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Abstract

Neural networks implicitly learn class-specific functional modules. In this work,
we ask: Can such modules be isolated and recombined? We introduce a method for
training sparse networks that accurately classify only a designated subset of classes
while remaining deliberately uncertain on all others, functioning as class-specific
subnetworks. A novel KL-divergence-based loss, combined with an iterative
magnitude pruning procedure, encourages confident predictions when the true
class belongs to the assigned set, and uniform outputs otherwise. Across multiple
datasets (MNIST, Fashion MNIST, tabular data) and architectures (shallow and
deep MLPs, CNNs), we show that these subnetworks achieve high accuracy on
their target classes with minimal leakage to others. When combined via weight
summation, these specialized subnetworks act as functional modules of a composite
model that often recovers generalist performance. We experimentally confirm that
the resulting modules are mode-connected, which justifies summing their weights.
Our approach offers a new pathway toward building modular, composable deep
networks with interpretable functional structure.

1 Introduction

Modern neural networks (NNs) implicitly develop internal subgraphs of neurons and connections
tuned to respond to specific classes. These structures, sometimes referred to as circuits [Olah et al.|
2020, |O’Neill and Buil, [2024]], emerge during training but are difficult to isolate, reuse, or compose.
Representations for different classes are often entangled, resulting in shared neurons or features—a
phenomenon known as superposition [Mu and Andreas, |2020, [Saphra and Wiegretfe] 2024 —which
makes clean modularity elusive.

This lack of class-level modularity limits our ability to understand, edit, or compose networks. If we
could reliably extract a functional module—a subnetwork that specializes in recognizing one class (or
a small subset) while ignoring others—we could enable new forms of continual learning, unlearning,
and compositional reasoning [De Lange et al.||2022]. Crucially, such modules must not only function
in isolation, but also be designed to compose smoothly, without fine-tuning or alignment [[Ilharco
et al.| 2023| [Hazimeh et al.,2024]. In this work, we want to answer the following question:

Can we train sparse, class-specialized subnetworks that remain ignorant outside
their domain, and compose into accurate, generalist models?

We answer affirmatively, proposing a methodology that leverage two key concepts: the Maximum-
Entropy (MaxEnt) principle and sparse training. The MaxEnt principle [Jaynes| [1957]] advocates
choosing the most uninformative distribution consistent with known constraints. Originally applied
in statistical mechanics, it has become central to inference theory [Kuic, 2016} [De Martino and
De Martino, 2018]].
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We claim that MaxEnt can guide functional isolation: modules are trained to make confident pre-
dictions only for their class, and uniform predictions otherwise. This differs from standard entropy
regularization used in calibration or selective prediction [Marczak et al., 2024]].

On the other hand, sparsity plays a crucial role in this context. Sparse models tend to exhibit less
overlap in their parameters or activations, reducing interference when modules are merged. We
demonstrate its practical benefits by leveraging the Lottery Ticket Hypothesis (LTH). In general,
LTH claims that sparse subnetworks can match dense models if trained with the right initialization
[Frankle and Carbin} 2018 [Zhou et al.| 2019} Liu et al.}|2024]. In our scenario, we show that sparse
subnetworks can achieve better performance than dense ones while enhancing modular compatibility.

In light of this, we propose a framework based on two main components: a novel Max-Entropy loss
(ME) coupled with an Iterative Magnitude Pruning (IMP) strategy [Frankle and Carbin, [2018]],
and a model merging step to achieve generalist models. The goal of the MaxEnt loss is to enforce
confident predictions on a subnetwork’s rewarded class set and uniform predictions otherwise, while
the IMP removes spurious capacity and reinforces specialization through sparsity [[Burkholz, 2022,
Girish et al} [2021]]. We call the resulting components subnetwork modules: sparse networks that
specialize in a class or class subset, and can be combined to form more generalist models.

To the best of our knowledge, this is the first work that trains a NN by isolation and merging. Our
results suggest a new approach to NN construction: rather than learning entangled solutions end-to-
end, we can build systems from independently trained, entropy-regularized modules. To summarize,
our contribution is threefold: (i) we introduce a novel MaxEnt loss able to train specialized modules;
(ii) we propose a new training pipeline to achieve better isolation and model merging to get generalist
models; (iii) we validate our findings through extensive experiments on several architectures and
datasets.

2 Related Work

In this section, due to lack of space, we put only the most relevant related work. An extended version
of related works involving model merging, pruning methods, modular training and MaxEntropy
principle is available in Appendix

Modular Neural Networks and Interpretability. Several works have explored modular neural
architectures that decompose computation across tasks [Kirsch et al.,[2018} [Han et al., [2021} |Salem
et al., 2023]]. Notably, [Kirsch et al|[2018]] introduced end-to-end learning of both modules and
their composition via a controller. They rely on subsequent modules for learning broader tasks,
while using Expectation-Maximisation (EM) for learning a specific module. While sharing a similar
motivation to our work, we build class-specific functional modules, trained to focus on a single class
while producing high-entropy on different classes. This specific goal is hindered by their structure of
subsequent modules, that are chosen by a controller and reused across tasks, making it difficult to
isolate class-specific functionality. Additionally, our approach relies on model merging, rather than
leveraging subsequent modules.

Interestingly, Malakarjun Patil et al.| [2023]] highlight the importance of pruning methods in unveiling
the hierarchical structure of NNs. In particular, they propose an iterative approach for hierarchy
detection, where the hierarchy is the underlying hierarchy of sub-functions in a specific task, delivering
interesting network analysis. Our work partially shares the goal, but focuses more on a complete
training pipeline and on submodules isolation without seeking a hierarchical structure, rather than
network analysis about submodules.

Interpretability Our work inevitably aligns with the goal of producing interpretable networks.
Among the methods that tackle this challenge, we can distinguish between post hoc and interpretable-
by-design methods. While post hoc interpretability methods [Ribeiro et al.| 2016, Lundberg and
Leel 2017] are constrained to work with trained models, our methodology is applied during training,
yielding units with clear semantics and compositional behavior. In particular, our approach aligns
with mechanistic interpretability methods [Saphra and Wiegreffel 2024, |Olah et al., [2020]], where
subnetworks (or circuits) are studied as functional entities. Interestingly, |Liu et al.|[2023]] propose a
brain-inspired modular training procedure, relying on network embedding into geometric spaces, and
neurons swapping. Instead of leveraging pruning methodologies, they rely mainly on regularization.
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However, they mainly use synthetic datasets and never scale to CNN, while we show that our
technique is applicable also to a broader range of tasks.

Finally, our work also complements neuron-level analyses like Mu and Andreas| [2020], which
seek meaningful internal representations but suffer from polysemanticity. Instead, we encourage
modularity at the subnetwork level. This is conceptually related to Marchetti et al.| [2024]], where
symmetry constraints shape functional structure—our modules may reflect class-wise symmetry
components in such a framework.

3 Learning Composable Class-Specific Subnetwork Modules

We propose a method for constructing compos-
able subnetwork modules, each specialized in

classifying a specific subset of classes while 00 el ]
remaining unresponsive to others. These mod- e T, u\'ﬂp\ - VS Algo. 1
ules are trained to produce peaked predictions ME N ME *ME 1 | applied

on their target classes and uniform predictions o (§ / q} 01$ [or each
otherwise, in line with the MaxEnt principle. ! 2 ¢

Our proposed procedure consists of two key el- 'g g e

ements that we are going to discuss: a custom 01 21¢ Occ

loss function and an iterative magnitude prun- . T Example of
ing schedule. Our final goal is to merge trained 0[1,2]6 Complete
modules efficiently, resulting in a more power- Q”j;%,;

ful model, built by simple merging. Figure 6
provide an high level overview of our method Op2-¢

and its components.

3.1 Max-Entropy Loss Figure 1: Overview of our method. Starting from
common initialization #y we find, via Iterative
Magnitude Pruning (IMP) exploiting our Max-
Entropy (ME) loss (see Algorithm [I)), for each
class in C a specialized subnetwork. Modules can

be summed via weight summation.

Let C be the full set of classes and R C C the
set of rewarded classes for a given subnetwork
module. For a training sample (z,y), where

y € C, we define a rarget distribution § € RIC!

as:
. 0i=
Yi = {i Y

ICI

For example, if C = {0,1,2} and R = 0 we will use § = (1,0, 0) for class 0, § = (0.33,0.33,0.33)
for classes 1 and 2. Let §j = softmax( fy(x)) be the predicted class probability distribution produced
by the model. The MaxEnt loss is then defined as the Kullback-Leibler (KL) divergence between the
target distribution g and the predicted distribution §:

ifyeR
otherwise

ey

Ic|

Ly, y) = KL(F || 9) = 3 gilog (z) @
i=1 !

