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Abstract

Classical estimators, the cornerstones of statistical inference, face insurmountable challenges
when applied to important emerging classes of Archimedean copulas. These models exhibit
pathological properties, including numerically unstable densities, a restrictive lower bound
on Kendall’s tau, and vanishingly small likelihood gradients, rendering methods like Max-
imum Likelihood (MLE) and Method of Moments (MoM) inconsistent or computationally
infeasible. We introduce IGNIS, a unified neural estimation framework that sidesteps
these barriers by learning a direct, robust mapping from data-driven dependency measures
to the underlying copula parameter θ. IGNIS utilizes a multi-input architecture and a
theory-guided output layer (softplus(z) + 1) to automatically enforce the domain constraint
θ̂ ≥ 1. Trained and validated on four families (Gumbel, Joe, and the numerically challenging
A1/A2), IGNIS delivers accurate and stable estimates for real-world financial and health
datasets, demonstrating its necessity for reliable inference in modern, complex dependence
models where traditional methods fail.

1 Introduction

Maximum Likelihood Estimation (MLE), a pillar of statistical inference, is the gold standard for parameter
estimation due to its desirable asymptotic properties. Its efficacy, however, is predicated on well-behaved
likelihood functions. In the domain of dependence modeling using copulas (Nelsen, 2006), this assumption
can dramatically fail. For a growing class of flexible and important models, such as the novel A1 and A2
Archimedean copulas (Aich et al., 2025), the likelihood function exhibits pathological properties that render
classical estimation methods inconsistent, unstable, or computationally infeasible. This issue is not isolated;
numerical challenges in copula estimation are a known and significant concern in high-stakes applications
like quantitative risk management (Hofert et al., 2013).

Our analysis of these challenging models reveals three fundamental barriers that make classical estimation
untenable:

1. Numerical Instability from Boundary Singularities: The copula density function, which is
required for MLE, explodes near the boundaries of the unit hypercube due to ill-behaved genera-
tor derivatives (e.g., with singularities of order O(t−3)), leading to floating-point overflow during
computation.

2. Inapplicable Dependence Range: For MoM to be viable, a model’s theoretical range of de-
pendence must cover the empirical dependence of the data. The A1 and A2 families are severely
limited in this regard, as their range for Kendall’s τ begins at approximately 0.54518, making them
incapable of modeling the weak or moderate dependence prevalent in many real-world datasets.

3. Vanishing Gradients and Hessian Decay: For even moderately large values of θ, the log-
likelihood surface becomes pathologically flat. The score function decays polynomially to zero (e.g.,
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O(θ−8)), causing gradient-based optimizers to stall prematurely. Second-order information decays
even faster, rendering Newton-like methods useless.

Recent deep learning approaches have shown immense promise in statistics, but have not addressed this
specific estimation problem. The state-of-the-art has largely focused on generative tasks, such as learning
new copula generators from scratch (Ling et al., 2020; Ng et al., 2021) or modeling highly complex, high-
dimensional dependence structures (Ng et al., 2022). However, the fundamental problem of robust parameter
estimation for known, specified families that exhibit the aforementioned pathologies remains a critical open
gap. To fill this gap, we introduce IGNIS, a unified neural estimation framework that sidesteps the pitfalls
of classical methods entirely.

Classical copula estimation︸ ︷︷ ︸
MoM, MLE, MPL

Pathological Failures

−→ Existing Neural Copulas︸ ︷︷ ︸
Generative Focus

No Parameter Estimation Tool

−→ This Work︸ ︷︷ ︸
IGNIS: Robust, Unified

Parameter Estimator

IGNIS learns a direct mapping from a vector of robust, data-driven summary statistics to the underlying
copula parameter θ. Our main contributions are:

1. The identification and formal analysis of three critical optimization barriers that cause classical
estimators to fail for an important class of copula models.

2. The design and implementation of IGNIS, a unified neural architecture that learns a robust estima-
tion function and enforces theoretical parameter constraints (θ̂ ≥ 1) via a custom output layer.

3. A comprehensive validation on simulated and real-world data, demonstrating that IGNIS provides
accurate and stable estimates precisely in the regimes where traditional methods break down.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3 presents the
notations used in the paper. Section 4 presents necessary preliminaries. Section 5 provides motivation for
our work. Section 6 details the IGNIS architecture and training protocol. Section 7 presents the simulation
results for IGNIS, and Section 8 demonstrates real-data applications. Finally, Section 9 concludes and
outlines future research directions.

2 Related Work

Our work builds upon two distinct streams of literature: classical parameter estimation for copulas and the
emerging field of deep learning for statistical modeling.

2.1 Classical Estimation and its Limitations

Parameter estimation for Archimedean copulas has traditionally been approached via two main routes. The
Method of Moments (MoM), particularly using Kendall’s τ or Spearman’s ρ, is valued for its computational
simplicity and circumvention of the likelihood function (Genest & Rivest, 1993). However, both A1 and A2
have a high lower bound for Kendall’s τ (8 ln 2 − 5 ≈ 0.54518), which makes MoM inapplicable to many
real datasets with weaker dependence.

The second route is Maximum Likelihood Estimation (MLE) or its semi-parametric variant, Maximum
Pseudo-Likelihood (MPL) (Genest et al., 1995). While asymptotically efficient, MLE requires computing
the copula density, which can be analytically complex and numerically unstable. Efforts by (Hofert et al.,
2011) derived explicit generator derivatives to make MLE more feasible for standard families. Yet, subsequent
large-scale studies confirmed that even with these advances, classical estimators face significant numerical
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challenges and potential unreliability, especially in high dimensions or for complex models (Hofert et al.,
2013). The A1 and A2 families are prime examples where these numerical pathologies become insurmountable
barriers, necessitating a new approach.

2.2 Deep Learning Approaches to Copula Modeling

The recent intersection of deep learning and copula modeling has been dominated by powerful generative
approaches that learn or approximate the generator function itself, rather than estimating parameters of
a pre-defined family. For instance, ACNet (Ling et al., 2020) introduced a neural architecture to learn
completely monotone generator functions, enabling the approximation of existing copulas and the creation
of new ones. Similarly, (Ng et al., 2021) proposed a generative technique using latent variables and Laplace
transforms to represent Archimedean generators, scaling to high dimensions. Other work has focused on
non-parametric inference for more flexible classes like Archimax copulas, which are designed to model both
bulk and tail dependencies (Ng et al., 2022).

While these methods represent the state-of-the-art in constructing flexible, high-dimensional dependence
models, they do not address the targeted problem of estimating the parameter θ for a specified family,
especially when that family exhibits the estimation pathologies we have identified. Broader work on Physics-
Informed Neural Networks (PINNs) has shown the power of deep learning for solving problems with known
physical constraints (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018), but a specialized framework for
constrained parameter estimation in statistically challenging copula models has been a missing piece. IGNIS
is designed specifically to fill this gap, providing a discriminative estimator that is robust, constraint-aware,
and applicable across multiple families where classical methods fail.

3 Notation

Throughout our analysis, we employ a consistent set of symbols. The core parameter of an Archimedean
copula is denoted by θ ∈ [1,∞), with its estimate from our framework being θ̂. The copula function itself is
C(u, v), constructed via a generator function, ϕ(t), and its inverse, ϕ−1(s). To ensure clarity, we distinguish
this from its corresponding probability density function, c(u, v). In theoretical contexts (Appendix C), the
standalone uppercase letter C denotes the copula family, while subscripted variants (e.g., Ck) represent
constants within proofs. For the Method of Moments, we use the theoretical Kendall’s tau, denoted by τ .

Our neural network framework, IGNIS, is trained on a dataset of N examples. Each example is an input
vector x ∈ R9. This vector is a concatenation of two components: a 5-dimensional vector of continuous
summary features, f ∈ R5, and a 4-dimensional one-hot vector indicating the copula family, c ∈ {0, 1}4. The
feature vector f is comprised of five empirical dependency measures calculated from a data sample of size n:
Kendall’s tau (τn), Spearman’s rho (ρn), the Pearson correlation coefficient (rn), and coefficients of upper
(λupper,n) and lower (λlower,n) tail dependence.

The neural network has D layers and is trained to minimize a mean squared error loss function L(θ) by
adjusting its weights and biases using the Adam optimizer with a learning rate η. For the theoretical
consistency proof presented in Appendix C, the feature vector is denoted by Tn, and the set of all possible
feature vectors is the feature space T .

