Published as a conference paper at ICLR 2025.

FLEXCAD: UNIFIED AND VERSATILE CONTROL-
LABLE CAD GENERATION WITH FINE-TUNED LARGE
LLANGUAGE MODELS

Zhanwei Zhang'*, Shizhao Sun®’, Wenxiao Wang>!, Deng Cai', Jiang Bian>
! State Key Lab of CAD&CG, Zhejiang University

2 Microsoft Research

3 School of Software Technology, Zhejiang University

{zhanwei zhang, wenxiaowanq}@ zju.edu.cn

{shizsu, jiabia}@microsoft.com, dengcai@cad.zju.edu.cn

ABSTRACT

Recently, there is a growing interest in creating computer-aided design (CAD)
models based on user intent, known as controllable CAD generation. Existing
work offers limited controllability and needs separate models for different types
of control, reducing efficiency and practicality. To achieve controllable genera-
tion across all CAD construction hierarchies, such as sketch-extrusion, extrusion,
sketch, face, loop and curve, we propose FlexCAD, a unified model by fine-tuning
large language models (LLMs). First, to enhance comprehension by LLMs, we
represent a CAD model as a structured text by abstracting each hierarchy as a se-
quence of text tokens. Second, to address various controllable generation tasks in a
unified model, we introduce a hierarchy-aware masking strategy. Specifically, dur-
ing training, we mask a hierarchy-aware field in the CAD text with a mask token.
This field, composed of a sequence of tokens, can be set flexibly to represent var-
ious hierarchies. Subsequently, we ask LLMs to predict this masked field. During
inference, the user intent is converted into a CAD text with a mask token replacing
the part the user wants to modify, which is then fed into FlexCAD to generate new
CAD models. Comprehensive experiments on public dataset demonstrate the ef-
fectiveness of FlexCAD in both generation quality and controllability. Code will
be available at https://github.com/microsoft/F1lexCAD.

- g ‘ i ace 5‘ -y €< ¢ / @
o & D (o & (d)'ive'\\:, \ 1"/ \ MJ/ X JJ/ &

Sketch-
(a) Extrusion
level |
1
1

6

(5

) oy) 0 (ekoop a -y -8 oy €
\ '/\t ’/\J'/\V'/:()'M'\\,; NSNS NS

Extrusion
(®) “evel

= > : g ! N, | ¢ Fon o [
o % D) @it > N L O N oy N &N)
~ Nl | (PN W @) @) " N & NS NSNS,
The original CAD model | The original CAD model
and the chosen part Generated CAD models and the chosen part Generated CAD models

Figure 1: Controllable CAD generation achieved by FlexCAD. In each sub-figure, the left side
shows the input: an original CAD model along with the part the user intends to modify (highlighted
in blue). The right side displays the output: multiple new CAD models with only the chosen part
changed. Users have the flexibility to specify the part in any CAD construction hierarchies, ranging
from coarse levels like sketch-extrusion to fine levels like curve (as illustrated from (a) to (f)).

* Work done during an internship at Microsoft Research Asia.
" Corresponding author.

https://github.com/microsoft/FlexCAD

Published as a conference paper at ICLR 2025.

1 INTRODUCTION

A computer-aided design (CAD) model is a digital representation of a 2D or 3D object. It has been
widely used across numerous industries, including architecture, product design and manufacturing,
facilitating precise, efficient, and innovative development|Ganin et al.|(2021); Khan et al.|(2024). In
commonly used CAD tools like SolidWorks and AutoCAD, sketch-and-extrude modeling (SEM) is
prevalent. This involves drawing 2D sketches and then extruding them into 3D shapes. Compared
to other representations, such as Constructive Solid Geometry (CSG) |Yu et al| (2024), B-rep [Xu
et al.| (2024), or voxel [Li et al.[(2023) and point cloud |Khan et al. (2024)-based formats, SEM,
incorporating multiple CAD construction hierarchies including sketch-extrusion, extrusion, sketch,
face, loop and curve (see Fig. [3(a)), directly illustrates the drawing process of a 3D object. This
allows for easy editing and reuse of CAD models, which is essential in CAD development.

Recently, there is an increasing interest in developing generative models to automatically produce
SEM of a CAD modeﬂ Specifically, DeepCAD [Wu et al.| (2021) focuses on uncontrollable gen-
eration, where a CAD model is generated from a randomly sampled vector. However, providing
controllability, i.e., generating CAD models according to user intent, is crucial for the practical ap-
plication of generative models. To address this, SkexGen Xu et al.| (2022) and Hnc-cad Xu et al.
(2023) implement disentangled codebooks to offer some levels of control. As each codebook en-
codes a particular construction hierarchy, their controllability is quite restricted. For instance, Skex-
Gen does not allow selecting a specific sketch for modifications when a CAD model comprises
multiple sketches, nor can it handle finer-grained hierarchies such as faces and loops. Hnc-cad lacks
control over the topology and geometry of curves. In summary, existing methods face challenges
in providing adequate controllability across all CAD construction hierarchies. Additionally, they
require separate models to deliver different types of control, which is inefficient and less practical.

The emergence of large language models (LLMs) offers insights for addressing these challenges.
First, LLMs have exhibited remarkable success in handling diverse user queries with a single and
unified model |(Chung et al.[(2024)). This phenomenon not only occurs in natural language tasks but
also extends to other areas with domain-specific fine-tuning, such as human motion generation|Jiang
et al.|(2024) and crystal material synthesis Gruver et al.|(2024). Second, LLMs might have acquired
CAD-related knowledge during the pre-training by learning CAD-specific codes, such as JSCAD
codes Makatura et al.| (2023). Third, prior to the rise of LLMs, small transformer-based models
were explored for tasks like uncontrollable generation and image-to-sketch translation in the 2D
sketch domain Ganin et al.|(2021]), showcasing the possibility of LLMs from a different perspective.

In this work, we introduce FlexCAD, a unified model designed for controllable CAD generation
across all hierarchies by fine-tuning LLMs. As shown in Fig.[1] FlexCAD receives the original CAD
model along with the part the user wants to modify (highlighted in blue). Here, users can specify the
part in any hierarchy. FlexCAD then generates multiple new CAD models, altering only the selected
part. To achieve these abilities, first, FlexCAD translates a CAD model into a concise and structured
text (see Fig.[3). Specifically, in each sketch, the curve type (e.g., a line) is directly represented as
textual tokens. The numerical data indicating geometry (e.g., point coordinates in a line) is converted
into decimal integers and then into textual tokens. A special token is added to mark the end of each
hierarchy. Tokens from the finer-level hierarchy are concatenated to form the representation for the
coarser-level hierarchy. We use a similar way to convert each extrusion. Consequently, unlike the
one-hot representation used in [Xu et al.| (2022), FlexCAD provides a concise text representation
of a CAD model, facilitating easier processing and understanding by LLMs. Second, FlexCAD
introduces a hierarchy-aware masking strategy to enable fine-tuning LLMs for various controllable
CAD generation tasks (see Fig. [2). During training, we replace a hierarchy-aware field, which
contains a sequence of tokens in the CAD text, with a mask token. This field can be set adaptably
to reflect various hierarchies. Then, we ask LLMs to predict the masked field. To achieve this,
we design prompt templates for all hierarchies, where the mask tokens are tailored to match the
corresponding hierarchies. These templates are uniformly sampled at each epoch during the fine-
tuning of LLMs. In this way, we ensure that the generation tasks for all hierarchies are learned in a
single and unified model. Besides, unlike |[Xu et al.| (2022; |2023)) that requires multi-stage training,
FlexCAD achieves end-to-end training. During inference, a CAD model is represented as a CAD text
with a mask token replacing the part the user wants to change. The masked CAD text is fed into the

'In the following, we will use CAD model to refer to SEM of a CAD model for brevity.

Published as a conference paper at ICLR 2025.

fine-tuned LLMs to get predictions. After infilling the masked text with these predictions, FlexCAD
produces CAD texts that can be rendered into new CAD models. Overall, our contributions are:

* We propose FlexCAD, a unified and versatile model for controllable CAD generation
across all hierarchies, including sketch-extrusion, extrusion, sketch, face, loop and curve.

* To the best of our knowledge, FlexCAD is the first to leverage LLMs for controllable CAD
generation. It converts a CAD model into a brief, structured text and employs hierarchy-
aware masking to fine-tune LLMs for various controllable CAD generation tasks.

* We conduct extensive experiments on public datasets. Despite its simplicity, FlexCAD
greatly improves generation quality and controllability, showing its effectiveness on the
tasks presented in this work and indicating potential for other CAD generation scenarios.

2 RELATED WORK

CAD Model Generation. A CAD model represents a 2D or 3D object digitally, with far-reaching
applications spanning multiple industries |Li et al.|(2024b). Existing CAD generation methods can
be classified into three categories based on representations of CAD models [Khan et al.|(2024): con-
structive solid geometry (CSG), boundary representation (B-rep) and sketch-and-extrude modeling
(SEM). CSG combines primitives (e.g., cubes, cylinders, or spheres) via Boolean operations (e.g.,
union, subtraction or difference) to construct a CSG tree |[Laidlaw et al.| (1986)); [Du et al.| (2018));
Kania et al.[(2020); [Ren et al.[(2021);|Yu et al.| (2022;2024). B-rep characterizes a CAD model as a
graph|Ansaldi et al.| (1985)), consisting of sets of interconnected faces, edges, and vertices Jayaraman
et al.| (2023); Wang et al.| (2022)); Jayaraman et al.| (2023); Xu et al.|(2024).

Our work focuses on SEM, which directly models the drawing process of a CAD model, i.e., drawing
2D curves to make sketches and then extruding them into 3D shapes. There are multiple construction
hierarchies in SEM, such as sketch-extrusion, extrusion, sketch, face, loop and curve. Compared to
CSG and B-rep, it enables easy editing and reuse of CAD models, which is critical in the CAD
design process. For SEM of a CAD model, DeepCAD |Wu et al.| (2021) utilizes a transformer-
based Vaswani et al.| (2017) autoencoder for unconditional CAD generation. It merely designates
controllable generation as a future application. Nevertheless, offering controllability, i.e., the ability
to generate CAD models based on user intents, is critical for enhancing the efficiency of CAD design
workflow in practical applications. SkexGen [Xu et al.| (2022) proposes to disentangle the topology
and geometry of sketches and extrusions to provide some levels of control. However, it does not
allow choosing a specific sketch, face, loop or extrusion for editing when multiple options exist.
Hnc-cad [Xu et al.| (2023)) exploits three codebooks based on VQ-VAE framework |[Van Den Oord
et al.|(2017) to control loop, sketch and extrusion level generation, respectively. While it offers finer
control, it struggles to manage the topology and geometry in the curve level. To sum up, despite
significant progress, existing work face challenges in offering controllability across all construction
hierarchies. Besides, they develop separate models to support different types of control.

Large Language Models (LLMs). LLMs have shown significant success recently [Touvron et al.
(2023)); |Liu et al.| (2024). Fine-tuning LLMs has demonstrated notable versatility and efficacy |[Luo
et al.|(2024)); |Chung et al.|(2024); |Roziere et al. (2023); Ma et al.|(2024)); [Zhang et al.| (2024); L1 et al.
(20244a). Specifically, the fine-tuned LLMs have displayed exceptional success by simultaneously
handling various generation tasks within a unified framework Wu et al.[(2024)); Jiang et al.| (2024));
Gruver et al.[(2024);|Zou et al.| (2024). Moreover, LLMs are generally pre-trained using extensive
high-quality datasets with cross-disciplinary and abundant knowledge Wenzek et al.|(2020)); Touvron
et al.| (2023). For example, LLMs may have acquired CAD-related knowledge by learning CAD
codes, such as JSCAD codesMakatura et al.|(2023). Encouraged by these achievements, we explore
the potential of using LLMs to tackle the aforementioned challenges in CAD generation.

3 METHODOLOGY

In this section, we introduce FlexCAD, a unified model for controllable CAD generation across all
construction hierarchies. As shown in Fig. [T] it receives an original CAD model along with the part
the user wants to modify (highlighted in blue), and generates multiple new CAD models with only
the selected part altered. To achieve this, as illustrated in Fig. 2| FlexCAD first translates a CAD

Published as a conference paper at ICLR 2025.

»

CE Loss B | 7
Answer J< Predlcted} 1= g Text-to-CAD o ¢
—— ---- Renderin | Y
@ E) [Tokens Tokens : | 3 é ing \. !/ & 7] ‘/
. - 5 ——
ch=1 [l & = L)
Epoch=1
poc Pretrained LLM ~ + LORAM{ I 2 g & &
g2

Training set

o/ ‘ TUnifiedTraining:

Epoch =2

User-defined
Masking

Structured Text

Representation Instructions

tructured Text)
epresentation

G

Hierarchy—a;n'l'are Masking Prompts

|

|

. |

[Instructions + Answers]]| |
|

|

(a) The Training Process

Figure 2: The overall framework of FlexCAD. (a) Training process. Initially, a CAD model is
converted into a structured text. Next, a hierarchy-aware masking strategy is proposed to mask a
specific field in the text with a special mask token. This field is set differently at each epoch to reflect
various hierarchies. Then, LLMs are fine-tuned to predict the masked field. (b) Inference process.
The original CAD model is transformed into a structured text with a mask token replacing the part
the user wants to change. The fine-tuned LLMs are provided with this masked text to generate
diverse predictions, which are then converted into new CAD models by infilling and rendering.