This formulation encourages the model to output peaked predictions (low entropy) for samples in
rewarded classes and uniform predictions (high entropy) for non-rewarded ones. In doing so, it
promotes functional isolation, ensuring that each subnetwork module specializes only in its intended
class subset and remains maximally uncertain elsewhere.

Unlike one-vs-all formulations, our approach enforces neuron-permutation invariance on non-
rewarded samples—a crucial property for composability. In a one-vs-all setup, training a module
for class 0 would implicitly push other output neurons (e.g., neuron 1) to represent “not class 0.”
However, if another module uses neuron 1 to represent “class 1,” summing the two leads to a semantic
collision: the same neuron would encode both “class 1”” and “not class 0, which includes many other
classes.
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3.2 Iterative Magnitude Pruning

To enhance specialization and remove spurious capacity, we apply Iterative Magnitude Pruning
(IMP) [Frankle and Carbin, |2018]] as in Algorithm At each iteration, we train with the MaxEnt
loss, prune a fixed percentage of low-magnitude weights, and reinitialize the remaining ones. After
several rounds, a final training phase is applied to the sparse subnetwork. This process encourages
class-specific specialization and improves uncertainty calibration on non-rewarded classes.

Algorithm 1 Iterative Magnitude Pruning with Max-Entropy Loss

Require: Initial weights 6, training data D, rewarded classes R, number of pruning iterations [V,
pruning percentage P, epochs per iteration
0 «+ 90
for i =1to N do
Train model fp on D using max-entropy loss with rewarded classes R for E epochs
Prune K% of weights in 6 with smallest absolute value, with K = 1 — (1 — P)~
Reset remaining weights in 6 to their initial values from 6,
end for
Train the final pruned subnetwork on D using max-entropy loss with rewarded classes R for £
epochs

A A R e

3.3 Model Merging via Weight Summation

To compose a generalist model, we merge submodules by summing their weights: Omerged =  ; 6;-
This operation is enabled by our design: submodules are trained to specialize on disjoint subsets of
classes and to behave identically—via uniform predictions—on all others, minimizing interference.

We consider both pairwise merges (6, + 62) and complete merge (> _, 6;), and evaluate composition-
ality using the same metrics used for individual modules. To understand when and why summation
preserves performance, we analyze the loss landscape through the lens of mode connectivity. Crucially,
unlike typical mode connectivity studies—where 6, and 65 solve the same task—our submodules are
specialized for different sets of classes. The merged model is intended to solve the union task, and
is evaluated using the MaxEnt loss over the combined rewarded classes. This distinction makes it
essential to assess whether the merged weights lie in a low-loss region for the composite task.

Following [Frankle et al.|[2020] and [Lubana et al.|[2023]], we say that §; and 05 are mode connected
along a path ~(¢) if:

vt € [0,1],  L(fy2)(D)) < (1 =1)L(fo,(D)) + tL(f0,(D)) + € ©)

where € is a small margin, set to 2% of the first term on the r.h.s. following |[Frankle et al.[[2020], and
L is our MaxEnt loss evaluated on a dataset D with labels restricted to /R U R4, the union of the
rewarded classes for the two modules.

To test this, we define the following piecewise-linear path, designed such that 8, + 65 appears as an
intermediate point:

(6142t 6, ift <0.5
V61— 02 (t) - {2(1 _ t) . 91 + 92 ift > 0.5 @

This path satisfies: 7(0) = 61, v(1) = 62, and ¥(0.5) = 61 + 62. We evaluate the loss along ()
and interpret low-barrier profiles as evidence that the modules are composable by construction.

4 [Experiments

We empirically evaluate our method on multiple image and tabular datasets, aiming to answer the
following questions: (i) Can MaxEnt training enforce meaningful class-specific specialization?
(i) How well do merged submodules recover generalist performance? (iii) Does iterative pruning
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MNIST Fashion MNIST HAR Yeast
Entropy Rewarded Acc Entropy Rewarded Acc Entropy Rewarded Acc Entropy Rewarded Acc

Shallow No 2.296 ©0.003)  0.998 ©.002) 2.296 ©.003)  0.998 ©002) 1.762 ©.017)  0.997 ©007) 1.298 00620  0.995 (0.009)
MLP Yes  2.293 oo  0.999 ©oon 2.293 o004  0.999 ©oon 1.757 0023  0.996 0008y 1.297 0059  0.998 (0.006)

Deep No 2298 ©002)  0.997 ©003) 2.285 ©o013)  0.995 ©o04) 1.772 ©o14  0.992 ©013) 1.302 0064  0.996 (0.009)
MLP Yes 2300 o001  0.998 ©o002) 2.291 0008y  0.991 ©o0n 1.762 0023  0.999 ©o0s) 1.302 056  1.000 (0.000)

No 2.302 ©o000)  0.998 ©.004) 2.302 00000  0.996 (0.004) - - - -
Yes 2302 00000  0.994 ©005) 2.302 00000  0.992 (0.005) - - - -

Model IMP

CNN

Table 1: Single submodule behaviour when using MaxEnt Loss with and without IMP

improve the quality of submodules and composability? (iv) Does our training procedure induce mode
connectivity between independently trained modules and does it scale with the number of modules?

4.1 Training and Evaluation Protocol

We apply our MaxEnt loss and iterative pruning independently to each class or subset R C C. Each
submodule is trained as in Algorithmm and evaluated on: (i) rewarded accuracy, i.e., classification
accuracy on samples from R; (ii) non-rewarded entropy, i.e., the average predictive entropy on
inputs from C \ R; and (iii) the confusion matrix, used qualitatively to assess specialization and
leakage.

In particular, it is worth mentioning that in our training procedure we simulate a scenario in which
only the classes in R are labeled, but we still have access to the other samples.

To evaluate composability, we used |R| € {1,2, 5} to test pairwise merging. For a specific cardinality,
the model is trained to recognize solely a selected set of classes, of the given cardinality and
sampled among the ones available for that specific dataset. We sample 10 pairs of class sets
{(Raks Rak+1) Foeo» With Rag () Rak+1 = 0 and Rog, Raog+1 spanning in the set of combinations
for the dataset’s class set. For each pair, we perform 5 independent random seeds and merge a pair
into a single model. For example, with |R| = 1, the procedure consists of: training a NN using our
MaxEnt loss rewarding one specific class g, then a different NN is trained on a different single class
R1, and then the two models are merged and tested. The resulting model should perform well on the
2 classes. This procedure is repeated for 5 seeds to ensure statistical evidence, and for a total of 10
paired sets. When |[R| = n > 1, two NN are trained to specialize on two different sets of n classes
at the same time, and there is no overlap between the sets. Figure 2]depicts an example of resulting
confusion matrices for these pairwise-merging experiments.

Formal definitions and implementation details are provided in the Appendix.

om 000 000 020 000 520 000 000 0.00 B 060 0.0 000 000 020 000 000 380 140 o BB 100 100 040 200 220 340 520 440 020
~ 14540 92,00 25.40 1160 73.20 147.40353:20 24.40 85,60 176.60 - 000 020 020 020 000 000 000 600 0.0 - 180 280 100 460 040
o 40160 41.00 2220 23.20 91.80 46.40 266:20 18.80 6220 58.60 1882026200 760 540 1420 820 2040 2180 3250017920 o780 080 360 1100 1640 260

m -292.20 73.60 31.20 34.80 122.80 69.00 171.80 39.20 82.60 92.80 m -98.00 226.00 13.00 8.40 20.00 9.80 17.00 10.40 244.40363.00 m- 080 100 1540 120 1540 1220 8.80

< 233.20 48.20 58.40 33.20 78.40 62.40 268.00 29.40 104.80 66.00 < -66.00 165.60 15.80 6.00 17.40 9.40 500 10.40 146.40540.00 <-140 540 3.00 040 ZNEN 140 980 160 860 29.20

Real
Real
Real

«n 291,40 22.60 27.00 13.40 47.80 53.40 326,00 18.60 58.60 33.20 0 -162.00107.40 4.40 9.00 20.00 500 6.20 11.80 320.20246.00 - 560 040 100 840 020 FEUEW 1540 7.80 9.60 5.80

FE A P A S P A S
(a) Classes [0]+[6] (b) Classes [0,1]+[8,9] (c) Classes [0—4]+[5-9]

Figure 2: Confusion matrices for three representative pairwise merges of shallow MLP submodules
on the MNIST dataset. Even after merging, each rewarded class remains highly separable, and
predictions on non-rewarded classes remain nearly uniform.
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4.2 Experimental Setup

We evaluate our approach on three model classes: shallow MLPs (1 hidden layer), deeper MLPs
(2 hidden layers), and CNNs (LeNet-style). For image data, we use MNIST [LeCun et al., [199§|]
and Fashion MNIST [Xiao et al.,|2017]]. These datasets are in line with similar works [Liu et al.
2023| Malakarjun Patil et al.,[2023]], but to get a broader impact we include two tabular classification
datasets from the UCI repository: Human Activity Recognition (HAR) [Reyes-Ortiz et al.| 2012]], and
Yeast |[Dua and Graff] 2017]]. We compare our MaxEntropy loss with two baselines, showing that
entropy maximization plays a crucial role in isolation. In particular, we compare MaxEnt with:

* Quasi-MaxEnt loss: a loss function that on non-rewarded classes ignores the rewarded
classes and produces a uniform distribution solely on non-rewarded classes; Formally
referring to (1):

N Sie ify e R
{ v nY )

Yi = 1 ;
! Si#jjeRTegy Otherwise

* CrossEntropy loss: the standard loss used in standard classification tasks. In this case, we do
not modify the labels, which remain standard, but the model is exposed only to the classes
in R, rather than all available classes.