4 Preliminaries

4.1 Copulas and Dependency Modeling

Copulas are statistical tools that model dependency structures between random variables, independent of
their marginal distributions. Introduced by Sklar (1959), they provide a unified approach to capturing joint
dependencies. Archimedean copulas, known for their simplicity and flexibility, are defined using a generator
function, making them particularly effective for modeling bivariate and multivariate dependencies.
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4.2 The A1 and A2 Copulas

Like all Archimedean copulas, the novel A1 and A2 copulas (Aich et al., 2025) are defined through generator
functions ϕ(t) that are continuous, strictly decreasing, and convex on [0, 1], with ϕ(1) = 0. The A1 and A2
copulas extend the Archimedean copula framework to capture both upper and lower tail dependencies more
effectively. In general, an Archimedean copula is given by:

C(u, v) = ϕ−1(
ϕ(u) + ϕ(v)

)
. (1)

For the A1 copula, the generator and its inverse are defined as:

ϕA1(t; θ) =
(
t1/θ + t−1/θ − 2

)θ

, θ ≥ 1, (2)

ϕ−1
A1(t; θ) =

 t
1/θ + 2−

√(
t1/θ + 2

)2
− 4

2


θ

, θ ≥ 1. (3)

Similarly, for the A2 copula:

ϕA2(t; θ) =
(1− t

t

)θ

(1− t)θ, θ ≥ 1, (4)

ϕ−1
A2(t; θ) =

t1/θ + 2−
√(

t1/θ + 2
)2
− 4

2 , θ ≥ 1. (5)

The exact formula of the Kendall’s τ for A1 and A2 copulas are given by (See Appendix A for full derivations)

τA1 = 3 + 4θ
[
ψ(θ)− ψ

(
θ + 1

2

)]
, (6)

τA2 = 1− 6− 8 ln 2
θ

. (7)

While Eq. 6 is complex, it can be shown that τA1(θ) is strictly monotone increasing on its entire domain of
θ ≥ 1; a formal proof is provided in the Appendix A.

Both copulas are parameterized by θ ≥ 1, which governs the strength and nature of the dependency. The dual
tail-dependence structure of A1 and A2 copulas is particularly valuable for modeling extreme co-movements
in joint distributions. In financial risk management, they can capture simultaneous extreme losses (lower-tail)
and windfall gains (upper-tail), improving estimates of portfolio tail risk. In anomaly detection, they identify
coordinated extreme events (e.g., simultaneous sensor failures in industrial systems or cyber attacks across
networks) by quantifying asymmetric tail dependencies. This flexibility makes them superior to single-tailed
copulas e.g., Clayton (captures only lower tails) and Gumbel (captures only upper tail) in scenarios where
both tail behaviors are critical.

4.3 Simulation from Archimedean Copulas

In this section, we present an algorithm introduced by Genest & Rivest (1993) to generate an observation
(u, v) from an Archimedean copula C with generator ϕ.

The above algorithm is a consequence of the fact that if U and V are uniform random variables with an
Archimedean copula C, then W = C(U, V ) and S = ϕ(U)

ϕ(U)+ϕ(V ) are independent, S is uniform (0, 1), and
the distribution function of W is K. In our implementation, the inverse function K−1(y) is computed
numerically using a robust root-finding algorithm (specifically, the bisection method).
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Algorithm 1 Bivariate Archimedean Copula Sampling (Genest et al., 1993)
Require: Generator ϕ, its derivative ϕ′, inverse ϕ−1

Ensure: A single draw (u, v) from the copula
1: Draw s, t

iid∼ Uniform(0, 1)
2: Define

K(x) = x − ϕ(x)
ϕ′(x) , K−1(y) = sup{x | K(x) ≤ y}

3: Compute w ← K−1(t)
4: Compute

u ← ϕ−1(
s ϕ(w)

)
, v ← ϕ−1(

(1− s)ϕ(w)
)

5: return (u, v)

4.4 Method of Moments Estimation

The Method of Moments (MoM) is a classical statistical technique for parameter estimation, where theo-
retical moments of a distribution are equated with their empirical counterparts. In the context of copula
modeling, MoM is particularly advantageous when direct likelihood-based estimation is challenging due to
the complexity of deriving tractable probability density functions.

In this work, we derive exact analytical formulas for Kendall’s τ for both A1 and A2 copulas (see Appendix A).
These formulas establish a direct relationship between Kendall’s τ and the copula parameter θ, allowing for
robust parameter estimation. By inverting this relationship, we develop MoM estimators for θ, providing a
practical approach for modeling dependencies in scenarios where traditional methods like MLE and MPL
may be ineffective. However, in Section 5, we see that for both A1 and A2, MoM is not efficent.

5 Motivation

5.1 Limitations in Parameter Estimation Using Method of Moments

The Method of Moments (MoM), which works by inverting a measure of dependence like Kendall’s τ , is
a cornerstone of classical estimation. However, its use is predicated on a simple condition: the theoretical
range of a copula family’s τ must be able to represent the empirical τ calculated from a dataset. For many
common families, this is not an issue, as their dependence range starts at or near independence (τ = 0).

The A1 and A2 copulas, however, present a fundamental barrier to this approach. As derived in Appendix A,
both families share the same high lower bound for Kendall’s tau of 0.54518.

This high lower bound makes both families practically inapplicable for a vast number of real-world datasets
that exhibit weak or moderate dependence. As shown in Table 1, the A1 and A2 copulas are significant
outliers, unable to model any dependence weaker than τ ≈ 0.54518. Consequently, for any dataset with an
empirical tau below this value, MoM estimation is not merely inaccurate, it is impossible. This motivates
the need for a robust estimation framework like IGNIS that can bypass these classical limitations.

Table 1: Comparison of Theoretical Kendall’s τ Ranges for Common Copula Families.

Copula Family Theoretical Range of Kendall’s τ
Gumbel [0, 1)
Joe [0, 1)
A1 [0.54518, 1)
A2 [0.54518, 1)

Applicability. For A1/A2, MoM based on Kendall’s τ is defined only when the empirical τn lies in the family’s
range [0.54518, 1); otherwise the moment equation has no solution. This restriction does not affect IGNIS.
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It is also to be noted that the injectivity property of the copula generator function guarantees that each
distinct value of the parameter θ produces a unique copula, ensuring the mathematical validity of the model
which is true for A1 (See Appendix B).

We wish to further clarify that the fragility of MoM for the A1 and A2 family is not tied to a general notion
of “high dependence,” but to a specific mathematical requirement of its Kendall’s τ -based implementation.
The method is only viable if a dataset’s empirical Kendall’s τ exceeds the A1 or A2 family’s uniquely high
theoretical lower bound of approximately 0.54518. As most standard copulas (e.g., Gumbel, Joe) can model
dependence starting from τ = 0, this makes the A1 and A2 copula’s MoM estimator uniquely fragile and
inapplicable to many real-world datasets that exhibit moderate dependence.

5.2 Limitations in Parameter Estimation Using Maximum Likelihood and Maximum
Pseudo-Likelihood

While the Method of Moments faces fundamental limitations with A1/A2 copulas, classical likelihood-based
approaches, Maximum Likelihood Estimation (MLE) and Maximum Pseudo-Likelihood (MPL), prove equally
problematic due to pathological properties of the generator functions. The non-standard forms of ϕA1 and
ϕA2 induce three critical optimization barriers (See Appendix D for full derivations).

5.2.1 Three Critical Optimization Barriers

1. Numerical Instability in Density Calculations As t → 0+ (with θ fixed), the second derivatives
of the generators blow up: ∣∣ϕ′′

A1(t)
∣∣ ∼ O(

t−3)
,

∣∣ϕ′′
A2(t)

∣∣ ∼ O(
t−θ−2)

.

(See Figures 1a & 1b.) Hence the copula density

c(u, v) = ∂2

∂u ∂v
C(u, v)

overflows once
A1: t < ε

1/3
mach, A2: t < ε

1/(θ+2)
mach ,

with εmach ≈ 2.22× 10−16.

2. Vanishing Gradients (Score-Decay) As θ → ∞ (with t ∈ (0, 1) fixed), the log-likelihood score
decays: ∣∣∂θℓ(θ)

∣∣ =
{
O

(
n θ−8)

, A1,
O

(
n θ−3)

, A2.

Thus it falls below any fixed tolerance εgrad once

n θ−k < εgrad,

which for εgrad = 10−6 and n = 1000 yields

θA1
crit ≈ 8.2, θA2

crit ≈ 126.

(See Figures 1c & 1d.)

3. Hessian Decay (Barrier 3) Again as θ →∞ (with t fixed), the scalar Hessian decays even faster:

∣∣∂2
θℓ(θ)

∣∣ =
{
O

(
n θ−9)

, A1,
O

(
n θ−4)

, A2.

In double precision (εmach ≈ 2.22× 10−16) this underflows once

n θ−9 < εmach =⇒ θ >
(

n
εmach

)1/9
≈ 1.2× 102,
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n θ−4 < εmach =⇒ θ >
(

n
εmach

)1/4
≈ 4.6× 104.