Curve Loop Face Sketch Sketch-Extrusion

@€
@ ‘ —

e o G o8 Lo rEB -@» @B @ e

Figure 3: (a) An illustration for construction hierarchies of a CAD model. (b) Structured text repre-
sentation for the CAD model shown in (a). The colors beneath the texts in (b) are used to indicate
the relationship to construction hierarchies depicted in (a), e.g., blue for a curve and green for a loop.

model into a structured text (Sec. [3.1), and then introduces a hierarchy-aware masking strategy to
enable fine-tuning LLMs for multiple controllable CAD generation tasks (Sec. 3.2)

3.1 REPRESENTING CAD AS STRUCTURED TEXT

Following the conventional definition of SEM of a CAD model (2021)); Xu et al| (2022)),
there are multiple construction hierarchies, as illustrated in Fig. [3(a). A ‘curve’, i.e., line [, arc a,
or circle ¢, forms the base level, represented by one, two, or four points respectively. Each point is
denoted by its = and y coordinates. A ‘loop’ L denotes a closed path, comprising either a single
curve (i.e., circle) or multiple curves (e.g., line-arc-line). A ‘face’ F'is a 2D area, characterized
by a single loop or an outer loop with one or multiple inner loops acting as holes. A ‘sketch’ S'is
composed of one or multiple faces, sharing a common extrusion command. An ‘extrusion’ E is a
command that extends a sketch from a 2D plane into a 3D body. A ‘sketch-extrusion’ S E represents
a single sketch-extrusion 3D body. A ‘CAD model’ M comprises one or multiple SE entities.
As shown in Fig. 3(b), we represent a CAD model as a succinct and structured text. Specifically,
in each sketch, we start by representing a curve since it is the base level. The curve type (i.e.,
line, arc or circle) is represented directly as textual tokens. The point coordinates of the curve,
which are numerical, are expressed as decimal integers and then converted into textual tokens. This
contrasts with that uses binary representation for point coordinates. For example,
when discretizing coordinates into a 64x64 grid, denotes the center coordinate
as ([0,1,1,1,1,1],[0,1,1,1,1, 1]), while we represent it as (31,31). Next, the curve is denoted
as a sequence of textual tokens, with the first one indicating its type and the others representing
point coordinates (the text with a blue background in Fig. [B(b)). Notably, we add a special textual
token ‘H _end’ to mark the end of each hierarchy, where H € {curve, loop, face, sketch, extrusion}.
This is also different from where one-hot vectors are used as ending flags. We
concatenate tokens of multiple curves to create the representation for a loop (the text with a green
background in Fig.[3[b)). Then, we use a similar way to form representations of other hierarchies,
including face and sketch (the texts with red and yellow backgrounds in Fig. [3(b)). Furthermore,
an extrusion can also be represented using textual tokens, with the first one specifying its type (e.g.,
add or cut) and the others denoting its numerical attributes (the text with a brown background in
Fig. 3[b)). Finally, a complete CAD model is assembled by concatenating all the textual tokens

Published as a conference paper at ICLR 2025.

from its sketch-extrusions (the text with a cyan background in Fig. 3[b), please see the meaning
of numbers in the text in the appendix). Consequently, we convert a CAD model into a structured
text, enabling efficient processing and comprehension by LLMs. Besides, our FlexCAD shortens the
overall token length compared to Xu et al.|(2022)). Moreover, this text is straightforward to parse and
interpret, thereby facilitating the implementation of the below hierarchy-aware masking strategy.

3.2 FINE-TUNING LLMs wWiTH HIERARCHY-AWARE MASK PREDICTION

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string "[sketch-extrusion mask]
[sketch-extrusion mask]":
[sketch-extrusion mask] [sketch-extrusion mask]

- Generate a string that could replace "[sketch-extrusion mask] [sketch-extrusion mask]" in the CAD sequence:
Answer: arc,16,17,31,3 <curve_end> line,46,17 <curve_end> arc,46,45,31,59 <curve_end> line,16,45 <curve_end> <loop_end> <face_end>
<sketch_end> add,31,38,31,31,31,1,0,0,0,1,0,0,0,1,31,31,31 <extrusion_end> circle,16,31,31,16,46,31,31,46 <curve_end> <loop_end> circle,
24,31,31,24,38,31,31,38 <curve_end> <loop_end> <face_end> <sketch_end> add,31,38,31,31,38,1,0,0,0,1,0,0,0,1,21,31,31 <extrusion_end>

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string “[sketch-extrusion mask]":
) arc,16,17,31,3 <curve_end> line,46,17 <curve_end> arc,46,45,31,59 <curve_end> line,16,45 <curve_end> <loop_end> <face_end> <sketch_end>

Generate a string that could replace "[sketch-extrusion mask]" in the CAD sequence:
Answer: circle,16,31,31,16,46,31,31,46 <curve_end> <loop_end> circle,24,31,31,24,38,31,31,38 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,38,31,31,38,1,0,0,0,1,0,0,0,1,21,31,31 <extrusion_end>
Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string “[loop mask] [loop mask]":
) arc,16,17,31,3 <curve_end> line,46,17 <curve_end> arc,46,45,31,59 <curve_end> line,16,45 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,38,31,31,31,1,0,0,0,1,0,0,0,1,31,31,31 <extrusion_end> [loop mask] [loop mask] <face_end> <sketch_end>
add,31,38,31,31,38,1,0,0,0,1,0,0,0,1,21,31,31 <extrusion_end>
Generate a string that could replace "[loop mask] [loop mask]" in the CAD sequence:
Answer: circle,16,31,31,16,46,31,31,46 <curve_end> <loop_end> circle,24,31,31,24,38,31,31,38 <curve_end> <loop_end>

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string “[arc mask] [line mask]
[arc mask] [line mask]":

= [arc mask] [line mask] [arc mask] [line mask] <loop_end> <face_end> <sketch_end> add,31,38,31,31,31,1,0,0,0,1,0,0,0,1,31,31,31 ion_end>
circle,16,31,31,16,46,31,31,46 <curve_end> <loop_end> circle,24,31,31,24,38,31,31,38 <curve_end> <loop_end> <face_end> <sketch_end>
Masking /" add,31,38,31,31,38,1,00,0,1,0,0,0,1,21,31,31 <extrusion_end>
= Prompt Design Generate a string that could replace "[arc mask] [line mask] [arc mask] [line mask]" in the CAD sequence:

Answer: arc,16,17,31,3 <curve_end> line,46,17 <curve_end> arc,46,45,31,59 <curve_end> line,16,45 <curve_end>

Figure 4: (a) illustrates a CAD model and its structural diagram. (b), (c), (d) and (e) are four
examples for prompt templates with the mask tokens designed to represent different construction
hierarchies. The masked field for different hierarchies in the CAD model are highlighted in blue.

In the following, with the structured text representation (referred to as CAD text for simplicity), we
introduce how to fine-tune LLMs to develop a unified model for various controllable CAD gener-
ation tasks. In general, during training, a hierarchy-aware field in the CAD text is replaced with a
mask token. The field, which consists of a sequence of tokens, can be designed to reflect different
CAD construction hierarchies. Next, LLMs are asked to predict the masked field (see Fig. a)).
To accomplish this, we design different prompt templates, where the mask tokens are designed to
align with the corresponding hierarchies (see Fig.). During inference, given a CAD model, with
a defined mask token, users can specify the part they want to modify (see Fig. [2(b)). Below, we
further detail the design of prompt templates, the unified training and inference processes.

Prompt Template Design with Hierarchy-aware Mask. A prompt template includes an instruc-
tion with a special mask token replacing a hierarchy-aware field, and an answer containing the to-
kens of this field. Specifically, for the CAD level, we mask each internal sketch-extrusion with
[sketch-extrusion mask]. In this case, other than the sketch-extrusion number, no information
from the original CAD model is preserved. Fig. [d(b) shows an example. This allows us to freely
generate CAD models with the expected number of sketch-extrusions during inference, facilitat-
ing the creation of CAD models with varying complexity. For the sketch-extrusion, sketch and
extrusion levels, we replace the relevant field with [sketch-extrusion mask], [sketch mask], or
[extrusion mask], respectively. Fig. Ekc) shows an example with one masked sketch-extrusion. For
the face (loop) levels, given a face (loop), if it exclusively forms a sketch (face), we mask this face
(loop) with [face mask] ([loop mask]). In cases where multiple faces (loops) belong to the same
sketch (face), we use a corresponding number of mask tokens to mask them all at once. Fig. [d{d)
illustrates an example, where two loops are replaced by two mask tokens. With this strategy, the
model learns to generate faces (loops) with varying numbers as described in different instructions.
For the curve level, all curves of the same loop are masked with their type indicated in the mask
token (i.e., line, arc or circle). Fig. [ffe) presents an example where four curves (arc-line-arc-line)
belonging to the same loop are masked simultaneously. As the curve is the fundamental hierarchical
level, the control of the topology and geometry of a sketch comes from it. Specifically, once trained
and given a loop, by keeping its internal curve type and number unchanged, we can only modify the
geometry. Alternatively, by varying the type or number of curves, we can alter the topology.

Published as a conference paper at ICLR 2025.

Unified Training by Sampling Prompt Templates. At each epoch, for a given CAD text, we uni-
formly sample a prompt template from the above seven hierarchies. The instruction in the template
asks LLMs to predict the masked field autoregressively. Then, the cross-entropy (CE) loss between
the prediction and the answer in the template is back-propagated to update the LLMs. To sum up, the
advantage here is two-fold. First, by randomly choosing existing prompt templates at each epoch,
we aim to establish a unified controllable generation model for various hierarchies. Second, beyond
the existing prompt templates, we can incorporate new templates that support other tasks, such as
unconditional generation. Notably, we fine-tune LLMs using LoRA Hu et al.| (2022) which allows a
few parameters to be trainable while keeping most parameters fixed. This allows us to leverage the
advantages of large-scale models while accelerating model convergence Hu et al.| (2022).

Inference with User-defined Mask. During inference, a CAD model is first converted to a CAD
text, with a mask token replacing the part that needs modification. This masked CAD text is then
input into the fine-tuned LLMs to produce predictions. After infilling the masked text with these
predictions, FlexCAD can provide various CAD texts that can be rendered into diverse CAD models.
Notably, users do not have to strictly adhere to the masking pattern defined in the training process.
For example, although the prompt template, used in training, masks all the loops tied to a face
simultaneously, this is not mandatory in the inference. Due to the strong generalization capability
of LLMs, it is possible to only mask a single loop for local editing, as illustrated in Fig. [2b).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. For consistency with prior work Xu et al. (2022; 2023)), we evaluate our FlexCAD on
the DeepCAD Wu et al.| (2021)) dataset. This dataset comprises 178,238 sketch-and-extrusion se-
quences, divided randomly into training, validation, and test sets in a ratio of 90%-5%-5%. To
ensure data quality, we follow SkexGen |Xu et al.|(2022) to remove duplicate and invalid sequences.
Subsequently, we convert all resultant CAD sequences into texts, as mentioned in Sec. (3.1

Implementation Details. We adopt the transformers Wolf et al.[(2020) toolbox and select Llama-3-
8B Metal (2024) as the base LLM, which achieves superior performance among open-source LLMs.
For the 8B model, we use LoRA Hu et al.| (2022) to fine-tune only 0.042% of their parameters,
approximately 3.4 million. The LoRA rank and alpha are set to 8 and 32. The model is trained on
four A6000 GPUs. we employ the AdamW optimizer Loshchilov & Hutter| (2018)), set the batch
size to 32, use a cosine annealing learning rate of 5 x 10~%, and train for 30 epochs. During the
inference process, we set the sampling temperature 7 and Top-p at 1.1 and 0.9, respectively.

Metrics. @ We adopt metrics consistent with previous methods [Xu et al.| (2022; [2023).
Generally, the metrics Coverage (COV), Minimum Matching Distance (MMD) and
Jensen-Shannon Divergence (JSD) measure generation diversity and quality on generated
CAD models in comparison to the test set. See their detailed descriptions in Xu et al.|(2023)). Novel
indicates the percentage of generated CAD models not present in the training set, while Unique
represents the percentage of generated CAD models that appear only once within the generated set.
Prediction Validity (PV) denotes the overall validity of predictions that can be rendered into 3D
shapes rather than just 2D sketches or nothing. Realism denotes the realistic rate of generated CAD
models compared to the training data, as assessed by human evaluators.

4.2 PERFORMANCE COMPARISION WITH EXISTING METHODS

Baselines and Tasks. We compare our FlexCAD with GPT-40 |Achiam et al.| (2023), one of the
most powerful closed-source LLMs, and two state-of-the-art SEM-based baselines: SkexGen [Xu
et al.| (2022) and Hnc-cad Xu et al.| (2023). Since SkexGen and Hnc-cad cannot simultaneously
control CAD generation across all hierarchies as ours, we choose the sketch-level and extrusion-
level controllable generation tasks for comparison following the principles below. First, they are
common tasks that can be handled by each baseline. Second, there are official implementations of
baselines for these tasks. For GPT-40, Hnc-cad and FlexCAD, given a CAD model from the test
set, we randomly mask either a sketch or an extrusion and predict the corresponding masked field.
Notably, despite our best efforts, SkexGen still has slightly different task settings compared to the

Published as a conference paper at ICLR 2025.