Full dataset details and preprocessing steps are reported in Appendix |Cl Each submodule is trained
on a specific subset of classes using the MaxEnt loss, with or without IMP.

4.3 Submodule Behavior with MaxEnt Loss

We begin by evaluating submodules trained solely with the MaxEnt loss, without pruning. Each
subnetwork is tasked with recognizing one specific class from the original dataset, and to output
uniform predictions on all others.

For each of 5 random seeds, we train a separate submodule per class. The results in Table [I] are
aggregated across both classes and seeds, providing average values and standard deviations for overall
trends.

Table [T]reports the accuracy on rewarded classes and the average entropy on non-rewarded samples.
Accuracy is consistently high (close to 100%) across all classes, confirming that submodules correctly
specialize on their class. The entropy, meanwhile, approaches the theoretical value of 1log( N¢jasses)
for a uniform distribution, e.g. log(10) ~ 2.30 for MNIST and Fashion MNIST, suggesting that
predictions on excluded classes are nearly uniform.

These results suggest that our proposed submodules can effectively recognize individual classes and
exhibit the theoretical behavior they were designed to emulate, across different architectures.

4.4 Pairwise merging

We further evaluate the effectiveness of our method through pairwise merging experiments across dif-
ferent configurations. Table 2]reports the aggregated metrics over seeds and merged pairs. Rewarded
accuracy remains high (often > 0.90), indicating that each merged module retains its classifica-
tion ability. The mean entropy on non-rewarded classes stays close to the theoretical maximum of
log( Neasses ) €-g. it is around 2.28 for MNIST and Fashion MNIST, confirming minimal interference.

Surprisingly, we can see that MaxEnt outperforms the Quasi-MaxEnt in all cases. Besides being
such a small change in the learning phase (MaxEnt enforces uniformity over all neurons for non-
rewarded inputs, while Quasi-MaxEnt enforces uniformity over all but the rewarded ones), this loss
function loses in performance with respect to ours. This surprising result is probably due to the
leakage of information on non-rewarded classes. In particular, the QME incentivizes changes in
the flow of information even for non-rewarded classes, which violates the MaxEnt principle. In
contrast, ME encourages only information from the rewarded classes, improving the specialization
and better avoiding spurious activations. Our method also outperforms standard CrossEntropy. This
was expected, since the CrossEntropy is intended to train with all the labels at once, while in this case
its effectiveness is hindered by the reduced number of classes on which it is optimized.
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Figure 3: Impact of IMP on pairwise merging for different architectures and cardinalities, considering
the MNIST and Fashion MNIST datasets, and using the ME loss.

Table 2: Average entropy and rewarded accuracy across datasets, models, and loss functions. Bold
indicates the best result per group according to Welch’s test at 95% confidence.

FMNIST MNIST HAR Yeast
Model |R|  Loss Entropy R-Acc Entropy R-Acc Entropy R-Acc Entropy R-Acc

XE 0.183 (0.151) 0.877 (0.186)  0.507 (0.150) 0.708 (0.179)  1.255 (0.191) 0.855 (0.197) 1.378 (0.004) 0.631 (0.101)
1 QME  2.031 (0.132) 0.908 (0.105)  2.082 (0.005) 0.973 (0.014) 1.196 (0.073) 0.946 (0.046) 1.056 (0.082) 0.799 (0.106)
ME 2287 (0.005) 0.977 (0.005) 2.287 (0.005) 0.991 (0.005) 1.716 (0.033) 0.985 (0.016) 1.146 (0.077) 0.853 (0.127)

MLP XE 0.277 (0.108) 0.786 (0.141)  0.332 (0.080) 0.838 (0.074) 1.167 (0.217) 0.871 (0.055) — 0.381 (0.036)
2 QME  1.824 (0.207) 0.917 (0.049) 1.683 (0.216) 0.959 (0.016) 1.013 (0.223) 0.891 (0.024) — 0.559 (.011)

ME 2267 0.007) 0.977 0.005) 2.268 (0.007) 0.980 (0.006) 1.670 (0.045) 0.935 (0.027) — 0.616 (0.010

XE — 0.480 (0.075) — 0.842 (0.027) - - - -

5 QME — 0.741 (0.026) — 0.905 (0.023) - - - -

ME — 0.946 (0.004) — 0.946 (0.004) - - - -

XE 0.215 (0.150) 0.802 (0.205)  0.422 (0.190) 0.689 (0.194)  1.059 (0.313) 0.840 (0.2100 1.386 (0.0003) 0.553 (0.144)

1 QME  1.842 (0.329) 0.868 (0.176)  2.061 (0.046) 0.954 (0.045) 1.098 (0.128) 0.819 (0.155)  0.883 (0.118) 0.783 (0.114)

ME 2.245 (0.072) 0.975 (0.039) 2.291 (0.031) 0.990 (0.005) 1.697 (0.050) 0.988 (0.016) 1.063 (0.109) 0.859 (0.120)

Deep MLP XE 0.166 (0.083) 0.678 (0.081)  0.208 (0.054) 0.743 (0.111)  1.065 (0.344) 0.824 (0.068) — 0.382 (0.046)
P 2 QME  1.347 (0484) 0.863 (0.088) 1.224 (0.352) 0.912 (0.038) 0.665 (0.251) 0.787 (0.093) — 0.562 (0.023)
ME  2.197 0.095) 0.898 (0.045) 2.275 (0.026) 0.976 (0.011) 1.607 (0.134) 0.930 (0.028) — 0.589 (0.018)

XE 0.016 (0.026) 0.557 (0.150)  0.041 (0.128) 0.529 (0.080) - - - -

1 QME 0.981 (0.322) 0.880 (0.136)  1.001 (0.377) 0.961 (0.078) - - - -

ME 2.297 (0.039) 0.960 (0.097) 2.286 (0.057) 0.989 (0.012) - - - -

CNN XE 0.052 (0.038) 0.604 (0.169)  0.070 (0.042) 0.624 (0.138) - - - -

2 QME 0.705 (0.397) 0.888 (0.071) 0.312 (0.307) 0.928 (0.074) - - - -
ME  1.984 (0.304) 0.930 (0.044) 1.950 (0.456) 0.965 (0.046) - - - -

Figure [2] shows qualitative examples of confusion matrices for representative merges with increasing
class coverage. In Figure 3] we show the effectiveness of IMP on MNIST and Fashion MNIST on all
the architectures and cardinalities, while merging. We can see in particular that IMP improves the
performances consistently for a Deep MLP, while benefiting more modestly the Shallow MLP and
the CNN.

For what it concerns IMP itself, for each model we have tried different level of pruning. Interestingly,
MLP and Deep MLP did not show specific harm with pruning, enabling us to use a percentage of
99%. For the CNN the optimal pruning ratio was 60%. More details about this are provided in the
Appendix. Notice that each model is pruned over two iterations, followed by a final training phase.

In Table[T]we also report the performances of single submodules when applying IMP, showing the
results aggregated over both seeds and classes. We can see that pruning has little impact on rewarded
accuracy and entropy on non-rewarded inputs remains high and close to the theoretical maximum.

These results suggest that pruning removes capacity responsible for encoding unintended structure,
thus reinforcing the functional isolation induced by the loss. In addition, the results from Figure[3]
suggest that IMP is beneficial for pairwise merging.