(See Figures 1e & 1f.)

Figure 1 helps with the visualization of the three barriers.

(a) A1 copula boundary instability (b) A2 copula boundary instability

(c) A1 copula likelihood surface (d) A2 copula likelihood surface

(e) A1 copula Hessian condition (f) A2 copula Hessian condition

Figure 1: Numerical challenges in copula estimation: (a,b) boundary instabilities, (c,d) flat likelihood regions,
and (e,f) ill-conditioned Hessian matrices for A1 and A2 copulas respectively.

Hybrid approaches, using MoM to initialize MLE/MPL, remain infeasible as well since for both A1 and
A2, the theoretical bound τ > 0.54518 quite often excludes common datasets because of its relative high
lower τ bound value compared to other copulas. Also, and the likelihood surface becomes unusually flat for
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moderate–large θ, undermining gradient-based refinement. these structural limitations necessitate bypassing
both moment inversion and likelihood optimization, motivating our neural framework IGNIS.

The pathologies discussed above raise a crucial question: are these not indicators of fundamentally flawed
models? We argue that this perspective is precisely what motivates our work. The A1 and A2 copulas offer
unique theoretical advantages, such as capturing dual tail-dependence, but their “questionable properties",
a flat likelihood surface and a restrictive theoretical range for Kendall’s τ are the very barriers that make
them unusable with classical methods. The goal of this paper is not to defend these models as universally
optimal, but rather to introduce the first viable estimation framework that makes them accessible for practical
application and empirical critique. By developing IGNIS, we provide the necessary tool for researchers to
finally apply these models to real-world data and investigate the practical implications of their unusual
theoretical structures, a task that was previously computationally infeasible.

6 Methodology: IGNIS Network

Named after the Latin word for “fire,” the IGNIS Network is a unified neural estimator for four Archimedean
copula families (Gumbel, Joe, A1, A2), each with the same parameter domain θ ≥ 1.

Reproducibility: All experiments use a fixed seed (123) applied globally across Python’s random module,
NumPy, TensorFlow, and PyTorch to ensure full computational reproducibility. Code runs on Python 3.11
with TensorFlow 2.19, SciPy 1.15.3, and scikit-learn 1.6.1.

Input Representation: Each example is a 9-D vector x = [f ; c], where

1. f ∈ R5 consists of five dependency measures: empirical Kendall’s τ , Spearman’s ρ, upper tail-dependence
at the 0.95 quantile (λupper), lower tail-dependence at the 0.05 quantile (λlower), and the Pearson correlation
coefficient (r).

2. c ∈ {0, 1}4 is a one-hot encoded vector identifying the copula family.

Network Architecture: Let x ∈ R9. We apply:

h1 = ReLU(W1x+ b1), (128)
h2 = ReLU(W2h1 + b2), (128)
h3 = ReLU(W3h2 + b3), (64)

θraw = W4h3 + b4 ∈ R.

A softplus activation plus 1 enforces θ̂ ≥ 1:

θ̂ = softplus(θraw) + 1.

Figure 2 illustrates this flow.

Training Data Generation: For each family, we sample 500 θ values uniformly from the range [1, 20].
For each θ, we simulate n = 5, 000 pairs (U, V ) using Algorithm 1(Section 4.3), compute the five summary
features for the vector f , and concatenate the corresponding one-hot vector c. This process yields a total of
500× 4 = 2000 training examples.

Feature Scaling: We standardize all 9-D inputs using scikit-learn’s StandardScaler. The scaler is fitted
only on the training data split and then applied to transform both the validation and test sets. We note
that while standardizing the one-hot encoded portion of the input vector is not strictly necessary, we do so
here for pipeline uniformity; this linear transformation has no adverse effect on the model’s performance.

Hyperparameters: In Table 2 we see that training uses MSE loss with Adam (Kingma & Ba, 2015)
(5× 10−4), batch size 32, max 200 epochs, early stopping (patience 20 on 20% validation).

Uncertainty Quantification in Simulations: To rigorously evaluate the stability of the IGNIS estimator
in our simulation studies, we employed a replication-based approach. For each copula family and each
true θ value, the entire data generation and estimation process was repeated 100 times. This produced a
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Table 2: Key Hyperparameters

Hyperparameter Value
Batch size 32
Learning rate 5× 10−4

Optimizer Adam
Max epochs 200
Early-stop patience 20
Train/val split 80/20
Simulation replications 100
Bootstrap replicates (real data) 100

distribution of 100 independent point estimates (θ̂). The standard deviation of this distribution serves as a
direct and robust measure of the estimator’s precision.

Implementation Details: IGNIS is implemented in TensorFlow/Keras with He-uniform initialization for
all Dense layers. All training was performed on an NVIDIA GeForce RTX 4060 Laptop GPU.

Theoretical Soundness: One-hot encoding ensures family identifiability. Under regularity conditions
(Appendix C), θ̂ p→ θ. The softplus+1 transform guarantees θ̂ ∈ [1,∞).

Figure 2 illustrates the IGNIS architecture. A 9-D input vector (five dependency measures + 4-D one-
hot family ID) is processed by three fully connected layers (128–128–64 ReLU, He-uniform), and a final
softplus+1 activation guarantees θ̂ ≥ 1.

Input Layer
9-D Vector

(f ∈ R5, c ∈ {0, 1}4)

Dense (128)
ReLU

Dense (128)
ReLU

Dense (64)
ReLU Dense (1) θ̂

(Final Estimate)

Softplus + 1Features (f):
- Kendall’s τ
- Spearman’s ρ
- Upper Tail Dep.
- Lower Tail Dep.
- Pearson r

Figure 2: The updated IGNIS Architecture. A 9-D input vector (five dependency measures, f , and a 4-D
one-hot family identifier, c) is processed by three ReLU-activated hidden layers. A final dense layer followed
by a Softplus+1 activation enforces the constraint θ̂ ≥ 1.

7 Simulation Studies for IGNIS

The same simulation setup described in Section 6 is followed here for θ = {2.0, 5.0, 10.0, 15.0, 20.0}.

Table 3 show performance of the IGNIS network on simulated data.

Key observations: Table 3 provides a comprehensive performance evaluation of the IGNIS estimator across
a wide spectrum of dependence levels, from weak (θ = 2.0) to extreme (θ = 20.0). For a broad and practical
operational range (approximately θ ∈ [2, 15]), the estimator demonstrates excellent properties. The Bias is
consistently low, and the Root Mean Squared Error (RMSE) is driven almost entirely by the estimator’s low
variance (Std. Dev.), indicating both high accuracy and precision.

At the extreme end of the tested range (θ = 20.0), which represents a region of intense dependence where
classical methods are computationally infeasible, IGNIS maintains high precision for all families but exhibits a
notable underestimation bias for the most challenging A1 and A2 copulas. For the A1 family, this bias (−1.52)
becomes the dominant component of the RMSE. This detailed analysis validates IGNIS as a robust and
reliable estimator for a wide array of practical scenarios while also rigorously characterizing its operational
boundaries. This provides a clear and honest performance benchmark for the first viable estimation tool for
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Table 3: IGNIS Network Performance Metrics from Simulation Study. Each metric is calculated based on
test datasets of size n = 5, 000.

Copula True θ Est. θ Bias Std. Dev. (100 Runs) RMSE
θ = 2.0

Gumbel 2 2.12 0.12 0.05 0.13
Joe 2 1.96 −0.04 0.06 0.07
A1 2 1.97 −0.03 0.10 0.11
A2 2 1.91 −0.09 0.08 0.13

θ = 5.0
Gumbel 5 5.15 0.15 0.19 0.24
Joe 5 5.05 0.05 0.10 0.11
A1 5 5.10 0.10 0.12 0.16
A2 5 4.97 −0.03 0.13 0.13

θ = 10.0
Gumbel 10 10.17 0.17 0.17 0.24
Joe 10 9.92 −0.08 0.18 0.20
A1 10 10.10 0.10 0.26 0.28
A2 10 10.05 0.05 0.21 0.22

θ = 15.0
Gumbel 15 15.16 0.16 0.27 0.31
Joe 15 14.77 −0.23 0.27 0.35
A1 15 15.34 0.34 0.22 0.40
A2 15 15.58 0.58 0.21 0.62

θ = 20.0
Gumbel 20 19.51 −0.49 0.27 0.56
Joe 20 19.90 −0.10 0.32 0.34
A1 20 18.48 −1.52 0.19 1.53
A2 20 18.89 −1.11 0.24 1.13

these complex families. To provide further objective validation of our estimator’s quality, we present a out
of sample log-likelihood comparison between IGNIS and MoM estimates in Table 4.

