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Abstract

Classical estimators, the cornerstones of statistical inference, face insurmountable challenges
when applied to important emerging classes of Archimedean copulas. These models exhibit
pathological properties, including numerically unstable densities, non-monotonic parameter-
to-dependence mappings, and vanishingly small likelihood gradients, rendering methods like
Maximum Likelihood (MLE) and Method of Moments (MoM) inconsistent or computation-
ally infeasible. We introduce IGNIS, a unified neural estimation framework that sidesteps
these barriers by learning a direct, robust mapping from data-driven dependency measures
to the underlying copula parameter θ. IGNIS utilizes a multi-input architecture and a
theory-guided output layer (softplus(z) + 1) to automatically enforce the domain constraint
θ̂ ≥ 1. Trained and validated on four families (Gumbel, Joe, and the numerically challenging
A1/A2), IGNIS delivers accurate and stable estimates for real-world financial and health
datasets, demonstrating its necessity for reliable inference in modern, complex dependence
models where traditional methods fail.

1 Introduction

Maximum Likelihood Estimation (MLE), a pillar of statistical inference, is the gold standard for parameter
estimation due to its desirable asymptotic properties. Its efficacy, however, is predicated on well-behaved
likelihood functions. In the domain of dependence modeling using copulas (Nelsen, 2006), this assumption
can dramatically fail. For a growing class of flexible and important models, such as the novel A1 and A2
Archimedean copulas (Aich et al., 2025), the likelihood function exhibits pathological properties that render
classical estimation methods inconsistent, unstable, or computationally infeasible. This issue is not isolated;
numerical challenges in copula estimation are a known and significant concern in high-stakes applications
like quantitative risk management (Hofert et al., 2013).

Our analysis of these challenging models reveals three fundamental barriers that make classical estimation
untenable:

1. Numerical Instability from Boundary Singularities: The copula density function, which is
required for MLE, explodes near the boundaries of the unit hypercube due to ill-behaved genera-
tor derivatives (e.g., with singularities of order O(t−3)), leading to floating-point overflow during
computation.

2. Non-Monotonic Dependence Mappings: The relationship between the canonical dependence
measure, Kendall’s τ , and the copula parameter θ can be non-monotonic. This makes the Method
of Moments (MoM) ill-posed, as a single empirical τ value can map to multiple, distinct θ values.

3. Vanishing Gradients and Hessian Decay: For even moderately large values of θ, the log-
likelihood surface becomes pathologically flat. The score function decays polynomially to zero (e.g.,
O(θ−8)), causing gradient-based optimizers to stall prematurely. Second-order information decays
even faster, rendering Newton-like methods useless.
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Recent deep learning approaches have shown immense promise in statistics, but have not addressed this
specific estimation problem. The state-of-the-art has largely focused on generative tasks, such as learning
new copula generators from scratch (Ling et al., 2020; Ng et al., 2021) or modeling highly complex, high-
dimensional dependence structures (Ng et al., 2022). However, the fundamental problem of robust parameter
estimation for known, specified families that exhibit the aforementioned pathologies remains a critical open
gap. To fill this gap, we introduce IGNIS, a unified neural estimation framework that sidesteps the pitfalls
of classical methods entirely.

Classical copula estimation︸ ︷︷ ︸
MoM, MLE, MPL

Pathological Failures

−→ Existing Neural Copulas︸ ︷︷ ︸
Generative Focus

No Parameter Estimation Tool

−→ This Work︸ ︷︷ ︸
IGNIS: Robust, Unified

Parameter Estimator

IGNIS learns a direct mapping from a vector of robust, data-driven summary statistics to the underlying
copula parameter θ. Our main contributions are:

1. The identification and formal analysis of three critical optimization barriers that cause classical
estimators to fail for an important class of copula models.

2. The design and implementation of IGNIS, a unified neural architecture that learns a robust estima-
tion function and enforces theoretical parameter constraints (θ̂ ≥ 1) via a custom output layer.

3. A comprehensive validation on simulated and real-world data, demonstrating that IGNIS provides
accurate and stable estimates precisely in the regimes where traditional methods break down.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3 presents
necessary preliminaries. Section 4 provides motivation for our work. Section 5 details the IGNIS architecture
and training protocol. Section 6 presents the simulation results for IGNIS, and Section 7 demonstrates real-
data applications. Finally, Section 8 concludes and outlines future research directions.

2 Related Work

Our work builds upon two distinct streams of literature: classical parameter estimation for copulas and the
emerging field of deep learning for statistical modeling.

2.1 Classical Estimation and its Limitations

Parameter estimation for Archimedean copulas has traditionally been approached via two main routes. The
Method of Moments (MoM), particularly using Kendall’s τ or Spearman’s ρ, is valued for its computational
simplicity and circumvention of the likelihood function (Genest & Rivest, 1993). However, its validity hinges
on a strictly monotonic relationship between the dependence measure and the parameter θ, a condition that,
as we show, does not hold for the A1 copula family.

The second route is Maximum Likelihood Estimation (MLE) or its semi-parametric variant, Maximum
Pseudo-Likelihood (MPL) (Genest et al., 1995). While asymptotically efficient, MLE requires computing
the copula density, which can be analytically complex and numerically unstable. Efforts by (Hofert et al.,
2011) derived explicit generator derivatives to make MLE more feasible for standard families. Yet, subsequent
large-scale studies confirmed that even with these advances, classical estimators face significant numerical
challenges and potential unreliability, especially in high dimensions or for complex models (Hofert et al.,
2013). The A1 and A2 families are prime examples where these numerical pathologies become insurmountable
barriers, necessitating a new approach.
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2.2 Deep Learning Approaches to Copula Modeling

The recent intersection of deep learning and copula modeling has been dominated by powerful generative
approaches that learn or approximate the generator function itself, rather than estimating parameters of
a pre-defined family. For instance, ACNet (Ling et al., 2020) introduced a neural architecture to learn
completely monotone generator functions, enabling the approximation of existing copulas and the creation
of new ones. Similarly, (Ng et al., 2021) proposed a generative technique using latent variables and Laplace
transforms to represent Archimedean generators, scaling to high dimensions. Other work has focused on
non-parametric inference for more flexible classes like Archimax copulas, which are designed to model both
bulk and tail dependencies (Ng et al., 2022).

While these methods represent the state-of-the-art in constructing flexible, high-dimensional dependence
models, they do not address the targeted problem of estimating the parameter θ for a specified family,
especially when that family exhibits the estimation pathologies we have identified. Broader work on Physics-
Informed Neural Networks (PINNs) has shown the power of deep learning for solving problems with known
physical constraints (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018), but a specialized framework for
constrained parameter estimation in statistically challenging copula models has been a missing piece. IGNIS
is designed specifically to fill this gap, providing a discriminative estimator that is robust, constraint-aware,
and applicable across multiple families where classical methods fail.

3 Preliminaries

3.1 Copulas and Dependency Modeling

Copulas are statistical tools that model dependency structures between random variables, independent of
their marginal distributions. Introduced by Sklar (1959), they provide a unified approach to capturing joint
dependencies. Archimedean copulas, known for their simplicity and flexibility, are defined using a generator
function, making them particularly effective for modeling bivariate and multivariate dependencies.