4.5 Merging Analysis

In this section, we further evaluate our method in a more challenging scenario and provide further
analysis.
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Complete Merge We perform a complete 10
merge experiment. For each dataset, we ran-
domly generate 10 permutations of the class
labels. For each of 5 random seeds, we train
one submodule per class using either MaxEnt
loss alone or in combination with IMP. We then
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Figure ] reports the average rewarded accuracy
at each merge step, aggregated across permuta-
tions and seeds. We can see that submodules
trained with IMP (solid lines) consistently out- rea
perform or match those trained without pruning 02 - Yes
(dashed lines). -#- No

Incremental Step
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Rewarded Acc

On Yeast and HAR, performance degrades more
rapidly as modules accumulate. Still, pruning
helps mitigate this drop in the shallow MLP set-
ting. In the deep MLP on HAR, pruning slightly
underperforms—potentially due to the presence
of narrower layers, which seem to be more af-
fected by IMP.

Shallow MLPs show good composability on ¥
MNIST and Fashion MNIST, where accuracy 2 4 6 8 10
stays above 90% up to the full merge. On more Incremental Step

complex tabular datasets like HAR and Yeast,
performance drops more rapidly, although IMP
consistently improves results. Deep MLPs do
not outperform shallower ones overall. CNNs
also face a performance degradation, but IMP
importantly benefits their performance.

(b) Deep MLP
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(c) CNN

Figure 4: Average rewarded accuracy across incre-
mental submodule merging. All models are pruned
at 0.99%.

The specific comparison between Shallow and

Deep MLP suggests that additional depth and narrower layers do not benefit composability, aug-
menting the possibility of intereference. This suggests that width has a crucial role in enabling
composability.

Overall, these results confirm that pruning improves composability across model types and datasets,
especially in combination with the MaxEnt loss. For Deep MLP and CNN the performances might be
improved by better pruning/merging techniques or width analysis. With these results, we have shown
that it is possible to train in our proposed way, but we retain optimized techniques for future work.
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Figure 5: Values for s, 0, (t) considering multiple steps of the complete merge starting from 0 to 9
for the Fashion MNIST dataset (train and test errors, in blue and orange respectively, mean and std
across 5 runs). Loss values at each ¢ are relativized with respect to the corresponding interpolated
errors of #; and 6, and rescaled as percentages. Values close to or lower than O are the desired
outcomes.
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Mode connectivity To better understand why merging submodules via weight summation is often
effective, we study the connectivity of models in weight space. Specifically, we follow the formulation
of Lubana et al|[[2023]], and evaluate whether the merged model lies on a low-loss path between its
components, using the MaxEnt loss as criterion.

We analyze complete merges on the Fashion MNIST dataset using shallow MLPs. For each step k
in the merge sequence—e.g., combining a submodule obtained from the merge [0] + - - - + [k — 1]
and one trained on class k—we evaluate the MaxEnt loss along a piecewise linear path between the
previous model and the new submodule, with the midpoint corresponding to their weight summation.

Figure [5|shows the relative loss barrier for each step, computed as the gap between the loss at the
midpoint (merged model) and the linear interpolation of the endpoint losses. Values near or below
zero indicate mode connectivity.

In the majority of cases, merged models correspond to local minima or lie along smooth, low-loss
trajectories, with no significant barriers emerging along the merge path. This supports the hypothesis
that the training procedure induces functional composability. However, small barriers (around 2%)
begin to emerge in the later steps of the complete merge—when many submodules have already been
added—suggesting mild interference.

5 Discussion and Limitations

Our proposed modular design might open new avenues, but also presents limitations and open
challenges.

Trade-offs Between Specialization and Scale As the number of merged modules increases, we
observe degradation in accuracy and entropy, suggesting a trade-off between the degree of modularity
and the robustness of the final model. Understanding and mitigating this scaling limit is a key
direction for future work.

Composability and Mode Connectivity For shallow MLPs, merged models lie in regions reachable
whithout incurring in loss-barriers, indicating mode connectivity. This property appears to emerge
naturally from our training procedure and supports reliable merging. While we rely on simple
weight summation, more sophisticated merging techniques—e.g., Git-Rebasin or PLeas [Hazimeh
et al.l 2024, Zeng et al.| [2025]—may further improve composability, particularly in challenging
architectures.

Width Sensitivity analysis We do not currently provide a compatibility metric between submodules.
However, we empirically observed that modules trained on wider fully connected layers (both for
MLPs and LeNet-style networks) tend to compose more reliably than those from narrower networks.
We hypothesize that a minimal expressive width may be required to support isolated functional
representations. Identifying this threshold, or adapting the procedure to narrower architectures,
remains an important open direction—e.g. for applications to transformer blocks.

6 Conclusions

We introduced a principled framework for training sparse neural submodules that specialize in
recognizing a designated subset of classes while deliberately remaining ignorant of others. This
behavior is encouraged via a novel KL-based MaxEnt loss and an iterative magnitude pruning
procedure. Together, they yield compact, high-performing subnetworks that can be composed via
simple weight summation—a procedure supported by empirical evidence showing that such modules
are mode connected.

Our approach opens new avenues for modular deep learning: from continual learning to model
editing, model understanding and multi-source knowledge integration. In the long term, we envision
functional submodules becoming a fundamental abstraction for scalable and interpretable neural
systems.

Code & configurations. Scripts and models’ configurations are provided at the following link:
https://anonymous.4open.science/t/MaxEntSubmodulesMechIntWorkshop-9592, .
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Composable Sparse Subnetworks via Maximum-Entropy Principle - Appendix

A Appendix Structure

The appendix is structured as follows:

* Appendix [B] describes the extended related work;

* Appendix [C|focuses on detailing the experimental setting of our work. Specifically, we
further describe the training configurations and pipeline (Appendix [C.I)), the metrics
employed to evaluate the proposed methods (Appendix [C.2), the procedure we developed to
test for presence or absence of mode connectivity (Appendix [C.3), the datasets considered
for our experiments (Appendix [C.4), the pruning ratio per iteration (Appendix [C.5)), the
hyperparameters of our proposed procedure (Appendix [C.6);

» Appendix [D|focuses on providing additional experimental results to support the findings in
the main text. We report extended confusion matrices for individual submodules without
(Appendix [D.T)) and with pruning (Appendix [D.2)), as well as for pairwise (Appendix
and incremental merges (Appendix [D.4). We also include loss landscape plots from the
mode connectivity analysis (Appendix|D.5]), and a comprehensive table comparing merging
results with and without pruning across all loss functions (Appendix D.6).

B Extended Related Work

Modular Neural Networks and Interpretability. Several works have explored modular neural
architectures that learn to decompose computation across tasks [Kirsch et al., 2018, |Han et al., 2021},
Salem et al.| [2023]]. In particular, Kirsch et al.|[2018]] introduced a method to jointly learn both the
modules and their composition end-to-end, showing interpretable specialization through controller-
based selection. However, their approach does not isolate class-specific knowledge: modules are
reused across multiple tasks and selected based on input context, making it difficult to extract
independently meaningful functional units.

In contrast, our work explicitly aims to construct class-specific functional modules, where each
module is trained to specialize in a single class and produce maximum-entropy outputs for all others.
This sharp functional separation not only promotes compositionality via weight merging, but also
improves interpretability: submodules can be understood in terms of their response to a single
concept. Unlike these post hoc analyses, we impose structure during training, yielding functional
units with clear class semantics and compositional behavior. This aligns with the goals of mechanistic
interpretability [Saphra and Wiegreffe| 2024, where subnetworks (or “circuits” [Olah et al.,[2020])
are analyzed as self-contained structures responsible for identifiable sub-tasks.

Our method can be seen as a complement to neuron-level analysis techniques such as those inMu and;
/Andreas|[2020], which decompose single neuron activations into logical or perceptual components.
However, such analyses often suffer from polysemanticity—the same neuron responding to unrelated
stimuli—limiting their explanatory power. Instead, we enforce functional modularity at the network
level, allowing the identification of interpretable, composable subgraphs. This modular decomposition
is also conceptually connected to recent work on harmonics of learning [Marchetti et al.| [2024]],
where symmetry structures constrain the function space; our class-specific modules may correspond
to symmetry-aligned components in this broader framework.

Maximum Entropy Principle. The principle of maximum entropy (MaxEnt), introduced by Jaynes
[1957], asserts that when making inferences under partial knowledge, one should prefer the probability
distribution that satisfies known constraints while remaining otherwise maximally uninformative.
Originally formulated to connect statistical mechanics and information theory, MaxEnt has since
become a foundational tool in probabilistic modeling and statistical inference [Kuic} 2016}/ De Martino
and De Martino, [2018]]. Its generalization to complex-valued functions has also been explored, for
example in image reconstruction tasks [Bajkoval, [1992].