7.1 Out-of-sample log-likelihood comparison (IGNIS vs MoM)

We compare the out-of-sample log-likelihood achieved on held-out data when plugging in point estimates
from IGNIS and from the Method of Moments (MoM). For each setting we simulate n = 5,000 pairs
using Algorithm 1, evaluate both estimators’ fixed θ̂ on the same held-out sample (no re-optimization), and
average over 100 replications.

To ensure numerical stability for A1/A2, we evaluate the copula density using the standard Archimedean
identity (via the inverse-function theorem; see, e.g., Nelsen (2006); Joe (2014)):

c(u, v) = ψ′′(w)ϕ′(u)ϕ′(v), w = ϕ−1(ϕ(u) + ϕ(v)
)
,

with
ψ′′(w) = − ϕ′′(w)

{ϕ′(w)}3 .

Because ϕ′(t) < 0 for Archimedean generators, we implement this as (−ϕ′(u))(−ϕ′(v)) so all multiplicative
factors inside the log are positive. We then work entirely in log-space, clip pseudo-observations to (ε, 1− ε)
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(slightly stronger ε for A1), use analytic safe inverses with a floored discriminant, and floor positive factors
entering logs at 10−300 (numerical recommendations in Hofert et al. (2013)).

Table 4: Averaged out-of-sample log-likelihood on held-out samples for A1 and A2. Each entry averages 100
replications with n = 5,000 pairs. ∆ is IGNIS − MoM.

True θ Copula Mean LL (MoM) Mean LL (IGNIS) ∆ (IGNIS-MoM)
2.0 A1 5128.00 5128.92 0.92
2.0 A2 5496.19 5498.02 1.83
5.0 A1 9534.16 9532.97 -1.19
5.0 A2 10015.15 10015.58 0.44
10.0 A1 12976.38 12976.13 -0.25
10.0 A2 13480.20 13492.20 12.00

Takeaway. IGNIS and MoM attain virtually identical out-of-sample likelihoods whenever MoM is applicable.
Differences are numerically negligible (e.g., for A2 at θ=10, ∆=12 over 5,000 pairs≈ 0.0024 nats per sample).
Thus, IGNIS matches MoM in its valid regime while remaining usable when MoM is not when empirical
Kendall’s τ < 0.54518 for A1/A2.

8 Real-World Applications

We validate IGNIS using two distinct domains where copulas are widely applied: financial markets
(AAPL–MSFT stock returns) and public health (CDC Diabetes Dataset). These applications demonstrate
the network’s versatility across data types. For clarity, we emphasize this is an estimation methodology
demonstration, not a copula selection analysis.

The IGNIS network estimates θ through the following standardized workflow:

1. Data Preprocessing:
Financial Data: Attain stationarity via log-returns:

rt = log
(
Pt/Pt−1

)
,

where Pt are adjusted closing prices.
Healthcare Data: We use original variables (GenHlth, PhysHlth) without differencing.
For both domains, transform marginals to pseudo-observations via rank-based PIT:

ui = rank(xi)
n+ 1 , vi = rank(yi)

n+ 1 ,

yielding {(ui, vi)}n
i=1 ∈ [0, 1]2 with approximately uniform margins. We divide by n+1 following standard

practice for the empirical probability integral transform; this ensures the pseudo-observations lie strictly
within the open unit interval (0,1), avoiding potential numerical issues with copula functions at the bound-
aries.

2. Feature Extraction:
From the paired pseudo-observations, we compute five dependence measures: (1) Empirical Kendall’s τ , (2)
Spearman’s ρ, (3) upper tail-dependence λupper = 1

n

∑n
i=1 1{ui > 0.95, vi > 0.95}, (4) lower tail-dependence

λlower = 1
n

∑n
i=1 1{ui < 0.05, vi < 0.05}, and (5) the Pearson correlation coefficient. These form the feature

vector f ∈ R5.

3. Input Construction:
The feature vector f is concatenated with a one-hot encoded copula identifier c ∈ {0, 1}4 for the families
Gumbel, Joe, A1, and A2. This creates the final 9-dimensional input vector x = [f ; c]. This vector is then
standardized using the StandardScaler that was fitted on the simulated training data.

4. Theta Estimation:
The network architecture consists of three hidden layers with 128, 128, and 64 ReLU-activated units, each
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initialized using the He initialization scheme. The final layer applies a softplus activation followed by a unit
shift to guarantee that θ̂ ≥ 1. We train the IGNIS network using the Adam optimizer with a learning rate
of 5 × 10−4 and a mean-squared error loss function for 200 epochs. During training, 20% of the data are
held out for validation, and early stopping with a patience of 20 epochs is employed to prevent overfitting.

5. Uncertainty Quantification: To quantify the uncertainty of our estimates on the real-world datasets,
we perform a bootstrap procedure. For each dataset, we resample the pseudo-observations with replace-
ment B = 100 times. For each bootstrap resample, we recompute the five summary features and obtain a
corresponding estimate θ̂(b). The bootstrap standard error of θ̂ is then calculated as the sample standard
deviation of these bootstrap estimates:

ŜE(θ̂) = std
(
{θ̂(b)}B

b=1
)
.

Results for both applications are presented in Tables 5 and 6, following identical estimation protocols for
cross-domain comparability.

8.1 Dataset 1: AAPL-MSFT Returns Dataset

Source and Period: The dataset (Aroussi, 2024) comprises daily adjusted closing prices for two stocks,
AAPL and MSFT, obtained from yfinance library in Python. Data were collected for the period from
January 1, 2020 to December 31, 2023.

Variables: The primary variable of interest is the adjusted closing price for each ticker. This column (labeled
either as Adj Close or Close) reflects the price after accounting for corporate actions such as dividends and
stock splits.

Derived Measures: From the raw price data, daily log returns are computed. These log returns serve as
a proxy for the instantaneous rate of return and are stationary.

8.1.1 Estimation Results

Table 5 summarizes the parameter estimation.

Table 5: Estimated θ Values and Bootstrap Standard Errors from Financial Data

Copula Estimated θ Bootstrap SE(θ)
Gumbel 2.6755 0.2107

Joe 3.4592 0.3273
A1 1.3332 0.0756
A2 1.2140 0.0776

8.2 Dataset 2: CDC Diabetes Dataset

Source: We programmatically retrieved the CDC Diabetes Health Indicators dataset (UCI ML Repository
ID 891) using the ucimlrepo Python package (Centers for Disease Control and Prevention, 2023). The full
dataset contains 253,680 respondents and 21 original features; for our analysis we pulled only the two raw
columns GenHlth and PhysHlth.

Variables: From these two columns we constructed empirical pseudo-observations via the probability inte-
gral transform (PIT), i.e.

ui = rank(GenHlthi)
n+ 1 , vi = rank(PhysHlthi)

n+ 1 ,

where n = 253,680. These appear in our pipeline as:

1. GenHlth_pu: ui, the pseudo-value for general health

12
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2. PhysHlth_pu: vi, the pseudo-value for physical health

8.2.1 Estimation Results

Table 6 summarizes the parameter estimation.

Table 6: Estimated θ Values and Bootstrap Standard Errors from CDC Diabetes Data

Copula Estimated θ Bootstrap SE(θ)
Gumbel 1.4393 0.0031

Joe 2.6060 0.0064
A1 1.3941 0.0050
A2 1.2393 0.0024

8.3 Discussion of Application Results

The results from the financial and public health applications are presented in Tables 4 and 5, respectively.
For both datasets, the IGNIS network produces stable parameter estimates. The bootstrap standard errors,
which quantify the estimator’s variance, are consistently small. For instance, in the high-sample CDC
dataset, the SE values are exceptionally low (e.g., 0.0024 for the A2 copula), indicating that the learned
estimation function is robust to small perturbations in the input data and yields consistent results across
bootstrap resamples.

9 Conclusion and Future Work

In this paper, we confronted the critical failure of classical estimation methods when applied to an important
class of Archimedean copulas with pathological likelihoods. We demonstrated that numerical instabilities,
high Kendall’s τ values and vanishing gradients make traditional inference via Maximum Likelihood or
the Method of Moments inconsistent and computationally infeasible. To solve this, we introduced the
IGNIS Network, a deep learning framework that provides robust, constraint-aware parameter estimates
by learning a direct mapping from data-driven statistics. By leveraging a multi-layer architecture and a
theory-guided softplus+1 output layer, IGNIS delivers accurate and stable estimates for multiple copula
families, succeeding precisely where classical methods fail. Beyond methodological innovation, IGNIS has
broad practical implications: in extreme-value analysis, A1/A2’s dual tail-dependence structure enables
risk analysts to reliably model joint tail events (e.g., market crashes or insurance claims during natural
disasters), improving capital allocation and hedging strategies. In anomaly detection for industrial IoT
networks, it identifies coordinated failure patterns where sensors exhibit asymmetric tail dependencies. In
healthcare, it models comorbid extreme health episodes where patients experience simultaneous deterioration
of multiple health indicators. By solving the parameter estimation challenge for these advanced copulas,
IGNIS unlocks their potential for real-time risk assessment and multivariate anomaly detection
systems.