3.2 The A1 and A2 Copulas

Like all Archimedean copulas, the novel A1 and A2 copulas (Aich et al., 2025) are defined through generator
functions ϕ(t) that are continuous, strictly decreasing, and convex on [0, 1], with ϕ(1) = 0. The A1 and A2
copulas extend the Archimedean copula framework to capture both upper and lower tail dependencies more
effectively. In general, an Archimedean copula is given by:

C(u, v) = ϕ−1(
ϕ(u) + ϕ(v)

)
. (1)

For the A1 copula, the generator and its inverse are defined as:

ϕA1(t; θ) =
(
t1/θ + t−1/θ − 2

)θ

, θ ≥ 1, (2)

ϕ−1
A1(t; θ) =

 t
1/θ + 2−

√(
t1/θ + 2

)2
− 4

2


θ

, θ ≥ 1. (3)

Similarly, for the A2 copula:

ϕA2(t; θ) =
(1− t

t

)θ

(1− t)θ, θ ≥ 1, (4)

ϕ−1
A2(t; θ) =

t1/θ + 2−
√(

t1/θ + 2
)2
− 4

2 , θ ≥ 1. (5)
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The exact formula of the Kendall’s τ for A1 and A2 copulas are given by (See Appendix A for full derivations)

τA1 = 1 + 2
[
ψ(θ)− ψ

(
θ + 1

2
)]
, (6)

τA2 = 1− 6− 8 ln 2
θ

. (7)

Both copulas are parameterized by θ ≥ 1, which governs the strength and nature of the dependency. The dual
tail-dependence structure of A1 and A2 copulas is particularly valuable for modeling extreme co-movements
in joint distributions. In financial risk management, they can capture simultaneous extreme losses (lower-tail)
and windfall gains (upper-tail), improving estimates of portfolio tail risk. In anomaly detection, they identify
coordinated extreme events (e.g., simultaneous sensor failures in industrial systems or cyber attacks across
networks) by quantifying asymmetric tail dependencies. This flexibility makes them superior to single-tailed
copulas e.g., Clayton (captures only lower tails) and Gumbel (captures only upper tail) in scenarios where
both tail behaviors are critical.

3.3 Simulation from Archimedean Copulas

In this section, we present an algorithm introduced by Genest & Rivest (1993) to generate an observation
(u, v) from an Archimedean copula C with generator ϕ.

Algorithm 1 Bivariate Archimedean Copula Sampling (Genest et al., 1993)
Require: Generator ϕ, its derivative ϕ′, inverse ϕ−1

Ensure: A single draw (u, v) from the copula
1: Draw s, t

iid∼ Uniform(0, 1)
2: Define

K(x) = x − ϕ(x)
ϕ′(x) , K−1(y) = sup{x | K(x) ≤ y}

3: Compute w ← K−1(t)
4: Compute

u ← ϕ−1(
s ϕ(w)

)
, v ← ϕ−1(

(1− s)ϕ(w)
)

5: return (u, v)

The above algorithm is a consequence of the fact that if U and V are uniform random variables with an
Archimedean copula C, then W = C(U, V ) and S = ϕ(U)

ϕ(U)+ϕ(V ) are independent, S is uniform (0, 1), and
the distribution function of W is K. In our implementation, the inverse function K−1(y) is computed
numerically using a robust root-finding algorithm (specifically, the bisection method).

3.4 Method of Moments Estimation

The Method of Moments (MoM) is a classical statistical technique for parameter estimation, where theo-
retical moments of a distribution are equated with their empirical counterparts. In the context of copula
modeling, MoM is particularly advantageous when direct likelihood-based estimation is challenging due to
the complexity of deriving tractable probability density functions.

In this work, we derive exact analytical formulas for Kendall’s τ for both A1 and A2 copulas (see Appendix A).
These formulas establish a direct relationship between Kendall’s τ and the copula parameter θ, allowing for
robust parameter estimation. By inverting this relationship, we develop MoM estimators for θ, providing a
practical approach for modeling dependencies in scenarios where traditional methods like MLE and MPL
may be ineffective. However, in Section 4.2, we see that for especially A1 and even for A2, MoM is not the
most efficient estimator.
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4 Motivation

4.1 Limitations in Parameter Estimation Using Method of Moments

In this section, we present the results of a simulation study to estimate the parameter θ for the A1 and A2
copulas using the Method of Moments (MoM). The simulation is conducted using the algorithm as
described in Section 3.3.

4.2 Results for MoM

Simulation Setup
1.: The simulation is performed for θ = {2.0, 5.0, 10.0}.
2.: n = 100, 000 pairs (u, v) are generated for each scenario.
3.: The parameter θ is estimated using the Method of Moments (MoM), where the sample Kendall’s
τ is matched with the theoretical τ(θ).
4.: Standard errors (SE) for the estimates of θ are computed using the method described in Genest et al.
(2011).

Table 1 summarizes MoM estimation results for A1 and A2:

Table 1: Method-of-Moments Estimates and Standard Errors for A1 and A2

True θ Copula Est. θ SE(θ)
2.0 A1 4.4860 0.1597
2.0 A2 1.9047 0.0709
5.0 A1 9.5215 0.8844
5.0 A2 4.9398 0.2335
10.0 A1 6.1183 1.2273
10.0 A2 9.4366 0.1900

For A1, MoM estimates are inconsistent (e.g., the estimate for true θ = 10.0 is lower than that for 5.0).
For A2, MoM performs quite well compared to A1. The problem in A1 occurs due to the non-monotonicity
between A1 and it’s Kendall’s τ which implies that MoM cannot uniquely recover θ; the estimator seems
to be inconsistent. MoM will also fail when the sample Kendall’s τ falls outside the theoretical range of
the copula model, rendering parameter estimation infeasible in such scenarios. This is highly likely for A2
copula because of it’s high Kendall’s τ lower bound of 0.545 which is relatively higher than sample Kendall’s
τ of many real-world datasets.

It is to be noted that the one-parameter copula families researchers use in practice are generally ordered by
positive quadrant dependence (PQD), so that the dependence parameter is in one-to-one correspondence with
standard nonparametric measures of dependence such as Kendall’s tau or Spearman’s rho. Unfortunately,
such is not the case for model A1. Indeed, it is possible to find two values of theta which correspond to the
same value of Kendall’s tau. This is an important limitation for A1.

It is also to be noted that the injectivity property of the copula generator function guarantees that each
distinct value of the parameter θ produces a unique copula, ensuring the mathematical validity of the model
which is true for A1 (See Appendix B). This is not the same as the relationship between A1’s θ and it’s
Kendall’s τ which is not one-to-one so that identical values of τ may correspond to different θ values. This
fundamental difference motivates the use of a neural network approach, which leverages multiple summary
features to accurately estimate θ despite the ambiguity in the θ-τ relationship.

4.3 Limitations in Parameter Estimation Using Maximum Likelihood and Maximum
Pseudo-Likelihood

While the Method of Moments faces fundamental limitations with A1/A2 copulas, classical likelihood-based
approaches, Maximum Likelihood Estimation (MLE) and Maximum Pseudo-Likelihood (MPL), prove equally
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problematic due to pathological properties of the generator functions. The non-standard forms of ϕA1 and
ϕA2 induce three critical optimization barriers (See Appendix D for full derivations).

4.3.1 Three Critical Optimization Barriers

1. Numerical Instability in Density Calculations As t → 0+ (with θ fixed), the second derivatives
of the generators blow up: ∣∣ϕ′′

A1(t)
∣∣ ∼ O(

t−3)
,

∣∣ϕ′′
A2(t)

∣∣ ∼ O(
t−θ−2)

.

(See Figures 1a & 1b.) Hence the copula density

c(u, v) = ∂2

∂u ∂v
C(u, v)

overflows once
A1: t < ε

1/3
mach, A2: t < ε

1/(θ+2)
mach ,

with εmach ≈ 2.22× 10−16.

2. Vanishing Gradients (Score-Decay) As θ → ∞ (with t ∈ (0, 1) fixed), the log-likelihood score
decays: ∣∣∂θℓ(θ)

∣∣ =
{
O

(
n θ−8)

, A1,
O

(
n θ−3)

, A2.