In our setting, MaxEnt serves as a guiding principle for functional specialization: we train submodules
to be highly confident only on their assigned class and maximally uncertain (i.e., high-entropy)
elsewhere. This interpretation differs from standard entropy regularization, which is typically used to
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smooth predictions or calibrate confidence scores [Marczak et al.| 2024]. Rather than encouraging
mild uncertainty, our max-entropy loss enforces uniformity outside the rewarded class set—actualizing
the MaxEnt principle to promote class exclusion and module isolation. To our knowledge, this use of
entropy as a strict compositional prior is novel within the context of modular deep learning.

Lottery Ticket Hypothesis and Sparse Training. Our approach builds on the Lottery Ticket
Hypothesis (LTH), which states that sparse subnetworks in randomly initialized networks can be
trained to match the performance of the full dense model [Frankle and Carbin, 2018 |Zhou et al.,
2019, Liu et al.| 2024]). This idea has been extended theoretically to show that such subnetworks exist
with high probability even in convolutional architectures with ReL.U activations [Burkholz, [2022].
Empirical studies also demonstrate that global unstructured pruning outperforms structured pruning
in high-sparsity regimes [Girish et al.,2021]]. We adopt global pruning in our setting to retain the most
functionally relevant connections across the entire network. LTH has been further explored in transfer
learning [Van Soelen and Sheppard, 2019, Burkholz et al.,2022] and federated learning [Itahara et al.
2020]. In contrast to prior work that uses pruning primarily for compression or transfer, we leverage
it to enforce functional isolation: pruning removes spurious capacity, encouraging submodules to
specialize only on their rewarded classes.

Mode Connectivity and Model Merging. Recent work on model merging has explored how
independently trained networks can be combined through linear or non-linear paths in weight space,
a property known as mode connectivity [llharco et al.,[2023]]. This has inspired techniques for task
arithmetic [[Ortiz-Jimenez et al., 2023| |Yang et al.,|2024}, Wang et al.||2024], which define task vectors
as differences between fine-tuned and base models, enabling operations like unlearning and multi-task
interpolation. These methods typically assume large pre-trained models and alignment in parameter
space, and focus on editing rather than modular design.

Other approaches, such as Git-Rebasin or PLeas [Hazimeh et al., 2024, Zeng et al.| 2025]], address
the challenge of merging models with different initializations via weight alignment. While these
techniques focus on how to combine models after training, our method focuses on how to construct
modules that are composable by design. Specifically, we show that submodules trained with max-
entropy loss and pruning often exhibit linear mode connectivity—allowing for effective merging via
weight summation—while also identifying cases where destructive interference occurs.

Our results suggest that mode connectivity may emerge naturally when modules are trained under
entropy-based functional isolation, without requiring explicit alignment. This positions our work as
complementary to task arithmetic and merging strategies: we do not assume pre-trained baselines,
but instead provide a procedure to build sparse, specialized components that are compatible by
construction.

C Extended Experimental setting

C.1 Training Configurations and Pipeline

We report here the key training configurations used in our experiments. All models were trained
using the max-entropy loss and iterative magnitude pruning (IMP), with two pruning iterations and a
final sparsity of 99% for MLPs and 60% for CNNss, unless stated otherwise. The optimizer used was
Adam. We use the highest accuracy achieved on the validation set as our checkpointing strategy. All
experiments are conducted on a workstation equipped with an Intel Core 19-10940X (14-core CPU
running at 3.3GHz), 256GB of RAM, and a single Nvidia RTX A6000 GPU with 48GB of VRAM.

Temperature scaling for the softmax was fixed to £. Inputs were normalized when appropriate, and all
datasets were used with standard training/validation splits. Each experiment was run with 5 random
seeds.

All YAML configuration files are released alongside the code repository for full reproducibility.

Model Architectures and Hyperparameters

Common Settings. All models use ReLLU activations, are trained with a batch size of 64, and are
evaluated using the same training and pruning pipeline.
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Table 3: Configurations.

Model Hidden Layers Dropout ¢

Shallow MLP [512] 0.5 5.0
Deep MLP [512, 256] 0.5 5.0
CNN (LeNet-style) Conv + [120, 64] 0. 1.0

The learning rate was set to 103 for MNIST and FMNIST across all architectures, and to 10~* for
Yeast and Human Activity Recognition, where only Shallow and Deep MLPs were evaluated.

Dataset-specific Input Dimensions and Classes

e MNIST / FMNIST: 784 input features (flattened 28 x 28 images), 10 classes.
* Human Activity Recognition (HAR): 561 input features, 5 classes.

* Yeast: § input features, 4 classes.

Training Pipeline Here we present an overview of a generic experiment. For each experiment:

 Given the set of classes C in the dataset, choose a subset of classes C' C C.

* Train one subnetwork module per class or per subset R C C’, using the max-entropy loss
and IMP.

* Evaluate each subnetwork using:

— Accuracy on rewarded classes.
— Mean entropy on non-rewarded classes.
— Confusion matrix on the validation set.

C.2 Formal Definition of Metrics

Accuracy on Rewarded Classes. Let R C C be the set of rewarded classes, and let DR denote the

subset of validation data whose labels belong to R. The accuracy over rewarded classes is defined as:

1 .
AccuraCYrewarded = W Z ]l[y(:t) = y] (6)
val (z, y)epk

val
where 1[] is the indicator function. This measures how well the subnetwork performs on the class
subset it is trained to recognize.

Mean Entropy on Non-Rewarded Classes. Let D" be the validation subset containing samples
from non-rewarded classes, and let Vo, r be its cardinality. We define the average entropy of the

model’s predictions over this set as:

1 N
Entropynon-rewarded = Ni Z H (y(x)) (N

non-R
non-R
€Dy

where g(x) is the predicted probability distribution for input x, and H (p) denotes the entropy of a
distribution p, defined as:

ic|
H(p)=—> pilogp; 8)
i=1

This metric quantifies the uncertainty the model exhibits on inputs it is not supposed to classify, with
higher values indicating closer adherence to the maximum entropy principle.
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Confusion Matrix. Given a validation dataset D, and a trained model fy, we define the confusion
matrix M € NI¢I*ICl guch that each entry M ; counts the number of samples with true label 7 that
are predicted as class j:

Mij= Y Aly=i-1[j) =] ©)

(z,y)€Dya

where §j(x) = arg maxy, fp(x), is the predicted class. This matrix allows us to qualitatively inspect
specialization and interference across class predictions.

C.3 Additional explanations on Mode Connectivity

To further shed light on why merging via summation works (as demonstrated in the main paper), we
study also the loss landscape through the lens of mode connectivity.

Mode connectivity refers to a phenomenon observed in the loss landscape of neural networks. When
a neural network is trained, the optimization process (like SGD) typically finds a set of weights
that minimizes the loss function. This set of weights is called a mode or a local minimum in the
high-dimensional loss landscape. Several contributions [Frankle et al., [2020, |Lubana et al., 2023]]
pointed out that these different modes (solutions found by, for example, training the same model
architecture multiple times with different initializations or training procedures) are often not isolated;
rather, they can frequently be connected by paths along which the loss value remains consistently low.

Many paths of different shapes can connect two models, #; and 65, in weight space. We are
specifically interested in testing for a path without significant loss barriers that includes the model
0[1,2) = 6 + 62, which results from merging the original models via summation. A key aspect of our
setup, diverging from typical mode connectivity studies, is that #; and 6 are initially specialized for
different sets of rewarded classes. The merged model [; 5 is intended to operate on the union of
these class sets. Consequently, we evaluate for barriers using our max-entropy loss function. This loss
function is consistently applied across the path and for the endpoint models (61, 6-), and it considers
the full union of rewarded classes relevant to 0}y o).

Formally, in line with [Lubana et al.|[2023]], let #; and 65 be two sets of weights, D a dataset, fy a
neural network parametrized by weights 0, and L our specific max-entropy loss function (evaluated
on D considering the union of rewarded classes as described above). We say that 6, and 65 are
mode connected along the path yp, 0, () if Vt € [0, 1] L(f,, ., 1)(D)) < (1 —1) - L(f6,(D)) +
t- L(fo,(D)) + €, where € is a small margin, set to 2% of the first term on the r.h.s. following Frankle
et al.| [2020].

Each point along the path 7, ¢, () represents a valid set of weights for the network f(-). Standard
linear mode connectivity considers the path 43S, (t) = (1 —t) - 01 + t - 6. For our case,
we require a path vy, 0, () that satisfies: (i) for vp, 9,(0) = 61, (ii) for 79, 9,(1) = 62, and
(iii) 3¢’ € [0,1] s.t. v9, 0, (t") = 61 + B2 . As a consequence, we define the mode connectivity with
respect to the following piecewise linear path:

V61 —62\U) = 2(1—t)-0; + 6, ift>0.5

It is trivial to see that our definition fulfill our properties, especially (iii) for ¢ = 0.5.