Table 1: Performance comparison on the DeepCAD test set. GPT-4o is enhanced with few-shot
in-context learning. Specifically, each prompt comprises five exemplars randomly chosen from the
training set. These exemplars include instructions and answers, following the format shown in Fig.[4]
Moreover, we obtain the performance values of SkexGen and Hnc-cad based on their official codes.
Best performances are in bold, and the second-bests are marked by *.

Method Sketch-level Extrusion-level

COVt MMDJ JSD] Novelf Uniquet PVT |Realismf| COVT MMDJ JSD] Novel{ Uniquet PV7{ |Realism?
GPT-40 [582% 1.34 143 69.7% 72.8% 623%| 232% |533% 142 2.14 58.6% 653% 48.8% | 19.7%

SkexGen| 60.6% 1.27 1.51 90.7%* 93.5% 68.7% | 34.8% |63.6% 1.23 1.44 89.3% 89.1%* 76.1% | 35.2%
Hnc-cad |62.4%* 1.21* 1.07* 87.6% 92.1% 72.6%%*| 36.3%* |65.6%* 1.25% 1.38* 86.2% 87.8% 79.7%%| 38.0% *
Ours [65.6% 1.19 0.82 92.1% 92.6%* 93.4%| 39.6% |68.5% 1.19 1.32 87.6%* 90.4% 93.3% | 42.1%

=3 Q) Q)
£ g o & g0 0 W
s HE®E HEOHOOOE
3| & ' b id @ ¢
£ : - ~ L v >
Lo © 0 O © B O 06 ©
5 | - e , r
NGOG) OOy B W W
% 00 00 00 G 000 G000 G 0008 0008 6800 G000
: (; | & 2 o @
NP YT LTS Le O HGE P
1o © 06 0 ©® 60 0 60 06 ©
KPP P P T OCL &g R
© © 0 © © © © ©
2| ¢ = . r——1 < >
1V @ FW Qe Dy @
e ® ® ©® ©® ©® ® 6 6 6 6 6
§D IR | < %] N p &) 1. e [_:_—i
ER (A - A g o] I~ g \ Iy *~
37 LY AL S22
g b (D) ! ’_,___—| ' S) @ s
G OO0 VY g B¢ Y
10 ©® 60 0o "0 e 6 O @6 g © ©
) - — <€ N/)
gl | f’ ¢ |) L]' ‘ ' »;113// 7\’, y/ ’6 " r;o *Vd
e ® ©®© ©® ©® © ® ©® © ©

Figure 5: Qualitative comparison results for four methods. The first row displays three original CAD
models, where the color of each sketch-extrusion aligns with that in the corresponding structural di-
agrams. In the following rows, given a CAD model, we randomly select its four newly predicted
models for each method. The marks below the predictions are the corresponding masked and modi-
fied sketches or extrusions. The red boxes illustrate some of the most unrealistic examples. The blue
boxes indicate some of the most obvious cases, where multiple fields simultaneously change in the
same CAD model, rather than just the expected masked field.

above three methods. Specifically, when there are multiple sketches (or extrusions) in a CAD model,
SkexGen changes all the sketches (or extrusions) instead of the specified one.

Quantitative Comparison Results. We randomly selected 1k CAD models from the test set. For
every method, we generated 10 predictions for each model, resulting in a total of 10k CAD models.
For the metrics COV, MMD, and JSD that require a subset of ground truths, we sampled 3k CAD
models from the test set. The average scores across three runs are presented in Table [T Without
fine-tuning, GPT-40 performs poorly. On the other hand, our FlexCAD outperforms the baselines

Published as a conference paper at ICLR 2025.

] ————— ——= T ————————————————————x _——————— ———= N
(N Vo \
| - I = I A €), ., e |

cAD level | 1L > DN i F L 1S dl |

- OGOV Peadl S SBLVS
L _____Sketch-extrusionnumber=1___ i Sketch-extrusion number=2 ______)| Sketch-extrusion number=3 = /)
Sketch- J y P « :) .
trusi L 1 LJ e R ‘r«.‘l\&r/ &&=
S | 2 ' & 2 vy Y S L&
&) ® ® ® ® ®
S AL ST ST NS
et S P VO w) 99 9 Y
© © © © © © (@
\ () > ; s |') \\A § ‘ ~ & ¢
Foop level @% NS y © W @é%) s 2 - .
© © ©0O (@) © (©) (©)
o C « € d
>
Curve level %% ‘ ' I < I 3 I < I 8 ‘ ‘ ‘ ‘
. .) -/ . RS _
4 lines | 4 lines 3 lines 3 lines + 1 arc 1 circle 1 circle 3 lines + 1 arc
Original Controllable Generation Original Controllable Generation

Figure 6: Our FlexCAD achieves controllable generation across different hierarchies, as introduced
in[3:2] For the CAD level, we produce CAD models aligning with the required sketch-extrusion
number. For the sketch-extrusion, face and loop levels, the left side of each sub-figure shows an
original CAD model along with its local structural diagram. The color of each highlighted field
matches that in the diagrams. The right side shows the predictions with only the masked part being
masked and edited. And the masked part is marked below the predictions. Similarly, for the curve
level, below the predictions are user-defined curve type and number. Best viewed in color.

on nearly all evaluation metrics, demonstrating significant superiority in generation quality and con-
trollability. Particularly, FlexCAD achieves the most notable improvement on PV, reaching up to
20.8%-31.1% and 13.6%-44.5% in terms of sketch-level and extrusion-level controllable generation.

Qualitative Comparison Results. To illustrate the performance intuitively, we randomly selected
three CAD models from the test set. As shown in Fig. [5] the results clearly illustrate that FlexCAD
greatly enhances the quality and controllability of CAD models compared to other competitors.
Specifically, we tend to generate well-structured CAD models that closely resemble real-world ex-
amples, contrasting with unrealistic models like the red boxes shown in Fig.[5} On the other hand,
as shown in the blue boxes in Fig.[3} SkexGen cannot specify which sketch or extrusion to modify,
and Hnc-cad cannot preserve the integrity of the unmasked elements, even when recovering from
the same codes. In contrast, we can mask any sketch or extrusion, ensuring that only the masked
sketch or extrusion is modified while the remaining elements stay unchanged. This further confirms
the effectiveness and superior controllability of our FlexCAD.

Human Evaluation. To evaluate Realism, for each method, seven crowd workers were shown 950
pairs of images from the generated data and the training data, following Xu et al| (2023). They
were asked to judge which of the two was more realistic. As shown in Table I} for our FlexCAD,
39.6% and 42.1% of the generated models are more realistic. These rates are the highest among all
methods, further demonstrating the advantage of our FlexCAD.

4.3 ENABLING MORE CONTROLLABLE GENERATION TASKS

In addition to the sketch and extrusion levels, our FlexCAD achieves controllable generation in
other hierarchies, including the CAD, sketch-extrusion, face, loop, and curve levels. We provide
some examples in Fig. [] where users can modify the specific fields of a CAD model according to
their intent. Additionally, we present detailed qualitative results across these hierarchies in Table 3]
in the appendix. All the results together illustrate the effectiveness of our FlexCAD.

Furthermore, our FlexCAD can achieve iterative editing. For example, as shown in Fig.[7(a), starting
from a simple CAD model, we iteratively edit it within a newly generated sketch-extrusion until the
sketch-extrusion aligns closely with user requirements. On the other hand, as shown in Fig. [/(b),
given a complex CAD model, we continuously adjust diverse hierarchy elements within different
sketch-extrusions until they progressively match user specifications.

Published as a conference paper at ICLR 2025.

A 2 0Ohe M - N

> > Z

JO-O-O-@

Figure 7: Two examples of iterative editing. (a) Based on a simple CAD model, a new sketch-
extrusion is generated by adding a [sketch-extrusion mask] at the end of the CAD text. Similarly,
four peripheral internal loops are created. Then, a central quadrilateral loop is added and its geom-
etry is altered. Finally, the new extrusion is adjusted to better match the original model. (b) Based
on a complex CAD model, modifications can be progressively applied at various sketch-extrusions
with the loop-extrusion-face-curve-loop level controllable generation to ultimately meet user needs.

Table 2: Ablation studies for fine-tuning LLMs with different settings. Pre-trained denotes
the initial pre-trained weights. Full and LoRA indicate full and a few parameters are train-
able, respectively. Transformer-4M is a small transformer-based |Vaswani et al.| (2017) language
model. Its total number of trainable parameters is comparable to that of our model with LoRA.
Llama-3-8B-From-Scratch and Llama-3-8B-Full denote training full parameters without and with
the initial pre-trained weights, respectively. Llama-3-8B-Instruct is an instruction-tuned model in
an 8B size Metal (2024). For Llama-3-70B Meta (2024)), we fine-tune only 0.023% of its parame-
ters, around 16.3 million. Best performances are in bold and the second-bests are marked by .
Model | COVt MMDJ JSD| Novelt Uniquet PV?
Transformer-4M (w/o Pre-trained, Full) | 59.4% 1.37 1.02 858% 86.9% 80.2%
Llama-3-8B-From-Scratch (w/o Pre-trained, Full) | 63.0% 1.23 091 89.7% 902% 89.5%
Llama-3-8B-Full (w/ Pre-trained, Full) | 66.4%* 1.20 0.85 92.6%* 91.0% 91.7%
Llama-3-8B-Instruct (w/ Pre-trained, LoRA) | 65.3% 122 089 914% 92.1%* 90.5%
Llama-3-8B (w/ Pre-trained, LoRA, ours) | 65.6% 1.19%* 0.82 92.1% 92.6% 93.4%*
Llama-3-70B (w/ Pre-trained, LoRA) | 68.2% 1.13 0.84* 93.0% 91.8% 94.6%

Table 3: Effectiveness analysis of the hierarchy-aware masking strategy and unified training.
Random Masking denotes randomly masking 15%-50% continuous tokens within each CAD text,
instead of the hierarchy-aware field. w/o Hierarchy-specific Tokens indicates that when masking,
we utilize the generic token [mask], rather than employing hierarchy-specific mask tokens, such as
[face mask], [loop mask] and etc. w/o Unified Training represents that we solely train a single
task, i.e., the sketch-level controllable generation. Best performances are in bold.

Model COV?t MMD| JSD, Novelt Uniquet PVt
Random Masking 63.0% 1.25 1.02 88.2% 91.5% 90.6%
w/o Hierarchy-specific Tokens 63.7% 1.20 0.95 90.8% 91.7% 91.5%
w/o Unified Training 64.3% 1.17 0.89 91.6% 90.9% 92.2%
Ours 65.6% 1.19 0.82 92.1% 92.6% 93.4%

4.4 ABLATION STUDIES

We conduct several ablation studies evaluated on the sketch-level controllable generation as men-
tioned in Sec. unless otherwise stated.

Settings of LLMs. As shown in Table [2] without the pre-trained weights, both Transformer-4M
and Llama-3-8B-From-Scratch achieve the lowest performances. This indicates that the pre-
trained weights in LLMs contain valuable knowledge, which contributes to the performance gains.
Llama-3-8B-Full achieves a performance similar to that of our model. However, it requires 80 hours
to reach model convergence, compared to just 20 hours for ours. This highlights the effectiveness of
the LoRA strategy Hu et al.|(2022). The performance of Llama-3-8B-Instruct is slightly lower than
that of our model. Conversely, as the model scale increases significantly, Llama-3-70B achieves the
best performance but is more time-consuming and costly (See Sec. in the appendix).

Effectiveness of Hierarchy-Aware Masking. As shown in Table[3] Random Masking exhibits the
lowest performance, underscoring the effectiveness of masking the hierarchy-aware field. Further-
more, the absence of hierarchy-specific tokens leads to a performance decline. In essence, these

Published as a conference paper at ICLR 2025.

tokens potentially assist LLMs in more accurately determining the level they are generating, conse-
quently enhancing overall controllable generation performance.

Effectiveness of Unified Training. As depicted in Table [3] without unified training, there is a
slight decrease in performance. In other words, when simultaneously training multiple controllable
generation tasks across various levels, the inter-task knowledge contributes to performance gains.

5 CONCLUSION

In this paper, we introduce a unified, versatile and user-friendly model, termed FlexCAD, which
is particularly designed for controlling CAD generation across all hierarchies. To the best of our
knowledge, we are the first to utilize LLMs for controllable CAD generation. Specifically, we
convert each CAD model into a brief and structured text and propose hierarchy-aware masking for
fine-tuning. Our FlexCAD is simple yet highly effective. Thorough qualitative and quantitative
assessments conducted on public benchmarks confirm its effectiveness across all hierarchies.

ETHICS STATEMENT

The data used in this work is tailored for creating and modifying CAD models. Due to its specialized
nature, the misuse risk is naturally minimized, ensuring that the developed methods primarily benefit
design and engineering tasks. In this work, we have invited crowd workers to evaluate the quality
of generated CAD models. We conducted this work in accordance with ethical guidelines to ensure
that participants were treated fairly, respectfully, and safely throughout the process. We took steps
to protect the privacy of crowd workers by not collecting personally identifiable information. The
data annotated by the crowd workers was used only for research purpose related to improving CAD
generating techniques.