Thus it falls below any fixed tolerance εgrad once

n θ−k < εgrad,

which for εgrad = 10−6 and n = 1000 yields

θA1
crit ≈ 8.2, θA2

crit ≈ 126.

(See Figures 1c & 1d.)

3. Hessian Decay (Barrier 3) Again as θ →∞ (with t fixed), the scalar Hessian decays even faster:

∣∣∂2
θℓ(θ)

∣∣ =
{
O

(
n θ−9)

, A1,
O

(
n θ−4)

, A2.

In double precision (εmach ≈ 2.22× 10−16) this underflows once

n θ−9 < εmach =⇒ θ >
(

n
εmach

)1/9
≈ 1.2× 102,

n θ−4 < εmach =⇒ θ >
(

n
εmach

)1/4
≈ 4.6× 104.

(See Figures 1e & 1f.)

Figure 1 helps with the visualization of the three barriers.

Hybrid approaches, using MoM to initialize MLE/MPL, remain infeasible as well since for A1, the non-
monotonic τ -θ mapping yields multiple θ candidates and for A2, the theoretical bound τ > 0.545 often
excludes common datasets because of it’s relative high lower τ bound value comapred to other copulas.These
structural limitations necessitate bypassing both moment inversion and likelihood optimization, motivating
our neural framework IGNIS.
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(a) A1 copula boundary instability (b) A2 copula boundary instability

(c) A1 copula likelihood surface (d) A2 copula likelihood surface

(e) A1 copula Hessian condition (f) A2 copula Hessian condition

Figure 1: Numerical challenges in copula estimation: (a,b) boundary instabilities, (c,d) flat likelihood regions,
and (e,f) ill-conditioned Hessian matrices for A1 and A2 copulas respectively.

5 Methodology: IGNIS Network

Named after the Latin word for “fire,” the IGNIS Network is a unified neural estimator for four Archimedean
copula families (Gumbel, Joe, A1, A2), each with the same parameter domain θ ≥ 1.

Reproducibility: All experiments use a fixed seed (123) applied globally across Python’s random module,
NumPy, TensorFlow, and PyTorch to ensure full computational reproducibility. Code runs on Python 3.11
with TensorFlow 2.19, SciPy 1.15.3, and scikit-learn 1.6.1.
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Input Representation: Each example is a 9-D vector x = [f ; c], where
1. f ∈ R5 consists of five dependency measures: empirical Kendall’s τ , Spearman’s ρ, upper tail-dependence
at the 0.95 quantile (λupper), lower tail-dependence at the 0.05 quantile (λlower), and the Pearson correlation
coefficient (r).
2. c ∈ {0, 1}4 is a one-hot encoded vector identifying the copula family.

Network Architecture: Let x ∈ R8. We apply:

h1 = ReLU(W1x+ b1), (128)
h2 = ReLU(W2h1 + b2), (128)
h3 = ReLU(W3h2 + b3), (64)

θraw = W4h3 + b4 ∈ R.

A softplus activation plus 1 enforces θ̂ ≥ 1:

θ̂ = softplus(θraw) + 1.

Figure 2 illustrates this flow.

Training Data Generation: For each family, we sample 500 θ values uniformly from the range [1, 20].
For each θ, we simulate n = 5, 000 pairs (U, V ) using Algorithm 1(Section 3.3), compute the five summary
features for the vector f , and concatenate the corresponding one-hot vector c. This process yields a total of
500× 4 = 2000 training examples.

Feature Scaling: We standardize all 9-D inputs using scikit-learn’s StandardScaler. The scaler is fitted
only on the training data split and then applied to transform both the validation and test sets.

Hyperparameters: In Table 2 we see that training uses MSE loss with Adam (Kingma & Ba, 2015)
(5× 10−4), batch size 32, max 200 epochs, early stopping (patience 20 on 20% validation).

Table 2: Key Hyperparameters

Hyperparameter Value
Batch size 32
Learning rate 5× 10−4

Optimizer Adam
Max epochs 200
Early-stop patience 20
Train/val split 80/20
Bootstrap replicates 100

Uncertainty Quantification: For each test (U, V ) sample, we draw B = 100 bootstrap replicates, recom-
pute {f}, re-predict θ̂, and report SE(θ̂) = std({θ̂(b)}).

Implementation Details: IGNIS is implemented in TensorFlow/Keras with He-uniform initialization for
all Dense layers. All training was performed on an NVIDIA GeForce RTX 4060 Laptop GPU, where each
epoch (50 steps at ≈4 ms/step, batch size 32) takes about 2 s.

Theoretical Soundness: One-hot encoding ensures family identifiability. Under regularity conditions
(Appendix C), θ̂ p→ θ. The softplus+1 transform guarantees θ̂ ∈ [1,∞).

Figure 2 illustrates the IGNIS architecture. An 9-D input vector (four dependency measures + one-hot copula
ID) is processed by three fully-connected layers (128–128–64 ReLU, He-uniform), and a final softplus+1
activation guarantees θ̂ ≥ 1.

6 Simulation Studies for IGNIS

The same simulation setup described in Section 5 is followed here for θ = {2.0, 5.0, 10.0}.
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Input Layer
9-D Vector

(f ∈ R5, c ∈ {0, 1}4)

Dense (128)
ReLU

Dense (128)
ReLU

Dense (64)
ReLU Dense (1) θ̂

(Final Estimate)

Softplus + 1Features (f):
- Kendall’s τ
- Spearman’s ρ
- Upper Tail Dep.
- Lower Tail Dep.
- Pearson r

Figure 2: The updated IGNIS Architecture. A 9-D input vector (five dependency measures, f , and a 4-D
one-hot family identifier, c) is processed by three ReLU-activated hidden layers. A final dense layer followed
by a Softplus+1 activation enforces the constraint θ̂ ≥ 1.

Table 3 show performance of the IGNIS network on simulated data.

Table 3: IGNIS Network Estimation Results for All Copulas

Copula True θ Est. θ Bootstrap SE(θ)
True θ = 2.0

Gumbel 2.0 2.06 0.08
Joe 2.0 1.88 0.07
A1 2.0 2.05 0.13
A2 2.0 1.96 0.10

True θ = 5.0
Gumbel 5.0 5.07 0.23

Joe 5.0 4.88 0.12
A1 5.0 4.96 0.13
A2 5.0 4.81 0.18

True θ = 10.0
Gumbel 10.0 9.92 0.25

Joe 10.0 9.56 0.24
A1 10.0 9.68 0.29
A2 10.0 9.65 0.35

Key observations: For both A1 and A2, the IGNIS network is able to recover the true value of the
parameter used to generate the data used in simulation. We see how especially for A1, there is no issue like
in the case of MoM. The non-monotonic mapping in the A1 copula that severely undermines MoM estimation
does not affect the IGNIS network, since it learns directly from data and do not require such monotonicity.
Also, this network works extremely well for Gumbel and Joe copulas.

In our neural network framework, the estimated dependence parameter θ is obtained via a direct mapping
from summary dependency measures to θ. To quantify the uncertainty of these estimates, we employ a
bootstrap procedure. For each test sample, multiple bootstrap replicates are generated by resampling the
(U,V) pairs. The summary features are recomputed for each bootstrap replicate, and the trained network is
used to predict θ. The standard deviation of these bootstrap predictions provides a robust estimate of the
standard error, thereby reflecting both the sampling variability and the inherent uncertainty in the neural
network’s predictions.