(10)

C.4 Dataset Details

MNIST and Fashion-MNIST. Both are standard 10-class image classification benchmarks with
grayscale 28 x 28 images. We normalize pixel values to [0, 1] and use the standard train/validation
splits (60,000 train, 10,000 test).

Human Activity Recognition (HAR). This dataset contains sensor data from smartphones, labeled
with six different physical activities. Each example has 561 standardized features. We adopt the
original train/test split and reserve a validation portion from the training set.
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Yeast. A protein localization dataset with 10 classes and 8 features. We normalize each feature to
zero mean and unit variance, and split the dataset using a 65/15/20 ratio. Since the class distribution
is highly imbalanced, we focused on the most represented 4 classes (i.e., CYT, NUC, MIT, ME3).

Preprocessing. For all tabular datasets, we apply z-score normalization and encode labels as
integers. We use early stopping on the validation set and batch sizes of 64 during training.

C.5 Iterative Pruning Schedule Derivation

We follow the Iterative Magnitude Pruning (IMP) framework, in which a neural network is pruned
over multiple iterations. At each pruning step, a fraction K of the remaining weights (those with
the smallest absolute value) is removed. This process is repeated for IV iterations until a target
sparsity level P € (0, 1) is reached, corresponding to retaining only a 1 — P fraction of the original
parameters.

Pruning Rate Schedule Let S; denote the fraction of weights remaining after the i-th pruning
iteration. The pruning process is multiplicative, meaning that:

Si=(1-K),

assuming Sy = 1 (i.e., all weights are initially present). After NV pruning iterations, we desire a final
sparsity P, which implies a remaining fraction Sy = 1 — P. Therefore, we solve:

1-K)YN=1-P
Solving for K, we obtain the pruning rate per iteration:

K=1-(1-P)YN

This schedule ensures that pruning a fixed fraction K of the remaining weights at each of the N steps
results in an overall sparsity of P at the end of the iterative process.

Pruning Algorithm  Algorithm 2] summarizes the full procedure used in our experiments.

Algorithm 2 Iterative Magnitude Pruning with Max-Entropy Loss

Initial weights 6, dataset D, rewarded classes R, number of pruning iterations N, target
sparsity P, epochs per iteration E 6 < 0y K < 1 — (1 — P)'/V iteration i = 1 to N Train
model fy on D using max-entropy loss with reward set R for E epochs Prune the fraction K of
weights in € with the smallest absolute value Reset remaining weights in 6 to their initial values
from 6 Train the final pruned subnetwork on D using max-entropy loss with R for E epochs

C.6 Hyperparameter Tuning

We perform a small-scale hyperparameter study with respect to two key components of the training
pipeline: the softmax temperature used in the max-entropy loss, and the pruning ratio applied in
iterative magnitude pruning. The temperature analysis is conducted on MNIST using a shallow
MLP in the complete merge setting. For the pruning ratio, we provide two complementary studies:
one on the shallow MLP in the same complete merge scenario, and one on CNNs (LeNet-style) in
the pairwise merge setting, using both MNIST and FashionMNIST. All results are averaged over 5
random seeds.

Temperature. We study the effect of the temperature hyperparameter ¢ € {1, 3,5, 7}, which scales
the logits before the softmax activation and thus controls the sharpness of the output distribution.
Lower temperatures produce more peaked distributions, while higher values encourage uniformity.

Figure[6a]and[6b]show the average entropy on non-rewarded classes and the rewarded accuracy across
merge steps for different temperatures.
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Figure 6: Effect of temperature scaling on specialization and composability. Temperature ¢ controls
the confidence of the softmax output; ¢ = 5 achieves a good trade-off between high entropy on
non-rewarded classes and accuracy on rewarded ones.

Pruning Ratio. We evaluate the impact of pruning ratio on submodule performance and merge be-
havior for two architectures: a shallow MLP and a CNN (LeNet-style). For the shallow MLP, we focus
on the complete merge setting, testing three final sparsity levels—90%, 99%, and 99.9%—adjusted
across two IMP iterations. As shown in Figure[7} pruning to 99% yields the best trade-off between
specialization and compositionality: it maintains high entropy on non-rewarded inputs and preserves
rewarded accuracy throughout the merge process. Lower sparsity (90%) retains excessive capacity,
causing interference when modules are merged. Higher sparsity (99.9%) leads to underfitting and
degraded performance.

For CNNs, we instead study pruning in the pairwise merge setting, focusing on class subset sizes
|R| = 2 and 5, across MNIST and FashionMNIST. The results, summarized in Figure show that a
pruning ratio of 0.6 consistently yields the highest average rewarded accuracy across both datasets
and cardinalities. This indicates that, unlike MLPs, CNNs benefit from less aggressive sparsification.

Entropy vs Step per Pruning Ratio Rewarded Accuracy vs Step per Pruning Ratio

~#- PR=0999 ~#- PR=0999

1 2 3 4 5 6 7 [ H 2 4 6 8 10
step Step

(a) Entropy on non-rewarded samples across merge  (b) Rewarded accuracy across merge steps for different
steps for different pruning ratios. pruning ratios.

Figure 7: Effect of pruning ratio on submodule specialization and merge stability. A pruning ratio of
0.99 yields a good balance between maintaining accuracy and increasing entropy on non-rewarded
classes.
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Figure 8: Effect of pruning ratio on CNN accuracy after pairwise merging on MNIST and FashionM-
NIST, with cardinality |R| = 2 and 5. The optimal pruning ratio is 0.6.

D Extended Experiments

In this section, we present additional experimental results and qualitative insights.

First, we report representative examples for three settings:

¢ Shallow MLP on MNIST
* Deep MLP on Human Activity Recognition
* CNN (LeNet-style) on FashionMNIST

Then, we provide a comprehensive table reporting the full results for pairwise submodule merging
across all configurations—varying model architectures, pruning settings (with and without IMP),
cardinalities | R |, and loss functions. This extended comparison complements the main paper, where
only pruned results were shown, and helps quantify the impact of pruning across a wider set of
conditions.

D.1 Confusion Matrices (No Pruning)

In this subsection, we show submodules trained using the max-entropy loss without applying iterative
magnitude pruning (IMP). For each model-dataset pair, we show the confusion matrix of a submodule
trained on a single rewarded class. These visualizations allow us to assess the degree of specialization
and the presence of residual structure in the predictions for non-rewarded classes.

In all cases, the models exhibit strong activation on the rewarded class, while showing varying
degrees of non-uniformity on the excluded classes—especially evident in the confusion matrix rows
corresponding to non-rewarded labels.

D.2 Confusion Matrices After Pruning

We report confusion matrices for submodules trained with both the max-entropy loss and iterative
magnitude pruning (IMP). These models are expected to exhibit stronger functional isolation, with
reduced leakage across non-rewarded classes. Comparisons with Section [D.1] highlight the impact of
pruning on output uniformity and specialization.

D.3 Confusion Matrices for Pairwise Merges

We show representative confusion matrices for pairwise merges of submodules, each specialized
on a distinct class. These examples illustrate that, even after weight summation, the merged model
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Figure 9: Confusion matrices for submodules trained on classes 0-9 without pruning, using the
max-entropy loss. Each model is trained to specialize on one class and suppress predictions on others.
Results refer to the Shallow MLP architecture applied to the MNIST dataset.

o m 1 o “

Figure 10: Confusion matrices for submodules trained on classes 0—4 without pruning, using the
max-entropy loss. Each model is trained to specialize on one class and suppress predictions on others.
Results refer to the Deep MLP architecture applied to the HAR dataset.

retains high confidence on rewarded classes and preserves uniform predictions on others—confirming
compatibility and lack of interference.

D.4 Confusion Matrices for Incremental Merges

This section presents confusion matrices from various stages of incremental merging, where multiple
submodules are combined one by one. The results demonstrate how compositional behavior is
maintained across merge steps, and how the model continues to correctly isolate rewarded class
behavior while suppressing predictions on excluded ones

D.5 Mode connectivity

In this section, we present additional plots analyzing the loss landscape between merged submodules.
Following the framework described in Appendix [C.3] we evaluate the relative difference in loss along
the piecewise linear path connecting two modules and their sum.

