect types for detec-
tion, installing and mounting developed systems on vehicles, performing efficiently on
road images in different lighting conditions, complex crack topology, and including
more images of roads from various countries remain challenges in this area. Low con-
trast between damages and surrounds, inhomogeneity of concentration along fissures,
potential reflections identical to cracks, and real-time distress identification also offer
obstacles in developing sophisticated pavement fault detection systems. Traditional,
semi-automated, and completely autonomous operations are ineffective in terms of cost,
time, and labor. The organizations responsible for maintaining decent road conditions
still struggle to cope with this problem due to a lack of finances for pricey image-
capturing devices and a unified dataset that is not limited to photographs from certain
nations and damages in those countries.

This paper reviews studies on cost-effective road defect identification. Several state-
of-the-art investigations on this issue domain included using deep learning architectures.
These strategies must be explored to reduce road fatalities and preserve their condition
because they automate pavement inspection, are cost-effective, need less human inter-
vention, and save time. We’ve also summarized relevant datasets. Future researchers
can utilize this information to construct a standard dataset to compare model results.
This can also help government agencies employ a holistic database for detection. This
study will give scholars a rundown of previous works and their shortcomings. Future
researchers can expand on our extensive work. We’ve listed the authors’ datasets, which
will be beneficial for future research in this area.

5 Conclusion and Future Scope

This paper has explored the role of various techniques that use advanced models to detect
damage on roads using images collected at various geographical locations. The tech-
niques using state-of-the-art object detection models fared better than other approaches in
our analysis. Although there are several ways to perform this task using advanced devices,
these techniques are not cost-effective as many countries lack the finance required to
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implement such sophisticated systems. Therefore, to overcome the above constraint,
researchers have come up with alternative cost-effective strategies that mostly deal with
the data collection phase. As the problem of road accidents is universal in nature, the
dataset used must be made more inclusive with images from the world over. A video
input would also help to improve the functionality of existing techniques. To expand
the coverage of a model, other sensor data from mobile phones can be integrated. We
have surveyed these approaches along with their advantages, which will be handy for
any future research in this field.
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