ACKNOWLEDGEMENT

In this work, Zhanwei Zhang, Wenxiao Wang and Deng Cai were supported in part by The National
Nature Science Foundation of China (Grant No: 62303406, 62273302, 62036009, 61936006), in
part by Zhiyuan Laboratory (NO. ZYL2024022b).

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Silvia Ansaldi, Leila De Floriani, and Bianca Falcidieno. Geometric modeling of solid objects by
using a face adjacency graph representation. ACM SIGGRAPH Computer Graphics, 19(3):131—
139, 1985.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1-53, 2024.

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela Rus, Armando
Solar-Lezama, and Wojciech Matusik. Inversecsg: Automatic conversion of 3d models to csg
trees. ACM Transactions on Graphics (TOG), 37(6):1-16, 2018.

Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and Stefano Saliceti. Computer-aided
design as language. Advances in Neural Information Processing Systems, 34:5885-5897, 2021.

Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C. Lawrence Zitnick,
and Zachary Ward Ulissi. Fine-tuned language models generate stable inorganic materials as
text. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=vN9fpfqgoP1l

10

https://openreview.net/forum?id=vN9fpfqoP1
https://openreview.net/forum?id=vN9fpfqoP1

Published as a conference paper at ICLR 2025.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Pradeep Kumar Jayaraman, Joseph George Lambourne, Nishkrit Desai, Karl Willis, Aditya Sanghi,
and Nigel J. W. Morris. Solidgen: An autoregressive model for direct b-rep synthesis. Transac-
tions on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.
net/forum?id=ZR2CDgADRo. Featured Certification.

Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. Motiongpt: Human motion as
a foreign language. Advances in Neural Information Processing Systems, 36, 2024.

Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz. Ucsg-net-unsupervised discovering of con-
structive solid geometry tree. Advances in neural information processing systems, 33:8776-8786,
2020.

Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and
Djamila Aouada. Cad-signet: Cad language inference from point clouds using layer-wise sketch
instance guided attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4713-4722, 2024.

David H Laidlaw, W Benjamin Trumbore, and John F Hughes. Constructive solid geometry for
polyhedral objects. In Proceedings of the 13th annual conference on Computer graphics and
interactive techniques, pp. 161-170, 1986.

Juncheng Li, Kaihang Pan, Zhiqi Ge, Minghe Gao, Wei Ji, Wenqgiao Zhang, Tat-Seng Chua, Siliang
Tang, Hanwang Zhang, and Yueting Zhuang. Fine-tuning multimodal LLMs to follow zero-shot
demonstrative instructions. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=BXY6fe7g31.

Pu Li, Jianwei Guo, Xiaopeng Zhang, and Dong-Ming Yan. Secad-net: Self-supervised cad recon-
struction by learning sketch-extrude operations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16816-16826, 2023.

Pu Li, Jianwei Guo, Huibin Li, Bedrich Benes, and Dong-Ming Yan. Sfmcad: Unsupervised
cad reconstruction by learning sketch-based feature modeling operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4671-4680, 2024b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024,

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Gen Luo, Yiyi Zhou, Tianhe Ren, Shengxin Chen, Xiaoshuai Sun, and Rongrong Ji. Cheap and
quick: Efficient vision-language instruction tuning for large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
text retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’24, pp. 2421-2425, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400704314.

Liane Makatura, Michael Foshey, Bohan Wang, Felix HahnLein, Pingchuan Ma, Bolei Deng, Megan
Tjandrasuwita, Andrew Spielberg, Crystal Elaine Owens, Peter Yichen Chen, et al. How can large
language models help humans in design and manufacturing? arXiv preprint arXiv:2307.14377,
2023.

Al Meta. Introducing meta llama 3: The most capable openly available Ilm to date. Meta Al, 2024.

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, Haiyong Jiang, Zhongang Cai, Junzhe Zhang,
Liang Pan, Mingyuan Zhang, Haiyu Zhao, et al. Csg-stump: A learning friendly csg-like represen-
tation for interpretable shape parsing. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 12478-12487, 2021.

11

https://openreview.net/forum?id=ZR2CDgADRo
https://openreview.net/forum?id=ZR2CDgADRo
https://openreview.net/forum?id=BXY6fe7q31

Published as a conference paper at ICLR 2025.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000-6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Kehan Wang, Jia Zheng, and Zihan Zhou. Neural face identification in a 2d wireframe projection of
a manifold object. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1622-1631, 2022.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzman,
Armand Joulin, and Edouard Grave. Ccnet: Extracting high quality monolingual datasets from

web crawl data. In Proceedings of the Twelfth Language Resources and Evaluation Conference,
pp- 4003-4012, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38—45, 2020.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 6772-6782, 2021.

Siyuan Wu, Yue Huang, Chujie Gao, Dongping Chen, Qihui Zhang, Yao Wan, Tianyi Zhou, Xi-
angliang Zhang, Jianfeng Gao, Chaowei Xiao, et al. Unigen: A unified framework for textual
dataset generation using large language models. arXiv preprint arXiv:2406.18966, 2024.

Xiang Xu, Karl D.D. Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, and
Yasutaka Furukawa. SkexGen: Autoregressive generation of CAD construction sequences with
disentangled codebooks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 24698-24724, 17-23
Jul 2022.

Xiang Xu, Pradeep Kumar Jayaraman, Joseph George Lambourne, Karl D.D. Willis, and Yasu-
taka Furukawa. Hierarchical neural coding for controllable CAD model generation. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scar-
lett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pp. 38443-38461. PMLR, 23-29 Jul 2023.

Xiang Xu, Joseph Lambourne, Pradeep Jayaraman, Zhengqing Wang, Karl Willis, and Yasutaka
Furukawa. Brepgen: A b-rep generative diffusion model with structured latent geometry. ACM
Transactions on Graphics (TOG), 43(4):1-14, 2024.

Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi, Hooman Shayani, Ali Mahdavi-Amiri, and Hao
Zhang. Capri-net: Learning compact cad shapes with adaptive primitive assembly. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11768-11778, 2022.

Fenggen Yu, Qimin Chen, Maham Tanveer, Ali Mahdavi Amiri, and Hao Zhang. D2csg: Unsuper-
vised learning of compact csg trees with dual complements and dropouts. Advances in Neural
Information Processing Systems, 36, 2024.

12

Published as a conference paper at ICLR 2025.

Renrui Zhang, Jiaming Han, Chris Liu, Aojun Zhou, Pan Lu, Yu Qiao, Hongsheng Li, and Peng Gao.
LLaMA-adapter: Efficient fine-tuning of large language models with zero-initialized attention

In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=d4UiXAHN2W.

Bo Zou, Chao Yang, Yu Qiao, Chengbin Quan, and Youjian Zhao. Llama-excitor: General in-

struction tuning via indirect feature interaction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 14089-14099, June 2024.

13

https://openreview.net/forum?id=d4UiXAHN2W
https://openreview.net/forum?id=d4UiXAHN2W

Published as a conference paper at ICLR 2025.

Appendix

Considering the space limitation of the main paper, we provided more results and discussion in this
appendix, which is organized as follows:

* Section|A} Additional Implementation Details and Analysis.

- Sec.[A.T} Meaning of Numbers in The CAD Text.

- Sec.[A2} Detailed Results for Human Evaluation.

Sec. Quantitative results for Other Hierarchies.

Sec.[A.4} Sensitivity Analysis of Key Hyper-parameters in Sampling.
Sec.[A.3l Unconditional Generation Task.

Sec. Limitations and Future Work.

* Section B: Additional Qualitative Results.

Fig.[I0} CAD Level Controllable Generation.

Fig. Sketch-extrusion Level Controllable Generation.
- Fig.[I2} Extrusion level Controllable Generation.

Fig. Sketch Level Controllable Generation.

Fig. Face Level Controllable Generation.

Fig.[T5} Loop Level Controllable Generation.

Fig. Curve Level Controllable Generation.

Fig. Unconditional Generation.

A ADDITIONAL IMPLEMENTATION DETAILS AND ANALYSIS

A.1 MEANING OF NUMBERS IN THE CAD TEXT.

Table 4: Effectiveness analysis of circle representation. To denote a circle, Center&Radius utilizes
the center coordinates along with the radius, while Diameter uses two uniformly distributed points
on the circumference that collectively define the diameter. Best performances are in bold.

Model COV?T MMDJ JSDJ Novel?t Uniquet PVt
Center&Radius 63.2% 1.21 0.87 90.2% 90.9% 89.7%
Diameter 66.4% 1.20 0.87 90.7% 91.5% 90.3%
Four points (Ours) 65.6% 1.19 0.82 92.1% 92.6 % 93.4%

In this part, we explain the meaning of numbers in the CAD text, which builds upon SkexGen |Xu
et al.| (2022). In sketches, two (three) points can actually form a line (arc). In our work, a line, an
arc, and a circle are represented by one, two, and four points, respectively. Each point is denoted
as its « and y coordinates. Here, the second (third) point of a line (arc) is determined by the first
point of the subsequent curve (or the first curve when a loop is closed). Four points of a circle are
uniformly distributed along the circumference. We implement two variants of circle representation.
As shown in Tabled] when evaluated on the sketch-level controllable generation task, our FlexCAD
displays robustness across different circle representations, with Four points showing a slight edge.

Each extrusion operation is represented by 18 parameters: BVVTTTRRRRRRRRRSOO.

- B represents one of the three Boolean operations: add, cut or intersect. It occupies 1 parameter.

- V indicates the displacements of the top and the bottom planes from the reference plane in which
a sketch is extruded to form a solid. It occupies 2 parameters.

- T represents the 3D translation applied to the extruded solid. It occupies 3 parameters.

- R represents the 3D rotation of the extrusion direction. It occupies 9 parameters.

- S represents the uniform scaling factor. It occupies 1 parameter.

- O represents the center of scaling as a 2D coordinate. It occupies 2 parameters.

14

Published as a conference paper at ICLR 2025.

Less realistic More realistic Less realistic More realistic
==

% of pairs rated
% of pairs rated

o
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Number of raters selecting generated result as more realistic (sketch level) Number of raters selecting generated result as more realistic (extrusion level)

Figure 8: Distribution of realism scores from seven human evaluators. These scores are derived by
comparing the generated CAD models produced by the four methods with the training samples.

A.2 DETAILED RESULTS FOR HUMAN EVALUATION

We present the detailed distribution of the Realism scores as mentioned in Table[T] As shown in the
Fig. @ the distributions for GPT-40, SkexGen, and Hnc-cad are skewed towards the ‘less realistic’
end. Conversely, our FlexCAD demonstrates a primarily symmetric distribution, suggesting that the
crowd workers struggle to differentiate between the generated models and the training set.

A.3 QUANTITATIVE RESULTS FOR OTHER HIERARCHIES

Table 5: Quantitative results for controllable generation across other hierarchies. The detailed eval-
uation setting is the same as that of Table[T]

Hierarchy COV?T MMD| JSDJ Novelt Uniquet PVt
CAD level 67.2% 1.14 0.77 92.6% 93.2% 91.8%
Sketch-extrusion level 65.3% 1.21 0.80 90.3% 89.7% 90.5%
Face level 62.9% 1.18 0.84 91.1% 90.9% 93.2%
Loop level 63.4% 1.15 0.81 88.3% 85.7% 90.5%
Curve level 59.1% 1.20 0.79 89.7% 91.5% 90.2%

In this section, we report the quantitative results across other hierarchies, including CAD, sketch-
extrusion, face, loop and curve levels. By combining the data from Table[T]and Table 3} we observe
that there is not a significant difference in performance across all hierarchies. These results together
illustrate the effectiveness of our FlexCAD across all hierarchies.

A.4 SENSITIVITY ANALYSIS OF KEY HYPER-PARAMETERS IN SAMPLING

Table 6: Effectiveness analysis of key hyper-parameters, including the sampling temperature 7 and
Top-p. Best performances are in bold and the second-bests are marked by *.

Model covt MMD] JSDJ Novel?t Unique? PV
7=09 62.7% 1.20 0.84 92.0%* 90.3% 96.7 %
T=11 65.6%* 1.19% 0.82% 92.1% 92.6%* 93.4%*
T=13 65.8% 1.12 0.78 91.9% 94.5% 86.8%
Top-p = 0.8 62.9% 1.23 0.90 91.7% 87.8% 95.2%
Top-p =0.9 65.6%* 1.19% 0.82% 92.1%* 92.6%* 93.4%*
Top-p = 1.0 68.3% 1.13 0.77 93.3% 95.7% 89.0%

In this part, we perform a sensitivity analysis on key hyperparameters in inference, including the
sampling temperature 7 and Top-p. As shown in Table [] as either 7 or Top-p increases, the
performance of the first five metrics exhibits improvement, whereas the performance of the last
deteriorates. Essentially, higher values of 7 or Top-p lead to predictions that are more random and
varied, while the overall prediction validity PV declines. In our experiments, we made a trade-off
by selecting the values of 7 and Top-p to guarantee that the PV value remains above 90%.

15

Published as a conference paper at ICLR 2025.