Despite these strengths, IGNIS has several limitations. First, our evaluation has been restricted to the class
of bivariate Archimedean families where theta greater than or equal to one. Integrating commonly used
generators with different parameter domains is a key direction for future work. For instance, the Clayton
family, with its full parameter domain of theta in [−1,∞) \ {0}, could be incorporated by modifying the
output layer (e.g., using a softplus(z) - 1 activation). Similarly, the Frank copula (theta in R\{0}) would
require its own architectural adaptation, such as using a scaled tanh activation to map to its broad real-
valued domain. Second, the current architecture handles only two-dimensional dependencies, so extending
to multivariate or nested copulas will require permutation-invariant or graph-based neural designs. Third,
reliance on a fixed set of four summary statistics may limit performance in small-sample or heavy-tailed
scenarios, suggesting that adaptive or richer feature representations could enhance robustness. Finally,
IGNIS assumes a known family identifier via one-hot encoding, leaving fully automated copula selection as
an open challenge.

13
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Looking ahead, we see several promising directions for future work. Incorporating Clayton, Frank, and other
Archimedean generators will broaden IGNIS’s applicability. High-dimensional extensions can be pursued
by designing architectures, such as DeepSets or attention-based graphs, that respect permutation symmetry
in multivariate dependence. To capture dynamic relationships, we plan to integrate recurrent or temporal-
attention modules that adapt to time-varying copulas. A comprehensive search for the optimal network
architecture, while beyond the scope of this paper, could also yield performance improvements. Addi-
tionally, an empirical ablation study comparing the performance of our unified model against separately
trained networks could offer further insights into architectural choices. We can use alternative features (e.g.,
Blomqvist’s β, Gini’s γ) in the future. Joint inference of copula family and parameter via mixture-of-experts
or multi-task learning would eliminate the need for a priori family tagging. Also, we plan to conduct a
rigorous comparative performance study between the IGNIS framework and global optimization methods,
such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GA). On the uncertainty front, em-
bedding Bayesian neural networks or deep ensembles can provide principled credible intervals for θ̂. Again,
exploring alternative summary features, such as higher-order tail-dependence coefficients or distance-based
metrics, may further improve estimation under challenging data regimes. Furthermore, exploring end-to-end
architectures that learn feature representations directly from raw pseudo-observations, rather than relying
on a fixed set of summary statistics, presents another promising avenue for future research. Together, these
extensions will help establish IGNIS as a comprehensive, data-driven toolkit for dependence modeling across
diverse applications.

Broader Impact Statement

The primary motivation for this work is to provide a positive methodological contribution to the statistics
and machine learning communities. By creating a reliable estimator, IGNIS, for complex copula models like
A1 and A2, we enable researchers and practitioners to use more appropriate and flexible models in fields like
financial risk management and public health analytics, which was previously computationally infeasible.

The main broader consideration is standard model risk. As with any powerful statistical tool, there is a
potential for misuse if it is applied without a proper understanding of its context. For example, a user
could generate a precise parameter estimate for a copula family that is fundamentally a poor fit for their
data, leading to a false sense of security. To mitigate this, we emphasize that IGNIS is a tool for parameter
estimation, not model selection, and must be used as part of a larger workflow that includes rigorous
goodness-of-fit testing.
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A Appendix: Full Derivation of Kendall’s τ for A1 and A2 Copulas

In this appendix, we derive explicit analytical expressions for Kendall’s τ for the novel Archimedean copulas
A1 and A2. These derivations form the theoretical basis for the Method-of-Moments estimation of the copula
parameter θ.

A.1 Derivation for the A1 Copula

For a general Archimedean copula with generator ϕ(t), Kendall’s τ is given by

τ = 1 + 4
∫ 1

0

ϕ(t)
ϕ′(t)dt.

For the A1 copula the generator is

ϕA1(t; θ) = (t1/θ + t−1/θ − 2)θ, θ ≥ 1.
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Step 1: Differentiation of ϕA1(t; θ). The derivative of the generator with respect to t is found using the
chain rule:

ϕ′
A1(t; θ) = θ(t1/θ + t−1/θ − 2)θ−1

[
1
θ
t1/θ−1 − 1

θ
t−1/θ−1

]
.

Cancelling the factor of θ, we get:

ϕ′
A1(t; θ) = (t1/θ + t−1/θ − 2)θ−1[t1/θ−1 − t−1/θ−1].

Step 2: Form the Ratio ϕA1/ϕ
′
A1. Taking the ratio of the generator and its derivative simplifies to:

ϕA1(t; θ)
ϕ′

A1(t; θ) = (t1/θ + t−1/θ − 2)θ

(t1/θ + t−1/θ − 2)θ−1[t1/θ−1 − t−1/θ−1]

= t1/θ + t−1/θ − 2
t1/θ−1 − t−1/θ−1 .

Further algebraic simplification shows that this expression is equivalent to:

ϕA1(t; θ)
ϕ′

A1(t; θ) = t(t1/θ − 1)
1 + t1/θ

.

Step 3: Change of Variables. To evaluate the integral, we set u = t1/θ, which implies t = uθ and
dt = θuθ−1du. Substituting these into the integral from the corrected ratio in Step 2 gives:

I(θ) =
∫ 1

0

ϕA1(t; θ)
ϕ′

A1(t; θ)dt =
∫ 1

0

t(t1/θ − 1)
1 + t1/θ

dt

=
∫ 1

0

uθ(u− 1)
1 + u

(θuθ−1)du

= θ

∫ 1

0

u2θ−1(u− 1)
1 + u

du

= θ

∫ 1

0

u2θ − u2θ−1

1 + u
du.

Step 4: Evaluate the Integral. The integral can be solved using a standard identity for the digamma
function, ψ(·), where:∫ 1

0

xa − xb

1 + x
dx = 1

2

[
ψ

(
a+ 2

2

)
− ψ

(
a+ 1

2

)
− ψ

(
b+ 2

2

)
+ ψ

(
b+ 1

2

)]
.

Setting a = 2θ and b = 2θ − 1, the integral part becomes:∫ 1

0

u2θ − u2θ−1

1 + u
du = 1

2

[
ψ(θ + 1)− ψ

(
θ + 1

2

)
− ψ

(
θ + 1

2

)
+ ψ(θ)

]
= 1

2

[
ψ(θ + 1) + ψ(θ)− 2ψ

(
θ + 1

2

)]
.

Using the recurrence relation ψ(θ + 1) = ψ(θ) + 1/θ, this simplifies to:

1
2

[
(ψ(θ) + 1

θ
) + ψ(θ)− 2ψ

(
θ + 1

2

)]
= ψ(θ)− ψ

(
θ + 1

2

)
+ 1

2θ .

Finally, we multiply by the leading factor of θ from Step 3:

I(θ) = θ

[
ψ(θ)− ψ

(
θ + 1

2

)
+ 1

2θ

]
= θ

[
ψ(θ)− ψ

(
θ + 1

2

)]
+ 1

2 .
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Step 5: Final Expression for A1. Substituting the correct integral value back into the formula for
Kendall’s τ , we obtain the final expression:

τA1 = 1 + 4I(θ) = 1 + 4
(
θ

[
ψ(θ)− ψ

(
θ + 1

2

)]
+ 1

2

)
.

This implies:

τA1 = 3 + 4θ
[
ψ(θ)− ψ

(
θ + 1

2

)]
.

A.2 Derivation for the A2 Copula

For the A2 copula, the generator is defined as

ϕA2(t; θ) =
(1
t
(1− t)2

)θ

, θ ≥ 1.

Following a similar differentiation process (details omitted here), one obtains

ϕA2(t; θ)
ϕ′

A2(t; θ) = t(t− 1)
θ (t+ 1) .

Thus, Kendall’s τ is given by

τA2 = 1 + 4
∫ 1

0

ϕA2(t; θ)
ϕ′

A2(t; θ) dt = 1 + 4
θ

∫ 1

0

t(t− 1)
t+ 1 dt.

Step 1: Evaluate the Integral Define

J =
∫ 1

0

t(t− 1)
t+ 1 dt.