7 Real-World Applications

We validate IGNIS using two distinct domains where copulas are widely applied: financial markets
(AAPL–MSFT stock returns) and public health (CDC Diabetes Dataset). These applications demonstrate
the network’s versatility across data types. For clarity, we emphasize this is an estimation methodology
demonstration, not a copula selection analysis.
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The IGNIS network estimates θ through the following standardized workflow:

1. Data Preprocessing:
Financial Data: Attain stationarity via log-returns:

rt = log
(
Pt/Pt−1

)
,

where Pt are adjusted closing prices.
Healthcare Data: We use original variables (GenHlth, PhysHlth) without differencing.
For both domains, transform marginals to pseudo-observations via rank-based PIT:

ui = rank(xi)
n+ 1 , vi = rank(yi)

n+ 1 ,

yielding {(ui, vi)}n
i=1 ∈ [0, 1]2 with approximately uniform margins.

2. Feature Extraction:
From the paired pseudo-observations, we compute five dependence measures: (1) Empirical Kendall’s τ , (2)
Spearman’s ρ, (3) upper tail-dependence λupper = 1

n

∑n
i=1 1{ui > 0.95, vi > 0.95}, (4) lower tail-dependence

λlower = 1
n

∑n
i=1 1{ui < 0.05, vi < 0.05}, and (5) the Pearson correlation coefficient. These form the feature

vector f ∈ R5.

3. Input Construction:
The feature vector f is concatenated with a one-hot encoded copula identifier c ∈ {0, 1}4 for the families
Gumbel, Joe, A1, and A2. This creates the final 9-dimensional input vector x = [f ; c]. This vector is then
standardized using the StandardScaler that was fitted on the simulated training data.

4. Theta Estimation:
The network architecture consists of three hidden layers with 128, 128, and 64 ReLU-activated units, each
initialized using the He initialization scheme. The final layer applies a softplus activation followed by a unit
shift to guarantee that θ̂ ≥ 1. We train the IGNIS network using the Adam optimizer with a learning rate
of 5 × 10−4 and a mean-squared error loss function for 200 epochs. During training, 20% of the data are
held out for validation, and early stopping with a patience of 20 epochs is employed to prevent overfitting.

5. Uncertainty Quantification:
To quantify uncertainty, we perform a bootstrap procedure by resampling the pseudo-observations with
replacement B = 100 times. For each bootstrap resample, we recompute the four features and obtain a
corresponding estimate θ̂(b). The bootstrap standard error of θ̂ is then calculated as the sample standard
deviation of these bootstrap estimates:

ŜE(θ̂) = std
(
θ̂boot

)
.

Results for both applications are presented in Tables 4 and 5, following identical estimation protocols for
cross-domain comparability.

7.1 Dataset 1: AAPL-MSFT Returns Dataset

Source and Period: The dataset (Aroussi, 2024) comprises daily adjusted closing prices for two stocks,
AAPL and MSFT, obtained from yfinance library in Python. Data were collected for the period from
January 1, 2020 to December 31, 2023.

Variables: The primary variable of interest is the adjusted closing price for each ticker. This column (labeled
either as Adj Close or Close) reflects the price after accounting for corporate actions such as dividends and
stock splits.

Derived Measures: From the raw price data, daily log returns are computed. These log returns serve as
a proxy for the instantaneous rate of return and are stationary.

7.1.1 Estimation Results

Table 4 summarizes the parameter estimation.
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Table 4: Estimated θ Values and Bootstrap Standard Errors from Financial Data

Copula Estimated θ Bootstrap SE(θ)
Gumbel 2.6771 0.2186

Joe 3.5701 0.3411
A1 1.2324 0.0638
A2 1.1986 0.0770

7.2 Dataset 2: CDC Diabetes Dataset

Source: We programmatically retrieved the CDC Diabetes Health Indicators dataset (UCI ML Repository
ID 891) using the ucimlrepo Python package (Centers for Disease Control and Prevention, 2023). The full
dataset contains 253,680 respondents and 21 original features; for our analysis we pulled only the two raw
columns GenHlth and PhysHlth.

Variables: From these two columns we constructed empirical pseudo-observations via the probability inte-
gral transform (PIT), i.e.

ui = rank(GenHlthi)
n+ 1 , vi = rank(PhysHlthi)

n+ 1 ,

where n = 253,680. These appear in our pipeline as:

1. GenHlth_pu: ui, the pseudo-value for general health

2. PhysHlth_pu: vi, the pseudo-value for physical health

7.2.1 Estimation Results

Table 5 summarizes the parameter estimation.

Table 5: Estimated θ Values and Bootstrap Standard Errors from CDC Diabetes Data

Copula Estimated θ Bootstrap SE(θ)
Gumbel 1.4570 0.0029

Joe 2.5876 0.0058
A1 1.4220 0.0054
A2 1.2299 0.0023

7.3 Key Observations

The IGNIS Network successfully estimates theta from three different datasets. IGNIS offers a robust, ac-
curate, and computationally efficient alternative to traditional methods. The unified framework of IGNIS
simplifies parameter estimation across various copula families making it an universal tool.

8 Conclusion and Future Work

In this paper, we confronted the critical failure of classical estimation methods when applied to an important
class of Archimedean copulas with pathological likelihoods. We demonstrated that numerical instabilities,
non-monotonic dependence mappings, and vanishing gradients make traditional inference via Maximum
Likelihood or the Method of Moments inconsistent and computationally infeasible. To solve this, we intro-
duced the IGNIS Network, a deep learning framework that provides robust, constraint-aware parameter
estimates by learning a direct mapping from data-driven statistics. By leveraging a multi-layer architecture
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and a theory-guided softplus+1 output layer, IGNIS delivers accurate and stable estimates for multiple
copula families, succeeding precisely where classical methods fail.

The practical implications of IGNIS extend particularly to extreme-value analysis where A1/A2’s dual tail-
dependence structure provides critical advantages. In financial systems, it enables risk analysts to reliably
model joint tail events (e.g., market crashes or insurance claims during natural disasters) using A1/A2’s
dual-tail flexibility, improving capital allocation and hedging strategies. For anomaly detection in industrial
IoT networks, it identifies coordinated failure patterns where sensors exhibit asymmetric tail dependencies.
Healthcare applications include modeling comorbid extreme health episodes where patients experience si-
multaneous deterioration of multiple health indicators. By solving the parameter estimation challenge for
these advanced copulas, IGNIS unlocks their potential for real-time risk assessment and multivariate
anomaly detection systems.

Despite these strengths, IGNIS has several limitations. First, our evaluation has been restricted to four bi-
variate Archimedean families; commonly used generators such as Clayton and Frank remain to be integrated.
Second, the current architecture handles only two-dimensional dependencies, so extending to multivariate or
nested copulas will require permutation-invariant or graph-based neural designs. Third, reliance on a fixed
set of four summary statistics may limit performance in small-sample or heavy-tailed scenarios, suggesting
that adaptive or richer feature representations could enhance robustness. Finally, IGNIS assumes a known
family identifier via one-hot encoding, leaving fully automated copula selection as an open challenge.

Looking ahead, we see several promising directions for future work. Incorporating Clayton, Frank, and other
Archimedean generators will broaden IGNIS’s applicability. High-dimensional extensions can be pursued
by designing architectures, such as DeepSets or attention-based graphs, that respect permutation symmetry
in multivariate dependence. To capture dynamic relationships, we plan to integrate recurrent or temporal-
attention modules that adapt to time-varying copulas. We can use alternative features (e.g., Blomqvist’s β,
Gini’s γ) in the future. Joint inference of copula family and parameter via mixture-of-experts or multi-task
learning would eliminate the need for a priori family tagging. Also, we plan to conduct a rigorous comparative
performance study between the IGNIS framework and global optimization methods, such as Particle Swarm
Optimization (PSO) and Genetic Algorithms (GA). On the uncertainty front, embedding Bayesian neural
networks or deep ensembles can provide principled credible intervals for θ̂. Finally, exploring alternative
summary features, such as higher-order tail-dependence coefficients or distance-based metrics, may further
improve estimation under challenging data regimes. Together, these extensions will help establish IGNIS as
a comprehensive, data-driven toolkit for dependence modeling across diverse applications.