A.5 UNCONDITIONAL GENERATION TASK

Table 7: Performance comparison for the unconditional generation task. Each method generates
10k CAD models, which are then compared with a randomly selected subset of 2.5k ground truth
models from the test set. For the baselines, other than the metric PV, we derive the values of other
metrics from the original paper | Xu et al.[(2023)), while the values of PV are obtained based on their
official codes. Best performances are in bold, and the second-bests are marked by *.

Model COV?t MMD| JSDJ Novelt Unique? PVt Realism
SkexGen 84.7% 1.02 0.90* 99.1%* 99.8% 74.2% 46.9%
Hnc-cad 87.7%* 0.96* 0.68 93.9% 99.7%* 77.4%%* 49.2%

Ours 89.2% 0.91 1.53 99.3% 96.9% 90.5% 51.5%

Our FlexCAD can easily achieve unconditional CAD generation by simply adding a prompt template
during training. Specifically, given a CAD text, the instruction in the prompt template can be as
concise as ‘Below is a description of a CAD sequence:’, while the corresponding answer is the
whole CAD text. The quantitative and qualitative results shown in Table [/| and Figure [I7] verify
the effectiveness of our FlexCAD in unconditional CAD generation. Notably, as shown in Table
our JSD exhibits the poorest performance. However, upon adjusting the sampling temperature 7 or
Top-p to maintain the PV value at around 80%, the JSD value enhances significantly to 0.78.

A.6 LIMITATIONS AND FUTURE WORK

Inference time. We measure the inference time on one A6000 GPU (with a batch size of 1) for the
extrusion-level generation, averaging over 1,000 runs. The inference time of our FlexCAD (based on
Llama-3-8B) is slightly higher than that of SkexGen Xu et al.| (2022)) and Hnc-cad Xu et al.| (2022),
at 0.56 seconds compared to 0.15 seconds and 0.38 seconds, respectively. Notably, we trained
and tested Llama-3-70B using four A100 GPUs (with a batch size of 1 per GPU), yet the average
inference time is still close to 3 seconds. Although LLMs demonstrate promising performance,
they generally lack efficiency. while the task of controllable CAD generation is not particularly
demanding in terms of real-time inference requirements, the slight increase in inference time of our
FlexCAD (based on Llama-3-8B) is acceptable given the promising performance.

SO BRI N

Masking 5 lines 6 lines 7 lines 8 lines

Curve-level Controllable Generation

Figure 9: Failure cases. The generated CAD models display irregular polygonal shapes.

Failure cases. Despite the significant progress, our FlexCAD sometimes generates hallucinations.
For example, when we implement curve-level controllable generation by replacing the original loops
with 5, 6, 7, or 8 lines, our FlexCAD tends to generate plausible CAD texts. The CAD models
produced from these texts typically exhibit irregular polygonal shapes, as illustrated in Fig.[9] In-
terestingly, when the modifications are limited to 4 lines, the generated predictions tend to be more
structurally regular, as illustrated in Fig. We select loops composed of 4, 5, 6, 7, or 8 lines in the
training set for analysis. The ratio is approximately 77.9%-6.2%-9.5%-1.7%-4.7%. Consequently,
the fundamental reason behind these hallucinations may stem from data imbalance, which could
potentially be mitigated by collecting additional data.

Other limitations and future work. In this paper, we fine-tune LLMs to achieve controllable CAD
generation. However, several unexplored domains warrant investigation. One such domain involves
determining how LLMs can be effectively utilized for text-based generation tasks, such as providing
a descriptive text like ‘Create a desk.” to generate a corresponding CAD model. Since LLMs possess
robust capabilities in controllable CAD generation and text comprehension, in future work, we aim
to build a more advanced multi-modal LLM tailored for the text-based CAD generation task.

16

Published as a conference paper at ICLR 2025.

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string “[sketch-extrusion mask]":
[sketch-extrusion mask]
Generate a string that could replace "[sketch-extrusion mask]" in the CAD sequence:
Predictions:
arc,23,27,9,31 <curve_end> arc,23,35,25,38 <curve_end> arc,28,39,31,53 <curve_end> arc,34,39,37,38 <curve_end> arc,39,35,53,31
<curve_end> arc,39,27,37,24 <curve_end> arc,34,23,31,9 <curve_end> arc,28,23,25,24 <curve_end> <loop_end>
circle,10,31,16,25,22,31,16,37 <curve_end> <loop_end> circle,25,31,31,25,37,31,31,37 <curve_end> <loop_end>
circle,25,16,31,10,37,16,31,22 <curve_end> <loop_end> circle,25,46,31,40,37,46,31,52 <curve_end> <loop_end>
circle,40,31,46,25,52,31,46,37 <curve_end> <loop_end> <face_end> <sketch_end> add,31,63,31,31,31,1,0,0,0,0,1,0,-1,0,47,31,31
<extrusion_end>
line,9,9 <curve_end> line,53,9 <curve_end> line,53,53 <curve_end> line,9,53 <curve_end> <loop_end> line,14,17 <curve_end> line,20,17
<curve_end> line,20,24 <curve_end> line,14,24 <curve_end> <loop_end> line,14,38 <curve_end> line,20,38 <curve_end> line,20,45
(2) <curve_end> line,14,45 <curve_end> <loop_end> line,42,17 <curve_end> line,48,17 <curve_end> line,48,24 <curve_end> line, 42,24
<curve_end> <loop_end> line,42,38 <curve_end> line,42,45 <curve_end> line,48,45 <curve_end> line,48,38 <curve_end> <loop_end>
<face_end> <sketch_end> add,31,52,31,31,31,1,0,0,0,1,0,0,0,1,62,31,31 <extrusion_end>
circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> circle,15,31,18,27,22,31,18,35 <curve_end> <loop_end> circle,27,18,31,14,35,18,31,22
(3) <curve_end> <loop_end> circle,27,44,31,40,35,44,31,48 <curve_end> <loop_end> circle,40,31,44,27,47,31,44,35 <curve_end> <loop_end>
<face_end> <sketch_end> add,31,34,31,31,31,1,0,0,0,0,1,0,-1,0,62,31,31 <extrusion_end>

¢ Text-to-CAD Rendering

@

i "
Sketch-extrusion number =1 ———p| €. // @ =) ©)
Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string "[sketch-extrusion mask]
[sketch-extrusion mask]":
[sketch-extrusion mask] [sketch-extrusion mask]
Generate a string that could replace "[sketch-extrusion mask] [sketch-extrusion mask]" in the CAD sequence:

Predictions:
circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> <face_end> <sketch_end> add,31,39,31,31,31,1,0,0,0,1,0,0,0,1,62,31,31

<extrusion_end> arc,9,16,16,16 <curve_end> line,16,9 <curve_end> arc,46,9,46,16 <curve_end> line,53,16 <curve_end> arc,53,46,46,46
<curve_end> line,46,53 <curve_end> arc,16,53,16,46 <curve_end> line,9,46 <curve_end> <loop_end> circle,19,31,31,19,43,31,31,43
<curve_end> <loop_end> <face_end> <sketch_end> add,31,46,31,31,39,1,0,0,0,1,0,0,0,1,47,31,31 <extrusion_end>
circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> circle,10,31,12,30,13,31,12,32 <curve_end> <loop_end> circle,17,20,18,19,19,20,18,21
<curve_end> <loop_end> circle,17,42,18,41,19,42,18,43 <curve_end> <loop_end> circle,30,12,31,10,32,12,31,13 <curve_end> <loop_end>
circle,30,50,31,49,32,50,31,52 <curve_end> <loop_end> circle,43,20,44,19,45,20,44,21 <curve_end> <loop_end>
circle,43,42,44,41,45,42,44,43 <curve_end> <loop_end> circle,49,31,50,30,52,31,50,32 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,34,31,31,31,1,0,0,0,1,0,0,0,1,31,31,31 <extrusion_end> circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> <face_end>
<sketch_end> add,31,63,31,31,34,1,0,0,0,1,0,0,0,1,6,31,31 <extrusion_end>

line,6,11 <curve_end> line,56,11 <curve_end> line,56,51 <curve_end> line,6,51 <curve_end> <loop_end> <face_end> <sketch_end>

(6) add,31,36,31,31,31,1,0,0,0,0,1,0,-1,0,47,30,37 <extrusion_end> line,6,51 <curve_end> line,6,11 <curve_end> line,56,11 <curve_end>
line,56,51 <curve_end> <loop_end> <face_end> <sketch_end> cut,19,31,30,31,36,-1,0,0,0,0,1,0,1,0,31,31,31 <extrusion_end>

V|, Text-to-CAD Rendering

@

®)

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string "[sketch-extrusion mask]
[sketch-extrusion mask] [sketch-extrusion mask]":
[sketch-extrusion mask] [sketch-extrusion mask] [sketch-extrusion mask]
Generate a string that could replace "[sketch-extrusion mask] [sketch-extrusion mask] [sketch-extrusion mask]" in the CAD sequence:
Predictions:
circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> <face_end> <sketch_end> add,31,46,31,31,31,1,0,0,0,0,1,0,-1,0,19,31,31
0 <extrusion_end> circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> circle,25,31,31,25,37,31,31,37 <curve_end> <loop_end> <face_end>
<sketch_end> add,31,43,31,31,31,-1,0,0,0,0,1,0,1,0,13,31,31 <extrusion_end> circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end>
<face_end> <sketch_end> add,31,55,31,31,31,-1,0,0,0,0,1,0,1,0,3,31,31 <extrusion_end>
line,4,15 <curve_end> line,58,15 <curve_end> line,58,47 <curve_end> line,4,47 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,44,31,31,31,1,0,0,0,0,1,0,-1,0,25,48,41 <extrusion_end> line,5,14 <curve_end> line,57,14 <curve_end> line,57,48 <curve_end>
line,5,48 <curve_end> <loop_end> <face_end> <sketch_end> cut,18,31,46,24,49,1,0,0,0,1,0,0,0,1,11,41,29 <extrusion_end> arc,9,12,10,10
<curve_end> line,12,9 <curve_end> arc,50,9,52,10 <curve_end> line,53,12 <curve_end> arc,53,50,52,52 <curve_end> line,50,53 <curve_end>
arc,12,53,10,52 <curve_end> line,9,50 <curve_end> <loop_end> <face_end> <sketch_end> cut,26,31,46,24,49,1,0,0,0,1,0,0,0,1,11,41,33
<extrusion_end>
line,5,14 <curve_end> line,57,14 <curve_end> line,57,31 <curve_end> line,14,31 <curve_end> line,14,48 <curve_end> line,5,48 <curve_end>
<loop_end> <face_end> <sketch_end> add,21,41,31,31,31,1,0,0,0,0,1,0,-1,0,26,48,42 <extrusion_end> line,9,9 <curve_end> line,53,9
(9) <curve_end> line,53,53 <curve_end> line,9,53 <curve_end> <loop_end> <face_end> <sketch_end> cut,26,36,31,31,31,1,0,0,0,0,1,0,-
1,0,10,60,37 <extrusion_end> arc,12,22,32,6 <curve_end> line,50,26 <curve_end> line,38,56 <curve_end> line,32,56 <curve_end>
<loop_end> <face_end> <sketch_end> cut,26,36,31,31,31,1,0,0,0,0,1,0,-1,0,12,42,42 <extrusion_end>

| Text-to-CAD Rendering
v
) > |

Y’ ™ [y © /"‘J'J’_ ©

Figure 10: CAD level generation. Here, users can produce CAD models that match the required
sketch-extrusion number. The marks of predictions align with those of the images (the same below).

®

Sketch-extrusion number = 3 ———3

17

Published as a conference paper at ICLR 2025.