Since
t(t− 1) = t2 − t,

we perform polynomial division of t2 − t by t+ 1. Dividing, we obtain

t2 − t
t+ 1 = t− 2 + 2

t+ 1 .

Thus,

J =
∫ 1

0

(
t− 2 + 2

t+ 1

)
dt.

Step 2: Integrate Term-by-Term We compute each integral:∫ 1

0
t dt = t2

2

∣∣∣∣1

0
= 1

2 ,∫ 1

0
dt = 1,∫ 1

0

1
t+ 1 dt = ln |t+ 1||10 = ln 2.

Hence,
J = 1

2 − 2 · 1 + 2 ln 2 = 1
2 − 2 + 2 ln 2 = −3

2 + 2 ln 2.

Step 3: Final Expression for A2 Substituting back into the expression for τA2, we have

τA2 = 1− 6− 8 ln 2
θ

.
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A.3 Strict monotonicity of τA1(θ)

τA1(θ) = 3 + 4θ[ψ(θ)− ψ(θ + 1
2)], θ ≥ 1.

Claim. τA1 is strictly increasing on [1,∞); moreover

τA1(1) = 8 ln 2− 5 ≈ 0.54518, lim
θ→∞

τA1(θ) = 1.

Proof. Set
f(θ) := ψ(θ)− ψ

(
θ + 1

2

)
.

A standard integral representation of the digamma function yields, for x > 0 and a > 0,

ψ(x)− ψ(x+ a) = −
∫ ∞

0

1− e−at

1− e−t
e−xtdt.

With a = 1
2 and x = θ we get

f(θ) = −
∫ ∞

0
H(t)e−θtdt, H(t) := 1− e−t/2

1− e−t
, t > 0.

Hence,

τA1(θ) = 3− 4θ
∫ ∞

0
H(t)e−θtdt. (A)

(i) Value at θ = 1. Using ψ(1) = −γ and ψ
( 3

2
)

= ψ
( 1

2
)

+ 2 = −γ − 2 ln 2 + 2,

τA1(1) = 3 + 4
[
ψ(1)− ψ

(
3
2

)]
= 3 + 4(2 ln 2− 2) = 8 ln 2− 5.

(ii) Limit as θ → ∞. Near t = 0, H(t) is continuous with H(0) := limt↓0
1−e−t/2

1−e−t = 1
2 . Since θe−θt is an

approximate identity on [0,∞),

θ

∫ ∞

0
H(t)e−θtdt −→ H(0) = 1

2 .

Taking this limit in (A) gives
lim

θ→∞
τA1(θ) = 3− 4 · 1

2 = 1.

(iii) Strict monotonicity on [1,∞). Differentiate (A):

τ ′
A1(θ) = 4(f(θ) + θf ′(θ)) = 4

∫ ∞

0
(θt− 1)H(t)e−θtdt. (B)

We now show the right-hand side is strictly positive for every θ > 0 (hence for θ ≥ 1).
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First, observe that H is strictly increasing on (0,∞). Indeed,

H ′(t) =
1
2e

−t/2(1− e−t)− e−t(1− e−t/2)
(1− e−t)2

=
1
2e

−t/2(1− e−t/2)2

(1− e−t)2

= 1
2

e−t/2

(1 + e−t/2)2 > 0.

Next, rewrite (B) by subtracting a zero term and integrating by parts in a monotone way. Since∫ ∞

0
(θt− 1)e−θtdt = 0,

∫ ∞

0
(θt− 1)H(t)e−θtdt =

∫ ∞

0
(θt− 1)[H(t)−H(0)]e−θtdt.

Write H(t)−H(0) =
∫ t

0 H
′(s)ds, interchange integrals, and evaluate the inner integral:∫ ∞

s

(θt− 1)e−θtdt = [−te−θt]∞t=s = se−θs.

Therefore, ∫ ∞

0
(θt− 1)H(t)e−θtdt =

∫ ∞

0
se−θsH ′(s)ds.

Since s > 0, e−θs > 0, and H ′(s) > 0 for all s > 0, the integrand is strictly positive on (0,∞), hence the
integral is strictly positive. Combining with (B),

τ ′
A1(θ) = 4

∫ ∞

0
se−θsH ′(s)ds > 0 (θ > 0).

In particular, τA1 is strictly increasing on [1,∞).

This completes the proof. □

Remark (explicit positive form). Using the closed form H ′(t) = 1
2e

−t/2/(1 + e−t/2)2, the derivative can
be written as

τ ′
A1(θ) = 2

∫ ∞

0

se−(θ+ 1
2 )s

(1 + e−s/2)2 ds > 0,

making strict positivity immediate.

B Appendix: Identifiability Proofs for A1 and A2 Copulas

B.1 A1 Copula Identifiability

For the A1 family, Kendall’s τ has the closed form

τA1(θ) = 3 + 4θ
[
ψ(θ)− ψ

(
θ + 1

2
)]
, θ ≥ 1,

and we showed in Appendix A.3 that τA1(θ) is strictly increasing on [1,∞). Hence if θ1 ̸= θ2 then τA1(θ1) ̸=
τA1(θ2), so the induced copulas C(·, ·; θ1) and C(·, ·; θ2) are distinct. Therefore, the parameter θ is identifiable
in the A1 family.
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B.2 A2 Copula Identifiability

For the A2 generator:

ϕA2(t; θ) =
(

(1− t)2

t

)θ

, θ ≥ 1,

assume ϕA2(t; θ1) = ϕA2(t; θ2) for all t ∈ (0, 1). Taking logarithms:

θ1 ln
(

(1− t)2

t

)
= θ2 ln

(
(1− t)2

t

)
.

For t ̸= 3−
√

5
2 (where (1−t)2

t ̸= 1), ln
(

(1−t)2

t

)
̸= 0. Hence:

(θ1 − θ2) ln
(

(1− t)2

t

)
= 0 =⇒ θ1 = θ2,

for all non-degenerate t, proving injectivity.

Both proofs rigorously establish that ϕθ1 = ϕθ2 =⇒ θ1 = θ2, ensuring parameter identifiability for A1 and
A2 copulas.

C Consistency proof for A1 and A2 copulas

Regularity Conditions. For every copula family in {Gumbel, Joe, A1, A2}, we assume:
1. Identifiability: The mapping θ 7→ T(θ) is injective within each family. In other words, if ϕθ1 = ϕθ2

then θ1 = θ2. (See (Nelsen, 2006) for the Gumbel and Joe copulas; for the A1/A2 families we have given the
proof in Appendix B.)
2.The generator ϕθ is continuously differentiable in θ.
3. Feature Continuity: The vector of summary features

Tn = (τn, ρn, λupper,n, λlower,n, rn)

is continuous in θ. Moreover, a standard lemma (established via Donsker’s theorem for copula processes)
shows that the empirical features converge uniformly to their population counterparts over the compact set
Θ.

Theorem 1 Assume the regularity conditions above hold and further suppose that:
1. Universal Approximation: There exists a neural network (NN) architecture that is dense in the space
C (Θ) of continuous functions on Θ; here, we assume that Θ and the feature space T are compact, as required
by Hornik’s theorem (Hornik, 1991).
2. Training Density: As the number of training samples Ntrain →∞, the training data become dense over
Θ.
3. Operational Regime: The number of real observations n→∞.
Then the IGNIS estimator satisfies

θ̂n
p−→ θ0 as n→∞.

Proof. The proof proceeds in five steps.

Step 1: Uniform Feature Convergence. By a standard lemma (which follows from Donsker’s theo-
rem (van der Vaart & Wellner, 1996) for copulas), the empirical summary features converge uniformly (in
probability) to the population features:

sup
θ∈Θ
∥Tn(θ)−T∞(θ)∥ p−→ 0.
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Step 2: Identifiability. Define the mapping g∗(T, C) as the true (population) function that maps the
summary features and the copula type C to the parameter θ, where C denotes the copula family. Then, by
the injectivity of θ 7→ T(θ) within each copula family (see above), if

g∗(T(1), C(1)) = g∗(T(2), C(2)),

it follows that (θ(1), C(1)) = (θ(2), C(2)).

Step 3: Universal Approximation. By the universal approximation theorem (Hornik, 1991), for any
ϵ > 0 there exist network parameters W such that

sup
(T,C)∈T ×C

∣∣fNN(T, C;W )− g∗(T, C)
∣∣ < ϵ,

where we assume that both Θ and the feature set T are compact.

Step 4: Training Risk Convergence. Let the mean squared error (MSE) loss be defined as

1
Ntrain

Ntrain∑
i=1

(
fNN(Ti, Ci;W )− θi

)2
.

By White’s Theorem (White, 1989), as Ntrain →∞ this training loss converges to zero.