Broader Impact Statement

The primary motivation for this work is to provide a positive methodological contribution to the statistics
and machine learning communities. By creating a reliable estimator, IGNIS, for complex copula models like
A1 and A2, we enable researchers and practitioners to use more appropriate and flexible models in fields like
financial risk management and public health analytics, which was previously computationally infeasible.

The main broader consideration is standard model risk. As with any powerful statistical tool, there is a
potential for misuse if it is applied without a proper understanding of its context. For example, a user
could generate a precise parameter estimate for a copula family that is fundamentally a poor fit for their
data, leading to a false sense of security. To mitigate this, we emphasize that IGNIS is a tool for parameter
estimation, not model selection, and must be used as part of a larger workflow that includes rigorous
goodness-of-fit testing.

References
Agnideep Aich, Ashit Baran Aich, and Bruce Wade. Two new generators of archimedean copulas with

their properties. Communications in Statistics – Theory and Methods, 54(17):5566–5575, 2025. doi:
10.1080/03610926.2024.2440577.

Ran Aroussi. yfinance: Yahoo! finance market data downloader, 2024. Python package version 0.2.28
available at https://github.com/ranaroussi/yfinance.

12

https://github.com/ranaroussi/yfinance


Under review as submission to TMLR

Centers for Disease Control and Prevention. Cdc diabetes health indicators, 2023. Dataset available at
https://doi.org/10.24432/C53919.

Christian Genest and Louis-Paul Rivest. Statistical inference procedures for bivariate archimedean copulas.
Journal of the American Statistical Association, 88(423):1034–1043, 1993.

Christian Genest, Karim Ghoudi, and Louis-Paul Rivest. A semiparametric estimation procedure of depen-
dence parameters in multivariate families of distributions. Biometrika, 82(3):543–552, 1995.

Christian Genest, Johanna Nešlehová, and Naoufel Ben Ghorbal. Estimators based on kendall’s tau in
multivariate copula models. Australian & New Zealand Journal of Statistics, 53(2):157–177, 2011.

Martin Hofert, Martin Mächler, and Alexander J. McNeil. Likelihood inference for archimedean copulas,
2011. arXiv preprint, available at https://arxiv.org/pdf/1108.6032.

Martin Hofert, Martin Mächler, and Alexander J. McNeil. Archimedean copulas in high dimensions: Esti-
mators and numerical challenges motivated by financial applications. Journal de la Société Française de
Statistique, 154(1):25–79, 2013.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):251–257,
1991.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Confer-
ence on Learning Representations (ICLR), pp. 1–13, 2015.

Chun-Kai Ling, Fei Fang, and J. Zico Kolter. Deep archimedean copulas. In Advances in Neural Information
Processing Systems, volume 33, pp. 10309–10320, 2020.

Roger B. Nelsen. An Introduction to Copulas. Springer Series in Statistics. Springer, New York, 2nd edition,
2006.

Yuting Ng, Ali Hasan, Khalil Elkhalil, and Vahid Tarokh. Generative archimedean copulas. In Proceedings
of the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021), volume 161, pp. 643–653.
PMLR, 2021.

Yuting Ng, Ali Hasan, and Vahid Tarokh. Inference and sampling for archimax copulas. In Advances in
Neural Information Processing Systems, volume 35, pp. 17099–17116, 2022.

Maziar Raissi, Paris Perdikaris, and George E. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial differ-
ential equations. Journal of Computational Physics, 375:1339–1364, 2018.

Abe Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique
de l’Université de Paris, 8:229–231, 1959.

Evgeny E. Slutsky. über stochastische asymptoten und grenzwerte. Metron – Rivista Internazionale di
Statistica, 5(1):3–89, 1925.

Aad W. van der Vaart and Jon A. Wellner. Weak Convergence and Empirical Processes: With Applications
to Statistics. Springer, 1996.

Halbert White. Some asymptotic results for learning in single hidden-layer feedforward neural network
models. Journal of the American Statistical Association, 84:1003–1013, 1989.

13

https://doi.org/10.24432/C53919
https://arxiv.org/pdf/1108.6032


Under review as submission to TMLR

A Appendix: Full Derivation of Kendall’s τ for A1 and A2 Copulas

In this appendix, we derive explicit analytical expressions for Kendall’s τ for the novel Archimedean copulas
A1 and A2. These derivations form the theoretical basis for the Method-of-Moments estimation of the copula
parameter θ.

A.1 Derivation for the A1 Copula

For a general Archimedean copula with generator φ(t), Kendall’s τ is given by

τ = 1 + 4
∫ 1

0

φ(t)
φ′(t) dt.

For the A1 copula the generator is

φA1(t; θ) =
(
t1/θ + t−1/θ − 2

)θ

, θ ≥ 1.

Step 1: Differentiation of φA1(t; θ) Differentiate φA1(t; θ) with respect to t using the chain rule:

φ′
A1(t; θ) = θ

(
t1/θ + t−1/θ − 2

)θ−1
· d
dt

[
t1/θ + t−1/θ − 2

]
.

Since
d

dt
t1/θ = 1

θ
t1/θ−1 and d

dt
t−1/θ = −1

θ
t−1/θ−1,

it follows that
φ′

A1(t; θ) = θ
(
t1/θ + t−1/θ − 2

)θ−1
[

1
θ
t1/θ−1 − 1

θ
t−1/θ−1

]
.

Cancelling the factor θ we have:

φ′
A1(t; θ) =

(
t1/θ + t−1/θ − 2

)θ−1[
t1/θ−1 − t−1/θ−1

]
.

Step 2: Form the Ratio φA1/φ
′
A1 Taking the ratio,

φA1(t; θ)
φ′

A1(t; θ) =
(
t1/θ + t−1/θ − 2

)θ(
t1/θ + t−1/θ − 2

)θ−1[
t1/θ−1 − t−1/θ−1

]
= t1/θ + t−1/θ − 2
t1/θ−1 − t−1/θ−1 .

After some algebra (by expressing numerator and denominator in a common form), one can show that this
expression simplifies to

φA1(t; θ)
φ′

A1(t; θ) =
t
(
t1/θ − 1

)
1 + t1/θ

.

Step 3: Change of Variables Set

u = t1/θ =⇒ t = uθ, dt = θuθ−1 du.

Changing variables, the integral becomes∫ 1

0

φA1(t; θ)
φ′

A1(t; θ) dt =
∫ 1

0

uθ (u− 1)
1 + u

θ uθ−1 du

= θ

∫ 1

0

u2θ−1 (u− 1)
1 + u

du.

14



Under review as submission to TMLR

Step 4: Express the Integral as a Series Denote

I(θ) = θ

∫ 1

0

u2θ−1(u− 1)
1 + u

du.

Note that
u2θ−1(u− 1) = u2θ − u2θ−1.

Thus,

I(θ) = θ

[∫ 1

0

u2θ

1 + u
du−

∫ 1

0

u2θ−1

1 + u
du

]
.

For u ∈ [0, 1] we can expand
1

1 + u
=

∞∑
n=0

(−1)nun.

Then, ∫ 1

0

u2θ

1 + u
du =

∞∑
n=0

(−1)n

∫ 1

0
u2θ+n du =

∞∑
n=0

(−1)n

2θ + n+ 1 ,

and similarly, ∫ 1

0

u2θ−1

1 + u
du =

∞∑
n=0

(−1)n

2θ + n
.

Thus,

I(θ) = θ

∞∑
n=0

(−1)n

[
1

2θ + n+ 1 −
1

2θ + n

]
.