We show incremental merging results for a Deep MLP on the HAR dataset and for a CNN on
FMNIST, for both incremental and pairwise merging settings. In the majority of the cases, the
pictures describe the desired behaviour (no or limited increase above 0). As already mentioned in the
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Figure 11: Confusion matrices for submodules trained on classes 0-9 without pruning, using the
max-entropy loss. Each model is trained to specialize on one class and suppress predictions on others.
Results refer to the CNN architecture applied to the FMNIST dataset. The CNN was pruned with a
99% pruning ratio.

main paper, it can also be observed that for the CNN, after many incremental merges (e.g., steps 9
and 10), the difficulty in achieving an optimal merge is reflected in the presence of barriers in the loss
function landscape.

D.6 Complete Results for Pairwise Submodule Merging

In the main paper (Section ), we report the results of pairwise submodule merging under the
Iterative Magnitude Pruning (IMP) regime, as this generally led to the best overall performance.
For completeness, here we provide the full set of results, including both pruned and non-pruned
configurations. Table @] reports the average rewarded accuracy and average entropy on non-rewarded
classes for all model families (Shallow MLP, Deep MLP, CNN), across multiple datasets (MNIST,
Fashion MNIST, HAR, Yeast), cardinalities |R| € 1,2, 5, and loss functions (CrossEntropy, Quasi-
MaxEnt, and MaxEnt).

We observe that:

* Models trained with IMP consistently outperform their non-pruned counterparts in most
settings, particularly when using the MaxEnt loss.

» The MaxEnt loss yields the most reliable and composable modules across all model types
and datasets, both with and without pruning.

* Non-pruned models trained with standard CrossEntropy struggle to maintain entropy on
non-rewarded classes, often resulting in degraded compositional performance.

* The benefit of pruning is especially marked in deep MLPs, where without IMP the merging
process suffers from significant degradation in rewarded accuracy.

These extended results support the conclusions drawn in the main paper: pruning strengthens
functional specialization and enhances composability, especially when combined with entropy-based
objectives.
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Figure 12: Confusion matrices for submodules trained on classes 0-9, using the max-entropy loss
and pruning. Each model is trained to specialize on one class and suppress predictions on others.

Results refer to the Shallow MLP architecture applied to the MNIST dataset.
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Figure 13: Confusion matrices for submodules trained on classes 0—4, using the max-entropy loss
and pruning. Each model is trained to specialize on one class and suppress predictions on others.
Results refer to the Deep MLP architecture applied to the HAR dataset.
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Figure 14: Confusion matrices for submodules trained on classes 0-9, using the max-entropy loss
and pruning. Each model is trained to specialize on one class and suppress predictions on others.
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Figure 15: Confusion
Each cell shows the average across 5 seeds.

(a) Step 1

(f) Step 6

Reat

000 000

350

(©0+03]
000

000 000 000 000 000

Elm oo

o 1 2 3 4 5 & 1 & 8 o 1 2
i
111+[4]

-26.20 211.80 40.20 85.80 263.60 64.60 34.00 30.00 87.40 48.40 ;mrliﬂn 201.40 43.00

o 1 2 3 4 5 & 7 & 38 o 1 2
s

o 1 2 3 4 5 6 7 & 38 o 12

o 1 2 3 4 5 & 1 & s o 1 2

(014151
000 000 240 000 000 000 000

. 7030 1783020000

2800 1340 182,00 6060 6160 10860 95.00

3600 17.20 30240 99.40 40.00

oco oco [ occ oo

19,40 27.80 312,00 46.80 2360

740 45.00
12620 9240
000 000
6160 460

3760 13.20 300,60118.80 3520 14020 4320

1460 22.40 39820 4060 47.20 10080 37.80

5300 880 3530011640 30.40 13080 7.60

LR T D R A B
prcicted
f+t61

70,680 58.20 3420 3900 29.60 25,60 3460

000 040 00D 360 000 000 000

7.40 57,00 69,80 25340 3480 16.20 58.60
56.60 101.80104.40115.20 42.20 £2.20 5160
5360 75,60 6480 27620 70.60 14.20 5160
75.40 6640 6200 31620 28.80

o0 aco o0 [0 oco

120,40 52.00 760 8420 33.90

000 000
80 270
86.40 97,80 42.00 274,40 5280

2000 1340

126.20111.60 5420 18000 70.80

[

1200 3680

a8
prcicted
1s1+18]
16.20 43,00 36740 44,40 67.60 28340 15.40
580 5100 30940 30.80 6280 SO 16.40

740 32.40 14900 46,60 99.00 (SR 26 20

™ nzu.xun 1540 22000 1000

560 39.40 21340 64.00 15380364160 26.40

1680 21,00 39280 34.20 76.40 30340 31.80

840 46.40 286.80119.40152.80238.00 26,50

o0 a0 00 oo 000 [0 oo

500 29,60 24320 51.20 1516082020 14,50
is [
prcicted

171+18)

5300 8400 27.20 42.60 300.0033000 51.60

480 1320 2100 30.80 30BOSERY 26.40

1320 3000 26.40 4320 3318046960 32.40

3020 56280 5820 36,80 2016044080 64.00

1680 5040 16:20 30560 2934041760 24.50

2040 2280 uzno.uzn

2020 68,40 207.8040380 4180

4900 3080
2760 5180

000 000 020 000 760 o000

1200 3360 1560 19,80 3756043840 1260

A6 7 o8 s

nn oo

34680 1400
24680 35,00
<9120 6000
28240 120

o -37260 s0.40

1m0

=3280 25.40

12340 7850

b

o-30

~- 000

~-7a20

3600

+-4080

Real

o-s280
5460
©- 000
a-5160

o

a2
~-9000
1280

<1900

Resl

©-4500
©-3240

a- 020

5640
2000
«-n280
K
w2280
©-9000
©-5580

o020
10
3660
2060
1000
000 020

00

i

26620 3120

28940 2600

o000

31640 2700

22000 5160

17380 1850

30820 2220

34100 5260

20

o000

168.00 51.00

12
5020 3140
7240 5720
5000 1860
3420 3540
3480 6940
5200 2380

020 o020

3580 2080
asa0 220
160 2140
3820 2020
920 6820
3820 2500

(o147

000 000 000

2660 4340 5920

a2

3140 5620 8420

2580 5100 11380

o000 000 020

3600 8260 5120

7040 4820 9420
I
Precicted

[+8]

7480 6700 4620

000 000 000

2160 5680 7020

2080 9180 5880

2680 5620 4420

3960 240 8080

020 000 040

2620 66,00 5680

I
Preicted
[s1+(9]

2200 5220 28080

4320 1062031300
5600 65.40 169.60
740 1840 39240
5820 22.40 14100
220 2100
35,00 190 15040
1900 49.20 28080

000 1640

s
Predcted
71491

5640 9660 220
55.40 10220 18.00
3060 8040 780
280 1550 2580
5340 6180 13.40
9220 5320 13.00
4200 8660 1140

il

000

14,40 81260 21.00 84.00

260 000 000

16.40 30680 16.00 144,80

2900 108.20 21,60 33380 48.40 71.00

15,80 20420 23.00 12900
2060 17240 5780 7360

oz [ o0 020

1200 30080 2560 97.20

2110-2520 an

FR A}

000 58,00 306,00 51.60

000 000 440 000

3860 27,00 40080 26.40
2720 21.40 81920 35.80
2760 5140 34240 36,80
3000 25.00 836,00 55.50
6860 4020 319,80 3300

5540 3400 21120 200

mnm

73,80 47380 2200

000
280
LR B A}
1040 2620 390 85260
2400 1460 6660 9860
300

7060 72.50 4320

1800 26.20 26.60 42080

20 uw.

1260

1380 3480 26.80 24480

3240 2080

020

020 000 080

78 s

2040 23160 2000 S804
™ . 150 37740
2000 39028 1520 27420
a0 19420 1020
192018700 2500 S

2400 10840 2740 .