Step 5: Operational Consistency. Define fNN(T∞, C) as the neural network applied to the population
features. Then, by a standard decomposition,∥∥fNN(Tn, C)− θ0

∥∥ ≤ ∥∥fNN(Tn, C)− fNN(T∞, C)
∥∥︸ ︷︷ ︸

(a)

+
∥∥fNN(T∞, C)− θ0

∥∥︸ ︷︷ ︸
(b)

.

Term (a) converges to 0 in probability by the uniform convergence in Step 1, and term (b) converges to 0 by
the universal approximation and training risk convergence (Steps 3 and 4). Therefore, by Slutsky’s theorem
(Slutsky, 1925),

θ̂n = fNN(Tn, C) p−→ θ0.

This completes the proof.

Practical Considerations

In practice, the finite-sample performance of the IGNIS estimator can be analyzed via a bias–variance
decomposition of the mean squared error (MSE):

E
[
(θ̂n − θ0)2

]
≤ K1 n

−1 + K2 N
−1
train + K3 ϵ

2,

where K1 n
−1 represents the estimation error due to finite sample size, K2 N

−1
train accounts for the approxima-

tion error from limited training data, and K3 ϵ
2 reflects the error due to the network architecture approxima-

tion. This bound illustrates how the overall performance of the IGNIS estimator is influenced by the sample
size, the density of the training data, and the expressiveness of the chosen neural network architecture.

D Pathological Properties of A1/A2 Copulas

Asymptotic regimes. In the analyses below we work in two distinct limits:

1. Density-blowup (Barrier 1): take t → 0+ with θ fixed, to capture the boundary singularity of
ϕ′′(t; θ).

2. Score- and Hessian-decay (Barriers 2 & 3): take θ → ∞ with t ∈ (0, 1) fixed, to derive the
O(θ−8), O(θ−3), O(θ−9), and O(θ−4) decay rates.
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D.1 Derivative Analysis and Computational Complexity

D.1.1 First and Second Derivatives of A1 Generator

For ϕA1(t; θ) =
(
t1/θ + t−1/θ − 2

)θ, let g(t) = t1/θ + t−1/θ − 2.

The first derivative is:

ϕ′
A1(t) = θg(t)θ−1g′(t)

where

g′(t) = 1
θ
t1/θ−1 − 1

θ
t−1/θ−1 = 1

θ
t−1/θ−1(

t2/θ − 1
)

The second derivative is:

ϕ′′
A1(t) = θ(θ − 1)g(t)θ−2[g′(t)]2 + θg(t)θ−1g′′(t)

where

g′′(t) = 1
θ

(
1
θ
− 1

)
t1/θ−2 + 1

θ

(
1
θ

+ 1
)
t−1/θ−2

D.1.2 First and Second Derivatives of A2 Generator

For ϕA2(t; θ) =
( 1−t

t

)θ (1− t)θ, we rewrite as:

ϕA2(t; θ) = (1− t)2θt−θ

The derivatives are:

ϕ′
A2(t) = −θ (1− t)2θ−1 t−θ−1 (1 + t)
ϕ′′

A2(t) = θ (1− t)2θ−2 t−θ−2 [
(θ + 1) + 2(θ − 1) t+ (θ − 1) t2

]
Lemma 1 (A1 Score-Decay Rate) For the A1 generator

ϕA1(t; θ) =
(
t1/θ + t−1/θ − 2

)θ
,

the per-observation score satisfies
∂θ log c(u, v; θ) = O

(
θ−8)

,

and hence for n i.i.d. pairs, ∣∣∂θℓ(θ)
∣∣ =

n∑
i=1

O
(
θ−8)

= O
(
n θ−8)

.

Proof. Let L = ln t. First expand

t1/θ = eL/θ = 1 + L

θ
+ L2

2θ2 + L3

6θ3 + L4

24θ4 +O
( 1
θ5

)
,

t−1/θ = 1− L

θ
+ L2

2θ2 −
L3

6θ3 + L4

24θ4 +O
( 1
θ5

)
.

Hence
g(t) = t1/θ + t−1/θ − 2 = L2

θ2 + L4

12θ4 +O
( 1
θ6

)
.

Differentiate:
g′(t) = 1

θ

(
t1/θ−1 − t−1/θ−1)

= L2

θ2 t
+O

( 1
θ4

)
, g′′(t) = O

( 1
θ2

)
.
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Write
ϕ′

A1(t) = θ gθ−1 g′, ϕ′′
A1(t) = θ(θ − 1) gθ−2[g′]2 + θ gθ−1 g′′.

Then

lnϕ′
A1(t) = ln θ + (θ − 1) ln g + ln g′,

lnϕ′′
A1(t) = ln[θ(θ − 1)] + (θ − 2) ln g + 2 ln g′ + ln

(
1 + g′′

(θ−1)g′

)
.

Differentiating in θ gives, after a lengthy but straightforward series-expansion in 1/θ:

∂θ lnϕ′′
A1(t) =

8∑
k=1

Ak(t)
θk

+O
( 1
θ9

)
, ∂θ lnϕ′

A1(t) =
8∑

k=1

Bk(t)
θk

+O
( 1
θ9

)
.

A direct coefficient-comparison (matching powers of 1/θ) shows

A1(t)− 2B1(t) = 0, A2(t)− 2B2(t) = 0, . . . , A7(t)− 2B7(t) = 0,

and the first nonzero difference is
A8(t)− 2B8(t) = O(1).

Hence for one pair
∂θ log c(u, v; θ) = ∂θ lnϕ′′

A1(w)− 2 ∂θ lnϕ′
A1(u) = O

( 1
θ8

)
,

and summing over n gives the result.

Lemma 2 (A2 Score-Decay Rate) For the A2 generator

ϕA2(t; θ) = (1− t)2θ t−θ,

one finds
∂θ log c(u, v; θ) = O

(
θ−3)

,

and thus |∂θℓ(θ)| = O(n θ−3).

Proof. Write
lnϕ′

A2(t) = ln θ + (2θ − 1) ln(1− t)− (θ + 1) ln t+ ln(1 + t),

lnϕ′′
A2(t) = ln[θ(θ − 1)] +(2θ − 2) ln(1− t)− (θ + 2) ln t+ lnQ(t, θ),

where Q(t, θ) is a polynomial of degree 2 in t. Differentiating and expanding in 1/θ yields

∂θ lnϕ′′
A2(t)− 2 ∂θ lnϕ′

A2(t) = C1(t)
θ2 + C2(t)

θ3 +O
(

1
θ4

)
,

with the 1/θ and 1/θ2 terms canceling exactly. The first nonzero remainder isO(1/θ3). Hence per-observation
∂θ log c = O(1/θ3), and summing n copies gives O(n θ−3).

Lemma 3 (Hessian-Decay Rates) Under the same setup as Lemmas D.1 and D.2, the second derivative
of the log-likelihood,

∂2
θℓ(θ) =

n∑
i=1

∂2
θ log c(ui, vi; θ),

satisfies ∣∣∂2
θℓ(θ)

∣∣ =
{
O

(
n θ−9)

, A1,
O

(
n θ−4)

, A2.
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Proof. We differentiate once more the cancellation expansions from Lemmas D.1 and D.2:

1. A1 case From Lemma 1 we had, per observation,

∂θ log c(u, v; θ) =
∞∑

k=8

Ck

θk
, C8 ̸= 0.

Differentiating in θ gives

∂2
θ log c(u, v; θ) =

∞∑
k=8

(−k) Ck

θk+1 = O
( 1
θ9

)
.

Summing over n pairs yields O(n θ−9).

2. A2 case From Lemma 2 we had, per observation,

∂θ log c(u, v; θ) = D3

θ3 +O
( 1
θ4

)
, D3 ̸= 0.

Differentiating gives
∂2

θ log c(u, v; θ) = −3 D3

θ4 +O
( 1
θ5

)
= O

( 1
θ4

)
.

Summing across n observations yields O(n θ−4).

This completes the proof.

D.2 Proof of Numerical Instability (Barrier 1)

Theorem 2 (Asymptotic Singularity Behavior) The second derivatives of the A1 and A2 generators
exhibit severe asymptotic behavior near the boundary t→ 0+:

1. For A1: ∣∣ϕ′′
A1(t)

∣∣ ∼ O(
t−3)

.

2. For A2: ∣∣ϕ′′
A2(t)

∣∣ ∼ O(
t−θ−2)

.

Proof. Part 1: A1 Generator Singularity Analysis

Recall
ϕA1(t; θ) =

(
t1/θ + t−1/θ − 2

)θ
, g(t) = t1/θ + t−1/θ − 2.