Since
1

2θ + n+ 1 −
1

2θ + n
= − 1

(2θ + n)(2θ + n+ 1) ,

we have

I(θ) = −θ
∞∑

n=0

(−1)n

(2θ + n)(2θ + n+ 1) .

Step 5: Recognize the Series in Terms of the Digamma Function A known representation of the
digamma function is

ψ(z) = −γ +
∞∑

m=0

(
1

m+ 1 −
1

m+ z

)
,

where γ is Euler’s constant. Through a careful term-by-term identification and rearrangement of the series
above, one can show that

−θ
∞∑

n=0

(−1)n

(2θ + n)(2θ + n+ 1) = 1
2

[
ψ(θ)− ψ

(
θ + 1

2

)]
.

Step 6: Final Expression for A1 Substituting back into the formula for Kendall’s τ ,

τA1 = 1 + 2
[
ψ(θ)− ψ

(
θ + 1

2

)]
.
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A.2 Derivation for the A2 Copula

For the A2 copula, the generator is defined as

φA2(t; θ) =
(1
t
(1− t)2

)θ

, θ ≥ 1.

Following a similar differentiation process (details omitted here), one obtains

φA2(t; θ)
φ′

A2(t; θ) = t(t− 1)
θ (t+ 1) .

Thus, Kendall’s τ is given by

τA2 = 1 + 4
∫ 1

0

φA2(t; θ)
φ′

A2(t; θ) dt = 1 + 4
θ

∫ 1

0

t(t− 1)
t+ 1 dt.

Step 1: Evaluate the Integral Define

J =
∫ 1

0

t(t− 1)
t+ 1 dt.

Since
t(t− 1) = t2 − t,

we perform polynomial division of t2 − t by t+ 1. Dividing, we obtain

t2 − t
t+ 1 = t− 2 + 2

t+ 1 .

Thus,

J =
∫ 1

0

(
t− 2 + 2

t+ 1

)
dt.

Step 2: Integrate Term-by-Term We compute each integral:∫ 1

0
t dt = t2

2

∣∣∣∣1

0
= 1

2 ,

∫ 1

0
dt = 1,

∫ 1

0

1
t+ 1 dt = ln |t+ 1||10 = ln 2.

Hence,

J = 1
2 − 2 · 1 + 2 ln 2 = 1

2 − 2 + 2 ln 2 = −3
2 + 2 ln 2.

Step 3: Final Expression for A2 Substituting back into the expression for τA2, we have

τA2 = 1− 6− 8 ln 2
θ

.
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B Appendix: Identifiability Proofs for A1 and A2 Copulas

B.1 A1 Copula Identifiability

For the A1 generator:

ϕA1(t; θ) =
(
t1/θ + t−1/θ − 2

)θ

, θ ≥ 1,

assume ϕA1(t; θ1) = ϕA1(t; θ2) for all t ∈ (0, 1). Taking logarithms:

θ1 ln
(
t1/θ1 + t−1/θ1 − 2

)
= θ2 ln

(
t1/θ2 + t−1/θ2 − 2

)
.

Define g(t; θ) = t1/θ + t−1/θ − 2. For fixed t, the function:

h(θ) = θ ln g(t; θ)

is strictly decreasing in θ. This follows because:

1. g(t; θ) > 0 for t ∈ (0, 1) (since t1/θ + t−1/θ > 2 by AM ≥ GM)

2. The derivative h′(θ) is negative:

h′(θ) = ln g(t; θ)︸ ︷︷ ︸
<0

+ ln t
θ
· t

−1/θ − t1/θ

g(t; θ)︸ ︷︷ ︸
<0

< 0,

where ln t < 0 and t−1/θ − t1/θ > 0

Thus, h(θ1) = h(θ2) implies θ1 = θ2, proving injectivity.

B.2 A2 Copula Identifiability

For the A2 generator:

ϕA2(t; θ) =
(

(1− t)2

t

)θ

, θ ≥ 1,

assume ϕA2(t; θ1) = ϕA2(t; θ2) for all t ∈ (0, 1). Taking logarithms:

θ1 ln
(

(1− t)2

t

)
= θ2 ln

(
(1− t)2

t

)
.

For t ̸= 3−
√

5
2 (where (1−t)2

t ̸= 1), ln
(

(1−t)2

t

)
̸= 0. Hence:

(θ1 − θ2) ln
(

(1− t)2

t

)
= 0 =⇒ θ1 = θ2,

for all non-degenerate t, proving injectivity.

Both proofs rigorously establish that ϕθ1 = ϕθ2 =⇒ θ1 = θ2, ensuring parameter identifiability for A1 and
A2 copulas.
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C Consistency proof for A1 and A2 copulas

Regularity Conditions. For every copula family in {Gumbel, Joe, A1, A2}, we assume:
1. Identifiability: The mapping θ 7→ T (θ) is injective within each family. In other words, if ϕθ1 = ϕθ2

then θ1 = θ2. (See (Nelsen, 2006) for the Gumbel and Joe copulas; for the A1/A2 families we have given the
proof in Appendix B.)
2.The generator ϕθ is continuously differentiable in θ.
3. Feature Continuity: The vector of summary features

Tn = (τn, ρn, λn, rn)

is continuous in θ. Moreover, a standard lemma (established via Donsker’s theorem for copula processes)
shows that the empirical features converge uniformly to their population counterparts over the compact set
Θ.

Theorem 1 Assume the regularity conditions above hold and further suppose that:
1. Universal Approximation: There exists a neural network (NN) architecture that is dense in the space
C (Θ) of continuous functions on Θ; here, we assume that Θ and the feature space T are compact, as required
by Hornik’s theorem (Hornik, 1991).
2. Training Density: As the number of training samples Ntrain →∞, the training data become dense over
Θ.
3. Operational Regime: The number of real observations n→∞.
Then the IGNIS estimator satisfies

θ̂n
p−→ θ0 as n→∞.

Proof. The proof proceeds in five steps.

Step 1: Uniform Feature Convergence. By a standard lemma (which follows from Donsker’s theo-
rem (van der Vaart & Wellner, 1996) for copulas), the empirical summary features converge uniformly (in
probability) to the population features:

sup
θ∈Θ
∥Tn(θ)− T∞(θ)∥ p−→ 0.

Step 2: Identifiability. Define the mapping f∗(T,C) as the true (population) function that maps the
summary features and the copula type C to the parameter θ. Then, by the injectivity of θ 7→ T (θ) within
each copula family (see above), if

f∗(T (1), C(1)) = f∗(T (2), C(2)),

it follows that (θ(1), C(1)) = (θ(2), C(2)).

Step 3: Universal Approximation. By the universal approximation theorem (Hornik, 1991), for any
ϵ > 0 there exist network parameters W such that

sup
(T,C)∈T ×C

∣∣fNN(T,C;W )− f∗(T,C)
∣∣ < ϵ,

where we assume that both Θ and the feature set T are compact.

Step 4: Training Risk Convergence. Let the mean squared error (MSE) loss be defined as

1
Ntrain

Ntrain∑
i=1

(
fNN(Ti, Ci;W )− θi

)2
.

By White’s Theorem (White, 1989), as Ntrain →∞ this training loss converges to zero.
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Step 5: Operational Consistency. Define fNN(T∞, C) as the neural network applied to the population
features. Then, by a standard decomposition,∥∥fNN(Tn, C)− θ0

∥∥ ≤ ∥∥fNN(Tn, C)− fNN(T∞, C)
∥∥︸ ︷︷ ︸

(a)

+
∥∥fNN(T∞, C)− θ0

∥∥︸ ︷︷ ︸
(b)

.