3160 246,80 17.00 296.80

1020 172,60 15.60 S0
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Figure 16: Confusion matrices for 10 pairwise merges of Deep MLP submodules on HAR. Each cell
shows the average across 5 seeds.
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Figure 17: Confusion matrices for 16 pairwise merges of CNN submodules on FMNIST. Each cell
shows the average across 5 seeds. The CNN was pruned with a 99% pruning ratio.
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Figure 18: Confusion matrices for pairwise merges of CNN submodules on FMNIST, for exemplary
modules of cardinality 1, 2, and 5 each. Each cell shows the average across 5 seeds. The CNN was
pruned with a 99% pruning ratio.
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Figure 19: Confusion matrices for incremental merge steps of a Shallow MLP on MNIST. Each
submodule is trained independently and merged following increasing order. Results are averaged
over 5 seeds. The structure of predictions remains clean and interpretable throughout the merge.
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Figure 20: Confusion matrices for incremental merge steps of a Deep MLP on HAR. Each submodule
is trained independently and merged following increasing order. Results are averaged over 5 seeds.
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Figure 21: Confusion matrices for incremental merge steps of a CNN on FMNIST. Each submodule
is trained independently and merged following increasing order. Results are averaged over 5 seeds.
The CNN was pruned with a 99% pruning ratio.
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Figure 22: Values for 7y, —¢, (t) for pairwise merges of CNN submodules on FMNIST, for exemplary

modules of cardinality 1, 2, and 5 each (same as Figure[I8). Results are averaged over 5 seeds. The
CNN was pruned with a 99% pruning ratio.
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Figure 23: Values for 7y, 0, (t) for incremental merge steps of a Deep MLP on HAR (same as

Figure[20). Each submodule is trained independently and merged following increasing order. Results
are averaged over 5 seeds.
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Figure 24: Values for vy, 9, (t) for incremental merge steps of a CNN on FMNIST (same as

Figure[2T)). Each submodule is trained independently and merged following increasing order. Results
are averaged over 5 seeds. The CNN was pruned with a 99% pruning ratio.
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Dataset FMNIST MNIST HAR Yeast
Entropy Rewarded Acc  Entropy Rewarded Acc  Entropy Rewarded Acc  Entropy Rewarded Acc
Model |R| IMP loss
XE 0.028 016)  0.752 0248 0.001 ©.003)  0.492 (0.024) 0.463 0521 0.853 0.191) 0.237 0259 0.571 0.162)
No QME 2.041 ©o064) 0.910 (0.083) 2.038 ©0s6) 0.964 ©.037) 0.958 (0.146)  0.971 (©.041) 0.843 107 0.792 (©.097)
1 ME 2.300 001y 0.970 (0.012) 2.300 @00 0.970 ©.012) 1.598 ©067) 0.987 (.010) 0.827 0175 0.806 (0.153)
XE 0.183 0151 0.877 (0.186) 0.507 ©.150)  0.708 (0.179) 1.255 ©0.191)  0.855 0.197) 1.378 0004y  0.631 (0.101)

Yes QME 2.031 0132 0.908 (.105) 2.082 ©005) 0.973 (0.014) 1.196 ©073) 0.946 (0.046) 1.056 ©.082 0.799 (0.106)
ME 2.287 ©.005)  0.977 (0.005) 2.287 ©005)  0.991 (©.005) 1.716 ©.033) 0.985 (.016) 1.146 0071 0.853 ©.127)

XE 0.068 0.069  0.569 (0.111) 0.127 00500 0.572 0.114) 0.320 0274y 0.761 (0.196) - 0.435 (0.005)
Shallow MLP No QME 1.980 ©.095) 0.883 (0.061) 1.719 ©204) 0.954 (0.023) 0.415 0300 0.930 (0.029) - 0.566 (.011)
atiow 5 ME 2.297 ©002) 0.957 (0.013) 2.297 ©002) 0.957 (0.013) 1.521 ©a171p  0.940 (0.017) - 0.527 (0.012)
XE 0.277 .08y  0.786 (0.141) 0.332 ©.080)  0.838 (0.074) 1.167 0217 0.871 0.055) - 0.381 (0.036)
Yes QME 1.824 0207 0.917 (0.049) 1.683 0216 0.959 (©.016) 1.013 (0223 0.891 (0.024) - 0.559 (0.011)
ME 2.267 o001  0.977 (©.005) 2.268 ©007)  0.980 (.006) 1.670 045 0.935 (0.027) - 0.616 (0.010)
XE - 0.456 (0.036) - 0.571 ©.076) - - - -
No QME - 0.687 0.077) - 0.896 (0.012) - - - -
5 ME - 0.945 (0.008) - 0.945 (0.008) - - - -
XE - 0.480 (0.075) - 0.842 ©.027) - - - -
Yes QME — 0.741 (0.026) - 0.905 (0.023) - - - -
ME - 0.946 (0.004) - 0.946 (0.004) - - - -
XE 0.041 ©0s5)  0.675 (0.220) 0.000 ©.000)  0.505 (0.025) 0.519 0611y 0.823 (0.227) 0.068 0.169)  0.591 (0.144)
No QME 1.846 ©.184) 0.920 (0.110) 1.983 ©.175) 0.978 (0.020) 0.812 ©.190)  0.975 (©0.026) 0.655 107  0.796 (0.102)
1 ME 2.290 ©019) 0.883 (0.148) 2.299 ©oon  0.819 (.104) 1.716 ©oss) 0.984 (0.012) 0.891 0177 0.836 (0.136)
XE 0.215 ©.150)  0.802 (0.205) 0.422 ©.190  0.689 (0.194) 1.059 0313 0.840 ©0210) 1.386 ©.000)  0.553 (0.144)
Yes QME 1.842 (0329 0.868 (0.176) 2.061 ©.046) 0.954 (0.045) 1.098 ©.128) 0.819 (0155 0.883 0.118)  0.783 (©.114)
ME 2.245 ©072 0.975 (0.039) 2.291 ©o3ny  0.990 (0.005) 1.697 ©o0s0) 0.988 (0.016) 1.063 ©.109) 0.859 (0.120)
XE 0.034 ©.030)  0.565 (0.097) 0.140 ©062)  0.602 (0.118) 0.324 0268 0.708 (0.150) - 0.438 ©.007)
Deep MLP No QME 2.032 1459 0.865 (0.079) 1.822 0227y 0.897 (0.065) 0.213 0194  0.903 (0.060) - 0.570 (0.021)
cep 5 ME 2.283 016  0.735 (0.087) 2.297 ©008) 0.755 (©.090) 1.725 ©.039) 0.946 (0.026) - 0.587 (0.036)
XE 0.166 ©.083)  0.678 (0.081) 0.208 0054y 0.743 ©.111) 1.065 (0344)  0.824 (0.068) - 0.382 (0.046)
Yes QME 1.347 ©484) 0.863 (0.088) 1.224 0352 0.912 (©0.038) 0.665 0.251) 0.787 (0.093) - 0.562 (0.023)
ME 2.197 ©095)  0.898 (0.045) 2.275 ©02) 0.976 ©o11) 1.607 ©.134  0.930 (0.028) - 0.589 (0.018)
XE - 0.534 (0.053) - 0.580 (0.119) - - - -
No QME - 0.627 (o.101) - 0.800 (0.025) - - - -
5 ME - 0.483 (0.048) - 0.670 (0.106) - - - -
XE - 0.400 (0.082) - 0.710 (0.044) - - - -
Yes QME - 0.701 (0.084) - 0.834 (0.036) - - - -
ME - 0.774 (0043 - 0.919 (0.003) - - - -
XE 0.038 0.065)  0.639 (0.206) 0.072 ©.168)  0.519 0.072) - - - -
No QME 1.247 ©280 0.916 (0.087) 1.261 ©291) 0.974 ©.034) - - - -
1 ME 2.297 ©.004) 0.908 (0.085) 2.285 0019 0.968 (0.033) - - - -
XE 0.016 0.026)  0.557 (0.150) 0.041 ©.128)  0.529 (0.080) - - - -
Yes QME 0.981 03229 0.880 (0.136) 1.001 ©377  0.961 (0.078) - - - -
ME 2.297 0039  0.960 (©.097) 2.286 057 0.989 ©012) - - - -
XE 0.090 ©.038)  0.632 (.151) 0.092 ©0s2)  0.736 0.131) - - - -
CNN No QME 1.203 ©321 0.910 (0.047) 0.742 0359 0.934 (©0.054) - - - -
5 ME 2.137 0135 0.876 (0.062) 2.012 ©241) 0.959 (0.034) - - - -
XE 0.052 0.038)  0.604 (0.169) 0.070 ©042)  0.624 (0.138) - - - -
Yes QME 0.705 0397 0.888 (0.071) 0.312 0301 0.928 ©.074) - - - -
ME 1.984 0304  0.930 (.044) 1.950 0456  0.965 (0.046) - - - -
XE - 0.519 (0.080) - 0.698 ©.151) - - - -
No QME - 0.798 (0.029) - 0.892 (0.056) - - - -
5 ME - 0.826 (0.038) - 0.926 (0.030) - - - -
XE - 0.512 (0.066) - 0.777 ©.056) - - - -
Yes QME - 0.779 (0.066) - 0.850 (0.084) - - - -
ME - 0.864 ©.011) - 0.955 (0.012) - - - -

Table 4: Average performance of pairwise-summed sub-modules. For each group model-cardinality-
dataset, the best approach is highlighted in bold.
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