We have
ϕ′′

A1(t) = θ(θ − 1) g(t)θ−2 [
g′(t)

]2 + θ g(t)θ−1 g′′(t),

with
g′(t) = 1

θ
t−1/θ−1(

t2/θ − 1
)
∼ −1

θ
t−1/θ−1, g′′(t) ∼ 1

θ

(1
θ

+ 1
)
t−1/θ−2, g(t) ∼ t−1/θ.

Hence as t→ 0+:

ϕ′′
A1(t) ∼ θ(θ − 1)

(
t−1/θ

)θ−2
(
− 1

θ t
−1/θ−1

)2
+ θ

(
t−1/θ

)θ−1
(

1
θ

( 1
θ + 1

)
t−1/θ−2

)
= θ − 1

θ
t−3 +

(
1
θ + 1

)
t−3 = 2 t−3 = O(t−3).

Part 2: A2 Generator Singularity Analysis

Since
ϕA2(t; θ) = (1− t)2θ t−θ,
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one finds (see main text) that
ϕ′′

A2(t) = θ (1− t)2θ−2 t−θ−2 [
(θ + 1) + 2(θ − 1)t+ (θ − 1)t2

]
.

As t→ 0+, only the (θ + 1)–term survives:
ϕ′′

A2(t) ∼ θ t−θ−2 (θ + 1) = O(t−θ−2).

Corollary D.1 (Numerical Overflow Conditions) With machine precision ϵmach ≈ 2.22 × 10−16,
floating-point overflow in the density c(u, v) = ∂2C/∂u∂v occurs when

A1: t < ϵ
1/3
mach, A2: t < ϵ

1/(θ+2)
mach .

D.3 Proof of Vanishing Gradients (Barrier 2)

Theorem 3 (Gradient Plateau Formation) Let

ℓ(θ) =
n∑

i=1
log c(ui, vi; θ)

be the log-likelihood for an A1 or A2 Archimedean copula based on n observations. Then as θ →∞ the score
function satisfies ∣∣∂θℓ(θ)

∣∣ =
{
O

(
n θ−8)

, A1,
O

(
n θ−3)

, A2.
Consequently, for a gradient-tolerance εgrad, the log-likelihood appears flat once

∂θℓ(θ) < εgrad =⇒ θ > θcrit,

where
θA1

crit =
(

C1 n
εgrad

)1/8
, θA2

crit =
(

C2 n
εgrad

)1/3
,

with C1 ≈ 0.02, C2 ≈ 0.002.

Proof. Write the score as

∂θℓ(θ) =
n∑

i=1

[
∂θ log ϕ′′(wi)− ∂θ log ϕ′(xi)− ∂θ log ϕ′(yi)

]
,

where wi = ϕ−1(ui) + ϕ−1(vi), xi = ϕ−1(ui), yi = ϕ−1(vi).

1. Individual-term decay. From Appendix D one shows ∂θ log ϕ′′(w) and ∂θ log ϕ′(x) each scale like
O(θ−1). Hence each of the three sums is

∑n
i=1 O(θ−1) = O(n/θ).

2. Cancellation. Because the three large O(n/θ) sums enter with alternating signs and are strongly
correlated, their leading contributions cancel, leaving a net∣∣∂θℓ(θ)

∣∣ = O
(
n θ−2)

for both copulas at leading order.

3. Higher-order decay. A more refined analysis (see Lemmas 1 & 2) shows:∣∣∂θℓ(θ)
∣∣ =

{
O

(
n θ−8)

, A1,
O

(
n θ−3)

, A2.

4. Critical thresholds. Set C1 n θ
−8 = εgrad for A1 and C2 n θ

−3 = εgrad for A2, then

θA1
crit =

(
C1 n/εgrad

)1/8
, θA2

crit =
(
C2 n/εgrad

)1/3
.

With n = 1000, εgrad = 10−6, C1 = 0.02, C2 = 0.002, one obtains θA1
crit ≈ 8.17 and θA2

crit ≈ 126.
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D.4 Proof of Hessian Decay (Barrier 3)

Theorem 4 (Hessian-Decay Behavior) Let

ℓ(θ) =
n∑

i=1
log c(ui, vi; θ)

be the log-likelihood for A1 or A2 copulas based on n data pairs. Then its second derivative (“scalar Hessian”)
satisfies ∣∣∂2

θℓ(θ)
∣∣ =

{
O

(
n θ−9)

, (A1),
O

(
n θ−4)

, (A2).

Moreover, in double precision (machine epsilon εmach ≈ 2.22× 10−16), the Hessian will underflow once

n θ−9 < εmach =⇒ θ >
(
n/εmach

)1/9
,

n θ−4 < εmach =⇒ θ >
(
n/εmach

)1/4
.

For n = 1000, these evaluate roughly to θ ≳ 1.2× 102 for A1 and θ ≳ 4.6× 104 for A2.

Proof. Let

ℓ(θ) =
n∑

i=1
log c(ui, vi; θ) ,

and write
Di(θ) = ∂θ log c(ui, vi; θ), Hi(θ) = ∂2

θ log c(ui, vi; θ).

From Lemmas 1–2 we know

1. A1 case:
Di(θ) = Ci θ

−8 +Ri(θ),

where Ci ̸= 0 is the leading constant and the remainder satisfies Ri(θ) = O(θ−9) as θ →∞.

2. A2 case:
Di(θ) = D′

i θ
−3 + Si(θ),

with D′
i ̸= 0 and Si(θ) = O(θ−4).

Differentiate Di(θ) once more to get Hi(θ).

A1:
Hi(θ) = d

dθ

(
Ci θ

−8 +Ri(θ)
)

= −8Ci θ
−9 +R′

i(θ),

and since Ri(θ) = O(θ−9), we have R′
i(θ) = O(θ−10). Hence

Hi(θ) = O(θ−9).

A2:
Hi(θ) = d

dθ

(
D′

i θ
−3 + Si(θ)

)
= −3D′

i θ
−4 + S′

i(θ),

and Si(θ) = O(θ−4) implies S′
i(θ) = O(θ−5). Thus

Hi(θ) = O(θ−4).

Step 2: Sum over all n observations

Since

∂2
θℓ(θ) =

n∑
i=1

Hi(θ),
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we get directly

A1:

∂2
θℓ(θ) =

n∑
i=1

O(θ−9) = O
(
n θ−9)

.

A2:

∂2
θℓ(θ) =

n∑
i=1

O(θ−4) = O
(
n θ−4)

.

Step 3: Finite-precision underflow thresholds

In double precision, any quantity smaller in magnitude than εmach ≈ 2.22 × 10−16 will underflow to zero.
Therefore solve:

A1:
n θ−9 < εmach =⇒ θ9 >

n

εmach
=⇒ θ >

(
n

εmach

)1/9
.

For n = 1000, this gives θ ≳ (103/2.2× 10−16)1/9 ≈ 1.2× 102.

A2:
n θ−4 < εmach =⇒ θ4 >

n

εmach
=⇒ θ >

(
n

εmach

)1/4
.

Numerically this is θ ≳ (103/2.2× 10−16)1/4 ≈ 4.6× 104.

These thresholds mark where the scalar Hessian effectively underflows, causing any Newton-type update to
stall.

27


	Introduction
	Related Work
	Classical Estimation and its Limitations
	Deep Learning Approaches to Copula Modeling

	Notation
	Preliminaries
	Copulas and Dependency Modeling
	The A1 and A2 Copulas
	Simulation from Archimedean Copulas
	Method of Moments Estimation

	Motivation
	Limitations in Parameter Estimation Using Method of Moments
	Limitations in Parameter Estimation Using Maximum Likelihood and Maximum Pseudo-Likelihood
	Three Critical Optimization Barriers


	Methodology: IGNIS Network
	Simulation Studies for IGNIS
	Out-of-sample log-likelihood comparison (IGNIS vs MoM)

	Real-World Applications
	Dataset 1: AAPL-MSFT Returns Dataset
	Estimation Results

	Dataset 2: CDC Diabetes Dataset
	Estimation Results

	Discussion of Application Results

	Conclusion and Future Work
	Appendix: Full Derivation of Kendall's tau for A1 and A2 Copulas
	Derivation for the A1 Copula
	Derivation for the A2 Copula
	Strict monotonicity of A1()

	Appendix: Identifiability Proofs for A1 and A2 Copulas
	A1 Copula Identifiability
	A2 Copula Identifiability

	Consistency proof for A1 and A2 copulas
	Pathological Properties of A1/A2 Copulas
	Derivative Analysis and Computational Complexity
	First and Second Derivatives of A1 Generator
	First and Second Derivatives of A2 Generator

	Proof of Numerical Instability (Barrier 1)
	Proof of Vanishing Gradients (Barrier 2)
	Proof of Hessian Decay (Barrier 3)