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string “[sketch-extrusion mask]":

arc,12,14,31,6 <curve_end> line,50,14 <curve_end> arc,50,48,31,56 <curve_end> line,12,48 <curve_end> <loop_end> <face_end> <sketch_end>

add,31,55,31,31,31,1,0,0,0,1,0,0,0,1,52,31,31 <extrusion_end> [sketch-extrusion mask]

Generate a string that could replace * [sketch-extrusion mask]" in the CAD sequence:

Predictions:

@ arc,15,15,31,4 <curve_end> line,47,15 <curve_end> arc,47,47,31,58 <curve_end> line,15,47 <curve_end> <loop_end> <face_end>
<sketch_end> add,31,63,31,31,31,1,0,0,0,1,0,0,0,1,33,31,31 <extrusion_end>
arc,8,14,31,10 <curve_end> line,54,14 <curve_end> arc,54,48,31,52 <curve_end> line,8,48 <curve_end> <loop_end>
(2) circle,20,31,31,20,42,31,31,42 <curve_end> <loop_end> <face_end> <sketch_end> add,31,63,31,31,31,1,0,0,0,1,0,0,0,1,23,31,31

<extrusion_end>

line,10,19 <curve_end> line,31,7 <curve_end> line,52,19 <curve_end> line,52,43 <curve_end> line,31,55 <curve_end> line,10,43

<curve_end> <loop_end> <face_end> <sketch_end> cut,22,31,31,31,55,1,0,0,0,1,0,0,0,1,22,31,31 <extrusion_end>

@ arc,15,13,31,4 <curve_end> line,47,13 <curve_end> arc,47,49,31,58 <curve_end> line,15,49 <curve_end> <loop_end> <face_end>
<sketch_end> cut,25,31,31,31,55,1,0,0,0,1,0,0,0,1,30,31,31 <extrusion_end>
arc,10,19,31,7 <curve_end> line,52,19 <curve_end> arc,52,43,31,55 <curve_end> line,10,43 <curve_end> <loop_end>

(5) circle,19,31,31,19,43,31,31,43 <curve_end> <loop_end> <face_end> <sketch_end> add,31,62,31,31,55,1,0,0,0,1,0,0,0,1,36,31,31
<extrusion_end>

®) circle,2,31,13,20,24,31,13,42 <curve_end> <loop_end> <face_end> circle,38,31,49,20,60,31,49,42 <curve_end> <loop_end> <face_end>
<sketch_end> cut,19,31,31,31,55,1,0,0,0,1,0,0,0,1,33,31,31 <extrusion_end>

7 circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> <face_end> <sketch_end> cut,19,43,31,31,31,1,0,0,0,0,1,0,-1,0,14,31,55

Q) <extrusion_end>

®

arc,6,18,7,13 <curve_end> line,11,12 <curve_end> arc,23,25,23,27 <curve_end> line,25,29 <curve_end> arc,36,29,38,27 <curve_end>
line,38,25 <curve_end> arc,51,12,55,13 <curve_end> line,56,18 <curve_end> arc,56,44,55,49 <curve_end> line,51,50 <curve_end>
arc,38,37,38,35 <curve_end> line,36,33 <curve_end> arc,25,33,23,35 <curve_end> line,23,37 <curve_end> arc,11,50,7,49 <curve_end>
line,6,44 <curve_end> <loop_end> <face_end> <sketch_end> add,31,33,31,31,55,1,0,0,0,1,0,0,0,1,22,31,31 <extrusion_end>

¢ Infilling & Text-to-CAD Rendering

L X L L XX XX,

')
) ®)

®)

Masking Controllable Generation

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string "[sketch-extrusion mask]":

[sketch-extrusion mask] circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> <face_end> <sketch_end>

add,31,63,31,31,55,1,0,0,0,1,0,0,0,1,31,31,31 <extrusion_end>

Generate a string that could replace " [sketch-extrusion mask]" in the CAD sequence:

Predictions:
arc,9,12,10,10 <curve_end> line,12,9 <curve_end> arc,50,9,52,10 <curve_end> line,53,12 <curve_end> arc,53,50,52,52 <curve_end>
line,50,53 <curve_end> arc,12,53,10,52 <curve_end> line,9,50 <curve_end> <loop_end> circle,11,12,12,11,14,12,12,14 <curve_end>

(9) <loop_end> circle,11,50,12,48,14,50,12,51 <curve_end> <loop_end> circle,48,12,50,11,51,12,50,14 <curve_end> <loop_end>

circle,48,50,50,48,51,50,50,51 <curve_end> <loop_end> <face_end> <sketch_end> add,31,63,31,31,31,1,0,0,0,1,0,0,0,1,53,31,31
<extrusion_end>

line,8,31 <curve_end> line,20,9 <curve_end> line,42,9 <curve_end> line,54,31 <curve_end> line,42,53 <curve_end> line,20,53 <curve_end>

(10) <loop_end> <face_end> <sketch_end> add,31,63,31,31,31,1,0,0,0,1,0,0,0,1,54,31,31 <extrusion_end>

circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> circle,22,31,31,22,40,31,31,40 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,63,31,31,31,1,0,0,0,1,0,0,0,1,58,31,31 <extrusion_end>

line,9,9 <curve_end> line,9,53 <curve_end> line,53,53 <curve_end> line,53,9 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,55,31,31,31,1,0,0,0,1,0,0,0,1,62,31,31 <extrusion_end>

(1)
(12)

arc,8,30,12,13 <curve_end> line,29,9 <curve_end> arc,33,9,50,13 <curve_end> line,54,30 <curve_end> arc,54,32,50,49 <curve_end>
(13) line,33,53 <curve_end> arc,29,53,12,49 <curve_end> line,8,32 <curve_end> <loop_end> circle,21,31,31,21,41,31,31,41 <curve_end>
<loop_end> <face_end> <sketch_end> add,31,63,31,31,31,1,0,0,0,1,0,0,0,1,53,31,31 <extrusion_end>
circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> <face_end> <sketch_end> add,31,62,31,31,31,1,0,0,0,1,0,0,0,1,10,31,31
<extrusion_end>
arc,9,15,9,9 <curve_end> line,15,9 <curve_end> arc,47,9,53,9 <curve_end> line,53,15 <curve_end> arc,53,47,53,53 <curve_end> line,47,53
(15) <curve_end> arc,15,53,9,53 <curve_end> line,9,47 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,55,31,31,31,1,0,0,0,1,0,0,0,1,36,31,31 <extrusion_end>
line,9,29 <curve_end> line,29,29 <curve_end> line,29,9 <curve_end> line,33,9 <curve_end> line,33,29 <curve_end> line,53,29 <curve_end>
(16) line,53,33 <curve_end> line,33,33 <curve_end> line,33,53 <curve_end> line,29,53 <curve_end> line,29,33 <curve_end> line,9,33
<curve_end> <loop_end> <face_end> <sketch_end> add,31,55,31,31,31,1,0,0,0,1,0,0,0,1,31,31,31 <extrusion_end>

(14

¢ Infilling & Text-to-CAD Rendering

' 'y ¥ 3 3 3 | 11 & J
N hy Ng
t‘ \(9' 19 ' [(11)1 (i)f ‘[(13)] (1[:) %5)' 18)
Masking Controllable Generation

Figure 11: Sketch-extrusion level generation. Given a CAD model, users can mask any of its sketch-
extrusions for modifications. The masked sketch-extrusions are highlighted in blue.

18

Published as a conference paper at ICLR 2025.

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string "“[extrusion mask]":
circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> <face_end> <sketch_end> add,31,43,31,31,31,1,0,0,0,0,1,0,-1,0,62,31,31 <extrusion_end>
line,5,14 <curve_end> line,57,14 <curve_end> line,57,48 <curve_end> line,5,48 <curve_end> <loop_end> <face_end> <sketch_end> [extrusion
mask]

Generate a string that could replace " [extrusion mask]" in the CAD sequence:
Predictions:

(1) cut,20,31,31,19,31,1,0,0,0,0,1,0,-1,0,31,31,31 <extrusion_end>
(2) cut,25,31,31,19,31,1,0,0,0,0,1,0,-1,0,15,31,38 <extrusion_end>
(3) cut,16,31,31,19,31,1,0,0,0,0,1,0,-1,0,39,31,31 <extrusion_end>
(4) cut,18,31,31,19,31,1,0,0,0,0,1,0,-1,0,22,31,31 <extrusion_end>
(5) add,31,57,31,19,31,1,0,0,0,0,1,0,-1,0,27,31,31 <extrusion_end>
(6) add,31,47,31,19,31,1,0,0,0,0,1,0,-1,0,25,31,31 <extrusion_end>
(7) add,31,43,31,19,31,1,0,0,0,0,1,0,-1,0,31,31,31 <extrusion_end>

(8) add,31,43,31,19,31,1,0,0,0,0,1,0,-1,0,5,31,48 <extrusion_end>

¢ Infilling & Text-to-CAD Rendering

\ '\ N N .
Y, y y y
@ @ (©) @
Masking Controllable Generation

y (3)& w9

M ®

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string “[extrusion mask]":
arc,9,12,10,10 <curve_end> line,12,9 <curve_end> arc,50,9,52,10 <curve_end> line,53,12 <curve_end> arc,53,50,52,52 <curve_end> line,50,53
<curve_end> arc,12,53,10,52 <curve_end> line,9,50 <curve_end> <loop_end> circle,13,14,14,13,16,14,14,16 <curve_end> <loop_end>
circle,13,48,14,46,16,48,14,49 <curve_end> <loop_end> circle,46,14,48,13,49,14,48,16 <curve_end> <loop_end> circle,46,48,48,46,49,48,48,49
<curve_end> <loop_end> <face_end> <sketch_end> add,31,43,31,31,31,1,0,0,0,1,0,0,0,1,48,33,39 <extrusion_end> circle,9,31,31,9,53,31,31,53
<curve_end> <loop_end> <face_end> <sketch_end> [extrusion mask]

Generate a string that could replace * [extrusion mask]" in the CAD sequence:

Predictions:

©)

(10)

(1)

(12)

(13)

(14

(15)

(16)

G

Masking

cut,22,31,33,38,43,1,0,0,0,1,0,0,0,1,25,31,31 <extrusion_end>
cut,25,31,33,38,43,1,0,0,0,1,0,0,0,1,13,28,31 <extrusion_end>
cut,0,31,33,38,43,1,0,0,0,1,0,0,0,1,31,31,31 <extrusion_end>
cut,22,31,32,38,43,1,0,0,0,1,0,0,0,1,6,31,31 <extrusion_end>
add,31,42,33,38,43,1,0,0,0,1,0,0,0,1,10,31,31 <extrusion_end>
add,31,46,33,38,43,1,0,0,0,1,0,0,0,1,22,29,31 <extrusion_end>

add,31,43,33,38,43,1,0,0,0,1,0,0,0,1,31,31,31 <extrusion_end>

add,31,41,33,38,43,1,0,0,0,1,0,0,0,1,5,31,31 <extrusion_end>

Infilling & Text-to-CAD Rendering

7 S

(9)

P <

€ o
(10) (11 12

|
. 4
)

\.

L

Controllable Generation

Figure 12: Extrusion level generation. Given a CAD model, users can mask any of its extrusions for
modifications. The masked extrusions are highlighted in blue.

19

Published as a conference paper at ICLR 2025.

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string "[sketch mask]":
[sketch mask] add,31,63,31,31,31,1,0,0,0,1,0,0,0,1,50,31,31 <extrusion_end> circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> <face_end>
<sketch_end> add,31,50,31,31,63,1,0,0,0,1,0,0,0,1,12,31,31 <extrusion_end> line,10,19 <curve_end> line,31,7 <curve_end> line,52,19 <curve_end>
line,52,43 <curve_end> line,31,55 <curve_end> line,10,43 <curve_end> <loop_end> <face_end> <sketch_end>
cut,22,31,56,31,47,0,1,0,0,0,1,1,0,0,11,31,24 <extrusion_end>
Generate a string that could replace “[sketch mask]" in the CAD sequence:
Predictions:
arc,9,11,9,9 <curve_end> line,11,9 <curve_end> arc,51,9,53,9 <curve_end> line,53,11 <curve_end> arc,53,51,53,53 <curve_end> line,51,53
@ <curve_end> arc,11,53,9,53 <curve_end> line,9,51 <curve_end> <loop_end> circle,11,12,12,11,14,12,12,14 <curve_end> <loop_end>
circle,11,50,12,48,14,50,12,51 <curve_end> <loop_end> circle,48,12,50,11,51,12,50,14 <curve_end> <loop_end>
circle,48,50,50,48,51,50,50,51 <curve_end> <loop_end> <face_end> <sketch_end>
@ line,10,19 <curve_end> line,31,7 <curve_end> line,52,19 <curve_end> line,52,43 <curve_end> line,31,55 <curve_end> line,10,43
<curve_end> <loop_end> <face_end> <sketch_end>
®) arc,9,20,10,10 <curve_end> line,20,9 <curve_end> arc,42,9,52,10 <curve_end> line,53,20 <curve_end> arc,53,42,52,52 <curve_end>
line,42,53 <curve_end> arc,20,53,10,52 <curve_end> line,9,42 <curve_end> <loop_end> <face_end> <sketch_end>
arc,9,24,10,21 <curve_end> line,13,20 <curve_end> arc,20,13,21,10 <curve_end> line,24,9 <curve_end> arc,38,9,41,10 <curve_end>
@ line,42,13 <curve_end> arc,49,20,52,21 <curve_end> line,53,24 <curve_end> arc,53,38,52,41 <curve_end> line,49,42 <curve_end>
arc,42,49,41,52 <curve_end> line,38,53 <curve_end> arc,24,53,21,52 <curve_end> line,20,49 <curve_end> arc,13,42,10,41 <curve_end>

line,9,38 <curve_end> <loop_end> <face_end> <sketch_end>
0 . U L u X
® | § N 0p e
~_| £ L
/ o) (3) (4)