Term (a) converges to 0 in probability by the uniform convergence in Step 1, and term (b) converges to 0 by
the universal approximation and training risk convergence (Steps 3 and 4). Therefore, by Slutsky’s theorem
(Slutsky, 1925),

θ̂n = fNN(Tn, C) p−→ θ0.

This completes the proof.

Practical Considerations

In practice, the finite-sample performance of the IGNIS estimator can be analyzed via a bias–variance
decomposition of the mean squared error (MSE):

E
[
(θ̂n − θ0)2

]
≤ C1 n

−1 + C2 N
−1
train + C3 ϵ

2,

where C1 n
−1 represents the estimation error due to finite sample size, C2 N

−1
train accounts for the approxi-

mation error from limited training data, and C3 ϵ
2 reflects the error due to the network architecture approx-

imation.

This bound illustrates how the overall performance of the IGNIS estimator is influenced by the sample size,
the density of the training data, and the expressiveness of the chosen neural network architecture.

D Pathological Properties of A1/A2 Copulas

Asymptotic regimes. In the analyses below we work in two distinct limits:

1. Density-blowup (Barrier 1): take t → 0+ with θ fixed, to capture the boundary singularity of
ϕ′′(t; θ).

2. Score- and Hessian-decay (Barriers 2 & 3): take θ → ∞ with t ∈ (0, 1) fixed, to derive the
O(θ−8), O(θ−3), O(θ−9), and O(θ−4) decay rates.

D.1 Derivative Analysis and Computational Complexity

D.1.1 First and Second Derivatives of A1 Generator

For ϕA1(t; θ) =
(
t1/θ + t−1/θ − 2

)θ, let g(t) = t1/θ + t−1/θ − 2.

The first derivative is:

ϕ′
A1(t) = θg(t)θ−1g′(t)

where

g′(t) = 1
θ
t1/θ−1 − 1

θ
t−1/θ−1 = 1

θ
t−1/θ−1(

t2/θ − 1
)

The second derivative is:

ϕ′′
A1(t) = θ(θ − 1)g(t)θ−2[g′(t)]2 + θg(t)θ−1g′′(t)
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where

g′′(t) = 1
θ

(
1
θ
− 1

)
t1/θ−2 + 1

θ

(
1
θ

+ 1
)
t−1/θ−2

D.1.2 First and Second Derivatives of A2 Generator

For ϕA2(t; θ) =
( 1−t

t

)θ (1− t)θ, we rewrite as:

ϕA2(t; θ) = (1− t)2θt−θ

The derivatives are:

ϕ′
A2(t) = −θ (1− t)2θ−1 t−θ−1 (1 + t)
ϕ′′

A2(t) = θ (1− t)2θ−2 t−θ−2 [
(θ + 1) + 2(θ − 1) t+ (θ − 1) t2

]
Lemma 1 (A1 Score-Decay Rate) For the A1 generator

ϕA1(t; θ) =
(
t1/θ + t−1/θ − 2

)θ
,

the per-observation score satisfies
∂θ log c(u, v; θ) = O

(
θ−8)

,

and hence for n i.i.d. pairs, ∣∣∂θℓ(θ)
∣∣ =

n∑
i=1

O
(
θ−8)

= O
(
n θ−8)

.

Proof. Let L = ln t. First expand

t1/θ = eL/θ = 1 + L

θ
+ L2

2θ2 + L3

6θ3 + L4

24θ4 +O
( 1
θ5

)
,

t−1/θ = 1− L

θ
+ L2

2θ2 −
L3

6θ3 + L4

24θ4 +O
( 1
θ5

)
.

Hence
g(t) = t1/θ + t−1/θ − 2 = L2

θ2 + L4

12θ4 +O
( 1
θ6

)
.

Differentiate:
g′(t) = 1

θ

(
t1/θ−1 − t−1/θ−1)

= L2

θ2 t
+O

( 1
θ4

)
, g′′(t) = O

( 1
θ2

)
.

Write
ϕ′

A1(t) = θ gθ−1 g′, ϕ′′
A1(t) = θ(θ − 1) gθ−2[g′]2 + θ gθ−1 g′′.

Then

lnϕ′
A1(t) = ln θ + (θ − 1) ln g + ln g′,

lnϕ′′
A1(t) = ln[θ(θ − 1)] + (θ − 2) ln g + 2 ln g′ + ln

(
1 + g′′

(θ−1)g′

)
.

Differentiating in θ gives, after a lengthy but straightforward series-expansion in 1/θ:

∂θ lnϕ′′
A1(t) =

8∑
k=1

Ak(t)
θk

+O
( 1
θ9

)
, ∂θ lnϕ′

A1(t) =
8∑

k=1

Bk(t)
θk

+O
( 1
θ9

)
.

A direct coefficient-comparison (matching powers of 1/θ) shows

A1(t)− 2B1(t) = 0, A2(t)− 2B2(t) = 0, . . . , A7(t)− 2B7(t) = 0,
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and the first nonzero difference is
A8(t)− 2B8(t) = O(1).

Hence for one pair
∂θ log c(u, v; θ) = ∂θ lnϕ′′

A1(w)− 2 ∂θ lnϕ′
A1(u) = O

( 1
θ8

)
,

and summing over n gives the result.

Lemma 2 (A2 Score-Decay Rate) For the A2 generator

ϕA2(t; θ) = (1− t)2θ t−θ,

one finds
∂θ log c(u, v; θ) = O

(
θ−3)

,

and thus |∂θℓ(θ)| = O(n θ−3).

Proof. Write
lnϕ′

A2(t) = ln θ + (2θ − 1) ln(1− t)− (θ + 1) ln t+ ln(1 + t),
lnϕ′′

A2(t) = ln[θ(θ − 1)] +(2θ − 2) ln(1− t)− (θ + 2) ln t+ lnQ(t, θ),
where Q(t, θ) is a polynomial of degree 2 in t. Differentiating and expanding in 1/θ yields

∂θ lnϕ′′
A2(t)− 2 ∂θ lnϕ′

A2(t) = C1(t)
θ2 + C2(t)

θ3 +O
(

1
θ4

)
,

with the 1/θ and 1/θ2 terms canceling exactly. The first nonzero remainder isO(1/θ3). Hence per-observation
∂θ log c = O(1/θ3), and summing n copies gives O(n θ−3).

Lemma 3 (Hessian-Decay Rates) Under the same setup as Lemmas D.1 and D.2, the second derivative
of the log-likelihood,

∂2
θℓ(θ) =

n∑
i=1

∂2
θ log c(ui, vi; θ),

satisfies ∣∣∂2
θℓ(θ)

∣∣ =
{
O

(
n θ−9)

, A1,
O

(
n θ−4)

, A2.

Proof. We differentiate once more the cancellation expansions from Lemmas D.1 and D.2:

1. A1 case From Lemma 1 we had, per observation,

∂θ log c(u, v; θ) =
∞∑

k=8

Ck

θk
, C8 ̸= 0.

Differentiating in θ gives

∂2
θ log c(u, v; θ) =

∞∑
k=8

(−k) Ck

θk+1 = O
( 1
θ9

)
.

Summing over n pairs yields O(n θ−9).

2. A2 case From Lemma 2 we had, per observation,

∂θ log c(u, v; θ) = D3

θ3 +O
( 1
θ4

)
, D3 ̸= 0.

Differentiating gives
∂2

θ log c(u, v; θ) = −3 D3

θ4 +O
( 1
θ5

)
= O

( 1
θ4

)
.

Summing across n observations yields O(n θ−4).

This completes the proof.
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D.2 Proof of Numerical Instability (Barrier 1)

Theorem 2 (Asymptotic Singularity Behavior) The second derivatives of the A1 and A2 generators
exhibit severe asymptotic behavior near the boundary t→ 0+:

1. For A1: ∣∣ϕ′′
A1(t)

∣∣ ∼ O(
t−3)

.