__Masking Controllable Generation

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string “[sketch mask]":
line,9,9 <curve_end> line,9,53 <curve_end> line,53,53 <curve_end> line,53,9 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,63,31,31,31,1,0,0,0,1,0,0,0,1,50,31,31 <extrusion_end> [sketch mask] add,31,50,31,31,63,1,0,0,0,1,0,0,0,1,12,31,31 <extrusion_end> line,10,19
<curve_end> line,31,7 <curve_end> line,52,19 <curve_end> line,52,43 <curve_end> line,31,55 <curve_end> line,10,43 <curve_end> <loop_end>
<face_end> <sketch_end> cut,22,31,56,31,47,0,1,0,0,0,1,1,0,0,11,31,24 <extrusion_end>
Generate a string that could replace " [sketch mask]" in the CAD sequence:
Predictions:
arc,11,16,13,12 <curve_end> line,16,11 <curve_end> arc,46,11,49,12 <curve_end> line,51,16 <curve_end> arc,51,46,49,50 <curve_end>
®) line,46,51 <curve_end> arc,16,51,13,50 <curve_end> line,11,46 <curve_end> <loop_end> arc,12,15,14,13 <curve_end> line,16,12
<curve_end> arc,46,12,48,13 <curve_end> line,50,15 <curve_end> arc,50,47,48,49 <curve_end> line,46,50 <curve_end> arc,16,50,14,49
<curve_end> line,12,47 <curve_end> <loop_end> <face_end> <sketch_end>
arc,20,14,31,2 <curve_end> line,42,14 <curve_end> arc,42,48,31,60 <curve_end> line,20,48 <curve_end> <loop_end> <face_end>
©) <sketch_end>
line,10,19 <curve_end> line,31,7 <curve_end> line,52,19 <curve_end> line,52,43 <curve_end> line,31,55 <curve_end> line,10,43
(7) <curve_end> <loop_end> line,11,19 <curve_end> line,31,8 <curve_end> line,51,19 <curve_end> line,51,43 <curve_end> line,31,54
<curve_end> line,11,43 <curve_end> <loop_end> <face_end> <sketch_end>
® arc,17,31,10,9 <curve_end> arc,25,13,31,10 <curve_end> arc,37,13,52,9 <curve_end> arc,45,31,46,33 <curve_end> arc,45,35,52,53
<curve_end> arc,37,49,31,52 <curve_end> arc,25,49,10,53 <curve_end> arc,17,35,16,33 <curve_end> <loop_end> <face_end> <sketch_end>

¢ Infilling & Text-to-CAD Rendering

U] _ L il

(%) (6) @) (8)
Controllable Generation

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string “[sketch mask]":
line,9,9 <curve_end> line,9,53 <curve_end> line,53,53 <curve_end> line,53,9 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,63,31,31,31,1,0,0,0,1,0,0,0,1,50,31,31 <extrusion_end> circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,50,31,31,63,1,0,0,0,1,0,0,0,1,12,31,31 <extrusion_end> [sketch mask] cut,22,31,56,31,47,0,1,0,0,0,1,1,0,0,11,31,24 <extrusion_end>
Generate a string that could replace " [sketch mask]" in the CAD sequence:
Predictions:
(9) arc,3,45,31,17 <curve_end> line,59,45 <curve_end> <loop_end> <face_end> <sketch_end>
(10) line,9,9 <curve_end> line,53,9 <curve_end> line,53,53 <curve_end> line,9,53 <curve_end> <loop_end> <face_end> <sketch_end>
arc,8,51,31,10 <curve_end> line,54,51 <curve_end> arc,50,51,31,21 <curve_end> line,12,51 <curve_end> <loop_end> <face_end>
) <sketch_end>
arc,21,11,31,1 <curve_end> line,41,11 <curve_end> arc,41,51,31,61 <curve_end> line,21,51 <curve_end> <loop_end> <face_end>
12 <sketch_end>

¢ Infilling & Text-to-CAD Rendering

¢ Infilling & Text-to-CAD Rendering

u | U | u | U |
9 (10) (11) 12)
Masking Controllable Generation

Figure 13: Sketch level generation. Given a CAD model, users can mask any of its sketches for
modifications. The masked sketches are highlighted in blue.

20

Published as a conference paper at ICLR 2025.

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string “[face mask] [face mask]":
line,11,7 <curve_end> line,51,7 <curve_end> line,51,55 <curve_end> line,11,55 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,35,31,31,31,1,0,0,0,1,0,0,0,1,22,8,14 <extrusion_end> [face mask] [face mask] <sketch_end> add,31,41,10,16,35,1,0,0,0,1,0,0,0,1,9,30,33
<extrusion_end>
Generate a string that could replace “[face mask] [face mask]" in the CAD sequence:
Predictions:

) line,0,26 <curve_end> line,16,26 <curve_end> line, 16,36 <curve_end> line,0,36 <curve_end> <loop_end> <face_end> line,46,26 <curve_end>

line,62,26 <curve_end> line,62,36 <curve_end> line,46,36 <curve_end> <loop_end> <face_end

(2) circle,0,31,6,25,12,31,6,37 <curve_end> <loop_end> <face_end> circle,50,31,56,25,62,31,56,37 <curve_end> <loop_end> <face_end>

(3) circle,23,5,29,0,34,5,29,11 <curve_end> <loop_end> <face_end> circle,23,57,29,51,34,57,29,62 <curve_end> <loop_end> <face_end>

@ line,17,3 <curve_end> line,45,3 <curve_end> line,45,17 <curve_end> line,17,17 <curve_end> <loop_end> <face_end> line,17,45 <curve_end>
line,45,45 <curve_end> line,45,59 <curve_end> line,17,59 <curve_end> <loop_end> <face_end>

‘ ¢ Infilling & Text-to-CAD Rendering
I J I

Masking Controllable Generation

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string “[face mask]":

line,11,7 <curve_end> line,51,7 <curve_end> line,51,55 <curve_end> line,11,55 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,35,31,31,31,1,0,0,0,1,0,0,0,1,22,8,14 <extrusion_end> line,7,11 <curve_end> line,17,11 <curve_end> line,17,51 <curve_end> line,7,51
<curve_end> <loop_end> <face_end> [face mask] <sketch_end> add,31,41,10,16,35,1,0,0,0,1,0,0,0,1,9,30,33 <extrusion_end>

Generate a string that could replace * [face mask]" in the CAD sequence:

Predictions:

(5) circle,35,31,45,21,55,31,45,41 <curve_end> <loop_end> circle,41,31,45,27,49,31,45,35 <curve_end> <loop_end> <face_end>

(6) circle,42,31,51,22,60,31,51,40 <curve_end> <loop_end> <face_end>
(7) arc,26,9,31,3 <curve_end> line,36,9 <curve_end> arc,36,53,31,59 <curve_end> line,26,53 <curve_end> <loop_end> <face_end>

(8) arc,45,11,55,11 <curve_end> line,45,51 <curve_end> <loop_end> <face_end>

¢ Infilling & Text-to-CAD Rendering

. | s] £y

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string “[face mask]":
line,11,7 <curve_end> line,51,7 <curve_end> line,51,55 <curve_end> line,11,55 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,35,31,31,31,1,0,0,0,1,0,0,0,1,22,8,14 <extrusion_end> [face mask] line,43,13 <curve_end> line,55,13 <curve_end> line,55,51 <curve_end>
line,43,51 <curve_end> <loop_end> <face_end> <sketch_end> add,31,41,10,16,35,1,0,0,0,1,0,0,0,1,9,30,33 <extrusion_end>
Generate a string that could replace * [face mask]" in the CAD sequence:
Predictions:
(9) line,7,11 <curve_end> line,16,11 <curve_end> line,16,27 <curve_end> line,7,27 <curve_end> <loop_end> <face_end>
(10) line,7,11 <curve_end> line,35,11 <curve_end> line,35,51 <curve_end> line,7,51 <curve_end> <loop_end> <face_end>

(11) circle,1,31,11,21,21,31,11,41 <curve_end> <loop_end> <face_end>

| Infilling & Text-to-CAD Rendering

1) arc,13,7,15,5 <curve_end> line,17,7 <curve_end> line,17,31 <curve_end> arc,17,55,15,57 <curve_end> line,13,55 <curve_end> <loop_end>

I i} |
LS & & &

9) (10) (11) (12)
Masking Controllable Generation

Figure 14: Face level generation. Given a sketch, users can mask one or multiple faces within it for
modifications. The masked faces are highlighted in blue.

21

Published as a conference paper at ICLR 2025.

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string “[loop mask] [loop mask]":
[loop mask] [loop mask] <face_end> <sketch_end> add,31,53,31,31,31,1,0,0,0,1,0,0,0,1,58,31,31 <extrusion_end>
Generate a string that could replace "[loop mask] [loop mask]" in the CAD sequence:
Predictions:
line,7,31 <curve_end> line,19,10 <curve_end> line,43,10 <curve_end> line,55,31 <curve_end> line,43,52 <curve_end> line,19,52
(1) <curve_end> <loop_end> line,10,31 <curve_end> line,20,13 <curve_end> line,42,13 <curve_end> line,52,31 <curve_end> line,42,49
<curve_end> line,20,49 <curve_end> <loop_end>
arc,12,17,9,9 <curve_end> line,17,12 <curve_end> arc,45,12,53,9 <curve_end> line,50,17 <curve_end> arc,50,45,53,53 <curve_end>
@ line,45,50 <curve_end> arc,17,50,9,53 <curve_end> line,12,45 <curve_end> <loop_end> arc,17,24,17,23 <curve_end> line,18,22 <curve_end>
arc,44,22,45,23 <curve_end> line,45,24 <curve_end> arc,45,38,45,39 <curve_end> line,44,40 <curve_end> arc,18,40,17,39 <curve_end>
line,17,38 <curve_end> <loop_end>

® circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> line,15,30 <curve_end> line,23,16 <curve_end> line,39,16 <curve_end> line,47,30
<curve_end> line,39,46 <curve_end> line,23,46 <curve_end> <loop_end>

circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> line,19,25 <curve_end> line,24,19 <curve_end> line,38,19 <curve_end> line,43,25
<curve_end> line,43,37 <curve_end> line,38,43 <curve_end> line,24,43 <curve_end> line,19,37 <curve_end> <loop_end>

¢ Infilling & Text-to-CAD Rendering

S0 O $ & 8 O

Q)

Q)

Masking Controllable Generation

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string "[loop mask]":
[loop mask] circle,15,31,31,15,47,31,31,47 <curve_end> <loop_end> <face_end> <sketch_end> add,31,53,31,31,31,1,0,0,0,1,0,0,0,1,58,31,31
<extrusion_end>
Generate a string that could replace "[loop mask]" in the CAD sequence:
Predictions:
(5) arc,8,30,31,10 <curve_end> line,54,30 <curve_end> line,54,52 <curve_end> line,31,52 <curve_end> line,8,52 <curve_end> <loop_end>
®) line,10,18 <curve_end> line,31,7 <curve_end> line,52,18 <curve_end> line,52,44 <curve_end> line,31,55 <curve_end> line,10,44
<curve_end> <loop_end>
o) arc,9,21,9,9 <curve_end> line,21,9 <curve_end> arc,41,9,53,9 <curve_end> line,53,21 <curve_end> arc,53,41,53,53 <curve_end> line,41,53
<curve_end> arc,21,53,9,53 <curve_end> line,9,41 <curve_end> <loop_end>
® arc,9,16,15,15 <curve_end> arc,16,9,31,10 <curve_end> arc,46,9,47,15 <curve_end> arc,53,16,52,31 <curve_end> arc,53,46,47,47
<curve_end> arc,46,53,31,52 <curve_end> arc,16,53,15,47 <curve_end> arc,9,46,10,31 <curve_end> <loop_end>

¢ Infilling & Text-to-CAD Rendering

€) €) €) €)

O \" ¢ D o Y o

®) (6)) (®)
Masking Controllable Generation

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string "[loop mask]":

line,8,10 <curve_end> line,54,10 <curve_end> line,54,52 <curve_end> line,8,52 <curve_end> <loop_end> [loop mask] <face_end> <sketch_end>

add,31,53,31,31,31,1,0,0,0,1,0,0,0,1,58,31,31 <extrusion_end>

Generate a string that could replace "[loop mask]" in the CAD sequence:

Predictions:

(9) line,18,18 <curve_end> line,18,44 <curve_end> line,44,44 <curve_end> line,44,18 <curve_end> <loop_end>

arc,15,26,16,23 <curve_end> line,18,22 <curve_end> line,27,22 <curve_end> arc,27,15,31,13 <curve_end> line,35,15 <curve_end> line,35,22

(10) <curve_end> arc,44,22,46,23 <curve_end> line,47,26 <curve_end> arc,47,36,46,39 <curve_end> line,44,40 <curve_end> line,35,40
<curve_end> arc,35,47,31,49 <curve_end> line,27,47 <curve_end> line,27,40 <curve_end> arc,18,40,16,39 <curve_end> line,15,36
<curve_end> <loop_end>

arc,13,13,15,11 <curve_end> line,17,12 <curve_end> arc,17,17,18,20 <curve_end> line,21,21 <curve_end> arc,41,21,44,20 <curve_end>

a1 line,45,17 <curve_end> arc,45,12,47,11 <curve_end> line,49,13 <curve_end> arc,49,49,47,51 <curve_end> line,45,50 <curve_end>
arc,45,45,44,42 <curve_end> line,41,41 <curve_end> arc,21,41,18,42 <curve_end> line,17,45 <curve_end> arc,17,50,15,51 <curve_end>
line,13,49 <curve_end> <loop_end>

(12) arc,24,18,31,13 <curve_end> line,38,18 <curve_end> arc,38,44,31,49 <curve_end> line,24,44 <curve_end> <loop_end>

¢ Infilling & Text-to-CAD Rendering

@ < L3 A &’
<V <V’ <V <V’
(9) (10) (11) (12)
Masking Controllable Generation

Figure 15: Loop level generation. Given a face, users can mask one or multiple loops within it for
modifications. The masked loops are highlighted in blue.

22

Published as a conference paper at ICLR 2025.

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string "[arc mask] [line mask] [arc
mask] [line mask]":
line,18,2 <curve_end> line,44,2 <curve_end> line,44,60 <curve_end> line,18,60 <curve_end> <loop_end> [arc mask] [line mask] [arc mask] [line
mask] <loop_end> <face_end> <sketch_end> add,31,34,31,31,31,1,0,0,0,0,1,0,-1,0,48,31,31 <extrusion_end>
Generate a string that could replace “[arc mask] [line mask] [arc mask] [line mask]" in the CAD sequence:
Predictions:

(1) arc,29,17,31,11 <curve_end> line,33,17 <curve_end> arc,33,45,31,51 <curve_end> line,29,45 <curve_end>

(2) arc,28,10,31,8 <curve_end> line,34,10 <curve_end> arc,34,52,31,54 <curve_end> line,28,52 <curve_end>

(3) arc,24,18,31,15 <curve_end> line,38,18 <curve_end> arc,38,44,31,47 <curve_end> line,24,44 <curve_end>
(4) arc,26,15,31,6 <curve_end> line,36,15 <curve_end> arc,36,47,31,52 <curve_end> line,26,47 <curve_end>

¢ Infilling & Text-to-CAD Rendering

2 arcs + 2 lines o
— | \
@ N

Masking Controllable Generation

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string "[arc mask] [line mask] [arc
mask] [line mask] [arc mask] [line mask] [arc mask] [line mask]":

line,18,2 <curve_end> line,44,2 <curve_end> line,44,60 <curve_end> line,18,60 <curve_end> <loop_end> [arc mask] [line mask] [arc mask] [line
mask] [arc mask] [line mask] [arc mask] [line mask] <loop_end> <face_end> <sketch_end> add,31,34,31,31,31,1,0,0,0,0,1,0,-1,0,48,31,31
<extrusion_end>

Generate a string that could replace "[arc mask] [line mask] [arc mask] [line mask] [arc mask] [line mask] [arc mask] [line mask]" in the CAD
sequence:

Predictions:
®) arc,28,13,25,11 <curve_end> line,28,8 <curve_end> arc,34,8,37,11 <curve_end> line,34,13 <curve_end> arc,34,49,37,51 <curve_end>

line,34,54 <curve_end> arc,28,54,25,51 <curve_end> line,28,49 <curve_end>

arc,27,43,23,31 <curve_end> line,27,19 <curve_end> arc,36,19,39,31 <curve_end> line,36,43 <curve_end> arc,36,50,36,53 <curve_end>
line,33,55 <curve_end> arc,29,55,26,53 <curve_end> line,26,50 <curve_end>

arc,21,8,22,6 <curve_end> line,24,5 <curve_end> arc,38,5,40,6 <curve_end> line,41,8 <curve_end> arc,41,47,40,51 <curve_end> line,38,53
<curve_end> arc,24,53,22,51 <curve_end> line,21,47 <curve_end>

arc,26,11,23,9 <curve_end> line,26,6 <curve_end> arc,36,6,39,9 <curve_end> line,36,11 <curve_end> arc,36,26,39,28 <curve_end> line,36,31
<curve_end> arc,26,31,23,28 <curve_end> line,26,26 <curve_end>

|

4 arcs + 4 lines T)
o | | _

(6)
@)
@®)
Infilling & Text-to-CAD Rendering

>

(%) (6)) ®)
Masking Controllable Generation

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the string "[line mask] [line mask] [line
mask] [line mask]":
line,18,2 <curve_end> line,44,2 <curve_end> line,44,60 <curve_end> line,18,60 <curve_end> <loop_end> [line mask] [line mask] [line mask] [line
mask] <loop_end> <face_end> <sketch_end> add,31,34,31,31,31,1,0,0,0,0,1,0,-1,0,48,31,31 <extrusion_end>
Generate a string that could replace "[line mask] [line mask] [line mask] [line mask]" in the CAD sequence:
Predictions:

(9) line,23,7 <curve_end> line,39,7 <curve_end> line,39,55 <curve_end> line,23,55 <curve_end>

(10) line,26,20 <curve_end> line,36,20 <curve_end> line,36,42 <curve_end> line,26,42 <curve_end>

(11) line,24,7 <curve_end> line,38,7 <curve_end> line,38,31 <curve_end> line,24,31 <curve_end>

(12) line,19,3 <curve_end> line,43,3 <curve_end> line,43,59 <curve_end> line,19,59 <curve_end>

| Infilling & Text-to-CAD Rendering

\ 4
4 lines
— | | |
(9) (10) (11) (12)
Masking Controllable Generation

\

Figure 16: Curve level generation. Given a loop, users can mask all curves within it and specify the
curve type and number of newly generated loops. The masked curves are highlighted in blue.

23

Published as a conference paper at ICLR 2025.

Instruction: Below is a description of a CAD sequence:
Predictions:

()]

@

(©)]

(O]

(®)

(6)

@

(®)

©)

(10)

(11)

(12)

arc,9,26,14,14 <curve_end> arc,26,9,31,11 <curve_end> arc,36,9,48,14 <curve_end> arc,53,26,51,31 <curve_end> arc,53,36,48,48
<curve_end> arc,36,53,31,51 <curve_end> arc,26,53,14,48 <curve_end> arc,9,36,11,31 <curve_end> <loop_end>
circle,11,25,16,20,22,25,16,31 <curve_end> <loop_end> circle,11,37,16,31,22,37,16,42 <curve_end> <loop_end>
circle,18,16,23,11,28,16,23,21 <curve_end> <loop_end> circle,18,46,23,41,28,46,23,51 <curve_end> <loop_end>
circle,27,31,31,27,35,31,31,35 <curve_end> <loop_end> circle,34,16,39,11,44,16,39,21 <curve_end> <loop_end>
circle,34,46,39,41,44,46,39,51 <curve_end> <loop_end> circle,40,25,46,20,51,25,46,31 <curve_end> <loop_end>
circle,40,37,46,31,51,37,46,42 <curve_end> <loop_end> <face_end> <sketch_end> add,31,37,31,31,31,1,0,0,0,0,1,0,-1,0,62,31,31
<extrusion_end>

line,5,13 <curve_end> line,57,13 <curve_end> line,57,49 <curve_end> line,5,49 <curve_end> <loop_end> circle,23,31,31,23,39,31,31,39
<curve_end> <loop_end> <face_end> <sketch_end> add,31,63,31,31,31,1,0,0,0,1,0,0,0,1,23,31,31 <extrusion_end>
circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> circle,20,31,31,20,42,31,31,42 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,43,31,31,63,1,0,0,0,1,0,0,0,1,16,31,31 <extrusion_end>

arc,13,42,2,31 <curve_end> line,13,20 <curve_end> arc,21,21,25,23 <curve_end> arc,29,21,31,20 <curve_end> arc,33,21,37,23 <curve_end>
line,41,21 <curve_end> arc,49,20,60,31 <curve_end> line,49,42 <curve_end> arc,41,41,37,39 <curve_end> arc,33,41,31,42 <curve_end>
arc,29,41,25,39 <curve_end> line,21,41 <curve_end> <loop_end> circle,5,31,10,27,14,31,10,35 <curve_end> <loop_end>
circle,48,31,52,27,57,31,52,35 <curve_end> <loop_end> <face_end> <sketch_end> add,31,35,31,31,31,1,0,0,0,0,1,0,-1,0,47,31,31
<extrusion_end>

line,9,9 <curve_end> line,16,9 <curve_end> line,16,13 <curve_end> line,46,13 <curve_end> line,46,9 <curve_end> line,53,9 <curve_end>
line,53,16 <curve_end> line,49,16 <curve_end> line,49,46 <curve_end> line,53,46 <curve_end> line,53,53 <curve_end> line,46,53
<curve_end> line,46,49 <curve_end> line,16,49 <curve_end> line,16,53 <curve_end> line,9,53 <curve_end> line,9,46 <curve_end> line,13,46
<curve_end> line,13,16 <curve_end> line,9,16 <curve_end> <loop_end> <face_end> <sketch_end> add,31,39,31,31,31,1,0,0,0,0,1,0,-
1,0,31,48,14 <extrusion_end>

arc,7,28,31,11 <curve_end> line,55,28 <curve_end> arc,51,51,31,44 <curve_end> line,11,51 <curve_end> <loop_end>
circle,26,28,31,22,36,28,31,33 <curve_end> <loop_end> <face_end> <sketch_end> add,31,47,31,31,31,1,0,0,0,0,1,0,-1,0,50,31,41
<extrusion_end>

line,9,9 <curve_end> line,53,9 <curve_end> line,53,53 <curve_end> line,9,53 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,39,31,31,31,1,0,0,0,1,0,0,0,1,62,31,31 <extrusion_end> line,11,7 <curve_end> line,11,55 <curve_end> line,51,55 <curve_end> line,51,7
<curve_end> <loop_end> <face_end> <sketch_end> add,31,37,31,31,39,1,0,0,0,1,0,0,0,1,42,31,31 <extrusion_end>

arc,20,9,31,2 <curve_end> line,42,9 <curve_end> arc,42,11,42,13 <curve_end> line,40,14 <curve_end> arc,36,15,35,16 <curve_end>
line,35,17 <curve_end> arc,35,21,34,23 <curve_end> line,35,24 <curve_end> line,35,49 <curve_end> arc,35,56,31,60 <curve_end> line,27,56
<curve_end> line,27,49 <curve_end> arc,27,23,28,22 <curve_end> line,27,21 <curve_end> arc,27,17,27,16 <curve_end> line,26,15
<curve_end> arc,22,14,20,13 <curve_end> line,20,11 <curve_end> <loop_end> circle,28,8,31,6,34,8,31,11 <curve_end> <loop_end>
circle,29,52,31,50,33,52,31,55 <curve_end> <loop_end> <face_end> <sketch_end> add,31,32,31,31,31,1,0,0,0,1,0,0,0,1,28,26,45
<extrusion_end>

circle,9,31,31,9,53,31,31,53 <curve_end> <loop_end> <face_end> <sketch_end> add,31,57,31,31,31,1,0,0,0,0,1,0,-1,0,23,31,31
<extrusion_end> line,8,30 <curve_end> line,25,10 <curve_end> line,50,12 <curve_end> line,54,32 <curve_end> line,37,52 <curve_end>
line,12,50 <curve_end> <loop_end> <face_end> <sketch_end> add,31,41,31,31,31,1,0,0,0,0,1,0,-1,0,37,31,31 <extrusion_end>

line,2,20 <curve_end> line,2,42 <curve_end> line,31,42 <curve_end> line,60,42 <curve_end> line,60,20 <curve_end> line,31,20 <curve_end>
<loop_end> circle,9,31,15,25,21,31,15,37 <curve_end> <loop_end> circle,41,31,47,25,53,31,47,37 <curve_end> <loop_end> <face_end>
<sketch_end> add,31,46,31,31,31,1,0,0,0,0,1,0,-1,0,47,31,31 <extrusion_end>

arc,0,31,3,28 <curve_end> line,6,31 <curve_end> arc,56,31,59,28 <curve_end> line,62,31 <curve_end> line,62,34 <curve_end> line,0,34
<curve_end> <loop_end> <face_end> <sketch_end> add,31,36,31,31,31,1,0,0,0,1,0,0,0,1,22,14,34 <extrusion_end>

line,4,14 <curve_end> line,58,14 <curve_end> line,58,48 <curve_end> line,4,48 <curve_end> <loop_end> line,19,21 <curve_end> line,22,21
<curve_end> line,22,26 <curve_end> line,19,26 <curve_end> <loop_end> line,21,36 <curve_end> line,25,36 <curve_end> line,25,40
<curve_end> line,21,40 <curve_end> <loop_end> circle,43,31,48,26,53,31,48,36 <curve_end> <loop_end> <face_end> <sketch_end>
add,31,43,31,31,31,1,0,0,0,1,0,0,0,1,26,14,42 <extrusion_end>

line, 7,11 <curve_end> line,31,11 <curve_end> line,55,11 <curve_end> line,55,27 <curve_end> line,36,27 <curve_end> line,36,35
<curve_end> line,55,35 <curve_end> line,55,51 <curve_end> line,31,51 <curve_end> line,7,51 <curve_end> line,7,35 <curve_end> line,21,35
<curve_end> line,21,27 <curve_end> line,7,27 <curve_end> <loop_end> <face_end> <sketch_end> add,31,45,31,31,31,1,0,0,0,0,1,0,-
1,0,28,14,45 <extrusion_end>

¢ Text-to-CAD Rendering

3

®

SN N O
\\\\ \
41 \\’

(10) (11)

xz

(6)

>’

(12)

U] ®)

Figure 17: Unconditional CAD generation. Here, users can generate CAD models without any
conditional limitations.

24

	Introduction
	Related Work
	Methodology
	Representing CAD as Structured Text
	Fine-tuning LLMs with Hierarchy-Aware Mask Prediction

	Experiments
	Experimental Setup
	Performance Comparision with Existing Methods
	Enabling More Controllable Generation Tasks
	Ablation Studies

	Conclusion
	Additional Implementation Details and Analysis
	Meaning of Numbers in The CAD Text.
	Detailed Results for Human Evaluation
	Quantitative results for Other Hierarchies
	Sensitivity Analysis of Key Hyper-parameters in Sampling
	Unconditional Generation Task
	Limitations and Future Work