2. For A2: ∣∣ϕ′′
A2(t)

∣∣ ∼ O(
t−θ−2)

.

Proof. Part 1: A1 Generator Singularity Analysis

Recall
ϕA1(t; θ) =

(
t1/θ + t−1/θ − 2

)θ
, g(t) = t1/θ + t−1/θ − 2.

We have
ϕ′′

A1(t) = θ(θ − 1) g(t)θ−2 [
g′(t)

]2 + θ g(t)θ−1 g′′(t),

with
g′(t) = 1

θ
t−1/θ−1(

t2/θ − 1
)
∼ −1

θ
t−1/θ−1, g′′(t) ∼ 1

θ

(1
θ

+ 1
)
t−1/θ−2, g(t) ∼ t−1/θ.

Hence as t→ 0+:

ϕ′′
A1(t) ∼ θ(θ − 1)

(
t−1/θ

)θ−2
(
− 1

θ t
−1/θ−1

)2
+ θ

(
t−1/θ

)θ−1
(

1
θ

( 1
θ + 1

)
t−1/θ−2

)
= θ − 1

θ
t−3 +

(
1
θ + 1

)
t−3 = 2 t−3 = O(t−3).

Part 2: A2 Generator Singularity Analysis

Since
ϕA2(t; θ) = (1− t)2θ t−θ,

one finds (see main text) that

ϕ′′
A2(t) = θ (1− t)2θ−2 t−θ−2 [

(θ + 1) + 2(θ − 1)t+ (θ − 1)t2
]
.

As t→ 0+, only the (θ + 1)–term survives:

ϕ′′
A2(t) ∼ θ t−θ−2 (θ + 1) = O(t−θ−2).

Corollary D.1 (Numerical Overflow Conditions) With machine precision ϵmach ≈ 2.22 × 10−16,
floating-point overflow in the density c(u, v) = ∂2C/∂u∂v occurs when

A1: t < ϵ
1/3
mach, A2: t < ϵ

1/(θ+2)
mach .

D.3 Proof of Vanishing Gradients (Barrier 2)

Theorem 3 (Gradient Plateau Formation) Let

ℓ(θ) =
n∑

i=1
log c(ui, vi; θ)
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be the log-likelihood for an A1 or A2 Archimedean copula based on n observations. Then as θ →∞ the score
function satisfies ∣∣∂θℓ(θ)

∣∣ =
{
O

(
n θ−8)

, A1,
O

(
n θ−3)

, A2.

Consequently, for a gradient-tolerance εgrad, the log-likelihood appears flat once

∂θℓ(θ) < εgrad =⇒ θ > θcrit,

where
θA1

crit =
(

C1 n
εgrad

)1/8
, θA2

crit =
(

C2 n
εgrad

)1/3
,

with C1 ≈ 0.02, C2 ≈ 0.002.

Proof. Write the score as

∂θℓ(θ) =
n∑

i=1

[
∂θ log ϕ′′(wi)− ∂θ log ϕ′(xi)− ∂θ log ϕ′(yi)

]
,

where wi = ϕ−1(ui) + ϕ−1(vi), xi = ϕ−1(ui), yi = ϕ−1(vi).

1. Individual-term decay. From Appendix D one shows ∂θ log ϕ′′(w) and ∂θ log ϕ′(x) each scale like
O(θ−1). Hence each of the three sums is

∑n
i=1 O(θ−1) = O(n/θ).

2. Cancellation. Because the three large O(n/θ) sums enter with alternating signs and are strongly
correlated, their leading contributions cancel, leaving a net∣∣∂θℓ(θ)

∣∣ = O
(
n θ−2)

for both copulas at leading order.

3. Higher-order decay. A more refined analysis (see Lemmas 1 & 2) shows:

∣∣∂θℓ(θ)
∣∣ =

{
O

(
n θ−8)

, A1,
O

(
n θ−3)

, A2.

4. Critical thresholds. Set C1 n θ
−8 = εgrad for A1 and C2 n θ

−3 = εgrad for A2, then

θA1
crit =

(
C1 n/εgrad

)1/8
, θA2

crit =
(
C2 n/εgrad

)1/3
.

With n = 1000, εgrad = 10−6, C1 = 0.02, C2 = 0.002, one obtains θA1
crit ≈ 8.17 and θA2

crit ≈ 126.

D.4 Proof of Hessian Decay (Barrier 3)

Theorem 4 (Hessian-Decay Behavior) Let

ℓ(θ) =
n∑

i=1
log c(ui, vi; θ)

be the log-likelihood for A1 or A2 copulas based on n data pairs. Then its second derivative (“scalar Hessian”)
satisfies ∣∣∂2

θℓ(θ)
∣∣ =

{
O

(
n θ−9)

, (A1),
O

(
n θ−4)

, (A2).
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Moreover, in double precision (machine epsilon εmach ≈ 2.22× 10−16), the Hessian will underflow once

n θ−9 < εmach =⇒ θ >
(
n/εmach

)1/9
,

n θ−4 < εmach =⇒ θ >
(
n/εmach

)1/4
.

For n = 1000, these evaluate roughly to θ ≳ 1.2× 102 for A1 and θ ≳ 4.6× 104 for A2.

Proof. Let

ℓ(θ) =
n∑

i=1
log c(ui, vi; θ) ,

and write
Di(θ) = ∂θ log c(ui, vi; θ), Hi(θ) = ∂2

θ log c(ui, vi; θ).

From Lemmas 1–2 we know

1. A1 case:
Di(θ) = Ci θ

−8 +Ri(θ),

where Ci ̸= 0 is the leading constant and the remainder satisfies Ri(θ) = O(θ−9) as θ →∞.

2. A2 case:
Di(θ) = D′

i θ
−3 + Si(θ),

with D′
i ̸= 0 and Si(θ) = O(θ−4).

Differentiate Di(θ) once more to get Hi(θ).

A1:
Hi(θ) = d

dθ

(
Ci θ

−8 +Ri(θ)
)

= −8Ci θ
−9 +R′

i(θ),

and since Ri(θ) = O(θ−9), we have R′
i(θ) = O(θ−10). Hence

Hi(θ) = O(θ−9).

A2:
Hi(θ) = d

dθ

(
D′

i θ
−3 + Si(θ)

)
= −3D′

i θ
−4 + S′

i(θ),

and Si(θ) = O(θ−4) implies S′
i(θ) = O(θ−5). Thus

Hi(θ) = O(θ−4).

Step 2: Sum over all n observations

Since

∂2
θℓ(θ) =

n∑
i=1

Hi(θ),

we get directly

A1:

∂2
θℓ(θ) =

n∑
i=1

O(θ−9) = O
(
n θ−9)

.

A2:

∂2
θℓ(θ) =

n∑
i=1

O(θ−4) = O
(
n θ−4)

.

Step 3: Finite-precision underflow thresholds
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In double precision, any quantity smaller in magnitude than εmach ≈ 2.22 × 10−16 will underflow to zero.
Therefore solve:

A1:
n θ−9 < εmach =⇒ θ9 >

n

εmach
=⇒ θ >

(
n

εmach

)1/9
.

For n = 1000, this gives θ ≳ (103/2.2× 10−16)1/9 ≈ 1.2× 102.

A2:
n θ−4 < εmach =⇒ θ4 >

n

εmach
=⇒ θ >

(
n

εmach

)1/4
.

Numerically this is θ ≳ (103/2.2× 10−16)1/4 ≈ 4.6× 104.

These thresholds mark where the scalar Hessian effectively underflows, causing any Newton-type update to
stall.
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